

Response to Editor's comments

We thank the editor for her detailed comments. The major changes in the revision have been addressed by the following change:

- Added more validations compared to moorings from BGEP and two buoys from IMB in March 2014.
- Add one figure about the observation uncertainty of SMOS-Ice
- Highlight the novelty of the present study.
- Improve the clarity of the paper by revising the text.
- Add more informations about the validation period and data sets of sea ice thickness in the TOPAZ reanalysis.

In the following we provide a detailed answer to the editor comment. Her comments are repeated in black and our answers are given in red.

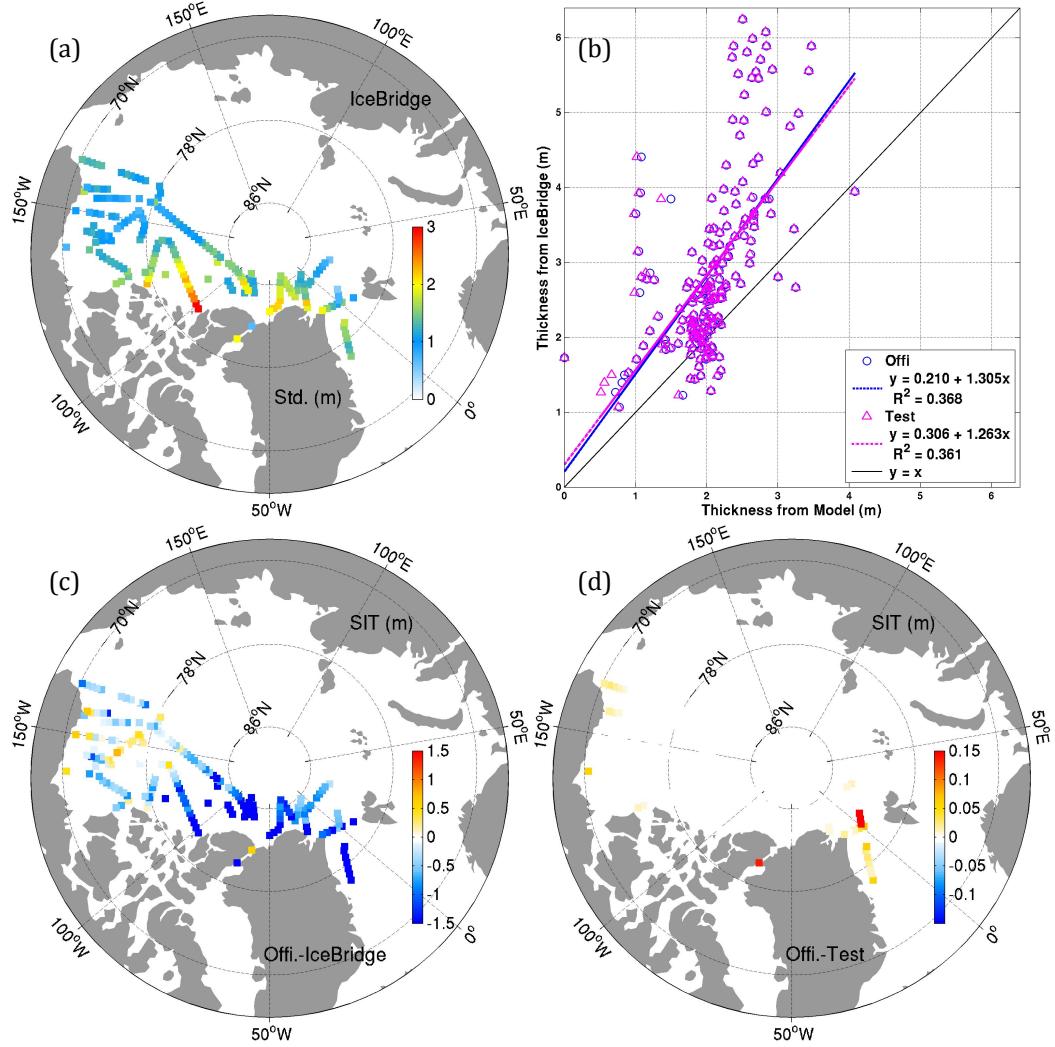
This paper is not ground breaking, in that it demonstrates that assimilating ice thickness into a coupled ice-ocean model does exactly what you would expect it to do, move the ice thickness estimate towards observations. A very similar paper has already been published in JGR-Ocean (Yang et al. 2014), documenting the impact of assimilating SMOS thicknesses < 1m into the MITgcm with a Kalman Filtering method. Yang et al. has more extensive validation with independent ice thickness measurements than you perform in this paper, with data sets that are available to you. It appears your results are similar to Yang et al. (2014), and I wonder if any increase in impact of SMOS is actually because your original run is actually simulating ice thickness worse than the model used in Yang et al. (2014). Given the fact that this is a reproduction of a previous study, with a similar assimilation method (some differences that are worth note) and different model, your results do not present much additional information to the reader. That said, this result is useful to the community of future sea ice forecasters and analysts who may use the TOPAZ model, which is providing medium-range forecasts unlike the seasonal forecasts of Yang et al. (2014). So I am inclined to reconsider the paper after revision.

It is correct that assimilation of ice thickness is expected to bring the model closer to observations. However, it is not warranted that improvements in one location do not lead to degradations in other locations. Also the multivariate properties of our strongly coupled data assimilation method do not degrade the ocean variables (SST, SSH) and even lead to some slight benefit for ice

concentration. We have noticed some changes in the ice drift and surface currents but there were no observations able to indicate whether these are changes for the better. It is correct that the current manuscript has similarities with the one from Yang et al. (2014); that the benefit from assimilating SMOS-Ice is not as large and as expected. However, *two is more convincing than one* and we think that some additional finding makes it useful to the user community. The possibility that our results start from a much worse ice thickness than Yang et al. (2014) does not seem to hold from the results at hand: although we cannot compare the models in different periods, their thickness offset is reported about 1.5 m against BGEP 2011 and IMB 2011 data, whereas our thickness offset is between 10 cm and 80 m between our results and IMB (Fig. 8 in the revised manuscript).

We have tried to better present in the new manuscript the novelty in our study compared to Yang et al. (2014) namely: 1) Assimilation is validated from the beginning to the end of the cold period while the experimental period in Yang et al. (2014) is only from November 2011 to January 2012. 2) The conclusion from Yang et al. (2014) still holds when using a much more extensive observation network (they only assimilate sea ice concentration and SMOS-Ice while we assimilate T-S profiles, altimetry, SST, sea ice drift in addition. 3) We have verified that we do not degrade the performance in the ocean 4) There is a quantification of the relative impact of SMOS-Ice with respect to a full observational network. 5) We present and validate changes to the European monitoring service (Arctic MFC Copernicus). 6) It is always good to show that conclusions from a paper can be verified with a different system (larger ensemble size, different model, slightly different assimilation method, different implementation and different observation network).

I welcome the addition of independent thickness observations for verification, however you did not present as much verification data as is available to you. And as you point out in your response to the reviewer, the location of buoys compared against is upstream from where data is assimilated. I also find that the paper can still benefit from attention to the error characteristics of the thickness data. This is very important for understanding R in the Kalman gain. Figure A in the response to reviewers was helpful, and you could perhaps describe these error characteristics in the manuscript.


Reply: Thanks. We have now extended the validation with the other independent measurement data sets available to us. The new validation supports the previous conclusions. We have added the figure about observation error of SMOS-Ice.

Please provide more information regarding the validation data set, used to assess skill in estimating ice thickness. Xie et al. (2016) also insufficiently describes the ice thickness data. You should describe the data density and how it varies spatially and temporally over the full time period. This paper in Ocean Science Discussions does not provide a discussion of the measurement errors, which can be substantial. Without this discussion it is impossible to assess if biases are in the model or observations (as you correctly point out in your manuscript). It is for this reason that I suggest you consider using more ice thickness data to see if you can tease this information out. However, I do understand that you may find there is limited data of thin ice thickness with which to directly verify the SMOS data set and model biases.

Reply: Thanks. We have improved the presentation of the data set used for validation in our manuscript.

Only two buoy trajectories were used in this paper for validation. I assume that this is because these are the only IMB data that overlaps with your time period for model runs. There are many other data sources you can use for independent verification. Ice Bridge will be useful for March in the high Arctic, though I suspect you are not assimilating SMOS data here. There are year long moorings in the Beaufort Sea with ULS. The data, described in Krishfield et al. (2014), for these is freely available from WHOI at <http://www.whoi.edu/page.do?pid=66559>. Note that Krishfield processed this data, and had to filter out wave action in summer months as the Beaufort has become Marginal Ice Zone. The data processing may imply a minimum ice thickness that can be resolved, and you should check this.

Reply: Thank you for the recommendations. We have now extended the validation with the recommended observational data sets. We have made a note of the processing applied to the mooring data and the IceBridge data is indeed always thicker than 1m. The validation against the *Ice Bridge* data was performed (see Figure below) but is not more conclusive than the other data sets: only a handful of observation points are affected by the assimilation of SMOS data. We have thus mentioned that validation against IceBridge was performed but that it is not presented because we get similar results.

Comparison of the SITs in the two assimilation runs with the averaged SITs of IceBridge Quick Look from the National Snow and Ice Data Centre in March 2014. (a) Locations of the observed SIT with their standard deviation (unit: m); (b) Scatter of the observed thickness and the simulated thickness of Official (Test) Run shown as the blue (pink) color. The blue (pink) line represents the regression lines. (c) Distribution of the sea ice thickness differences between the Official Run and the observed. (d) Distribution of the sea ice thickness difference between the two assimilation runs.

I am aware of other moorings deployed in the Beaufort Sea, in the seasonal ice zone. Consider contacting Humphrey Melling regarding this data, though it may be propriety. Shell had moorings in the Chukchi Sea and they have been providing data freely to researchers. This is information that is for your interest, as I am sure you Consider the Fram Strait moorings too, though these are not recording thin ice. Some, but not all, of these data are included in the Lindsay et al. (2013) unified sea-ice thickness product.

Reply: Thanks. Most of the data sets do not provide SIT, or stopped after 2012, or are only in summer time. Although validation of ice thickness is

important, validation of sea levels, SST, ice concentrations are equally important and just as independent.

Please expand TOPAZ where it is first introduced. Not everyone will be familiar with the model, and the brand name is not in common usage.

Reply: The Acronym TOPAZ, originates from an European project (“Towards an Operational Prediction System for the North Atlantic European coastal Zones”). Since 2004, our focus has gradually evolved to the Arctic and the acronym has actually become a brand name, known as such in the ocean data assimilation community. None of the publications about TOPAZ system mention the meaning of the acronym any more and we would find it confusing to remind it here.

page 2, line 5: There are more recent references to the decrease in sea ice extent. Also, Shimada et al. is a discussion of the possible implications of reduced sea ice extent and not a presentation of the observation of reduced extent.

Reply: Thanks. The related reference are replaced by “Comiso et al., 2008; Stroeve et al., 2012”.

page 5, line 4: In the one catagory model is there a lower limit on ice thickness that is not considered open water. For example some older two level models consider ice less than 0.5m to be in the open water catagory. Please clarify, as this is exceptionally important for your assimilation scheme.

Reply: Thanks for this important point. In the model, the thickness of sea ice as a minimal limitation thickness of 0.1m. This threshold is relatively low in the community and is not limiting the use of SMOS since we use the ensemble mean of a 100 members ensemble, which can take values down to 1 mm. We mention it during the model description and its implication during the validation.

line 14-15: "which amplitude is" -> "with amplitude"

Reply: It is corrected.

line 27: bracket -> brackets

Reply: It is corrected.

line 31: missing f superscript from P

Reply: Thanks. The related illustration has been changed.

line 33: anomaly -> anomalies

Reply: It is corrected.

page 6, line 1: forecastd -> forecast

Reply: It is corrected.

Page 6: Please check you have defined all your variables.

line 10: put symbol for ensemble mean just after when you introduce it. So it is clear the equation is calculating this. Ditto for ensemble anomaly in line 12.

Reply: Thanks. The order has been changed again.

Equation 4: This is actually the mean difference between model and observation. While you are correct that this includes both the observation and model bias, I do not find Bias to be the most intuitive label for this quantity. However I am willing to concede provided it is very clear to the reader through out that the bias is not the model or observation bias.

Reply: The bias is the expected value of the difference between the model and the truth. Here the truth is unknown, and the bias is the sum of the model and observation bias. Labeling this quantity as bias is common in the data assimilation community as model bias is often much larger than observation bias. We have tried to clarify that in the new version of the manuscript.

page 8, line 13: Sentence incomplete

Reply: Thank you. It is corrected.

page 9, line 1: You need to describe the uncertainties. Including their magnitude, any variance and periodicity in this.

Reply: Thanks. More information about the observation uncertainties are added in Page 9 lines: 15- 34.

line 2: As you are disregarding all data more that 0.4m, is it not irrelevant that the upper, saturation, limit on SMOS observations is 5m. I see that you refer to this point later in the manuscript, where you point out there is very little SMOS data assimilated in the Beaufort in March. You could clarify these points when you expand the information about the SMOS uncertainty.

Reply: The upper uncertainty of SIT from SMOS is set to 5 m (variance of 25 m²). When the saturation threshold of observation uncertainty is reached we

reject the observation whatever the value of SIT. However, it is very seldom that SMOS-Ice is less than 0.4 m with an observation error of more than 25 m² (see Fig 4 in the revised manuscript), so we do not think it has any influence on our results.

line 8: "within the beginnings" might read better as "at the onset"

Reply: Thank you, it is replaced in the revision.

page 11, line 11: "we are validating" -> "we validate"

Reply: Thanks. It is changed.

page 13, line 10: Remove "the ice tethered profiles (ITP), which are"

Reply: Thank you, it is corrected as the suggestion.

line 13: _[Dimpacts -> impact

Reply: Thanks. It is corrected.

page 14, line 18: thick -> thickness

Reply: It is replaced by thicker.

line 27: consistently -> consistent

Reply: Thanks. It is corrected.

Fig. 5: Expand acronyms in titles. You do not explain what hice, icec is etc.

Reply: Thanks. We have tried to limit the use of acronym.

Fig. 6, caption: sea-ice -> sea ice

Reply: Thanks. It is corrected.

Response to Editor's comments

We thank the editor for her detailed comments. The major changes in the revision have been addressed by the following change:

- Added more validations compared to moorings from BGEP and two buoys from IMB in March 2014.
- Add one figure about the observation uncertainty of SMOS-Ice.
- Highlight the novelty of the present study.
- Improve the clarity of the paper by revising the text.
- Add more informations about the validation period and data sets of sea ice thickness in the TOPAZ reanalysis.

In the following we provide a detailed answer to the editor comment. Her comments are repeated in black and our answers are given in red.

This paper is not ground breaking, in that it demonstrates that assimilating ice thickness into a coupled ice-ocean model does exactly what you would expect it to do, move the ice thickness estimate towards observations. A very similar paper has already been published in JGR-Ocean (Yang et al. 2014), documenting the impact of assimilating SMOS thicknesses < 1m into the MITgcm with a Kalman Filtering method. Yang et al. has more extensive validation with independent ice thickness measurements than you perform in this paper, with data sets that are available to you. It appears your results are similar to Yang et al. (2014), and I wonder if any increase in impact of SMOS is actually because your original run is actually simulating ice thickness worse than the model used in Yang et al. (2014). Given the fact that this is a reproduction of a previous study, with a similar assimilation method (some differences that are worth note) and different model, your results do not present much additional information to the reader. That said, this result is useful to the community of future sea ice forecasters and analysts who may use the TOPAZ model, which is providing medium-range forecasts unlike the seasonal forecasts of Yang et al. (2014). So I am inclined to reconsider the paper after revision.

It is correct that assimilation of ice thickness is expected to bring the model closer to observations. However, it is not warranted that improvements in one location do not lead to degradations in other locations. Also the multivariate properties of our strongly coupled data assimilation method do not degrade the ocean variables (SST, SSH) and even lead to some slight benefit for ice

Jiping et al. Mac 17/10/2016 10:33

Deleted: - ... [1]

Jiping et al. Mac 17/10/2016 10:33

Deleted: the...er detailed commen' ... [2]

Jiping et al. Mac 17/10/2016 10:33

Deleted: with the...o moorings fr ... [3]

Jiping et al. Mac 17/10/2016 10:33

Deleted: and

Jiping et al. Mac 17/10/2016 10:33

Deleted: concerned statements

Jiping et al. Mac 17/10/2016 10:33

Deleted: illustrations about the ... [4]

Jiping et al. Mac 17/10/2016 10:33

Deleted: - ... [5]

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font:Arial Unicode MS

Jiping et al. Mac 17/10/2016 10:33

Formatted ... [6]

Jiping et al. Mac 17/10/2016 10:33

Deleted: push

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Deleted: towards

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Deleted: imposed

Jiping et al. Mac 17/10/2016 10:33

Deleted: improvement

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Deleted: does

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Deleted: degradation

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Deleted: update yields no degradation

Jiping et al. Mac 17/10/2016 10:33

Formatted ... [7]

concentration. We have noticed some changes in the ice drift and surface currents but there were no observations able to indicate whether these are changes for the better. It is correct that the current manuscript has similarities with the one from Yang et al. (2014); that the benefit from assimilating SMOS-Ice is not as large and as expected. However, two is more convincing than one and we think that some additional finding makes it useful to the user community. The possibility that our results start from a much worse ice thickness than Yang et al. (2014) does not seem to hold from the results at hand: although we cannot compare the models in different periods, their thickness offset is reported about 1.5 m against BGEP 2011 and IMB 2011 data, whereas our thickness offset is between 10 cm and 80 m between our results and IMB (Fig. 8 in the revised manuscript).

