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Abstract. Along a traverse through North Greenland in May 2015 we sampled the top two meters of snow and analyzed its

:::::::
collected

:::::
snow

:::::
cores

::
up

::
to
::::
two

::::::
meters

:::::
depth

:::
and

::::::::
analyzed

::::
their

:
density and water isotopic composition. A new technique for

probing the upper meters of the snow
:::::::
sampling

::::::::
technique

:
and an adapted algorithm for comparing data sets from different

positions
:::
sites

:
and aligning stratigraphic features is presented. We find good agreement of the density layering in the snowpack

over hundreds of kilometers, which allows the construction of a representative density profile. The results are supported by5

an empirical based statistical density model, that is used to generate sets of random profiles and validate the applied methods.

Furthermore we are able to calculate annual accumulation rates, align melt layers and observe isotopic temperatures in the area

back to 2010. Distinct relations of δ18O with both accumulation rate and density are deduced. Inter alia the depths of the 2012

melt layers and high resolution
::::::::::::
high-resolution

:
densities are provided for applications in remote sensing.

1 Introduction10

In the context of global warming, the Greenland ice sheet has been identified as a so called "tipping point" of climate change

(Lenton et al., 2008). The sea level rise caused by its decay may have severe impact on human society as well as ecological

systems. Thus the difference in accumulation across the interior of the ice sheet and seasonal melting, runoff and calving at

its borders, the so called mass balance, has been in the focus of recent scientific activities in the Arctic region. The applied

methods for its determination range from satellite remote sensing (e.g. Zwally et al., 2011) , over regional climate modeling15

(e.g. Fettweis, 2007) to large scale climate simulations constrained by weather station data and ice core records (e.g. Hanna

et al., 2011). Even though first accumulation and density measurements were already carried out in 1952 – 54 (Bull, 1958)

using accumulation stakes and Rammsonde measurements at a few points alongside the gravity survey of the British North

Greenland Expedition, large scale studies such as Benson (1962) are still very rare. To obtain accumulation maps of Greenland

such as Bales et al. (2009) diverse data sets from ice cores, snow pits and weather stations have to be collected over several20

years. Recently Hawley et al. (2014) conducted a ground-penetrating radar survey alongside a traverse of about 1000 km length,

supported by a few snow pits and shallow cores for bulk densities and chemical profiling. Koenig et al. (2015) used airborne

snow radar to determine accumulation rates from 2009 to 2012 along flight paths of more than ten thousand kilometers.
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In summer 2012, there were two very warm days with temperatures above 0°C almost all over Greenland, causing substantial

melt layers (Nghiem et al., 2012). Although this was a very rare event induced by a special weather situation (Bennartz et al.,

2013), the newly formed ice layers strongly influence the physical properties of the snow and firn pack and thereby also

measurements (Nilsson et al., 2015).

We introduce a new and efficient technique for sampling the snowpack along traverses, which allows for additional lab-based5

measurements to gain high resolution
::::::::::::
high-resolution

:
profiles of physical snow properties , such as density. Furthermore we

adapt an algorithm from speech recognition to align those spatially distributed data sets and provide further insight into their

development with changing surrounding conditions. The method is tested with randomly generated sets of density profiles

with the same statistical properties as the original measurements. As an application we present data gained along a 450 km

traverse in North Greenland, deduce relations of the individual parameters and
::::::
(density,

::::::::
δ18O and

::::::::::::
accumulation

::::
rate)

:::
and

:
show10

additional values of interest such as the depths of the 2012 melt layers.

2 Data acquisition and processing

In preparation for the upcoming East GReenland Ice core Project (EGRIP), the Danish Center for Ice and Climate’s dome

and equipment had to be moved about 450 km from the previous drilling site, NEEM. Alongside this so called "N2E" traverse

in May 2015 several measurements of the upper part of the firn and the snow surface were undertaken. Amongst others, the15

upper two meters of the snowpack were sampled using the "liner technique" described in detail below. Snow cores were taken

approximately every 25 km at the positions
:::
sites

:
shown in Fig. 1, detailed coordinates can be found in Table 1.