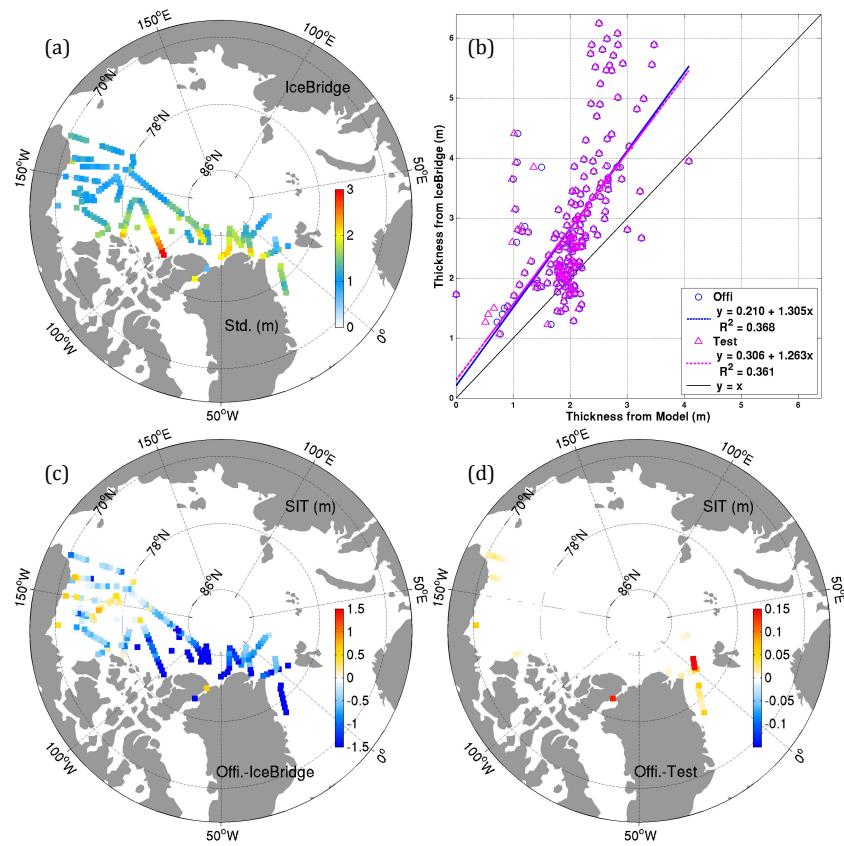
We have tried to better present in the new manuscript the novelty in our study compared to Yang et al. (2014) namely: 1) Assimilation is validated from the beginning to the end of the cold period while the experimental period in Yang et al. (2014) is only from November 2011 to January 2012. 2) The conclusion from Yang et al. (2014) still holds when using a much more extensive observation network (they only assimilate sea ice concentration and SMOS-Ice while we assimilate T-S profiles, altimetry, SST, sea ice drift in addition. 3) We have verified that we do not degrade the performance in the ocean 4) There is a quantification of the relative impact of SMOS-Ice with respect to a full observational network. 5) We present and validate changes to the European monitoring service (Arctic MFC Copernicus). 6) It is always good to show that conclusions from a paper can be verified with a different system (larger ensemble size, different model, slightly different assimilation method, different implementation and different observation network).

I welcome the addition of independent thickness observations for verification, however you did not present as much verification data as is available to you. And as you point out in your response to the reviewer, the location of buoys compared against is upstream from where data is assimilated. I also find that the paper can still benefit from attention to the error characteristics of the thickness data. This is very important for understanding R in the Kalman gain. Figure A in the response to reviewers was helpful, and you could perhaps describe these error characteristics in the manuscript.

Formatted	... [8]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: , that the results are "as	... [9]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: impact of	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [10]
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [11]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: ice	
Jiping et al. Mac 17/10/2016 10:33	
Deleted: this	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [13]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: a result in itself and	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [12]
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [14]
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [15]
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [16]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: at	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [17]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: and at	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [18]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: winter	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [19]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: the validation	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [20]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: carried	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [21]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: at the beginning.	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [22]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: hold with	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [23]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: complete	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [24]
Jiping et al. Mac 17/10/2016 10:33	
Deleted: 3	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [25]
Jiping et al. Mac 17/10/2016 10:33	
... [26]	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [27]
Jiping et al. Mac 17/10/2016 10:33	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [28]
Jiping et al. Mac 17/10/2016 10:33	
Jiping et al. Mac 17/10/2016 10:33	
Formatted	... [29]
Jiping et al. Mac 17/10/2016 10:33	

Reply: Thanks. We have now extended the validation with the other independent measurement data sets available to us. The new validation supports the previous conclusions. We have added the figure about observation error of SMOS-Ice.

Please provide more information regarding the validation data set, used to assess skill in estimating ice thickness. Xie et al. (2016) also insufficiently describes the ice thickness data. You should describe the data density and how it varies spatially and temporally over the full time period. This paper in *Ocean Science Discussions* does not provide a discussion of the measurement errors, which can be substantial. Without this discussion it is impossible to assess if biases are in the model or observations (as you correctly point out in your manuscript). It is for this reason that I suggest you consider using more ice thickness data to see if you can tease this information out. However, I do understand that you may find there is limited data of thin ice thickness with which to directly verify the SMOS data set and model biases.


Reply: Thanks. We have improved the presentation of the data set used for validation in our manuscript.

Only two buoy trajectories were used in this paper for validation. I assume that this is because these are the only IMB data that overlaps with your time period for model runs. There are many other data sources you can use for independent verification. Ice Bridge will be useful for March in the high Arctic, though I suspect you are not assimilating SMOS data here. There are year long moorings in the Beaufort Sea with ULS. The data, described in Krishfield et al. (2014), for these is freely available from WHOI at <http://www.whoi.edu/page.do?pid=66559>. Note that Krishfield processed this data, and had to filter out wave action in summer months as the Beaufort has become Marginal Ice Zone. The data processing may imply a minimum ice thickness that can be resolved, and you should check this.

Reply: Thank you for the recommendations. We have now extended the validation with the recommended observational data sets. We have made a note of the processing applied to the mooring data and the IceBridge data is indeed always thicker than 1m. The validation against the IceBridge data was performed (see Figure below) but is not more conclusive than the other data sets: only a handful of observation points are affected by the assimilation of SMOS data. We have thus mentioned that validation against IceBridge was performed but that it is not presented because we get similar results.

Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: validation
Jiping et al. Mac 17/10/2016 10:33
Deleted: set
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: remains and us the same.
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: ICE
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: this paper
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: set
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: do
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: changes our conclusions
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red

Comparison of the SITs in the two assimilation runs with the averaged SITs of IceBridge Quick Look from the National Snow and Ice Data Centre in March 2014. (a) Locations of the observed SIT with their standard deviation (unit: m); (b) Scatter of the observed thickness and the simulated thickness of Official (Test) Run shown as the blue (pink) color. The blue (pink) line represents the regression lines. (c) Distribution of the sea ice thickness differences between the Official Run and the observed. (d) Distribution of the sea ice thickness difference between the two assimilation runs.

I am aware of other moorings deployed in the Beaufort Sea, in the seasonal ice zone. Consider contacting Humfrey Melling regarding this data, though it may be propriety. Shell had moorings in the Chukchi Sea and they have been providing data freely to researchers. This is information that is for your interest, as I am sure you Consider the Fram Strait moorings too, though these are not recording thin ice. Some, but not all, of these data are included in the Lindsay et al. (2013) unified sea-ice thickness product.

Reply: Thanks. Most of the data sets do not provide SIT, or stopped after

2012, or are only in summer time. Although validation of ice thickness is

Jiping et al. Mac 17/10/2016 10:33

Deleted: Based on your suggestion, we add

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Deleted: validation part compared with the thickness from the IceBridge Quick Look in the revision. We feel that the validation with ice Bridge is redundant and we would prefer mentioning that we have performed validation but that it is

Jiping et al. Mac 17/10/2016 10:33

Deleted: presented because we get similar results

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Deleted: assimilation

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

important, validation of sea levels, SST, ice concentrations are equally important and just as independent.

Please expand TOPAZ where it is first introduced. Not everyone will be familiar with the model, and the brand name is not in common usage.

Reply: The Acronym TOPAZ, originates from an European project ("Towards an Operational Prediction System for the North Atlantic European coastal Zones"). Since 2004, our focus has gradually evolved to the Arctic and the acronym has actually become a brand name, known as such in the ocean data assimilation community. None of the publications about TOPAZ system mention the meaning of the acronym any more and we would find it confusing to remind it here.

page 2, line 5: There are more recent references to the decrease in sea ice extent. Also, Shimada et al. is a discussion of the possible implications of reduced sea ice extent and not a presentation of the observation of reduced extent.

Reply: Thanks. The related reference are replaced by "Comiso et al., 2008; Stroeve et al., 2012".

page 5, line 4: In the one catagory model is there a lower limit on ice thickness that is not considered open water. For example some older two level models consider ice less than 0.5m to be in the open water catagory. Please clarify, as this is exceptionally important for your assimilation scheme.

Reply: Thanks for this important point. In the model, the thickness of sea ice as a minimal limitation thickness of 0.1m. This threshold is relatively low in the community and is not limiting the use of SMOS since we use the ensemble mean of a 100 members ensemble, which can take values down to 1 mm. We mention it during the model description and its implication during the validation.

line 14-15: "which amplitude is" -> "with amplitude"

Reply: It is corrected.

line 27: bracket -> brackets

Reply: It is corrected.

Jiping et al. Mac 17/10/2016 10:33
Deleted: concentration, T,S profiles
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: arguably more independents
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Formatted: Justified
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Deleted: is originally coming
Jiping et al. Mac 17/10/2016 10:33
Formatted: Font color: Red
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [34]
Jiping et al. Mac 17/10/2016 10:33
Deleted: Atalntic
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [35]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [36]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [37]
Jiping et al. Mac 17/10/2016 10:33
Deleted: and is
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [38]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [39]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [40]
Jiping et al. Mac 17/10/2016 10:33
Deleted: introducing
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [41]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [42]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [43]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [44]
Jiping et al. Mac 17/10/2016 10:33
Deleted: somewhat vanishes as
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [45]
Jiping et al. Mac 17/10/2016 10:33
Formatted ... [46]

line 31: missing f superscript from P

Reply: Thanks. The related illustration has been changed.

line 33: anomaly -> anomalies

Reply: It is corrected.

page 6, line 1: forecastd - > forecast

Reply: It is corrected.

Page 6: Please check you have defined all your variables.

line 10: put symbol for ensemble mean just after when you introduce it. So it is clear the equation is calculating this. Ditto for ensemble anomaly in line 12.

Reply: Thanks. The order has been changed again.

Equation 4: This is actually the mean difference between model and observation. While you are correct that this includes both the observation and model bias, I do not find Bias to be the most intuitive label for this quantity. However I am willing to concede provided it is very clear to the reader through out that the bias is not the model or observation bias.

Reply: The bias is the expected value of the difference between the model and the truth. Here the truth is unknown, and the bias is the sum of the model and observation bias. Labeling this quantity as bias is common in the data assimilation community as model bias is often much larger than observation bias. We have tried to clarify that in the new version of the manuscript.

page 8, line 13: Sentence incomplete

Reply: Thank you. It is corrected.

page 9, line 1: You need to describe the uncertainties. Including their magnitude, any variance and periodicity in this.

Reply: Thanks. More information about the observation uncertainties are added in Page 9 lines: 15- 34.

line 2: As you are disregarding all data more than 0.4m, is it not irrelevant that the upper, saturation, limit on SMOS observations is 5m. I see that you refer to this point later in the manuscript, where you point out there is very little SMOS data assimilated in the Beaufort in March. You could clarify these points when you expand the information about the SMOS uncertainty.

Reply: The upper uncertainty of SIT from SMOS is set to 5 m (variance of 25 m^2). When the saturation threshold of observation uncertainty is reached we

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [47]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [48]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [49]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [50]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [51]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [52]

Jiping et al. Mac 17/10/2016 10:33

Deleted: (norm 1)

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [54]

Jiping et al. Mac 17/10/2016 10:33

Deleted: discrepancies

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [53]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [55]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [56]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [57]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [58]

Jiping et al. Mac 17/10/2016 10:33

Deleted: The more statements

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [59]

Jiping et al. Mac 17/10/2016 10:33

Deleted: uncertainty

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [60]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [61]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [62]

Jiping et al. Mac 17/10/2016 10:33

Deleted: limitation

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [63]

Jiping et al. Mac 17/10/2016 10:33

Deleted: is about

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [64]

Jiping et al. Mac 17/10/2016 10:33

Deleted: . The observations upper

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [65]

Jiping et al. Mac 17/10/2016 10:33

Formatted

... [66]

Jiping et al. Mac 17/10/2016 10:33

Deleted: recommended by the pr

... [67]

reject the observation whatever the value of SIT. However, it is very seldom that SMOS-Ice is less than 0.4 m with an observation error of more than 25 m² (see Fig 4 in the revised manuscript), so we do not think it has any influence on our results.

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

line 8: "within the beginnings" might read better as "at the onset"

Reply: Thank you, it is replaced in the revision.

page 11, line 11: "we are validating" -> "we validate"

Reply: Thanks. It is changed.

page 13, line 10: Remove "the ice tethered profiles (ITP), which are"

Reply: Thank you, it is corrected as the suggestion.

line 13: [Dimpacts -> impact

Reply: Thanks. It is corrected.

page 14, line 18: thick -> thickness

Reply: It is replaced by thicker.

line 27: consistently -> consistent

Reply: Thanks. It is corrected.

Fig. 5: Expand acronyms in titles. You do not explain what hice, icec is etc.

Reply: Thanks. We have tried to limit the use of acronym.

Fig. 6, caption: sea-ice -> sea ice

Reply: Thanks. It is corrected.

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33
Deleted: The related acronyms have been changed using the common words as SIT, SIC and so on.

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Jiping et al. Mac 17/10/2016 10:33

Formatted: Font color: Red

Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system

Jiping Xie¹, Francois Counillon¹, Laurent Bertino¹, Xiangshan Tian-Kunze²,
and Lars Kaleschke²

1. Nansen Environmental and Remote Sensing Center, Bergen, Norway
2. Institute of Oceanography, University of Hamburg, German

1 **Abstract** An observation product for thin sea ice thickness (SMOS-Ice) is
2 derived from the brightness temperature data of the European Space
3 Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) Mission. This
4 product is available in near-real time, at daily frequency, during the cold
5 season. In this study, we investigate the benefit of assimilating SMOS-Ice
6 into the TOPAZ coupled ocean and sea ice forecasting system, which is
7 the Arctic component of the Copernicus marine environment monitoring
8 services. The TOPAZ system assimilates sea surface temperature (SST),
9 altimetry data, temperature and salinity profiles, ice concentration, and ice
10 drift with the Ensemble Kalman Filter (EnKF). The conditions for
11 assimilation of sea ice thickness thinner than 0.4 m are favorable, as
12 observations are reliable below this threshold and their probability
13 distribution is comparable to that of the model. Two parallel Observing
14 System Experiments (OSE) have been performed in March and
15 November 2014, in which the thicknesses from SMOS-Ice (thinner than
16 0.4 m) are assimilated in addition to the standard observational data sets.
17 It is found that the Root Mean Square Difference (RMSD) of thin sea ice
18 thickness is reduced by 11% in March and 22% in November compared
19 to the daily thin ice thicknesses of SMOS-Ice, which suggests that
20 SMOS-Ice has a larger impact during the beginning of the cold season.
21 Validation against independent observations of ice thickness from buoys
22 and ice draft from moorings indicate that there are no degradations in the
23 pack ice but some improvements near the ice edge close to where the
24 SMOS-Ice has been assimilated. Assimilation of SMOS-Ice yields a slight
25 improvement for ice concentration, and degrades neither SST nor sea
26 level anomaly. Analysis of the Degrees of Freedom for Signal (DFS)
27 indicates that the SMOS-Ice has a comparatively small impact but it has a
28 significant contribution in constraining the system (> 20% of the impact of
29 all ice and ocean observations) near the ice edge. The areas of largest
30 impact are the Kara Sea, the Canadian archipelago, the Baffin Bay, the
31 Beaufort Sea and the Greenland Sea. This study suggests that the
32 SMOS-Ice is a good complementary data set that can be safely included
33 in the TOPAZ system.

- 1 **Keywords:** Arctic forecasting; TOPAZ; thin sea ice thickness; SMOS-Ice;
- 2 Degrees of Freedom for Signal; Strongly coupled data assimilation;

Jiping et al. Mac 17/10/2016 10:16
Deleted: SMOS-Ice; EnKF
Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:12 pt
Jiping et al. Mac 17/10/2016 10:16
Deleted: -
Jiping et al. Mac 17/10/2016 10:16
Formatted: Line spacing: 1.5 lines
Jiping et al. Mac 17/10/2016 10:16
Formatted: Font color: Auto
Jiping et al. Mac 17/10/2016 10:16
Deleted: Observing System Experiment
Jiping et al. Mac 17/10/2016 10:16
Formatted: Font color: Auto
Jiping et al. Mac 17/10/2016 10:16
Deleted: -
..

1. Introduction

1 The Arctic climate system has undergone large changes during the last
2 20 years: increase of temperature (Chapman and Walsh, 1993; Serreze
3 et al., 2000; Karl et al., 2015; Roemmich et al., 2015), decrease of sea ice
4 extent (Johannessen et al., 1999; Comiso et al., 2008; Stroeve et al.,
5 2012), sea ice thinning and loss of sea ice volume (Rothrock et al., 1999;
6 Kwok and Rothrock, 2009; Laxon et al., 2013). The interpretation of such
7 changes is severely hampered by the sparseness and the complexity of
8 the observational network. A reanalysis database can combine the
9 sparse observations with a dynamically consistent model and is
10 becoming an important tool.

11 While observations of sea ice concentrations (SIC) have been available
12 for the past 30 years, observations of sea ice thickness (SIT) are
13 comparatively sparse. An improved knowledge of SIT would be greatly
14 beneficial, both for model developments and for improving the accuracy
15 of operational ocean forecasting system. The initialization of SIT is also
16 expected to improve predictability on seasonal time scale (Guemas et al.
17 2014). Until the last decade, observations of SIT were mostly limited to
18 field campaigns or submarine measurements. Major efforts in remote
19 sensing have been proposed to monitor the spatiotemporal evolution of
20 SIT, and gradually obtained various products from different satellite
21 retrieval algorithms. Measurements of thick sea ice freeboard on basin-
22 wide scales have been derived from laser altimeters on board ICESat
23 (e.g., Forsberg and Skourup, 2005; Kurtz et al., 2009; Kwok and Rothrock,
24 2009) or from radar altimeters on ERS, EnviSAT and CryoSat-2 (e.g.,
25 Laxon et al., 2003; Giles et al., 2007; Connor et al., 2009). Still, large
26 uncertainties remain in the accuracy of the resulting SIT estimates (larger
27 than 0.5 m) due to uncertainties in the snow depth and the sea ice
28 density (Zygmuntowska et al., 2014). A new database based on
29 Cryostat2 has been provided (Laxon, 2013; Ricker et al., 2014) and has
30 been made available in near real time (Tilling et al. 2016). Finally,
31 methods for SIT retrieval based on measurements of the brightness
32 temperature at a low microwave frequency of 1.4 GHz (L-band:
33 wavelength $\lambda_a=21$ cm) have been developed in preparation for the

Jiping et al. Mac 17/10/2016 10:16

Deleted: -

Jiping et al. Mac 17/10/2016 10:16

Deleted: Shimada

Jiping et al. Mac 17/10/2016 10:16

Deleted: 2006;)

Jiping et al. Mac 17/10/2016 10:16

Deleted: diversity

Jiping et al. Mac 17/10/2016 10:16

Deleted: The

Jiping et al. Mac 17/10/2016 10:16

Deleted: that combines

Jiping et al. Mac 17/10/2016 10:16

Deleted: models

Jiping et al. Mac 17/10/2016 10:16

Deleted: the ice thickness

Jiping et al. Mac 17/10/2016 10:16

Deleted: sea-ice thickness

Jiping et al. Mac 17/10/2016 10:16

Deleted: sea-ice thickness

Jiping et al. Mac 17/10/2016 10:16

Deleted: ice thickness

Jiping et al. Mac 17/10/2016 10:16

Deleted: CryoSat2

Jiping et al. Mac 17/10/2016 10:16

Deleted: ice thickness

Jiping et al. Mac 17/10/2016 10:16

Deleted: sea ice thickness

Jiping et al. Mac 17/10/2016 10:16

Formatted: Font color: Auto

1 European Space Agency's (ESA) Soil Moisture and Ocean Salinity
2 (SMOS) mission (Heygster et al., 2009; Kaleschke et al., 2010;
3 [Kaleschke et al., 2013](#)). It has been shown that SMOS can be used to
4 retrieve level [SIT](#) up to half a meter under cold conditions (Kaleschke et
5 al., 2012; Huntemann et al., 2014).

Jiping et al. Mac 17/10/2016 10:16

Deleted: Kaleschke et al., 20 ... [20]

6 An improved retrieval method based on a radiative transfer model and a
7 thermodynamic sea ice model has been further proposed by considering
8 the variations of ice temperature, salinity and a statistical [SIT](#) distribution
9 (Tian-Kunze et al., 2014). [An operational product has been derived from](#)
10 [this method, and is available at daily frequency \(hereafter referred to as](#)
11 [SMOS-Ice\). The SMOS-Ice has been validated during a field campaign in](#)
12 [the Barents Sea \(Kaleschke et al., 2016; Mecklenburg et al., 2016\). It](#)
13 [provides daily estimate of SIT and is available since October 2010 \(Tian-](#)
14 [Kunze et al., 2014\). In this study, we are testing the benefits of](#)
15 [assimilating SMOS-Ice into the TOPAZ system.](#)

Jiping et al. Mac 17/10/2016 10:16

Deleted: thickness...IT distribution ... [21]

16 [The TOPAZ forecasting system \(Sakov et al., 2012\)](#)
17 [is a coupled ocean-sea ice data assimilation system and is the main](#)
18 [Arctic Marine Forecasting system in the Copernicus Marine Services](#)
19 [\(<http://marine.copernicus.eu/>\). It provides a 10-days coupled physical-](#)
20 [biogeochemical forecast every day and a long-term reanalysis from 1990-](#)
21 [2015 \(Sakov et al., 2012; Xie et al., 2016\). At present, TOPAZ assimilates](#)
22 [several data types jointly with the Ensemble Kalman Filter \(EnKF\): Sea](#)
23 [Surface Temperature \(SST\), along-track Sea Level Anomalies \(SLA\) from](#)
24 [satellite altimeters, in situ temperature and salinity profiles, Sea Ice](#)
25 [Concentration \(SIC\) and sea ice drift from satellites. The reanalysis](#)
26 [product of the TOPAZ system has been widely used in studies about](#)
27 [ocean circulation and sea ice in the North Atlantic Ocean or in the Arctic](#)
28 [region \(Melsom et al., 2012; Johannessen et al., 2014; Korosov et al.,](#)
29 [2015; Lien et al., 2016\). Although the capability for assimilating SIT has](#)
30 [been demonstrated in Lisæter et al. \(2007\), TOPAZ does not yet](#)
31 [assimilate SIT nor apply a post-processing for this variable. The](#)
32 [reanalysis in the period 1991-2013 has been compared to available](#)
33 [observations at different periods of time \(Xie et al., 2016\). It was found](#)

Jiping et al. Mac 17/10/2016 10:16

Deleted: Yang et al. (2014) studied the

benefit of assimilating SMOS-Ice during the freezing period, with the Localized Singular Evolutive Interpolated Kalman filter (LSEIK, ref. Nerger et al., 2005) in a nested Arctic configuration of the MITgcm. They found that SMOS-Ice leads to improvement of ice thickness and ice concentration.

Jiping et al. Mac 17/10/2016 10:16

Moved down [1]: The present study follows up the work from Yang et al.

Jiping et al. Mac 17/10/2016 10:16

Deleted: (2014) but uses a different model and assesses: 1) the impact of assimilating SMOS-Ice both during the beginning of the melting and freezing seasons; 2) the relative contribution of SMOS-ice compared to a complete set of observations typically used in a state of the art ...orecasting system.

Jiping et al. Mac 17/10/2016 10:16

Moved down [2]:
The

Jiping et al. Mac 17/10/2016 10:16

Deleted: TOPAZ system...is a co ... [24]

1 that TOPAZ underestimates the sea ice draft compared to in situ drafts
2 from Sonar of the US Navy Submarines for the period 1993-2005
3 (Lindsay, 2013). In spring and autumn of 2003-2008, the SITs in TOPAZ
4 are in good agreement with those of ICESat data (Kwok and Rothrock,
5 2009) with a spatial correlation 0.74 and 0.84 respectively. However, the
6 SIT in TOPAZ is too large (by more than 0.2 m) in the Beaufort Sea and
7 too low in the rest of the Arctic (up to 1 m). When compared against the
8 IceBridge SIT (Kurtz et al., 2013) for the period 2009-2011, it was found
9 that the thick SIT in the central Arctic is underestimated by 1.1 m in
10 TOPAZ. Such inaccuracies in the SIT are a common limitation of coupled
11 ice-ocean models in the Arctic (Johnson et al., 2012; Schweiger et al.,
12 2012; Smith et al., 2015).

13

14 The first demonstration of assimilating SMOS-Ice has been presented
15 by Yang et al. (2014) for the period from November 2011 to January
16 2012. The system assimilates both SIT (thinner than 1 meter) from
17 SMOS-Ice and SIC from Special Sensor Microwave Imager/Sounder
18 (SSMIS) in a nested Arctic configuration of the Massachusetts Institute of
19 Technology general circulation model (MITgcm). It uses the Localized
20 Singular Evolutive Interpolated Kalman (LSEIK; Nerger et al., 2005) data
21 assimilation method with a 15 members ensemble. It was found that
22 assimilation of SMOS-Ice leads to improvement of the SIT forecasts and
23 to a small improvement for sea ice concentration. A comparison of SIT
24 from three moorings from the Beaufort Gyre Experiment Program (BGEPEP)
25 and from one autonomous ice mass balance (IMB) buoy, shows that the
26 overestimation of SIT is reduced. The present study follows up the work
27 from Yang et al. (2014) but it further explores the impact and relative
28 importance of SMOS-Ice in the perspective of an ice-ocean forecasting
29 system: 1) the impact of assimilating SMOS-Ice is tested both during the
30 onsets of the melting and freezing seasons; 2) SMOS-Ice is tested
31 together with a more complete observations network and its relative
32 contribution is quantified; 3) the results are tested with a different model
33 at slightly higher resolution, with a comparable assimilation method but
34 with a larger ensemble size.

1 This paper is organized as follows: section 2 introduces the main
2 components of the TOPAZ system including the model, the assimilation
3 scheme, and the observations assimilated. In section 3, we compare
4 SMOS-Ice data to the TOPAZ reanalysis for the period 2010-2014, and
5 investigate potential biases and whether conditions are favorable for data
6 assimilation. In section 4, two Observing System Experiment (OSE) runs
7 are conducted, consisting of two assimilation runs with and without the
8 SMOS-Ice data during 2014. In Section 5, we compared the contributions
9 of SMOS-Ice relative to other types of observations for controlling the
10 degree of freedom of the system during assimilation.

11

12 2. Descriptions of the TOPAZ data assimilation system

13 2.1 The coupled ocean and sea ice model

14

15 The ocean general circulation model used in the TOPAZ system is the
16 version 2.2 of the Hybrid Coordinate Ocean Model (HYCOM) developed
17 at University of Miami (Bleck, 2002; Chassignet et al., 2003). HYCOM
18 uses hybrid coordinates in the vertical, which smoothly shift from
19 isopycnal layers in the stratified open ocean to z-level coordinates in the
20 unstratified surface mixed layer. This feature has been demonstrated in a
21 wide range of applications from the deep oceans to the shelf (Chassignet
22 et al., 2009). The NERSC-HYCOM model is coupled to a one-thickness
23 category sea ice model, for which the ice thermodynamics are described
24 in Drange and Simonsen (1996) and the ice dynamics are based on the
25 elastic-viscous-plastic rheology described in Hunke and Dukowicz (1997)
26 with a modification from Bouillon et al. (2013). In the model, there is a
27 minimum thickness of 0.1 m for both new ice and melting ice. The model
28 grid is produced using conformal mapping (Bentsen et al., 1999) and has
29 a quasi-homogeneous horizontal resolution of 12-16 km in the Arctic as
30 shown in Fig. 1.

31 The temperatures and salinities at the model lateral boundaries are
32 relaxed to a combined climatology of the World Ocean Atlas of 2005
33 (WOA05, Locarnini et al., 2006) and the version 3.0 of the Polar Science
34 Center Hydrographic Climatology (PHC, Steele et al., 2001). A seasonal
35 inflow is imposed at the Bering Strait with a transport that is following the

Jiping et al. Mac 17/10/2016 10:16

Deleted: ice

Jiping et al. Mac 17/10/2016 10:16

Deleted: 2013, to

Jiping et al. Mac 17/10/2016 10:16

Deleted: an

Jiping et al. Mac 17/10/2016 10:16

Deleted: is

Jiping et al. Mac 17/10/2016 10:16

Formatted: Font color: Auto

Jiping et al. Mac 17/10/2016 10:16

Formatted: Font color: Auto

Jiping et al. Mac 17/10/2016 10:16

Formatted: Font color: Auto

Jiping et al. Mac 17/10/2016 10:16

Deleted: -

Jiping et al. Mac 17/10/2016 10:16

Deleted: ice-

Jiping et al. Mac 17/10/2016 10:16

Deleted:

Jiping et al. Mac 17/10/2016 10:16

Deleted: a

Jiping et al. Mac 17/10/2016 10:16

Deleted: coordinate

Jiping et al. Mac 17/10/2016 10:16

Deleted: transits

Jiping et al. Mac 17/10/2016 10:16

Deleted: Winther and Evensen, 2006;

Jiping et al. Mac 17/10/2016 10:16

Deleted: -

Jiping et al. Mac 17/10/2016 10:16

Deleted: and

Jiping et al. Mac 17/10/2016 10:16

Deleted: TOPAZ

Jiping et al. Mac 17/10/2016 10:16

Deleted: uses

Jiping et al. Mac 17/10/2016 10:16

Deleted: using

Jiping et al. Mac 17/10/2016 10:16

Deleted: from the Pacific Ocean through

Jiping et al. Mac 17/10/2016 10:16

Deleted: is imposed, which amplitude

1 observed estimate from Woodgate et al. (2012). A balanced outflow of
 2 similar mean transport is imposed at the southern boundary of the model.
 3 The TOPAZ system uses atmospheric forcing from ERA-Interim (Dee et
 4 al., 2011).

5 2.2 The EnKF data assimilation

6 The analysis with the standard EnKF, is expressed as follows:

$$7 \quad \mathbf{x}^a = \mathbf{x}^f + \mathbf{K}(\mathbf{y} - \mathbf{H}\mathbf{x}^f), \quad (1)$$

8 where \mathbf{x} is the ensemble of model state vector, the superscripts "a" and
 9 "f" refer to the analysis and the forecast respectively. The ensemble
 10 consists of 100 dynamical members. \mathbf{H} is the observation operator and \mathbf{y}
 11 is the perturbed observation matrix. The term innovation refers to the
 12 misfits between the observations and the model: i.e. the term in brackets
 13 in equation (1). The Kalman gain \mathbf{K} in Equation (1) is calculated as:

$$14 \quad \mathbf{K} = \mathbf{P}^f \mathbf{H}^T [\mathbf{H} \mathbf{P}^f \mathbf{H}^T + \mathbf{R}]^{-1} \quad (2)$$

15 where \mathbf{R} is the matrix of observation error variance, and \mathbf{P}^f is the matrix of
 16 background error covariance, which can be calculated by an ensemble
 17 anomalies with N members - $\mathbf{P} = (1/N-1) \mathbf{A} \mathbf{A}^T$. The superscript T denotes
 18 a matrix transpose, and \mathbf{A} is the ensemble of anomalies. The ensemble
 19 anomalies is calculated as:

$$20 \quad \mathbf{A} = \mathbf{X} - \bar{\mathbf{x}} \mathbf{I}_N,$$

21 where $\bar{\mathbf{x}}$ is the ensemble mean vector, and $\mathbf{I}_N = [1, \dots, 1]$ is the vector with
 22 all components equal to 1.

23 The TOPAZ system uses the deterministic EnKF (DEnKF, Sakov and
 24 Oke, 2008), which is a square-root filter implementation of the EnKF that
 25 solves the analysis without the need for perturbation of the observations.
 26 The DEnKF overestimates the analysed error covariance by adding a
 27 semi-definite positive term to the theoretical error covariance given by the
 28 Kalman filter, which mitigates the need for inflation (Sakov and Oke,
 29 2008). ▾

30 In the DEnKF, the ensemble mean is updated by assimilating the
 31 unperturbed observation \mathbf{y} :

$$32 \quad \bar{\mathbf{x}}^a = \bar{\mathbf{x}}^f + \mathbf{K}(\mathbf{y} - \mathbf{H}\bar{\mathbf{x}}^f)$$

Jiping et al. Mac 17/10/2016 10:16

Deleted: observations

Jiping et al. Mac 17/10/2016 10:16

Deleted: Implementation of the ... [25]

Jiping et al. Mac 17/10/2016 10:16

Deleted: field at time t

Jiping et al. Mac 17/10/2016 10:16

Deleted: \mathbf{x}^a

Jiping et al. Mac 17/10/2016 10:16

Deleted: $(\mathbf{y} - \mathbf{H}\mathbf{x}^f)$

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [26]

Jiping et al. Mac 17/10/2016 10:16

Deleted: \mathbf{x}^f

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [27]

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [28]

Jiping et al. Mac 17/10/2016 10:16

Deleted: \mathbf{y} ... is the perturbed obs ... [29]

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [30]

Jiping et al. Mac 17/10/2016 10:16

Deleted: bracket

Jiping et al. Mac 17/10/2016 10:16

Deleted:).

Jiping et al. Mac 17/10/2016 10:16

Deleted: Where...here \mathbf{R} is the m ... [31]

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [32]

Jiping et al. Mac 17/10/2016 10:16

Deleted: as...y an ensemble anor ... [33]

Jiping et al. Mac 17/10/2016 10:16

Deleted: $\mathbf{A}^f = \mathbf{X}^f - \bar{\mathbf{x}}^f \mathbf{I}_N$

Jiping et al. Mac 17/10/2016 10:16

Deleted: \mathbf{X}^f denotes the matrix of ... [34]

Jiping et al. Mac 17/10/2016 10:16

Deleted: average of the state

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [35]

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [36]

Jiping et al. Mac 17/10/2016 10:16

Deleted: ; Sakov et al., 2012

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [37]

Jiping et al. Mac 17/10/2016 10:16

Deleted: The ensemble mean is u ... [38]

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [39]

Jiping et al. Mac 17/10/2016 10:16

Deleted: $\bar{\mathbf{x}}^f$,

Jiping et al. Mac 17/10/2016 10:16

Formatted

... [40]

1 The analyzed ensemble anomaly is calculated as follows:

2
$$A^a = A^f - \frac{1}{2} K H A^f$$

3 The full ensemble is reconstructed by adding the two terms as follows:

4
$$X^a = A^a + \bar{X}^a I_N \quad (3)$$

5 where X^a is the matrix of the updated model states after assimilation.