2.1 Liner technique

The sampling is
:::
was done using carbon fibre tubes with sharp edges of one meter length, ten centimeters diameter and one

millimeter wall thickness (called "liners"). To start off, the first liner is
:::
was

:
carefully pushed and hammered into the ground20

until its top is
:::
was parallel to the snow surface. Nonetheless in a few cases the snow inside the tube might be

:::
core

::::
was slighty

compacted by up to two centimeters in the vertical direction
:
,
:::::
visible

:::
as

:
a
::::::::
reduction

::
of

:::
the

:::::
snow

::::
level

:::::
inside

:::
the

::::
tube

:::::::::
compared

::
to

:::
the

::::::::::
surroundings. Subsequently a snow pit of one meter depth is

:::
was

:
dug next to the tube and the snow cut off at its bottom

using a metal plate or small saw. The tube is
:::
was

:
removed and its openings sealed using matching plastic bags. Then the cutting

surface is
:::
was

:
cleaned and the second liner inserted right below the first one. Finally the pit has

:::
had

:
to be deepened to two25

meters to once again cut off the snow and take the second liner. Theoretically the described process can be iterated up to an

arbitrary depth. However, the area of the required snow pit increases significantly with every meter of depth gained. Probing

::::::::
Sampling the upper two meters by that technique takes

::::
took approximately two hours

::
per

::::
site.

2.2 X-ray tomography

The cores were transported to the Alfred-Wegener-Institute
::::::
Alfred

:::::::
Wegener

:::::::
Institute, Bremerhaven, in frozen condition. All30

samples were analyzed in the AWI-Ice-CT (Freitag et al., 2013), a worldwide
::::::::::::::::::::::::::::::::::
(described in detail in Freitag et al., 2013),

::
a

2



unique X-ray computer tomograph in a cold lab, which allows µmresolution
:::::::::
-resolution

:
density measurements of whole one

meter core segments in 2D and 3D. As part of the measurement procedure a sample holder for liners was constructed, that

itself contains several pieces of pure ice of known geometry for calibration purposes. Amongst others, the effect of the carbon

fibre tube being part of the scan was corrected for , using empty tube measurements. Thus, the fragile snow cores do not have

to be removed from the liners.5

As the required measurement time increases with accuracy
::::::::
resolution, we chose to do 2D scans with a resolution

::::
pixel

::::
size of

approximately 0.128mm. Each of these scans takes about three minutes. However, fifteen minutes per meter are more realistic

when including sample preparation and accurate documentation. Then, the raw measurement data are automatically processed

by detecting the calibration unit and directly calculating densities from the the CT images. Additionally, for each liner, the

mean density is determined from the weight
::::
mass and geometry of the snow as an independent comparison value. Figure 210

displays an example CT image with a zoomed section showing two melt layers in the snowpack aligned with the respective

densities derived from 2D analysis.

2.3 Isotope measurements

Finally, the snow was gently pushed out of the tubes and cut in samples with a vertical height of one centimeter for the 30 cm

right below the surface and two centimeters otherwise. These samples were crushed and sealed in plastic bags. Finally water15

isotopes were measured using a Picarro L2130-i with a precision of σ = 0.1‰ for δ18O.

The snow was dated by determining and counting the maxima (summer) and minima (winter) in the seasonal δ18O signal.

Using the density data, accumulation rates
:
at

:::
the

:::::::
different

:::::
sites were calculated from the ice mass at the different sites for the

contained
:::::
snow

::::
mass

:::
for

:::
the

:
three to five years

:::::
worth

::
of

:::::::::::
accumulation

:::::::::
contained

::
in

:::
the

:::
top

::::
two

::::::
meters

::
of

:::
the

:::::::::
snowpack. In

the present study, we only use winter to winter rates
:::::::::::::
winter-to-winter

::::
rates

::::::::::
(separating

::::
years

::
at
:::
the

::::::::::::
δ18O minima)

:
– summer to20

summer
::::::::::::::::
summer-to-summer values were computed as a reference but show no different behaviour

:::::::
behavior.

3 Mathematical methods

3.1 Automatic alignment of stratigraphic features

In order to efficiently analyze the data sets generated along the traverse, we investigated several ways to automatically de-

tect coherent signals at the different positions. A renowned
::::
sites.

::
A
:::::::::::

well-known matching method is maximizing the cross25

correlation
:::::::::::::
cross-correlation. However, determining a constant shift

:
in

:::::
depth

:
between two profiles is not suitable for our case as

the accumulation rate, and thus the vertical spacing of layers, is subject to change going eastwards. Under the assumption of

constant accumulation over time and no significant compaction in the top two meters, one would expect a shift which is linearly

increasing with depth and has a slope equal to the ratio of accumulation rates. Then again, local environmental conditions such

as wind speed and direction influence the mass accumulated by a certain
:::::::::
deposition event (Fisher et al., 1985). Therefore we30
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aimed to align snow
::
of

:::
the

::::
same

::::::
origin and its properties with continuously changing shifts,

::
a
:::::::
problem

::::
that

:::
has

::::::
already

:::::
been

::::::
worked

::
on

::
at
::
a
:::::
lower

::::::
vertical

:::::::::
resolution

:::
for

:::::
alpine

:::::
snow

::::::::::::::::::::::::::::::
(e.g. Hagenmuller and Pilloix, 2016).

The Dynamic Time Warping (DTW) method, that was introduced to speech recognition in the seventies (Itakura, 1975),

provides an efficient algorithm for that purpose.
::
It

:::
has

::::::
already

::::
been

:::::::
applied

::
in

::::::::
numerous

:::::
fields,

::::
e.g.

:::
for

:::
the

:::::::
tracking

::
of

::
ice

:::::
floes

::
in

::::
SAR

::::::
images

:::::::::::::::::::::
(McConnell et al., 1991).

:::
For

:
a
:::::::
detailed

::::::
review

::
of

::::::
DTW,

:::
see

:::::::::::
Senin (2008).

:
5

The basic idea is to discretize the two data sets to be compared with the same step size l (resulting in two vectors S and T of

length n and m) and then consecutively assign the values of one to another, whereby each value can be matched with multiple

values of the other data set. To find the best fit, one calculates a matrix D where D[i, j] indicates the error of the best path that

leads to the i’th element of the first data set being connected to the j’th element of the second one.

The original algorithm starts by calculating the matrix in the upper left corner, fixing the first elements of both data sets to be10

linked with each other. Then it proceeds through the matrix by taking the path with the minimal error leading to the respective

cell and adding the local error, i.e.

D[i, j] =


∞ for i < 0 or j < 0

‖S[0]−T[0]‖ for i= 0 and j = 0

‖S[i]−T[j]‖+min(D[i, j− 1],D[i− 1, j− 1],D[i− 1, j]) else.

(1)

Finally, it goes to
::
on

:::::
arrival

::
at
:
cell D[n,m] and

:
it
:
backtraces the path of minimal errors to D[0,0], obtaining the best fit of

the complete data sets in the given norm ‖ · ‖.15

For our application – matching measurements of the upper two meters of the snowpack – we do not aim to fit complete data

sets, but rather allow for different offsets at the top and bottom. The former may be caused by variations of the snow surface

due to current conditions, the latter by different accumulation rates leading to data at the bottom of the liners not having any

physical relation apart from being the deepest snow analyzed at the given position
::::::
location. To accomplish that, we expand the

idea of Sakurai et al. (2007) introducing maximal surface and bottom index offsets s and b. Then we initialize D by20

D[0, j] = ‖S[0]−T[j]‖ for 0≤ j ≤ s and (2)

D[i,0] = ‖S[i]−T[0]‖ for 0< i≤ s (3)

before proceeding through the matrix. Finally instead of backtracing simply from D[n,m], we end our fitting path at

min{D[i, j] |(i= n and m− b≤ j ≤m) or (j =m and n− b≤ i≤ n)} (4)

and search a trace back to any of the initialized elements. Thereby we find the best matching of subsets of S and T with25

a maximal shift of s · l at the top and b · l at the bottom. In between, we verify that a linearly increasing maximal shift is not

exceeded.

The simple way we proceed through the matrix so far, often refered to as "stepping pattern", is unrealistic for our case as a

single value of one data set could be fit to arbitrary many values
::::::::
arbitrarily

:::::
many of the otherdata set. Along the traverse we

find the maximal ratio of the respective accumulation rates
::::::
between

::::
two

::::
sites

:
to be a little smaller than two. Therefore, we30
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apply a constrained stepping as presented by Sakoe and Chiba (1978) such that each value of one data set can be fit to at most

two values of the other. This is obtained by

D[i, j] =



‖S[i]−T[j]‖+min(D[i, j− 1],D[i− 1, j− 1],D[i− 1, j]) for i= 1 or j = 1

‖S[i]−T[j]‖+min


‖S[i− 1]−T[j]‖+D[i− 2, j− 1]

D[i− 1, j− 1]

‖S[i]−T[j− 1]‖+D[i− 1, j− 2]

 else.
(5)

Figure 3 illustrates the different patterns for proceeding through the matrix.
::::
Here,

::::::
usage

::
of

:::
cell

::::::::::
[i, j] refers

::
to

:::::::::
S[i] being

:::::::
assigned

::
to

:::::
T[j] .