6 An overview of the observations assimilated in the present TOPAZ
7 system is given in Table 1. Observations are quality-controlled and
8 superobed (Sakov et al., 2012). TOPAZ assimilates the following data
9 sets on a weekly basis: the gridded SST from the Operational Sea
10 Surface Temperature and Sea Ice Analysis system (OSTIA, Donlon et al.,
11 2012); sea ice concentration from the Ocean & Sea Ice Satellite
12 Application Facility (OSISAF); along-track Sea Level Anomaly, by Collecte
13 Localisation Satellites (CLS); delayed-mode profiles of temperature and
14 salinity from Ifremer, and the sea ice drift during the 3 days prior to the
15 analysis, from the CERSAT (Centre ERS d'Archivage et de Traitement) of
16 IFREMER (French Research Institute for Exploitation of the Sea). All
17 these standard measurements are retrieved from
18 <http://marine.copernicus.eu>. The SLA data and the sea ice drift data are
19 assimilated asynchronously (see Sakov et al., 2010).

20

21 3. Bias analyses for thin ice thickness.

22 The TOPAZ system has computed a reanalysis at daily frequency for
23 ocean and sea ice variables. Its sea ice thickness has been validated
24 against in situ data and satellite observations in Xie et al. (2016). Data
25 assimilation assumes that the model and observations errors are
26 unbiased. In this section, we investigate the bias by analyzing the
27 thickness misfits for thin sea ice during five cold seasons from 2010 to
28 2014.

29 SMOS-Ice products (version 2.1) are available during the cold season
30 (from 15th October to 15th April) at daily frequency from 2010 and up to
31 near-real time. The data set is provided by University of Hamburg
32 (Kaleschke et al., 2012; Kaleschke et al., 2013;
33 <https://icdc.zmaw.de/1/daten/cryosphere/l3c-smos-sit.html>).

1 Here, the daily averaged SITs of TOPAZ are compared to the
2 observations. The spatial or temporal bias and Root Mean Square
3 Difference (RMSD) are calculated as follows:

$$\text{Bias} = \frac{1}{n} \sum_{i=1}^n (\mathbf{H} \bar{\mathbf{x}}_i^f - \mathbf{y}_i) \quad (4)$$

$$\text{RMSD} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\mathbf{H} \bar{\mathbf{x}}_i^f - \mathbf{y}_i)^2}, \quad (5)$$

6 where $\bar{\mathbf{x}}_i^f$ is compared to observations at similar time, \mathbf{H} is the observation
7 operator (see eq. 1), and n is the number of available observations within
8 the calculation period. Note that, we compare the TOPAZ SITs to
9 imperfect observations, which contains error and may also be biased. As
10 such, the bias as formulated in Eq. 4 refers to the difference between the
11 model and observation biases calculated against an unknown truth. Still it
12 is reasonable to assume that the bias in the observation is smaller than in
13 the model and that the bias obtained with Eq.4 mainly accounts for model
14 bias.

15 Figure 2 shows the simulated SIT from the TOPAZ reanalysis as
16 conditional expectations with respect to SMOS-Ice data sorted into bins
17 of 5 cm. Again, the SITs from TOPAZ in Fig.2 are selected at same
18 locations and time of observations. Overall, the SIT in TOPAZ tends to be
19 overestimated. The overestimation varies from month to month and with
20 the amplitude of SIT (more pronounced for thick ice). For SIT lower than
21 0.4 m, the match between the observations and TOPAZ is relatively good
22 through the cold season. There is no clear bias between October and
23 December but a slight increasing thick bias from January-April. For SIT
24 larger than 0.4 m, TOPAZ clearly overestimates SIT compared to
25 observations during October and February-April, while it underestimates it
26 in November. The penetration depth for the L-Band microwaves
27 frequency into sea ice is about 0.5 m (Kaleschke et al., 2010; Huntemann
28 et al., 2014), and the effect of ice melting may lead to a saturation of the
29 SIT for values lower than 0.4 m (see Heygster et al. 2009). For these
30 reasons, assimilation of SITs thicker than 0.4 m appears as problematic
31 because the large bias from observations or models may be transferred
32 to other variables (e.g. in the ocean) via the multivariate properties of our

Jiping et al. Mac 17/10/2016 10:16
Deleted: provided at daily frequency from October 2010 and are available in near-real time during the cold season. ... [48]

Jiping et al. Mac 17/10/2016 10:16
Deleted: $\sum_{i=1}^n (\mathbf{H}_i \bar{\mathbf{x}}_i^f - \mathbf{y}_i)$
Jiping et al. Mac 17/10/2016 10:16
Deleted: $\mathbf{H}_i \bar{\mathbf{x}}_i^f$

Jiping et al. Mac 17/10/2016 10:16
Formatted: Font color: Auto
Jiping et al. Mac 17/10/2016 10:16
Formatted: Font color: Auto
Jiping et al. Mac 17/10/2016 10:16
Deleted: the daily averaged model state that is ... compared to the observati ... [49]

Jiping et al. Mac 17/10/2016 10:16
Deleted: bins. The... Again, the S ... [50]

1 data assimilation method (note that TOPAZ uses strongly coupled data
2 assimilation between the ocean and sea-ice). In the following we will only
3 assimilate the SIT observations less than 0.4 m.

Jiping et al. Mac 17/10/2016 10:16
Deleted: is

4 We now investigate whether there is an interannual, seasonal and spatial
5 variability in the bias of SIT. Figure 3 shows the yearly bias (as defined in
6 Eq. 4) for SIT thinner than 0.4 m during the period 2010-2014. After 2011,
7 the thick bias is increasing, reaching a maximum of 0.1 m in 2014. There
8 is some seasonality in the bias, and the thick bias is larger in March than
9 in November. There is a large spatial variability in the distribution of the
10 bias (right panel of Fig. 3), with the bias being largest in the Beaufort Sea
11 and in the Kara Sea. We therefore select the periods of March and
12 November 2014, to set the assimilation system in the most difficult
13 situations.

Jiping et al. Mac 17/10/2016 10:16
Deleted: over...uring the period 2... [51]

14

15 4. Observing System Experiment of SMOS-Ice

16 4.1 Design of OSE runs for SMOS-Ice

17 The SMOS-Ice ice thickness data is gridded at a resolution of
18 approximately 12.5 km and is available at daily frequency during the cold
19 season. For the reasons explained in previous section, we only consider
20 the observations with thickness lower than 0.4 m and with a distance of at
21 least 30 km away from the coast are used (See Section 3). The related
22 innovations in Equation (1) are expressed as sea ice volume:

$$\Delta SIT = y_{smos} - H(\bar{h}_{mod} \times \bar{f}_{mod}), \quad (6)$$

23 where y_{smos} is the observed SIT for thin ice from SMOS, H is the same
24 observation operator as in equation (1), \bar{h}_{mod} is the ensemble mean of ice
25 thickness within the grid cell and \bar{f}_{mod} is the ensemble mean of SIC. Note
26 that the model has a minimum thickness of 0.1 m, but SIT observations of
27 ice thinner than 10 cm can be assimilated quantitatively because the
28 ensemble mean from a 100 ensemble members can take values as low
29 as 1 mm. To highlight the additional impact of SMOS-Ice observations,
30 two OSE runs are carried out:

31 - The Official Run: uses the standard observational network of the
32 TOPAZ system. It assimilates every week the along-track Sea Level

Jiping et al. Mac 17/10/2016 10:16
Formatted ... [52]

Jiping et al. Mac 17/10/2016 10:16
Deleted: In

Jiping et al. Mac 17/10/2016 10:16
Formatted: Font color: Auto

Jiping et al. Mac 17/10/2016 10:16
Deleted: , there is a thick bias in all the
regions,

Jiping et al. Mac 17/10/2016 10:16
Deleted: -

Jiping et al. Mac 17/10/2016 10:16
Deleted: in...uring the cold sea... [53]

Jiping et al. Mac 17/10/2016 10:16
Deleted: hiceSIT = ... [54]

Jiping et al. Mac 17/10/2016 10:16
Deleted: thickness of...IT for thin ... [55]

Jiping et al. Mac 17/10/2016 10:16
Deleted: f_{mod} are

Jiping et al. Mac 17/10/2016 10:16
Deleted: sea ice thickness and
concentration respectively....as a ... [56]

Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Not Bold

1 Anomaly, SST, in situ profiles of temperature and salinity, sea ice
2 concentrations and sea ice drift data (listed in **Table 1**).

Jiping et al. Mac 17/10/2016 10:16
Deleted: ...ice concentrations an ... [57]

3 - **The Test Run**: assimilates the SMOS-Ice data in addition to **the**
4 observations assimilated in the **Official Run**. In this study, the observation
5 errors are assumed to be spatially uncorrelated. The observation error
6 variance (diagonal term of **R** term in Eq. 2) for SIT is set as
7 recommended by the provider. It is estimated based on a priori estimate
8 of the maximum uncertainty of different input parameters: surface air
9 temperature, bulk ice temperature and bulk ice salinity (Tian-Kunze et al.,
10 2014). We consider an observation error variance of 25 m² to be the
11 threshold beyond which observations are assumed fully saturated, and
12 are not assimilated in our system, this is however generally not occurring
13 for SIT values lower than 40 cm (see Fig. 4).

Jiping et al. Mac 17/10/2016 10:16
Deleted: official run....fficial Run. [58]

14 Figure 4 shows the uncertainties of the observations as function of the
15 observed thickness from SMOS in March and November of 2014. There
16 is a linear increase of the observation error with SMOS-ice SIT with a
17 slope of approximately 2.6. There is no visible seasonal variation in this
18 relation (not shown).

Jiping et al. Mac 17/10/2016 10:16

Moved (insertion) [3]

Jiping et al. Mac 17/10/2016 10:16

Deleted: , with ...e consider an up ... [59]

19 In the following, the two parallel **OSE** runs are carried out at two typical
20 time periods of the cold season: at the onsets of the ice melting from 15th
21 February to 31st March and at the freezing time from 15th October to 30th
22 November in 2014.

Jiping et al. Mac 17/10/2016 10:16

Deleted: assimilation...SE runs fo ... [60]

24 **4.2 Validation against assimilated measurements**

25 The error analysis focuses on the following target quantities: **SIT**, **SIC**,
26 SST and SLA. All quantities are derived from the ensemble mean daily
27 averages that are compared to observations at same locations and time.
28 The bias is calculated as specified in Eq. 4 and the RMSD as in Eq. 5.

Jiping et al. Mac 17/10/2016 10:16

Deleted: <#>Error analysis in the OSE

runs .

Jiping et al. Mac 17/10/2016 10:16

Deleted: sea ice thickness, sea ice

concentration...IT, SIC, SST and S ... [61]

29 The spatial distribution of selected SMOS-Ice data for thin sea ice is
30 shown in the top panels of Fig. 5 during March and November of 2014. In
31 March, the available observations in the Beaufort Sea are very few, and
32 unevenly distributed - mainly located in the coastal areas. Hence, most of
33 the observations are unreliable (close to the error saturation threshold at
34 5 m) or too thick (> 0.4 m) to be assimilated. Therefore in the following,

Jiping et al. Mac 17/10/2016 10:16

Deleted: 4... during March and ... [62]

1 the results for the Beaufort Sea, are only presented for November. In the
 2 middle panels of Fig. 5, the differences of RMSD for sea ice thickness
 3 between the Official Run and the Test Run are shown (red color indicates
 4 an improvement due to assimilation of SMOS-Ice, and blue a degradation).
 5 In March, the improvements are mainly found to the east of Franz Josef
 6 Land and to some extent near the ice edge in the Greenland Sea. In
 7 November, the reduction of RMSD is larger than 0.2 m in the Beaufort
 8 Sea, the Greenland Sea and to the North of Svalbard. Finally, the
 9 differences of monthly ice thickness between the Official Run and the
 10 Test Run are shown in the bottom panels of Fig. 5. They suggest that
 11 assimilating SMOS-Ice leads to a reduction of sea ice thickness both in
 12 March and November 2014.
 13 Based on Eqs. (4) and (5), the time series of daily bias and RMSD for
 14 thin ice thicknesses in the OSE runs are shown in the top panels of Fig.
 15 6. The bias of thin SIT is reduced from 16 cm to 12 cm in March, and
 16 from 7 cm to 4 cm in November, when SMOS-Ice data is assimilated. The
 17 RMSD of thin SIT is reduced from 35 cm to 31 cm in March, and from 27
 18 cm to 21 cm in November. This corresponds to a reduction of the bias of
 19 25% in March and 43% in November, and a reduction of the RMSD of
 20 about 11% in March and 22% in November. In the other panels of Fig. 6,
 21 the bias and RMSD of SIC, SST and SLA are presented. There is a slight
 22 benefit for the bias and RMSD of SIC (i.e. the reduction of the SIC RMSD
 23 is about 0.001), but the statistics for SST and SLA are unchanged.
 24 The averaged thicknesses of thin sea ice in the marginal seas - in the
 25 Kara Sea, Barents Sea and Beaufort Sea - are shown with marked lines
 26 in the panels of Fig. 7. The corresponding daily RMSDs of ice thickness
 27 relative to thin SMOS-Ice data are added with shading. In each month,
 28 there are four assimilation steps marked with vertical lines.
 29 In the Kara Sea, the thickness observed in March is very stable with a
 30 slight gradual increase. There is a relatively uniform reduction of RMSD
 31 by about 21%, which is mainly the result from a correction of the large
 32 (too thick) bias in the model. In November, the bias is much smaller and
 33 the resulting improvement is small (8%), but the performances are slightly
 34 improving throughout the month for RMSD.

Jiping et al. Mac 17/10/2016 10:16
 Deleted: result in November
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: .
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: 4
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: -
 Jiping et al. Mac 17/10/2016 10:16
 Deleted:).

Jiping et al. Mac 17/10/2016 10:16
 Deleted: 4. It suggests
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: -

Jiping et al. Mac 17/10/2016 10:16
 Deleted: The
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: 5
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: sea-ice thickness
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: sea ice

Jiping et al. Mac 17/10/2016 10:16
 Deleted: 5
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: sea ice concentration
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: sea ice concentration,
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: Moreover, the
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: -
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: 6

Jiping et al. Mac 17/10/2016 10:16
 Deleted: smaller
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: %)
 Jiping et al. Mac 17/10/2016 10:16
 Deleted: through

1 In the Barents Sea, the observations of SIT in March show an increasing
2 trend. The Official Run shows initially a large (thick) bias that reduces as
3 SIT increases in the observations. Assimilation of SMOS-Ice data
4 reduces well the initial bias, but the bias converges towards the Official
5 Run at the end of the month and so is the RMSD. On average, the RMSD
6 of SIT is decreased by approximately 27% from the Test Run. In
7 November, the observations show large variability that is well captured in
8 the Official Run but the ice is initially too thick. The RMSD reduction of
9 the Test Run compared to the Official Run is about 19% and both the
10 bias and the RMSD are reduced.

Jiping et al. Mac 17/10/2016 10:16
Deleted: in March, ...he observati ... [63]

11 In the Beaufort Sea, there are too few observations to provide a
12 representative estimate of the system performance in March (top panels
13 of Fig. 5) and the statistics are not presented. In November, the
14 observations show an increasing trend and the Official Run shows once
15 again a relatively large thick bias initially. The RMSD in the Test Run is
16 reduced by about 51%, which is mainly caused by a reduction of the bias.
17 The increasing trend in the Test Run is in relatively good agreement with
18 the observations.

Jiping et al. Mac 17/10/2016 10:16
Deleted: 4...) and the statistics ar ... [64]

19 20 4.3 Validation against independent observations of SIT and sea 21 ice draft

23 Three Ice Mass Balance (IMB) buoys (Perovich et al., 2009;
24 <http://imb.erdc.dren.mil/buoyinst.htm>) are available for independent
25 validation during our period of study (2013F, 2013G and 2014F). Their
26 drift trajectories are shown in Fig. 5 for March and November 2014. On
27 the 1st March 2014, the buoys of 2013F and 2013G are located at
28 (150.8°W, 74.8°N) and (157.9°W, 75.3°N). And on the 1st November 2014,
29 the buoys 2013F and 2014F are located at (158.4°W, 77.6°N) and
30 (146.3°W, 76.7°N) respectively. In Fig. 8, the daily SIT of the OSE runs
31 are compared to those of the buoys along their trajectories. Between the
32 15th February and the 30th March, the SITs of the two runs are identical
33 and are increasing from 1.6 m to 1.9 m while the observations show a
34 more moderate increase from 1.5 to 1.65 m. It should be noted that the

Jiping et al. Mac 17/10/2016 10:16
Deleted: In Fig 7, we are validating the
ice thickness with

Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Bold

Jiping et al. Mac 17/10/2016 10:16
Deleted: sea-ice thickness

Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Bold

Jiping et al. Mac 17/10/2016 10:16
Deleted: from two

Jiping et al. Mac 17/10/2016 10:16
Deleted: During the month of November
2014, their ...their drift trajectories ... [65]

Laurent Bertino 14/10/2016 15:41
Comment [1]: Have you extracted model
data along the buoys trajectory? yes

1 increase in the model is not necessarily caused by thermodynamic
 2 growth only since the modeled ice motions may differ from the buoys
 3 trajectories. Between the 15th October and the 30th November (Buoys
 4 2013F and 2014F), the SIT in the Test Run is slightly improved compared
 5 to the Official Run (with an improvement of 2 cm). It is expected that the
 6 impact of SMOS-ice on the two buoys is small because they are located
 7 far away from the locations where SMOS-Ice data are assimilated (shown
 8 in the top panels of Fig. 5). The TOPAZ system uses localization,
 9 meaning that the impact of observations during assimilation is limited to a
 10 certain radius and their influence reduces as function of distance. In the
 11 TOPAZ system, the effective localization radius is 90 km. Still, it is
 12 encouraging to see that the improvements seem to be increasing with
 13 time suggesting that the region influenced by SMOS-ice is gradually
 14 spreading across the domain.