:
In the aftermath, the backtracing has to occur according to the implemented stepping.5

Finally, we do not only want to fit one type of data (e.g. densities) but combine all the available information in the profiles to

gain a robust picture of the developing stratigraphy along the traverse. In a first step, we match the δ18O signal, which shows

a clear seasonal behavior but almost no small scale
:::::::::
small-scale variations as the high frequency

::::::::::::
high-frequency

:
component is

lost by diffusion. Then, we use the obtained depth assignment of the two different positions
:::
sites

:
to resample the measured

densities to a common depth scale. In a second step, we apply the algorithm to these densities at a much higher resolution10

to fine tune
:::::::
fine-tune

:
our depth alignment according to small scale

:::::::::
small-scale

:
stratigraphic features. As a norm we use the

Euclidean distance divided by the path length (i.e the root mean square error), which means that we have to keep track of the

path lengths in a second matrix. Table 2 summarizes the final set of parameters.
:::
The

:::::::::
maximum

::::::
allowed

::::::
offsets

:::
for

:::
the

::::::
coarse

:::::
fitting

::::
have

:::::
been

::::::
chosen

::::::::
according

:::
to

:::
the

::::::::
measured

::::::
height

::
of

:::::::::
variations

::
in

:::
the

:::::
snow

::::::
surface

::::
(e.g.

::::::
dunes)

::::
and

:::
the

:::::::::
maximum

::::
ratio

::
of

::::::::
estimated

:::::::::::
accumulation

:::::
rates.

::
In

:::
the

::::::
second

::::
step

:::
we

::::
allow

:::
for

::::::::::
fine-tuning

::
up

::
to

:::
the

:::::::::
maximum

::::::::
remaining

:::::
shift,

:::
that

::::
was15

:::::::
manually

::::::::
identified

:::
by

:::::::
aligning

:::
the

::::::
vertical

:::::::
centers

::
of

:::
the

::::
2012

::::
melt

::::::
layers.

:

This method does not only allow us to compare data from two positions
:::
sites, but also to obtain a moving depth scale

::::::::
alignment by fitting the liners

::::::
profiles

:
to the first data set one by one. The result, a continuous image of the snow layering, can

be compared with other indicators such as the melt layer positions. In addition, being able to align densities and stratigraphic

features all along the traverse enables us to provide a representative density profile for the region. For its construction, we first20

use the continuous layering to transform all density curves to the first depth scale (NEEM) and average them. This, however, is

not yet a representative density profile as all profiles now replicate the layering at NEEM, e.g. a layer that is very thin there but

thicker at most positions
::::
sites would be considered thin. To overcome this, we calculate the mean shifts applied to the values

that were aligned and thus averaged. On average, i.e. for constant accumulation rates, we would expect these shifts to go linear

with depth for the layering to be representative. Thus we calculate a linear least squares regression and correct the depth scale25

accordingly.

Nonetheless, the depth scale still represents the accumulation rate at NEEM. To transfer the average profile to
:::
any location

X
::
in

:::
the

::::::::
sampling

::::
area

::
of

::::::
known

:::::::::::
accumulation

::::
(not

:::::::::
necessarily

::::
one

::
of

:::
the

::::
N2E

:::::
sites), we need to calculate a linear rescaling

factor fX for the depth dX that fulfills

dNEEM = dX · fX . (6)30
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We expect fX to be determined by the accumulation rate, or rather its ratio to the one at NEEM.

3.2 Significance testing and surrogate density profiles

Any alignment method will increase the covariance between records even if they are not related (Haam and Huybers, 2010).

Therefore, to test the statistical significance of our density alignment, we generate sets of surrogate density profiles with similar

statistical properties for each position
::::::::::::
independently

::
for

::::
each

::::
site and process them the same way as the real data.

::::::
original

:::::
data.5

::::::::
Alongside

:::
the

:::::::
artificial

:::::::
density

:::::::
profiles,

:::
the

:::
real

:::::::::::
δ18O signals

:::
are

::::
used

:::
for

:::
the

:::::
coarse

:::::
fitting

:::::
step.

The complexity of the density signal consisting of slow variations, sharp layer
:::::::
property changes as well as strong melt

layer and wind crust related density spikes inhibits the use of simple surrogate construction methods such as autoregressive

processes. Instead we propose the following algorithm.

As
::
For

:::::
each

:::
site,

:::
as a base curve, we identify the δ18O component of the density signal by linear regression, using the same10

step size llow as for the coarse (δ18O based) fitting step. This can be done because we rely on δ18O to follow a seasonal cycle

– otherwise water isotope dating would be impossible. Let ρbase be the base density from δ18O, rlow the autocorrelation and

σbase the standard deviation of the fluctuations of the measured density (averaged to resolution llow) around ρbase for lag llow.