15 Observations of sea ice drafts from moored sonar data are another
 16 source of independent observations. There are in total 6 moorings:
 17 2013a, 2013b, and 2013d in March 2014; 2014a, 2014b, and 2014d in
 18 November 2014, which locations are shown in Fig. 5. These
 19 measurements are available from BGEP (Kishfield et al., 2014;
 20 <http://www.whoi.edu/page.do?pid=66559>). They use moored upward-
 21 looking sonar instruments and collect year-round time series
 22 measurements of the sea ice draft distribution (into 0.1 m bins) at daily
 23 frequency. This data is processed to filter out wave action in the summer
 24 months that may lead to the removal of thin draft measurements
 25 (Kishfield et al., 2014). This can be problematic if the model estimates
 26 are lower than the observed values. The sea ice draft from TOPAZ is
 27 diagnosed as proposed in Alexandrov et al. (2010), i.e.:

$$d_i = h_i \frac{\rho_i}{\rho_w} + h_{sn} \frac{\rho_{sn}}{\rho_w},$$

28 where d_i is sea ice draft, h_i is ice thickness, and h_{sn} is the modeled snow
 29 depths. The constant ρ_i , ρ_w , and ρ_{sn} are the densities for ice, water, and
 30 snow (respectively 900 kg m⁻³, 1000 kg m⁻³, and 300 kg m⁻³). In March
 31 2014, the observed sea ice drafts are mostly distributed between 0.8 m
 32 and 1.6 m (see Fig. 8). Both OSE runs overestimate the sea ice drafts in

Jiping et al. Mac 17/10/2016 10:16
Deleted: Fig. 7. Along the buoy trajectory, the daily series of the observed sea ice thickness
Jiping et al. Mac 17/10/2016 10:16
Deleted: 21 st
Jiping et al. Mac 17/10/2016 10:16
Deleted: to
Jiping et al. Mac 17/10/2016 10:16
Deleted: are shown with the blue squared line and the standard deviation is shown with error bars. The overestimation of sea ice thickness
Jiping et al. Mac 17/10/2016 10:16
Deleted: is slightly reduced
Jiping et al. Mac 17/10/2016 10:16
Deleted: a maximum decrease
Jiping et al. Mac 17/10/2016 10:16
Deleted: are
Jiping et al. Mac 17/10/2016 10:16
Deleted: location
Jiping et al. Mac 17/10/2016 10:16
Deleted: is
Jiping et al. Mac 17/10/2016 10:16
Deleted: as
Jiping et al. Mac 17/10/2016 10:16
Deleted: row panel in
Jiping et al. Mac 17/10/2016 10:16
Deleted: 4). Note that the
Jiping et al. Mac 17/10/2016 10:16
Deleted: assimilation
Jiping et al. Mac 17/10/2016 10:16
Deleted: It
Jiping et al. Mac 17/10/2016 10:16
Deleted: improvement seems
Jiping et al. Mac 17/10/2016 10:16
Deleted: with time

1 March, and perform identically. In November 2014, the observed sea ice
 2 drafts are thinner (< 1 m). The sea ice drafts from the OSE runs are again
 3 overestimated in all three locations. The averaged draft difference in the
 4 two runs is about 1 cm at the two moorings 2014a and 2014b, and about
 5 16 cm at the mooring 2014d that is located closest to locations where
 6 SMOS-ICE has been assimilated (see Fig.5). We have also compared
 7 the two OSE runs in March 2014 with the NASA IceBridge SIT Quick
 8 Look data set (QL) available from National Snow and Ice Data Center.
 9 The analysis leads to similar conclusions (not shown), which is that
 10 assimilation of SMOS-ICE only yields to improvements of SIT near the ice
 11 edge near location where SMOS-ICE is assimilated but do not yield
 12 degradation in other places.

13

14 5. Relative impact of the SIT from SMOS-Ice

15 In this Section, the quantitative benefit of assimilating SMOS-Ice into the
 16 TOPAZ system is compared to other observations assimilated. To do so,
 17 we evaluate a performance metric calculated during the analysis, the
 18 Degree of Freedom for Signal (DFS), which is widely used for such
 19 purposes (Rodgers 2000; Cardinali et al. 2004). During the assimilation,
 20 one can calculate the DFS as follows:

$$21 \quad \text{DFS} = \text{tr} \left(\frac{\partial \hat{y}}{\partial y} \right) = \text{tr} \left\{ \frac{\partial [\mathbf{H}(\mathbf{X}^a)]}{\partial y} \right\} = \text{tr}(\mathbf{K}\mathbf{H}) \quad (7).$$

22 Here, the matrix \mathbf{H} is the observation operator as in equation (1), and tr
 23 defines the trace, applied to the matrix $(\mathbf{K}\mathbf{H})$. The DFS measures the
 24 reduction of mode that can be attributed to each observation type. A
 25 value of DFS close to 0 means that the observation has no impact, while
 26 a value of m means that the assimilation has reduced the number of
 27 degree of freedom of the ensemble by m . Note that the reduction cannot
 28 exceed the ensemble size; i.e. 100 here. In Sakov et al. (2012), it was
 29 recommended that the DFS should not exceed 10 % of the ensemble
 30 size to avoid a collapse of the ensemble spread.

31 In the following the term DFS_i denotes the DFS of the assimilation at time
 32 i , of the j^{th} type of observations, as calculated by equation (7). The
 33 averaged DFS over a specific time period is calculated as follows:

Jiping et al. Mac 17/10/2016 10:16

Formatted: List Paragraph, Justified, Line spacing: 1.5 lines

Jiping et al. Mac 17/10/2016 10:16

Deleted: SMOS-ice to the existing observation network

Jiping et al. Mac 17/10/2016 10:16

Deleted: additional

Jiping et al. Mac 17/10/2016 10:16

Deleted: quantitatively with respect to the standard observation network

Jiping et al. Mac 17/10/2016 10:16

Deleted: \mathbf{K} and

Jiping et al. Mac 17/10/2016 10:16

Deleted: \mathbf{H} are the same

Jiping et al. Mac 17/10/2016 10:16

Deleted: After each data

Jiping et al. Mac 17/10/2016 10:16

Deleted: the DFS

Jiping et al. Mac 17/10/2016 10:16

Deleted: j^{th}

Jiping et al. Mac 17/10/2016 10:16

Deleted: can be

Jiping et al. Mac 17/10/2016 10:16

Deleted:), denoted DFS_i . Given an observation type, the

Jiping et al. Mac 17/10/2016 10:16

Deleted: can be estimated by

$$\overline{\text{DFS}}_j = \frac{1}{m} \sum_{i=1}^m \text{DFS}_{ij}, \quad (8)$$

where the subscript j represents the j^{th} type of the assimilated observations, the subscript i is time and m is the total number of assimilation steps within the considered time period (e.g. 4 for a monthly estimate with weekly assimilation). The DFS values are calculated at each model grid cell. In Fig. 10, we are plotting the averaged DFS maps (as defined in Eq. 8) for the different observation data sets assimilated in March and November. In the Arctic the total DFS is dominated by the ice concentration that reaches large value (approximately 6) near the ice edge. The DFS for SMOS-Ice is comparatively small, and is larger in March than in November. In some regions, the monthly DFS of SMOS-ice reaches values larger than 2. Furthermore, based on the sum of the DFS of all observation types assimilated in TOPAZ, we can estimate the relative impact the j^{th} type of observations (RDFS $_j$):

$$\text{RDFS}_j = \frac{\overline{\text{DFS}}_j}{\sum_{l=1}^O \overline{\text{DFS}}_l} \times 100\%, \quad (9)$$

where O is total number of observation types. Figure 12 shows the relative contribution of each observational data set in the March. As expected, the assimilation of ice concentration dominates the total DFS, while the impacts of SST and SLA are limited to the region that are not ice covered. The profiles of ocean temperature and salinity near the North Pole in Arctic are collected by the Ice-Tethered Profiler Program (Krishfield et al., 2008; Toole et al., 2011). They have a very large impact but they are very sparse. In March the SMOS-ice data has a significant impacts (> 20 % of the total DFS) in the Northern Barents Sea, the Western Kara Sea, Baffin Bay, the Greenland Sea and in Hudson Bay. In November, the relative contribution is still significant in the Barents Sea, the Kara Seas and in the Greenland Sea, but it is also significant in the Beaufort Sea and in the Canadian Archipelago.

6. Summary and Discussion

The thickness observations of thin sea ice in the Arctic can be derived from SMOS brightness temperature at 1.4 GHz (Tian-Kunze, et al., 2014;

1 Kaleschke et al., 2016). This data set is available in near real time since
2 2010 at daily frequency. This study investigates the impact of assimilating
3 this data set within the TOPAZ system, which is the Arctic component of
4 the Copernicus Marine Services. It is shown that for thin ice (less than 0.4
5 m), the TOPAZ reanalysis and the SMOS-Ice have comparable
6 distributions, (though TOPAZ slightly overestimates the thin ice thickness,
7 from January to April) and that conditions are favorable for assimilating
8 this data set.

9 We investigate the impact of assimilating SMOS-Ice (thinner than 0.4 m)
10 in TOPAZ that already assimilates ice concentration, ice drift, SST, SLA
11 and temperature and salinity profiles. The comparison is carried out for
12 two periods: February-March and October-November of 2014. The study
13 shows that the assimilation of SMOS-Ice data reduces the thickness
14 RMSD of thin sea ice in March and in November by about 11% and 22%
15 respectively, mainly caused by the reduction of the bias (too thick sea ice
16 that seems larger in 2014 than in previous years). There are also some
17 small improvements for SIC. The RMSDs for SST and SLA remain
18 unchanged but are not degraded.

19 When compared to independent observations of SIT (IMB buoys) and sea
20 ice draft (BGEP moorings) it is found that assimilation of SMOS-Ice yields
21 improvements near the ice edge next to where SMOS-Ice has been
22 assimilated but does not lead to improvements nor degradations in the
23 rest of the Arctic.

24 In this study, the DFS is used to evaluate the relative contributions of
25 assimilated observations to the reduction of error in the TOPAZ system.
26 The SMOS-Ice data have a smaller impact than ice concentration, but it
27 has a significant contribution (defined as larger than 20 % of the total
28 impact from all observations) in some areas; namely in the Greenland
29 Sea, the Kara Sea, the Barents Sea, the Baffin Bay and the Hudson Bay,
30 in March, and in the Greenland Sea, the Kara Sea, the Barents Sea, the
31 Beaufort Sea and the Canadian archipelago in November.

32
33 These studies follow up the first attempt of assimilation of SMOS-Ice with
34 the LSEIK in a regional MITgcm configuration (Yang et al. 2014).

Jiping et al. Mac 17/10/2016 10:16
Deleted:
Jiping et al. Mac 17/10/2016 10:16
Deleted: , but
Jiping et al. Mac 17/10/2016 10:16
Deleted: reanalysis tends to overestimate
Jiping et al. Mac 17/10/2016 10:16
Deleted: , especially
Jiping et al. Mac 17/10/2016 10:16
Deleted: .
Jiping et al. Mac 17/10/2016 10:16
Deleted: compare
Jiping et al. Mac 17/10/2016 10:16
Deleted: benefit
Jiping et al. Mac 17/10/2016 10:16
Deleted: ice
Jiping et al. Mac 17/10/2016 10:16
Deleted: system
Jiping et al. Mac 17/10/2016 10:16
Deleted: SSH
Jiping et al. Mac 17/10/2016 10:16
Deleted: -
Jiping et al. Mac 17/10/2016 10:16
Deleted: As in Yang et al. (2014) we
Jiping et al. Mac 17/10/2016 10:16
Deleted: find that there is a slight improvement to the ice concentration.
Jiping et al. Mac 17/10/2016 10:16
Deleted: they
Jiping et al. Mac 17/10/2016 10:16
Deleted: at least
Jiping et al. Mac 17/10/2016 10:16
Deleted: has been
Jiping et al. Mac 17/10/2016 10:16
Deleted: a relatively high contribution in some areas. In the Greenland Sea, the Kara Sea and the Barents Sea,
Jiping et al. Mac 17/10/2016 10:16
Deleted: is found both in March a ... [66]
Jiping et al. Mac 17/10/2016 10:16
Deleted: , significant contributions ... [67]
Jiping et al. Mac 17/10/2016 10:16
Deleted: . In November, there is a ... [68]
Jiping et al. Mac 17/10/2016 10:16
Deleted: in
Jiping et al. Mac 17/10/2016 10:16
Deleted: To conclude, we found that
Jiping et al. Mac 17/10/2016 10:16
Deleted: ice can reduce
Jiping et al. Mac 17/10/2016 10:16
Deleted: thick biases
Jiping et al. Mac 17/10/2016 10:16
Deleted: some regions of the Arctic ... [69]

1 Compared to this study, it is found that assimilation of SMOS-Ice has a
2 more moderate impact. This may be related to the fact that TOPAZ uses
3 a more complete observation network and that the assimilation has been
4 spin up over a longer period of time (from 1989). We also find that
5 assimilation of SMOS-Ice is comparatively larger in October-November
6 than in February-March at time when Yang et al. (2014) tested
7 assimilation of SMOS-Ice. We also verified that assimilation of SMOS-Ice
8 does not degrade ocean variables (SST and SLA), which could happen
9 with a strongly coupled data assimilation scheme. Finally, we quantified
10 the relative influence of SMOS-Ice for constraining the mode of variability
11 in TOPAZ compared to a standard observation network.

Jiping et al. Mac 17/10/2016 10:16
Deleted: of this data set

12 To conclude, our study suggests that SMOS-Ice can be assimilated
13 without degradation of other skills in our operational forecasting system.
14 The benefits are generally small but can be significant for some regions
15 near the ice edge. However, further work needs to be done to better
16 understand the uncertainty of the assimilated SIT from the SMOS-Ice.

Jiping et al. Mac 17/10/2016 10:16
Deleted: other
Jiping et al. Mac 17/10/2016 10:16
Deleted: , SLA, ICEC and ice drift). This

17 Recently, Yang et al. (2016) tested the sensitivity of assimilating the
18 SMOS-Ice data with the LSEIK during the winter of 2011-2012, and found
19 that perturbations of the atmospheric forcing is important for improving
20 the performance of assimilation, in agreements with Lisæter et al. (2007).

Jiping et al. Mac 17/10/2016 10:16
Deleted: the
Jiping et al. Mac 17/10/2016 10:16
Deleted: and included in reanalysis mode.
Jiping et al. Mac 17/10/2016 10:16
Deleted: sea ice thickness

21 In the future, we may use the “saturation ratio” that is defined by the
22 relationship of the variable L-band penetration depth and the maximal
23 retrieval thickness as a function of temperature and salinity with which we
24 can better identify the valid observations of sea ice thickness from SMOS.

Jiping et al. Mac 17/10/2016 10:16
Deleted: consistently
Jiping et al. Mac 17/10/2016 10:16
Deleted: the findings of
Jiping et al. Mac 17/10/2016 10:16
Deleted: CryoSat2
Jiping et al. Mac 17/10/2016 10:16
Deleted: CryoSat2
Jiping et al. Mac 17/10/2016 10:16
Deleted: CryoSat2

25 In addition, the satellite CryoSat-2 provides freeboard height data in thick
26 ice that can complement the observations from SMOS (Kaleschke et al.,
27 2010). The new sea ice thicknesses derived from a combination of SMOS
28 and CryoSat-2 will be soon available (Kaleschke et al., 2015). Incidentally,
29 the U.S Navy Arctic Cap Nowcast/Forecast System (ACNFS) is currently
30 testing the assimilation of a combined sea ice thickness product (personal
31 communication from David Hebert) where the sea ice thickness is
32 blended from SMOS-Ice and CryoSat-2 based on each satellite retrieval
33 error.

Jiping et al. Mac 17/10/2016 10:16
Deleted: (personal communication from David Hebert). Where the ice is thin (typically less than 0.5 m), the relative error for SMOS-Ice will be lower than CryoSat2, and the blending will be weighted strongly toward the thickness value from SMOS-Ice. Where the ice is thick, the error will be lower for CryoSat2 retrieval and the blending will be strongly weighted toward the CryoSat2 ice thickness value

Jiping et al. Mac 17/10/2016 10:16
Deleted: -
Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:12 pt, Not Bold

1 **Acknowledgment**

2 The authors are grateful to two anonymous reviewers for their insightful
3 comments that were helpful in improving the paper. Thanks to Dr. Y.
4 Wang for useful discussions. [We thank to the US National Snow and Ice](#)
5 [Data Center \(NSIDC\) for providing the IceBridge data](#). This study was
6 supported by ESA contracts 4000101476/10/NL/CT and
7 4000112022/14/I-AM and CPU time from the Norwegian Supercomputing
8 Project (NOTUR II grant number nn2993k).