We start generating an artificial low resolution density profile ρlow by

ρlow(xz:i) = ρbase(xz:i)+ εi (7)15

εi =

ν0 for i= 0

rlow · εi−1 + νi else
(8)

ν ∼N (0,σbase) (9)

where xz
:i = xz

:0 + i · llow. (10)

Here ν ∼N (0,σbase) implies that the νi are distributed normally with mean 0
::::
zero and standard deviation σbase. In the

following, U(0,1) will represent a continuous uniform distrubtion for the interval [0,1]. The inclusion of higher autocorrelation20

lengths is straigthforward
::::::::::::
straightforward. rlow has to be replaced by the autocorrelation matrix, which is multiplied with a

vector of the preceding εi. Second, on the fine scale (step size lhigh), we have a look at the differences between the interpolated

low resolution density and the high resolution density values in
::::::::::::
high-resolution

:::::::
density

:::::
values

:::::
from

:
the measurements. As

we find the distribution to be trimodal, we split the differences in three components - low amplitude variations within the

same layer
:::::
snow

::
of

::::::
similar

:::::::::
properties (henceforth denoted "noise" even though they might partly have physical origin), fast25

and moderate amplitude changes in the density at layer transitions
:::
due

::
to

:::::::
layering

:
or wind crusts ("shocks") and rapid high

amplitude changes at melt layers ("melt"). Again, we compute the autocorrelation factor rhigh for lag lhigh. Nonetheless, this

time, the standard deviations σnoise, σshocks and σmelt and the means µshocks and µmelt have to be calculated separately.

Furthermore we need to estimate the probabilities Pshocks and Pmelt of beginning a shock or a melt layer at a specific position.

For this purpose, we determine the number of melt layers Nmelt, the number of shocks Nshocks and the average distance to the30

previous shock davg. In addition, we denote the total number of data points by N and the distance to the last shock at a given
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position i by di. Finally, the basic model to generate a random density profile ρhigh is

ρhigh(xz:i) = ρlow(xz:i)+κi (11)

κi =


φi for i= 0 or P > Pmelt +Pshocks

N (µshocks,σshocks) for i 6= 0 and Pmelt < P ≤ Pmelt +Pshocks

N (µmelt,σmelt) for i 6= 0 and P ≤ Pmelt

(12)

Pmelt =
Nmelt

N
(13)

Pshocks =
di
davg

· Nshocks

N
(14)5

P ∼ U(0,1) (15)

φi =

ν0 for i= 0

rhigh ·φi−1 + νi else
(16)

ν ∼N (0,σbase) (17)

where xz
:i = xz

:0 + i · lhigh. (18)

The same approach as before can be used to expand to higher autocorrelation lengths. However, we use the model in the10

presented form as it already provides realistic density surrogates.

4 Results

4.1 Profile alignment

As an example of the matching process, we present a fit of data from N2E_11 to the first position
:::
site (NEEM) in Fig. 4. The

distance between the two locations is approximately
:::::
about 240km, i.e. a little more than half of the total traverse length. First15

the δ18O profiles are matched, yielding an approximately linearly increasing coarse shift. In the second step the densities are

fine tuned
::::::::
fine-tuned, which results in small shifts fluctuating around zero and never reaching the allowed maximum of 0.1m.

To provide an overview of the changing snow structure, we fit
::::
fitted

:
all combinations of two liners

::::::
profiles

:::::
from

:::
two

::::
sites

:
and

plotted the matrix of the root mean square errors (RMSE) of in Fig. 5. A noticeable
:::::::::
remarkable change in the pattern of the

fitting errors occurs between the fourth and fifth position
:::
site along the traverse.20

Figure 6 shows the continuous depth scale
::::::::
alignment

:
obtained by fitting all liners along the traverse to the first position

:::
site

(NEEM).
:::::
There

::::
were

:::
no

:::::::
notable

:::::::::
differences

:::::
when

:::::::
another

:::::::
location

::::
(e.g.

:::::::
EGRIP)

::::
was

::::::
chosen

:::
as

:::
the

::::::::
reference

::
or

:::
the

::::::
fitting

:::
was

:::::
done

::::::::::::
consecutively. For comparison, the melt layer positions detected during the CT measurements (cf. Table 3) have

been included. In addition, selected density profiles are displayed. Using the previously calculated depth scale
:::::::::
alignment,

density records were stacked to obtain a representative density profile (Fig. 7). The gray area indicates a one standard deviation25
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error band. Comparing the necessary rescaling factors (known from the construction of the stacked profile) to the ratio of

accumulation rates, we apply linear least squares to find

fX = 0.325+0.665 · ȧNEEM

ȧX
(19)

where ȧX denotes the mean annual accumulation rate at position
:::
site

:
X . The coefficient of determination is R2 = 0.82.

At the base resolution of 0.1cm we find a mean shared variance of R2 = 0.56 between the average and the individual5

density profiles. It can be increased by smoothing and obtains a maximum of R2 = 0.71 when using a 4.3cm moving average.

In comparison, for 1000 randomly generated density data sets (e.g. Fig. 8), the respective stacked profiles share an average

of R2 = 0.44 with their components at base resolution. The maximum is R2 = 0.61. We determine a p-value (probability of

finding such high R2 by chance) of 0.015 for the measured profiles within the distribution, i.e. the high shared variance of the

measured profiles is statistically significant.10

4.2 Raw densities, isotope extrema and accumulation rates

All of the liners show
:::
For

::
all

::::
sites

:::
we

:::
find

:
at least two melt layers in the snow isotopically dating back to the summer of 2012.

In addition, some liners show melt layers which are surrounded by snow dating to winter 2011/2012 or summer 2011. For

an overview of all melt layers see Table 3 or Fig. 6. From the raw density profiles, we obtain Fig. 9, that shows the average

densities of the top meter and decimeter, which do not contain any prominent melt layers. The density in the top meter tends to15

decrease from the maximum of 332kgm−3 at NEEM down to a minimum of 297kgm−3 roughly 150 km from EGRIP before

slightly increasing again. For 15 out of 18 positions
::::
sites

:
the surface density is higher, nonetheless both parameters evolve

similarly along the traverse.

Table 3 displays the mean annual accumulation rates along the traverse. Starting with a maximum of 225kgm−2 a−1 at

NEEM the values steadily decrease down to the minimum of 115kgm−2 a−1 about 100 km from EGRIP before slightly20

increasing again to 140kgm−2 a−1
::
at

::::::
EGRIP. Comparing average values for the different years there is neither a trend nor

considerable variations in the accumulation rate (cf. Table 4). However, we observe much higher differences between successive

years within the same core (average change 34.67kgm−2 a−1), where we mainly see alternating behaviour
:::::::
behavior

:
of high

and low accumulation years.

Of the five years contained in our data, 2012 had the isotopically warmest summer for 83% of the positions
:::
sites. At the25

three remaining locations (N2E_11, N2E_16 and EGRIP), the highest δ18O values occur in 2014. For the winters, 2014/15 was

isotopically coldest in 51% of the cases, 2011/12 in 19% and 2010/11 in 30%. Regarding annual δ18O averages of all available

positions
:::
sites

:
(Table 4), we also find the highest δ18O values for 2012.

4.3 Linking accumulation, δ18O and density

Comparing the annual average δ18O values with the accumulation rates we obtain Fig. 10. Positive linear relations were30

fit to the data of 2012, 2013 and 2014 respectively, showing that within one year higher temperatures coincide with higher

8



accumulation. The coefficient of determination is highest for 2012, while we have more outliers
::::
larger

:::::::
spreads

:
for the other

two years, in particular 2013.

To relate the density with the seasonal, low frequency
:::::::::::
low-frequency

:
δ18O signal at NEEM, we applied a 10 cm running

mean to the stacked high resolution
::::::::::::
high-resolution

:
density profile in Fig. 11. On average, snow with a high δ18O value

(considered summer snow) has a low density and the other way around. The only exception is the summer
:
of

:
2012, where we5

find high density values in summer, too.

5 Discussion

5.1 New methodology

The liner technique allows us to retrieve non-disturbed snow samples from the field and thereby conduct lab-based analysis

(such as high resolution
::::::::::::
high-resolution

:
density measurements) to gain further insight in the development of physical snow10

properties over large distances. This is a major improvement compared to previous methods, e.g. for measuring snow density,

which was so far mainly done by weighting
:::::::
weighing

:
a known volume of snow where we have a trade-off of accuracy (bulk

density) and resolution (density cutters). Both , horizontal resolution and vertical depth can be adjusted to fit the needs of the

respective study.

Figure 4 illustrates that we are able to align δ18O and density data down to small stratigraphic features very well over a15

distance of over 200km. Along the traverse, one observes a clear change in the RMSE (cf. Fig. 5) and thereby the snow

structure at the fourth liner
:::
site, indicated by significantly different fitting errors. This coincides with the location where the

ice divide was left eastwards and thereby the traverse entered a different accumulation regime in agreement with the drainage

systems given by Zwally et al. (2011).