9 **Reference:**

10 [Alexandrov, V., Sandven, S., Wählén, J., and Johannessen, O. M.: The relation](#)
11 [between sea ice thickness and freeboard in the Arctic. The Cryosphere, 4,](#)
12 [378-380, doi: 10.5194/tc-4-373-2010, 2010.](#)

13 [Bentsen, M., Evensen, G., Drange, H., and Jenkins, A. D.: Coordinate](#)
14 [transformation on a sphere using conformal mapping, Mon. Weather Rev.,](#)
15 [127, 2733-2740, doi:\[http://dx.doi.org/10.1175/1520-0493\\(1999\\)127<2733:CTOASU>2.0.CO;2\]\(http://dx.doi.org/10.1175/1520-0493\(1999\)127<2733:CTOASU>2.0.CO;2\), 1999.](#)

16 [Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-](#)
17 [Cartesian coordinates, Ocean Modell., 4, 55-88, doi:\[10.1016/S1463-5003\\(01\\)00012-9\]\(http://dx.doi.org/10.1016/S1463-5003\(01\)00012-9\), 2002.](#)

18 [Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic-viscous-plastic](#)
19 [method revised. Ocean Modell., 7, 2-12, doi:\[10.1016/j.ocemod.2013.05.013\]\(http://dx.doi.org/10.1016/j.ocemod.2013.05.013\), 2013.](#)

20 [Cardinali, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a](#)
21 [data assimilation system, Q. J. R. Meteorol. Soc., 130, 2767-2786,](#)
22 [doi:\[10.1256/qj.03.205\]\(http://dx.doi.org/10.1256/qj.03.205\), 2004.](#)

23 [Chapman, W. L., and Walsh, J. E.: Recent variations of sea ice and air](#)
24 [temperature in high latitudes, Bull. Amer. Meteorol. Soc., 74, 33-47, doi:](#)
25 [http://dx.doi.org/10.1175/1520-0477\(1993\)074<0033:RVOSIA>2.0.CO;2](#), 1993.

26 [Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., et al.: US GODAE: Global](#)
27 [Ocean Prediction with the HYbrid Coordinate Ocean Model \(HYCOM\),](#)
28 [Oceanography, 22, 64-75. Doi:\[10.5670/oceanog.2009.39\]\(http://dx.doi.org/10.5670/oceanog.2009.39\), 2009.](#)

29 [Chassignet, E. P., Smith, L. T., and Halliwell, G. R.: North Atlantic Simulations](#)
30 [with the Hybrid Coordinate Ocean Model \(HYCOM\): Impact of the vertical](#)
31 [coordinate choice, reference pressure, and thermobaricity, J. Phys.](#)
32 [Oceanogr., 33, 2504-2526. Doi: \[http://dx.doi.org/10.1175/1520-0485\\(2003\\)033<2504:NASWTH>2.0.CO;2\]\(http://dx.doi.org/10.1175/1520-0485\(2003\)033<2504:NASWTH>2.0.CO;2\), 2003.](#)

33 [Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline](#)
34 [in the Arctic sea ice cover, Geophys. Res. Lett., 35 L01703, doi:](#)
35 [10.1029/2007GL031972, 2008.](#)

36 [Connor, L. N., Laxon, S. W., Ridout, A. L., Krabill, W. B., and McAdoo, D. C.:](#)
37 [Comparison of Envisat radar and airborne laser altimeter measurement over](#)
38 [Arctic sea ice. Remote Sensing of Environment, 113, 563-570,](#)
39 [doi:\[10.1016/j.rse.2008.10.015\]\(http://dx.doi.org/10.1016/j.rse.2008.10.015\), 2009](#)

40 [Dee, D.P., Uppala, S. M., Simmons, A. J., Berrisford, P., et al.: The ERA-Interim](#)
41 [reanalysis: configuration and performance of the data assimilation system,](#)
42 [Quart. J. Roy. Meteor. Soc., 137, 553-597, doi:\[10.1002/qj.828\]\(http://dx.doi.org/10.1002/qj.828\), 2011](#)

43 [Donlon, C.J., Martin, M., Stark, J. D., Roberts-Jones, J., and Fiedler, E.: The](#)
44 [Operational Sea Surface Temperature and Sea Ice Analysis \(OSTIA\) system.](#)

1 Rem. Sens. of Environment, 116, 140-158, doi:10.1016/j.rse.2010.10.017,
 2 2012.

3 Drange, H., and Simonsen, K.: Formulation of air-sea fluxes in the ESOP2
 4 version of MICOM, Technical Report No. 125 of Nansen Environmental and
 5 Remote Sensing Center, 1996.

6 Forsberg, R. and Skourup, H.: Arctic Ocean gravity, geoid and sea-ice freeboard
 7 heights from ICESat and GRACE. *Geophys. Res. Lett.*, 32(21), L21502,
 8 doi:10.1029/2005GL023711, 2005.

9 Giles, K. A., Laxon, S. W., Wingham, D. J., et al.: Combined airborne laser and
 10 radar altimeter measurements over the Fram Strait in May 2002. *Remote
 11 Sensing of Environment*, 111(2-3), 182-194, doi:10.1016/j.rse.2007.02.037,
 12 2007.

13 Guemas, V., Wrigglesworth, E. B., Chevallier, M., et al.: A review on Arctic sea-
 14 ice predictability and prediction on seasonal to decadal time scales. *Q. J. R.
 15 Meteorol. Soc.*, 142(695), doi:10.1002/qj.2401, 2014.

16 Heygster, G., Hendricks, S., Kaleschke, L., Maass, N., et al.: *L-Band Radiometry
 17 for Sea-Ice Applications*, Final Report for ESA ESTEC Contract
 18 21130/08/NL/EL, Institute of Environmental Physics, University of Bremen,
 19 November 2009, 219 pp, 2009.

20 Hunke, E. C., and Dukowicz, J. K.: An elastic-viscous-plastic model for sea ice
 21 dynamics, *J. Phys. Oceanogr.*, 27, 1849-1867, doi:
 22 [http://dx.doi.org/10.1175/1520-0485\(1997\)027<1849:AEVPMF>2.0.CO;2](http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2),
 23 1997.

24 Huntemann, M., Heygster, G., Kaleschke, L., Krumpen, T., et al.: Empirical sea
 25 ice thickness retrieval during the freeze-up period from SMOS high incident
 26 angle observations, *The Cryosphere*, 8, 439-451, doi:10.5194/tc-8-439-2014,
 27 2014.

28 Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonbøe, R.:
 29 A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to
 30 airborne measurements over low salinity sea-ice, *The Cryosphere*, 4, 583-
 31 592. doi: 10.5194/tc-4-583-2010, 2010.

32 Kaleschke, L., Tian-Kunze, X., Maaß, N., Mäkynen, M., and Drusch, M.: Sea ice
 33 thickness retrieval from SMOS brightness temperatures during the Arctic
 34 freeze-up period. *J. Geophys. Lett.*, 39, L05501, doi:
 35 10.1029/2012GL050916, 2012.

36 Kaleschke, L., Tian-Kunze, X., Maaß, N., et al.: *SMOS Sea Ice Retrieval Study
 37 (SMOSIce)*, ESA Support To Science Element (STSE), Final Report ESA
 38 ESTEC Contract No.: 4000101476/10/NL/CT, 380 pages, Univ. Hamburg,
 39 Institute of Oceanography, 2013. (available at
 40 [http://data.meereisportal.de/gallery/index_new.php?lang=en_US&active-
 41 tab=welcome](http://data.meereisportal.de/gallery/index_new.php?lang=en_US&active-tab=welcome))

42 Kaleschke, L., Tian-Kunze, X., Maaß, N., Ricker, R., Hendricks, S., and Drusch,
 43 M.: Improved retrieval of sea ice thickness from SMOS and Cryosat-2.
 44 Proceedings of 2015 International Geoscience and Remote Sensing
 45 Symposium IGARSS, doi: 10.1109/IGARSS.2015.7327014, 2015.

46 Kaleschke, L., Tian-Kunze, X., Maaß, N., et al.: SMOS sea ice product:
 47 Operational application and validation in the Barents Sea marginal ice zone.
 48 *Remote Sensing of Environment*, doi:10.1016/j.rse.2016.03.009, 2016.

49 Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., et al.:
 50 Possible artifacts of data biases in the recent global surface warming hiatus.
 51 *Science*, 348 (6242), 1469-1472, doi: 10.1126/science.aaa5632, 2015.

52 Korosov, A., Counillon, F., and Johannessen, J. A.: Monitoring the spreading of
 53 the Amazon freshwater plume by MODIS, SMOS, Aquarius, and TOPAZ. *J.
 54 Geophys. Res.*, 120, 268-283, doi:10.1002/2014JC010155, 2015.

55 Krishfield, R., Toole, J., Proshutinsky, A., and Timmermans, M. -L.: Automated

Deleted:	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [88]
Jiping et al. Mac 17/10/2016 10:16	
Deleted:	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [89]
Jiping et al. Mac 17/10/2016 10:16	
Deleted:	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [90]
Jiping et al. Mac 17/10/2016 10:16	
Deleted:	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [91]
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [92]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: -	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [93]
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [94]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: Mills, P., Stammer, D., Tonboe, R	
Jiping et al. Mac 17/10/2016 10:16	
Moved down [5]: T.,	
Jiping et al. Mac 17/10/2016 10:16	
Deleted: and Haas, C	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [95]
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [96]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: -	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [97]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: . Doi	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [98]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: Mäkynen, M., and Mrusch, M	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [99]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: -	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [100]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: .	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [101]
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [102]
Jiping et al. Mac 17/10/2016 10:16	
Deleted: . Doi	
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [103]
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [104]
Jiping et al. Mac 17/10/2016 10:16	
Deleted:	... [105]
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [106]
Jiping et al. Mac 17/10/2016 10:16	
Deleted:	... [107]
Jiping et al. Mac 17/10/2016 10:16	
Formatted	... [108]
Jiping et al. Mac 17/10/2016 10:16	

1 Ice-Tethered Profilers for Seawater Observations Under Pack Ice in All
 2 Seasons, *J. Atmos. Oceanic Technol.*, 25, 2091-2105, doi:
 3 <http://dx.doi.org/10.1175/2008JTECHO587.1>, 2008.

4 Krishfield, R. A., A. Proshutinsky, K. Tateyama, W. J. Williams, E. C. Carmack,
 5 F. A. McLaughlin, and M. L. Timmermans, Deterioration of perennial sea ice
 6 in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic
 7 freshwater cycle, *J. Geophys. Res.*, 119(2), 1271-1305, doi:
 8 10.1002/2013JC008999, 2014.

9 Kurtz, N. T., Markus, T., Cavalieri, D. J., Sparling, L. C., Krabill, W. B.,
 10 Gasiewski, A. J., and Sonntag, J. G.: Estimation of sea ice thickness
 11 distributions through the combination of snow depth and satellite laser
 12 altimetry data, *J. Geophys. Res.*, 114, C10007, doi:10.1029/2009JC005292,
 13 2009.

14 Kurtz, N. T., S. L. Farrell, M. Studinger, N. Galin, J. P. Harbeck, R. Lindsay, V. D.
 15 Onana, B. Panzer, and J. G. Sonntag, Sea ice thickness, freeboard, and
 16 snow depth products from Operation IceBridge airborne data, *The
 17 Cryosphere*, 7, 1035-1056, doi:10.5194/tc-7-1035-2013, 2013

18 Kwok, R., and Rothrock, D.: Decline in Arctic sea ice thickness from submarine
 19 and ICESat records: 1958–2008, *Geophys. Res. Lett.*, 36, L15501,
 20 doi:10.1029/2009GL039035, 2009.

21 Johnson, M., Proshutinsky A., Aksenov Y., Nguyen A. T., Lindsay R., Haas C.,
 22 Zhang J., Diansky N., Kwok R., et al.: Evaluation of Arctic sea ice thickness
 23 simulated by Arctic Ocean Model Intercomparison Project models. *J. Geophys. Res.*, 117(C8), doi:10.1029/2011JC007257, 2012.

24 Johannessen, J. A., Raj, R.P., Nilesen, J. E. Ø., Pripp, T., Knudsen, P.,
 25 Counillon, F., Stammer, D., Bertino, L., Andersen, O. B., Serra, N., and
 26 Koldunov, N.: Toward Improved Estimation of the Dynamic Topography and
 27 Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of
 28 GOCE. *Surv. Geophys.*, 35(3), 661-679, doi:10.1007/s10712-013-9270-y,
 29 2014.

30 Johannessen, O. M., Shalina, E. V., and Miles, M. W.: Satellite evidence for an
 31 Arctic Sea ice cover in transformation, *Science*, 286, 1937-1939,
 32 doi:10.1126/science.286.5446.1937, 1999.

33 Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice
 34 thickness in the Arctic region, *Nature*, 425, 947-950,
 35 doi:10.1038/nature02050, 2003.

36 Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R.,
 37 Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R.,
 38 Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice
 39 thickness and volume, *Geophys. Res. Lett.*, 40, 732-737,
 40 doi:10.1002/grl.50193, 2013.

41 Lien, V. S., Hjøllo, S. S., Skogen, M. D., Svendsen, E., Wehde, H., Bertino, L.,
 42 Counillon, F., Chevallier, M., and Garric, G.: An assessment of the added
 43 value from data assimilation on modelled Nordic Seas hydrography and
 44 ocean transports, *Ocean Modelling*, 99, 43-59,
 45 doi:10.1016/j.ocemod.2015.12.010, 2016.

46 Lindsay, R. W., 2013: Unified sea ice thickness climate data record collection
 47 spanning 1947-2012. Boulder, Colorado USA: National Snow and Ice Data
 48 Center. <http://dx.doi.org/10.7265/N5D50JXV>.

49 Lisæter, K. A., Evensen, G., and Laxon, S.: Assimilating synthetic CryoSat sea
 50 ice thickness in a coupled ice-ocean model, *J. Geophys. Res.*, 112, C07023,
 51 doi:10.1029/2006JC003786, 2007.

52 Locarnini, R., Antonov, J., and Garcia, H.: World Ocean Atlas 2005, Volume 1:
 53 Temperature, vol. 61, US Dept. of Commerce, National Oceanic and
 54 Atmospheric Administration, 2006.

Deleted: DOI
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [112]
Jiping et al. Mac 17/10/2016 10:16
Moved (insertion) [6]
... [113]
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [114]
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [115]
Jiping et al. Mac 17/10/2016 10:16
Moved (insertion) [5]
... [116]
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [117]
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [118]
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [119]
Jiping et al. Mac 17/10/2016 10:16
Deleted: —
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [120]
Jiping et al. Mac 17/10/2016 10:16
Deleted: . Doi
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [121]
Jiping et al. Mac 17/10/2016 10:16
Deleted: variabilityof
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [122]
Jiping et al. Mac 17/10/2016 10:16
Deleted: —
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [123]
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [124]
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [125]
Jiping et al. Mac 17/10/2016 10:16
Deleted: G.
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [126]
Jiping et al. Mac 17/10/2016 10:16
Deleted: S.
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [127]
Jiping et al. Mac 17/10/2016 10:16
Deleted: (2007),
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [128]
Jiping et al. Mac 17/10/2016 10:16
Deleted: .
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [129]
Jiping et al. Mac 17/10/2016 10:16
Deleted:
Jiping et al. Mac 17/10/2016 10:16
Formatted
... [130]

1 Mecklenburg, S., Drusch, M., Kaleschke, L., Rodriguez-Fernandez, N., Reul, N.,
 2 et al.: ESA's Soil Moisture and Ocean Salinity mission: From science to
 3 operational applications, *Remote Sensing of Environment*, **180**, 3-18,
 4 <http://dx.doi.org/10.1016/j.rse.2015.12.025>, 2016.

5 Melsom, A., Counillon, F., LaCasce, J. H., and Bertino, L.: Forecasting search
 6 areas using ensemble ocean circulation modeling. *Ocean Dynamics*, **62**(8),
 7 1245-1257, 2012.

8 Nerger, L., Hiller, W., and Schröter J.: A comparison of error subspace Kalman
 9 filters, *Tellus A*, **57**(5), 715-735, doi: 10.1111/j.1600-0870.2005.00141.x,
 10 2005.

11 Perovich, D. K., Grenfell, T. C., Light, B., et al.: Transpolar observations of the
 12 morphological properties of Arctic sea ice, *J. Geophys. Res.*, **114**, C00A04,
 13 doi:10.1029/2008JC004892, 2009.

14 Ricker, R., Hendricks, S., Helm, V., et al.: Sensitivity of CryoSat-2 Arctic sea-ice
 15 freeboard and thickness on radar-waveform interpretation, *The Cryosphere*,
 16 **8**, 1607-1622, doi:10.5194/tc-8-1607-2014, 2014.

17 Rodgers, C.: Inverse methods for atmospheres: theory and practice, *World*
 18 *Scientific*, 2000.

19 Roemmich, D., Church, J., Gilson, J., Monselesan, D., Sutton, P., and Wijffels,
 20 S.: Unabated planetary warming and its ocean structure since 2006. *Nature*
 21 *Climate Change* **5**, 240-245, doi:10.1038/nclimate2513, 2015.

22 Rothrock, D. A., Yu, Y., and Maykut, G. A.: Thinning of the Arctic sea ice cover,
 23 *Geophys. Res. Lett.*, **26**, 3469-3472, doi:10.1029/1999GL010863, 1999.

24 Sakov, P., and Oke, P. R.: A deterministic formulation of the ensemble Kalman
 25 Filter: an alternative to ensemble square root filters. *Tellus A*, **60**(2), 361-371,
 26 doi:10.1111/j.1600-0870.2007.00299.x, 2008.