Furthermore the continuous depth scale
::::::::
alignment

:
agrees very well with the melt layer positions detected during the CT20

measurements (Fig. 6). Stratigraphic features are still well aligned over the complete traverse distance of almost 450 km. We

obtain a clear picture of the layering of the snowpack along the traverse. In comparison to radar measurements, which are

limited to centimeter vertical resolution but can resolve annual layers down to 12 m (Hawley et al., 2006), we can give a much

more precise picture and observe small scale
:::::::::
small-scale structures like wind crusts. In exchange we are limited to shallower

depths – the maximum we plan to access in the near future are six meters in a trench at the EGRIP drilling site.25

For rescaling the stacked profile to a
:::
any

:
location in the area with known annual accumulation, we obtain a linear relation of

the depth factor with the ratio of accumulation rates. This is plausible, because, on average, we find linearly increasing shifts for

the matching. Furthermore we do not expect significant compaction
::::::
observe

:::::::::
significant

:::::::::::
densification

:
in the upper two meters

of the snowpack and therefore the depth of snow from the same deposition event is
:::::::
primarily

:
determined by the accumulation

rate. In addition, the relation has a high coefficient of determination for the applied linear least squares.30

As the stratigraphy does not seem to change significantly
:::::::::
remarkably

:
along the traverse apart from the effect of the decreasing

accumulation rate, we consider the profile in Fig. 7 to be representative for the whole traverse region, potentially even most

of North Greenland.
:::
For

:::
the

:::::
given

:::::
error

:::::
band,

:::::
there

::
is

::
an

:::::::
overlap

::
of

::::::::::
uncertainty

::
in

:::
the

:::::
depth

:::::::::
alignment

:::::::::::
(x -direction)

:::::
with

9



::
the

::::::::::
uncertainty

::
in

:::::::
density

:::::::::::
(y -direction).

::::
The

::::::
former

::
is

::::::
mainly

::::::
caused

:::
by

:::
the

:::::::::
variability

::
of

:::
the

:::::
snow

:::::
mass

::::::::::
accumulated

:::::
from

:
a
:::::
single

:::::::::
deposition

::::::
event.

:::::::::
Regarding

:::
the

:::::
latter,

:::
the

:::::::
average

::::::
density

:::
of

:::
the

::::::::
snowpack

:::::::
greatly

:::::
varies

::
as

::::
can

::
be

:::::
seen

::
in

::::
Fig.

::
9.

:::::
Thus,

::
for

:::
the

::::::
second

::::::
meter,

::::
even

::::::
though

::
it
::
is

::::::::
contained

::
in

:::
the

::::::::::
uncertainty

:::::
band,

:::
we

::
do

:::
not

::::::
expect

:
a
:::::::
straight

::::
line,

:::
but

:::::
rather

:::
an

:::::::::
alternation

::
of

::::
high

:::
and

::::
low

::::::
density

:::::
layers

::::::
similar

::
to

:::
the

:::::
upper

::::::
meter.

A statistical test using surrogate density profiles shows that the high shared variance of the measured profiles is statistically5

significant (p= 0.015).
:
,
::::
even

::::::
though

:::
the

:::::
actual

::::::::
difference

::
in

::::::::
numbers

:
is
:::::
quite

:::::
small.

::::
This

:::::::::
underlines

:::
that

:::
the

::::::
density

:::::::::
alignment

:::::::
provides

:::::::::
additional

::::::::::
information

::
as

:::
we

:::::
tried

::
to

:::
use

:::
the

:::::
most

:::::::
realistic

:::::::::
surrogates

::::::::
(original

::::::::::
δ18O signal,

::::::::
seasonal

:::::
cycle,

:::::
three

:::::::::
component

::::::::::
stratigraphy

::::::
model).

:
Furthermore, a coeffient of determination ofR2 = 0.56 between the stacked and the individual

profiles shows how much of the layering does reappear. Smoothing increases R2 up to 0.71 as it steadily transforms the profile

to the low resolution density curve that shows seasonal behaviour
:::::::
behavior (see Fig. 11) while smaller local variations vanish.10

5.2 Temporal and regional variability of snow properties

The vast majority of melt layers is
::
are

:
found in snow dating back to the very warm summer

:
of

:
2012 (Nghiem et al., 2012).

Moreover, above most of the melt layers within older snow, we find clear signs of percolation (cf. Fig. 2). Therefore we assume

that 2012 was the only year in the period 2010–2015 with significant melt occuring in the observed area. From Fig. 9 we can

infer that on the one hand the average density of the snow in the top two meters at a certain position
::::::
location

:
can already be15

deduced from the surface density. On the other hand the surface snow in May is among the denser ones within the year, thereby

rather representing a spring or even winter signal than a sommer
::::::
summer

:
one (compare Fig. 11). Furthermore we are able to

visually identify many layers of homogeneous density, often clearly separated by wind crusts, that thereby seem to contain

snow from single deposition events.