27 Sakov, P., Evensen, G., and Bertino, L.: Asynchronous data assimilation with
 28 the EnKF. *Tellus A*, **62**(1), 24-29, doi:10.1111/j.1600-0870.2009.00417.x,
 29 2010.

30 Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Korablev, A.:
 31 TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic
 32 and Arctic. *Ocean Science*, **8**, 633-656, doi:10.5194/os-8-633-2012, 2012.

33 Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
 34 Uncertainty in modeled Arctic sea ice volume, *J. Geophys. R.*, **116**, C00D06,
 35 doi:10.1029/2011JC007084, 2012.

36 Serreze, M., Walsh, J., Chapin, F., Osterkamp, T., Dyurgerov, M., Romanovsky,
 37 V., Oechel, W., Morrison, J., Zhang, T., and Barry, R. G.: Observational
 38 evidence of recent changes in the northern high latitude environment,
 39 *Climatic Change*, **46**, 159-207, doi:10.1023/A:1005504031923, 2000.

40 Smith, G. C., Roy, F., Reszka, M., Colan, D. S., He, Z., Deacu, D., et al.: Sea ice
 41 forecast verification in the Canadian Global Ice Ocean Prediction System.
 42 *Quart. J. Roy. Meteor. Soc.*, doi:10.1003/qj.2555, 2015.

43 Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a
 44 high-quality Arctic Ocean, *J. Climate*, **14**, 2079-2087,
 45 doi:[http://dx.doi.org/10.1175/1520-442\(2001\)014<2079:PAGOHW>2.0.CO;2](http://dx.doi.org/10.1175/1520-442(2001)014<2079:PAGOHW>2.0.CO;2),
 46 2001.

47 Stroeve, J. C., Serreze, M. C., Holland, M. M., et al.: The Arctic's rapidly
 48 shrinking sea ice cover: a research synthesis. *Climatic Change*, **10** (3), 1005-
 49 1027, doi:10.1007/s10584-011-0101-1, 2012.

50 Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkinen, M., Serra, N., Drusch, M.,
 51 and Krumpen, T.: SMOS-derived sea ice thickness: algorithm baseline,
 52 product specifications and initial verification, *The Cryosphere*, **8**, 997-1018,
 53 doi:10.5194/tc-8-997-2014, 2014.

Moved up [6]: J.
Jiping et al. Mac 17/10/2016 10:16
Deleted: P., Sabia, R., Macelloni, ... [133]
Jiping et al. Mac 17/10/2016 10:16
Moved down [7]: K.,
Jiping et al. Mac 17/10/2016 10:16
Deleted: Kerr, Y., Font, J., Martin ... [131]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [132]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [134]
Jiping et al. Mac 17/10/2016 10:16
Deleted: Fauste, J., de Rosnay, P. ... [135]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [136]
Jiping et al. Mac 17/10/2016 10:16
Moved (insertion) [7] ... [137]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [138]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [139]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [140]
Jiping et al. Mac 17/10/2016 10:16
Deleted: -
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [141]
Jiping et al. Mac 17/10/2016 10:16
Deleted: -
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [142]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [143]
Jiping et al. Mac 17/10/2016 10:16
Deleted: r
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [144]
Jiping et al. Mac 17/10/2016 10:16
Deleted: —
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [145]
Jiping et al. Mac 17/10/2016 10:16
Deleted: . Doi
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [146]
Jiping et al. Mac 17/10/2016 10:16
Deleted:):
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [147]
Jiping et al. Mac 17/10/2016 10:16
Deleted: . Doi
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [148]
Jiping et al. Mac 17/10/2016 10:16
Deleted: :
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [149]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [150]
Jiping et al. Mac 17/10/2016 10:16
Deleted: Climate
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [151]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [152]
Jiping et al. Mac 17/10/2016 10:16
Formatted ... [153]
Jiping et al. Mac 17/10/2016 10:16
Deleted: ... [154]
Jiping et al. Mac 17/10/2016 10:16

1 Tilling, R. L., Ridout, A., and Shepherd, A.: Near real time Arctic sea ice
 2 thickness and volume from CryoSat-2, *The Cryosphere*, 10, 2003-2012,
 3 doi:10.5194/tc-10-2003-2016, 2016.

4 Toole, J.M., Krishfield, R. A., Timmermans, M. -L., and Proshutinsky, A.: The
 5 Ice-Tethered Profiler: Argo of the Arctic. *Oceanography*, 24(3), 126-135,
 6 http://dx.doi.org/10.5670/oceanog.2011.64, 2011

7 Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in
 8 Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011
 9 and their impacts on the Arctic Ocean water column, *Geophys. Res. Lett.*, 39,
 10 L24603, doi:10.1029/2012GL054092, 2012.

11 Xie, J., Bertino, L., Counillon, F., Lisæter, K. A., and Sakov, P.: Quality
 12 assessment of the TOPAZ4 reanalysis in the Arctic over the period 1991–
 13 2013, *Ocean Sci. Discuss.*, doi:10.5194/os-2016-38, in review, 2016.

14 Yang, Q., Losa, S. N., Losch, M., Tian-Kunze, X., Nerger, L., Liu, J., Kaleschke,
 15 L., and Zhang, Z.: Assimilating SMOS sea ice thickness into a coupled ice-
 16 ocean model using a local SEIK filter, *J. Geophys. Res. Oceans*, 119,
 17 doi:10.1002/2014JC009963, 2014.

18 Yang, Q., Losch, M., Jung, T., and Nerger, L.: Taking into account atmospheric
 19 uncertainty improve sequential assimilation of SMOS sea ice thickness data
 20 in an ice-ocean model, *J. Atmos. Oceanic Technol.*,
 21 doi:http://dx.doi.org/101175/JTECH-D-15-0176.1, 2016.

22 Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrød, L. H.: Uncertainties
 23 in Arctic sea ice thickness and volume: new estimates and implications for
 24 trends. *The Cryosphere*, 8, 705–720, doi:10.5194/tc-8-705-2014, 2014.

Jiping et al. Mac 17/10/2016 10:16
Deleted: Discuss.,
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial, Font color: Auto
 Jiping et al. Mac 17/10/2016 10:16
Deleted: -21
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial, Font color: Auto
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial, Font color: Auto
 Jiping et al. Mac 17/10/2016 10:16
Deleted: R.A.
 Jiping et al. Mac 17/10/2016 10:16
Deleted: M.-L.
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial, Font color: Auto
 Jiping et al. Mac 17/10/2016 10:16
Deleted: A.
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial, Font color: Auto
 Jiping et al. Mac 17/10/2016 10:16
Deleted: . 2011.
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial, Font color: Auto
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial, Font color: Auto
 Jiping et al. Mac 17/10/2016 10:16
Deleted:):
 Jiping et al. Mac 17/10/2016 10:16
Formatted ... [163]
 Jiping et al. Mac 17/10/2016 10:16
Deleted: –
 Jiping et al. Mac 17/10/2016 10:16
Formatted ... [162]
 Jiping et al. Mac 17/10/2016 10:16
Formatted ... [164]
 Jiping et al. Mac 17/10/2016 10:16
Deleted: Winther, N.G., and Even ... [165]
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial
 Jiping et al. Mac 17/10/2016 10:16
Deleted: ,
 Jiping et al. Mac 17/10/2016 10:16
Formatted: Font:Arial

Table 1. Overview of observations assimilated in TOPAZ system in the Official Run. All observations are retrieved from <http://marine.copernicus.eu> and assimilated weekly.

Type	Spacing	Resolution	Provider
SLA	Track	-	CLS
SST	Gridded	5 km	OSTIA from UK Met Office
In-situ T	Point	-	Ifremer + other
In-situ S	Point	-	Ifremer + other
SIC	Gridded	10 km	OSISAF
Ice drift	Gridded	62.5 km	OSISAF

Jiping et al.Mac 17/10/2016 10:13
Deleted: assimilated
Jiping et al.Mac 17/10/2016 10:13
Deleted: each assimilation cycle of the present
Jiping et al.Mac 17/10/2016 10:13
Deleted: .
Jiping et al.Mac 17/10/2016 10:13
Deleted: <http://marine.copernicus.eu>
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:11 pt
Jiping et al.Mac 17/10/2016 10:13
Formatted Table
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:11 pt
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:11 pt
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:11 pt
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial, 11 pt
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:11 pt
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:11 pt
Jiping et al.Mac 17/10/2016 10:13
Deleted: ICEC
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:11 pt
Jiping et al.Mac 17/10/2016 10:13
Formatted Table
Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial, 11 pt

Fig. 1 TOPAZ model domain and horizontal grid resolution (km) with color shading. The blue line delimits the Arctic region (north of 63°N) and other color lines delimit the three marginal seas discussed in this study.

Unknown

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: focused

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

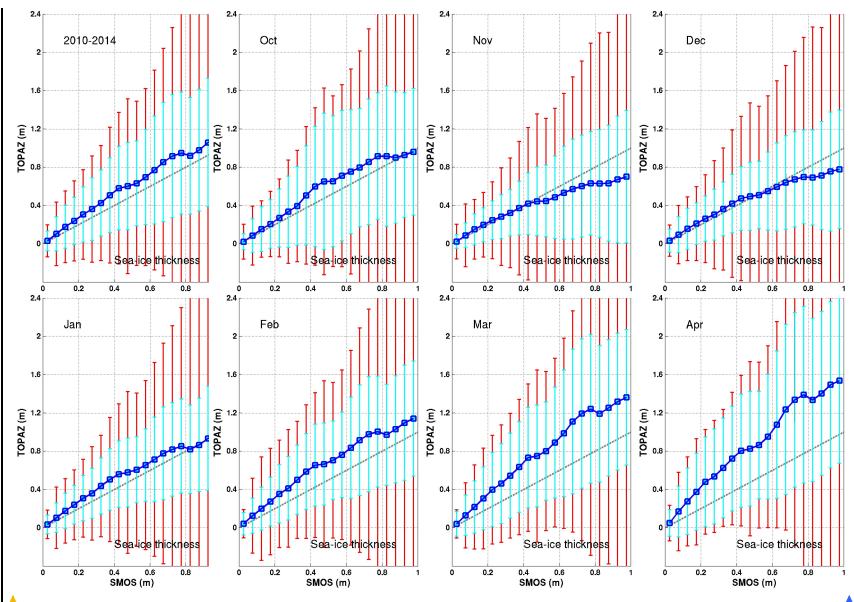
Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13


Deleted: Page Break

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Indent: First line: 0 cm

Fig. 2 Conditional expectations of TOPAZ versus SMOS-Ice (with bin of 5 cm) for each month calculated over the period 2010-2014. The cyan error-bars correspond to the RMSD against observations within each bin. The red error-bars correspond to the averaged standard deviations of observation error. The gray dashed line denotes the line $y=x$.

Unknown

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: and for each month.

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: all

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: all

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: all

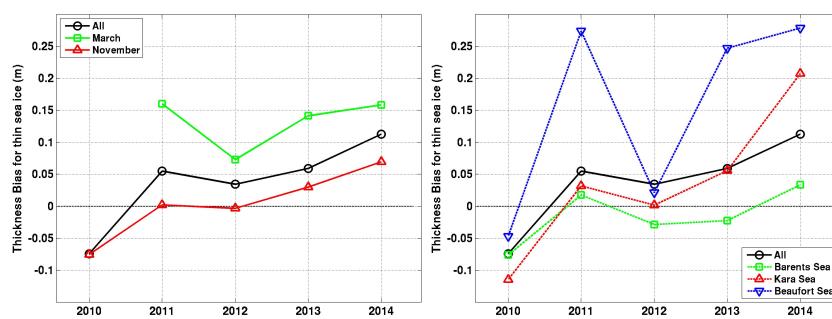
Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: all

Jiping et al. Mac 17/10/2016 10:13


Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: all

Fig. 3 Yearly thickness biases of thin sea ice from TOPAZ compared to SMOS-Ice observations. (Eq. 4). The black line represents the yearly mean bias. **Left:** the green (red) line represents the mean bias for March (November) months. **Right:** the colored lines represent the biases in the Barents Sea, the Kara Sea, and the Beaufort Sea.

Unknown

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al.Mac 17/10/2016 10:13

Deleted: .

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial

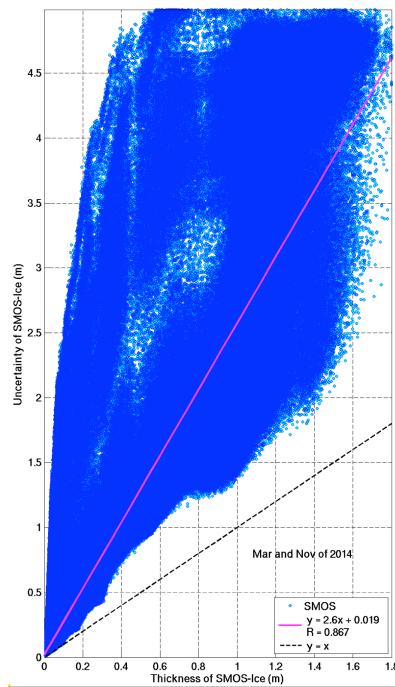
Jiping et al.Mac 17/10/2016 10:13

Deleted: of each year

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al.Mac 17/10/2016 10:13


Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Deleted: [1]

Unknown

Formatted: Font:Bold

Fig. 4 Scatter plot of the uncertainty of the observation as function of the observed thickness from SMOS in March and November of 2014.

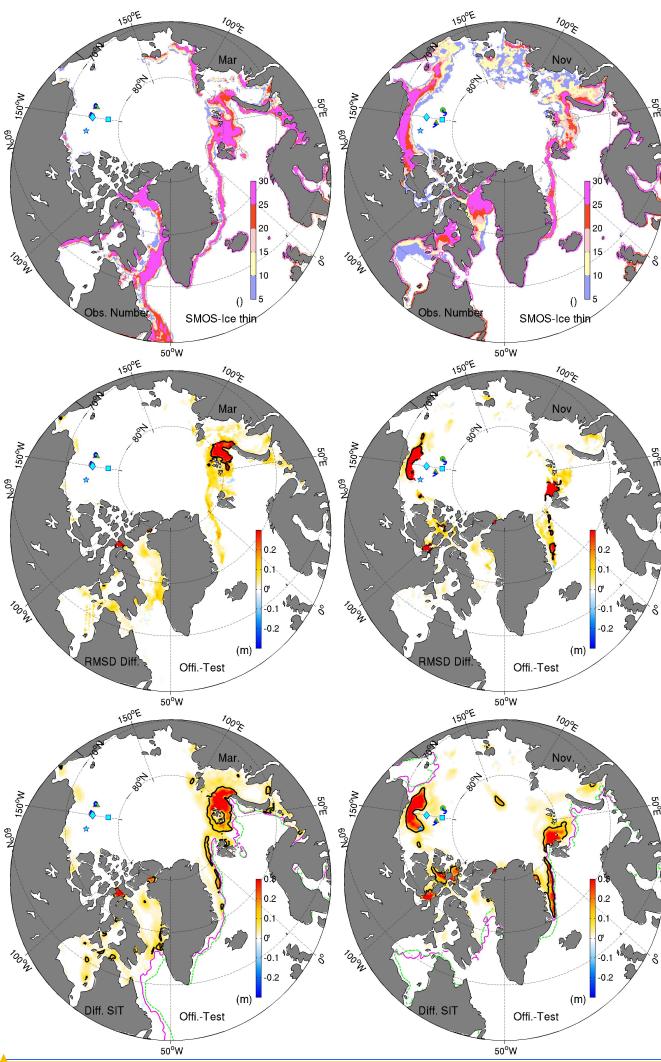
Unknown

Formatted: Font:Arial, 11 pt, Bold

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13


Formatted: Indent: Left: 0 cm

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al.Mac 17/10/2016 10:13

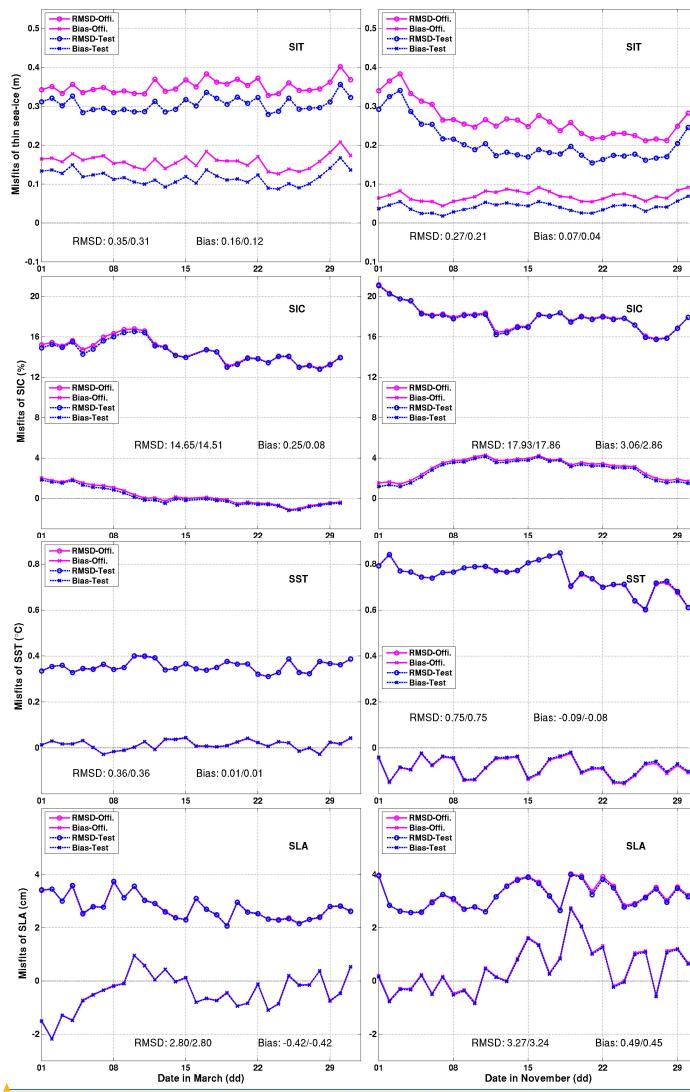

Formatted: Font:Arial, Bold

Fig. 5 Top Row: Number of the valid SMOS-Ice data in March (left) and in November (right) of 2014. The trajectories of the buoys 2013F and 2013G (2013F and 2014F) from IMB are the blue lines in March (November). Their first positions are marked by circle and triangle respectively. In March (November), the mooring locations from BGEP - 2013a, 2013b, and 2013d (2014a, 2014b, and 2014d) - are marked by diamond, square and pentagram respectively. **Middle Row:** Difference of RMSDs for the thin SIT between Official Run and Test Run. The black line denotes the 0.2 m isoline. **Bottom Row:** Difference of SIT between Official Run and Test Run. The black line denotes the 0.2 m isoline, the green (magenta) line is the 15% concentration isoline from OSISAF (Official Run).

Formatted: Font:Arial, 11 pt, **Bold**
 Jiping et al.Mac 17/10/2016 10:13
Deleted: numbers can be assimilated
 Jiping et al.Mac 17/10/2016 10:13
Formatted ... [3]
 Jiping et al.Mac 17/10/2016 10:13
Deleted: sea-ice thicknesses
 Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial
 Jiping et al.Mac 17/10/2016 10:13
Deleted: in March (left) and in Nov ... [4]
 Jiping et al.Mac 17/10/2016 10:13
Formatted ... [5]
 Jiping et al.Mac 17/10/2016 10:13
Deleted: mean ice thicknesses
 Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial
 Jiping et al.Mac 17/10/2016 10:13
Deleted: the two runs.
 Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial
 Jiping et al.Mac 17/10/2016 10:13
Deleted: pink
 Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial
 Jiping et al.Mac 17/10/2016 10:13
Deleted: The marker of circle (tri... [6]
 Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial
 Jiping et al.Mac 17/10/2016 10:13
Formatted: Font:Arial, 11 pt
 Jiping et al.Mac 17/10/2016 10:13

Deleted:

Fig. 6 Daily time series of the bias (marked with crosses) and the RMSD (marked with circles) calculated for the Arctic region in the Official Run (magenta) and the Test Run (blue) for different variables in March (Left) and November (Right).

Unknown

Formatted: Font:Arial, 11 pt, Bold

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Justified, Line spacing: 1.5 lines

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Justified

Jiping et al. Mac 17/10/2016 10:13

Deleted: 5

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: in the whole Arctic

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: in blue

Jiping et al. Mac 17/10/2016 10:13

Deleted: in purple

Jiping et al. Mac 17/10/2016 10:13

Deleted: in green

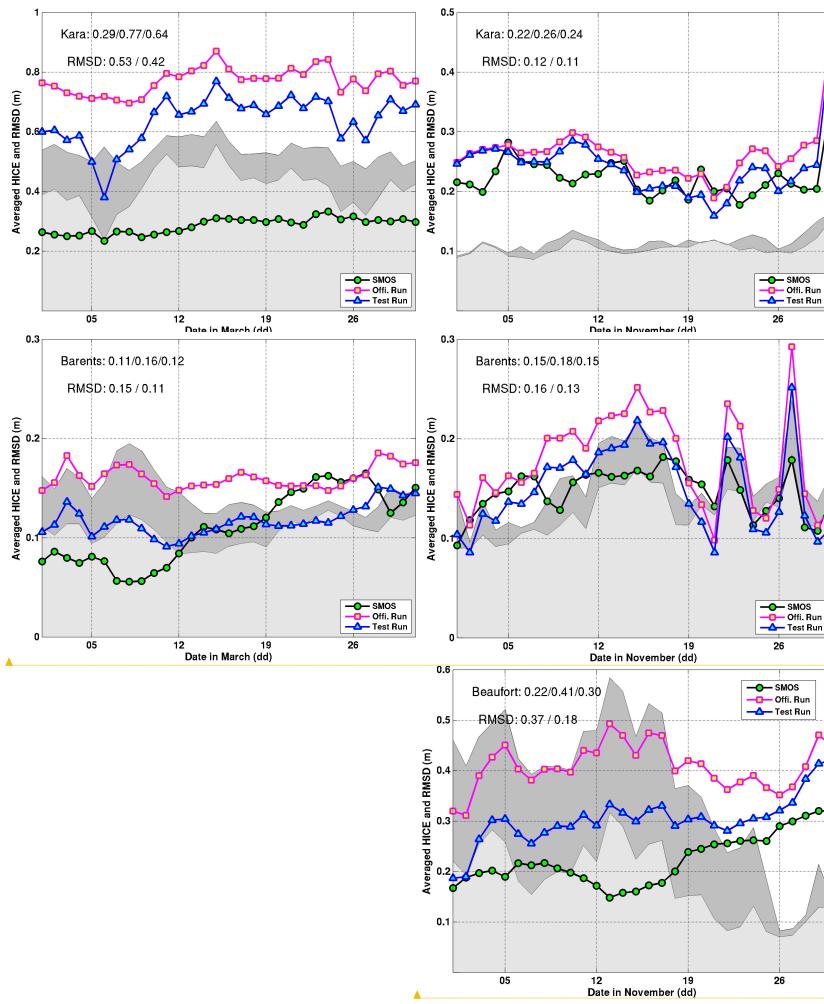
Jiping et al. Mac 17/10/2016 10:13

Deleted: in red

Jiping et al. Mac 17/10/2016 10:13

Deleted: in black

Jiping et al. Mac 17/10/2016 10:13


Deleted: ... [7]

Jiping et al. Mac 17/10/2016 10:13

Deleted: Centered, Indent: Left: 0 cm

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Fig. 7 Daily time series of the mean SIT for thin sea ice in the Kara Sea (top row), the Barents Sea (middle row) and Beaufort Sea (bottom row) in March (left) and November (right). The light (dark) gray shading is the daily spatial RMSD of thin sea ice in the Test Run (Official Run).

Unknown

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Unknown

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Deleted: 6

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Deleted: thickness of

Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Deleted: -

Jiping et al.Mac 17/10/2016 10:13

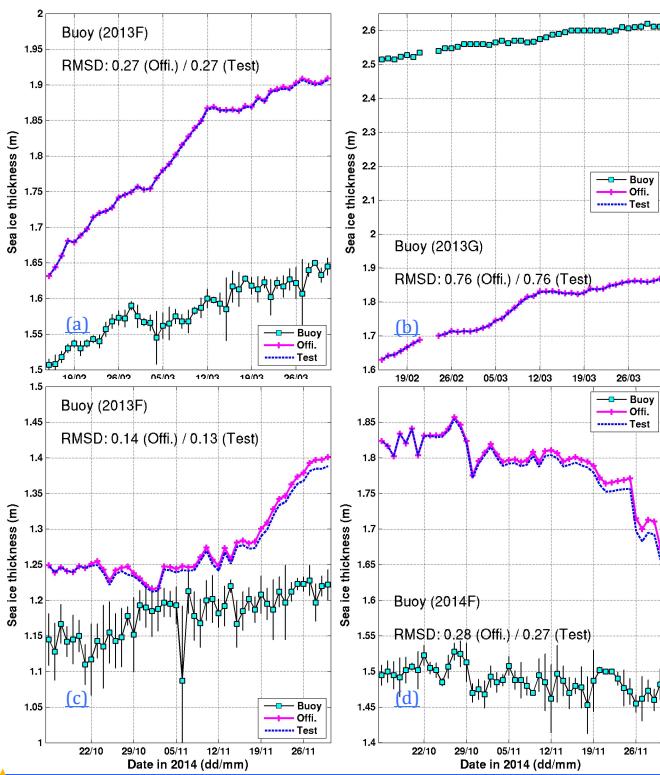
Formatted: Font:Arial, 11 pt

Jiping et al.Mac 17/10/2016 10:13

Deleted: for

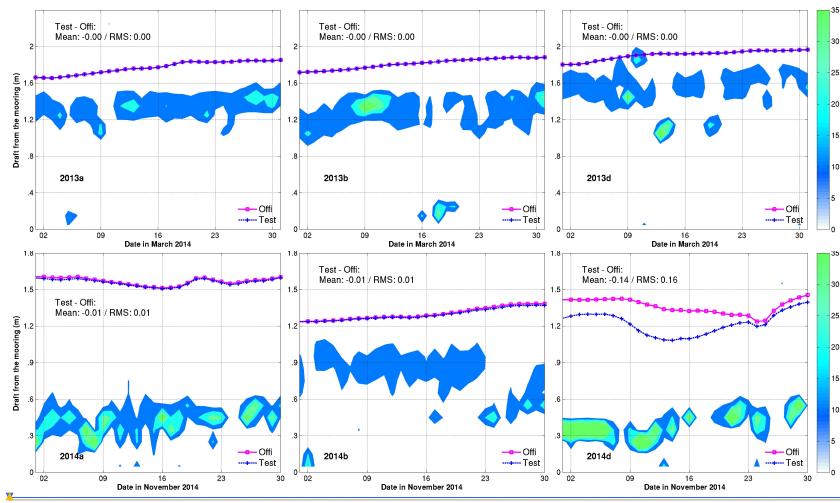
Jiping et al.Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt


Jiping et al.Mac 17/10/2016 10:13

Deleted:

... [8]


Unknown

Formatted: Font:Bold

Fig 8. Daily time series of SITs from Official Run (crossed magenta line) and Test Run (dashed blue line) compared to the buoy measurements from IMB (squared black line). The daily standard deviations of the observations are shown with error bars. The buoy locations and their drift trajectories in the month are shown in Fig. 5. Upper row covers the period 15th Feb to 30th Mar 2014 by (a) Buoy 2013F and (b) Buoy 2013G. Bottom row covers period 15th October to 30th Nov 2014 by (c) Buoy 2013F and (d) Buoy 2014F.

Unknown
Formatted
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [9]
Deleted: 7
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [10]
Deleted: sea ice thickness
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [11]
Deleted: red
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [12]
Deleted: during the period from 2
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [13]
Deleted: blue
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [14]
Deleted:) with its
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [15]
Deleted: deviation as the
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [16]
Deleted: bar
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [17]
Deleted: data are from autonomou
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [18]
Deleted: November 2014
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [19]
Deleted: ; Right:
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [20]
Deleted: 4. Left:
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [21]
Deleted: ; Right:
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [22]
Deleted: 4. Left:
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [23]
Deleted: ; Right:
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [24]
Deleted: 4. Left:
 Jiping et al. Mac 17/10/2016 10:13
Formatted
 ... [25]

Fig. 9 Comparison of sea ice drafts from the Official Run (squared-magenta line), the Test Run (dashed-blue line) and from the bottom-tethered moorings of BGEP. The upper (lower) panels are for March (November) 2014. The daily histograms of sea ice draft (frequency percents for 0.1 m bins) are shown with shading colors. The positions of the moorings are marked in Fig. 5.

Jiping et al. Mac 17/10/2016 10:13

Deleted: ... [26]

Unknown

Formatted: Font:Arial, 11 pt, Bold

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt, Bold

Jiping et al. Mac 17/10/2016 10:13

Formatted: List Paragraph, Line spacing: single

Jiping et al. Mac 17/10/2016 10:13

Deleted: Freedom for Signal (DFS)

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: 8 Monthly averaged Degrees

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: in March (upper)

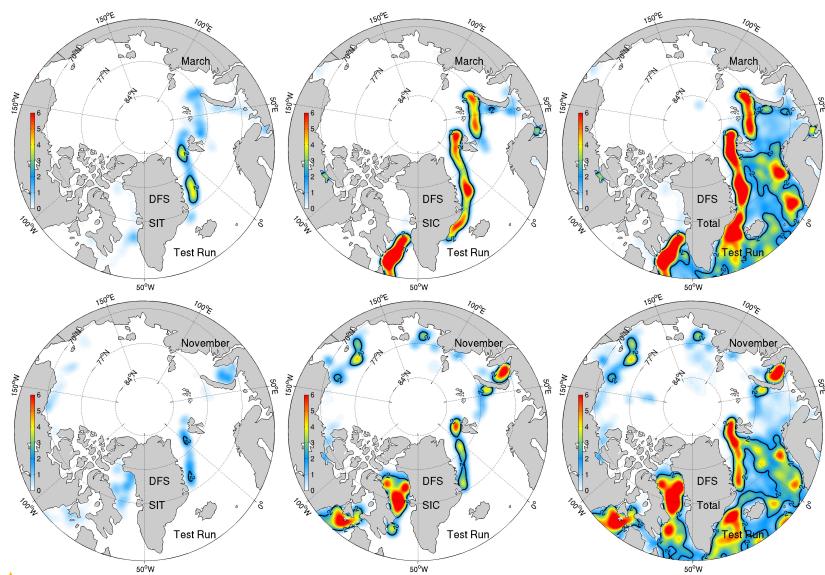
Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: in November

Jiping et al. Mac 17/10/2016 10:13


Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: SMOS-Ice

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Fig. 10 Monthly averaged DFS from the Test Run in March (upper) and in November (lower) for sea ice thickness from SMOS-Ice (left column), sea ice concentration from OSISAF (middle column), and the total DFS of all assimilated observations (right column). The black line denotes the isoline of DFS equal to 2.

Unknown

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

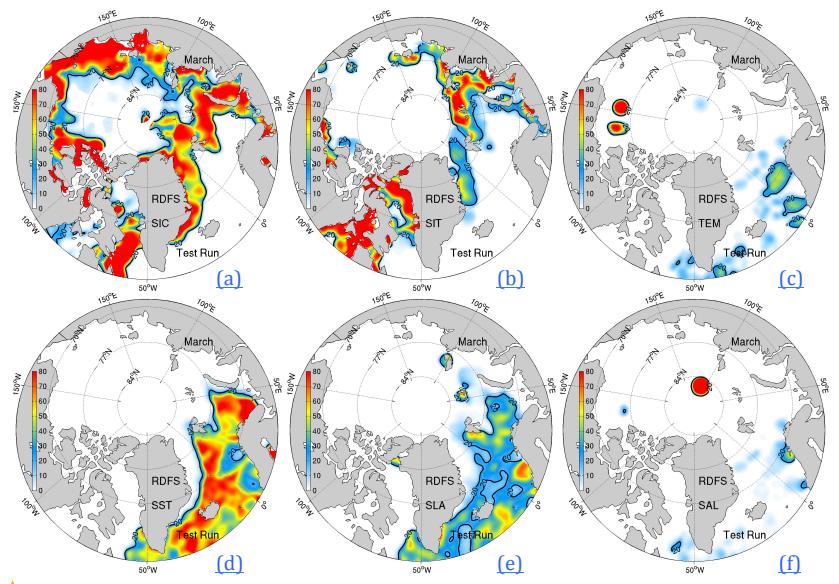
Jiping et al. Mac 17/10/2016 10:13

Deleted: ice and ocean

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13


Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Deleted:

Unknown

Formatted: Font:Bold

Fig. 11. Relative contributions of each observational data set in the total DFS during March 2014. Panel (a) is for sea ice concentration [from OSISAF](#); (b) sea ice thickness from SMOS-Ice; (c) temperature profiles; (d) SST; (e) along-track Sea Level Anomaly; (f) salinity profiles. The black line is the 20% isoline.

Unknown

Formatted: Font:Arial, 11 pt, Bold

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

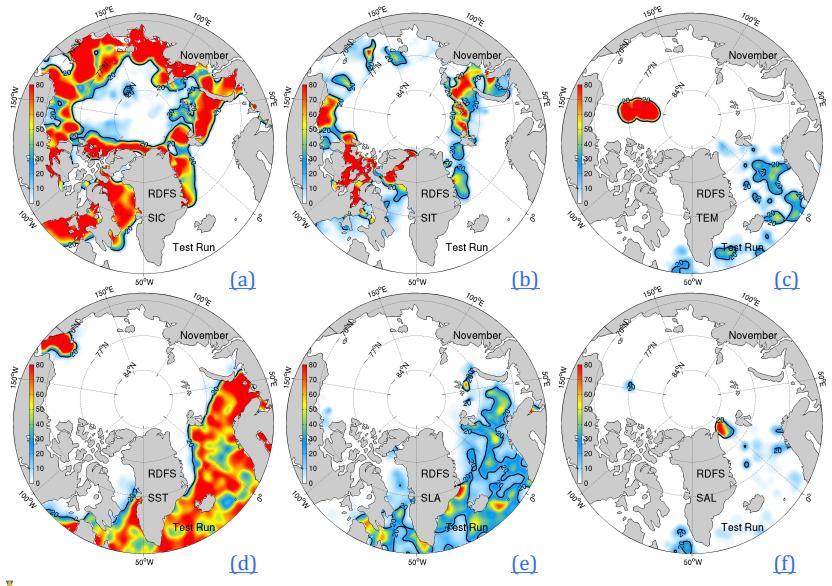
Jiping et al. Mac 17/10/2016 10:13

Deleted: 9

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13


Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Fig. 12 Same as Figure [11](#) for November 2014

Jiping et al. Mac 17/10/2016 10:13

Deleted: ... [27]

Unknown

Formatted: Font:10 pt

Unknown

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt

Jiping et al. Mac 17/10/2016 10:13

Deleted: 10

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Deleted: 10

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial

Jiping et al. Mac 17/10/2016 10:13

Formatted: Font:Arial, 11 pt