For the accumulation rate (see Table 3) the 1964 – 2005 average of 220kgm−2 a−1 determined from the NEEM ice core20

(Steen-Larsen et al., 2011) agrees very well with the 225kgm−2 a−1 that we obtain from the corresponding snow liner. In

addition, both, accumulation maps from field measurements (Bales et al., 2009) and regional climate models (Fettweis, 2007),

show the same behaviour
:::::::
behavior

:
towards the East. While Table 4 shows no significant interannual changes in the average

accumulation rate for the study area, we observe high fluctuations in the local annual values, a feature consistent with the

strong influence of stratigraphic noise in single profiles (Muench et al., 2015). These can be explained by the accumulation of25

every year compensating previous local variations in the snow surface before new structures are introduced by wind-induced

drift and dunes. Nonetheless, they also might partly originate from the uncertainty of separating the years only according to

the δ18O extrema.

In the majority of cases we find the highest isotopic summer temperatures and average δ18O values for 2012, underlining

the exceptional warmth of this year. The values for 2014 indicate that it was still warmer than the other contained years, in30

particular 2010, which was formerly regarded as very warm (Harper et al., 2012). The picture for the winters is less clear.

Furthermore
::::::
Indeed,

:
we assume that the isotopic signal of the fresh snow from winter 2014/15 might still change.

10



5.3 Relations of density, δ18O and accumulation rate

We find a positive linear relationship of annual mean δ18O and accumulation rate (Fig. 10) with similar slopes for 2012 and

2014. This relation might partly originate from the changing surrounding conditions (e.g. elevation) along the traverse. The

offset between the years could potentially be caused by the very high temperatures and the consequential surface melting

in 2012 as we find the relation for 2013 to be a lot closer to 2014 than 2012. The dependence of the offset on the annual5

mean temperature (which is quite similar along the traverse) could explain why previous attempts to link both parameters by

averaging data from several years (e.g. Weißbach et al., 2016) show less clear results.

We observe a clear anticorrelation of low resolution density and δ18O in Fig. 11. This agrees with the widely accepted

conceptual model of Shimizu (1964) which states that snow has lower densities in summer and higher ones in winter. The high

average densities in summer
::::
main

::::::
causes

:::::
given

:::
are

::
the

::::::::
increased

:::::::
packing

::::
due

::
to

:::::::
stronger

:::::
winds

::
in

::::::
winter

:::
and

:::
the

:::::
larger

::::
size

::
of10

::::::::::
precipitation

:::::::
particles

::
in
::::::::
summer.

:::
For

:::
the

:::::::
summer

::
of 2012

:
,
:::
the

::::
high

:::::::
average

:::::::
densities are caused by the prominent melt layers,

superimposing the original snow density signal
:::::
signal

::
of

:::
the

:::::
snow.

6 Summary and conclusions

We introduced the liner technique, that allows the very efficient retrieval of high quality
::::::::::
high-quality

:
samples from the upper

meters of the snowpack. To support this new sampling technique, we adapted a robust fitting algorithm from accustic
:::::::
acoustic15

signal processing for the diverse data sets produced by such studies. This enables us to identify characteristic changes in the

snowpack according to surrounding conditions as well as to generate a continuous depth scale
::::::::
alignment

:
using features from

all available records.

To demonstrate their feasibility we applied the described methods to the upper two meters of snow along a traverse in

North Greenland. We obtain a record up to May 2015 of the depths of the 2012 melt layers and sub-millimeter resolution20

::::::::::::::::::::
sub-millimeter-resolution

:
densities. By combining these with δ18O measurements, that indicate temperature, we are able to

reconstruct accurate accumulation rates for the years 2010 – 2014 along a distance
::
of

:
about 400 km.

We combine isotope and density data as inputs for the matching algorithm. Thereby we are able to identify the different

accumulation regimes along the traverse and resolve the continuous stratigraphy of the snow over the whole distance. This

allows us to create a representative density profile for the study area, whose quality is proven by comparison with randomly25

generated data based on a statistical density model. The profile is available at a resolution of 0.1cm and only has to be rescaled

according to accumulation rate. Thus it is ready to act as a benchmark for model outputs
::::::::
snowpack

::::::
models

:
or be applied for the

conversion of volume to mass
::
and

:::
the

::::::::
detection

::
of
::::::

strong
::::::
density

::::::::
gradients

::
as

::::::::
potential

::::::::
reflectors in remote sensing (compare

e.g. Hurkmans et al., 2014).

The success of fitting density and isotope profiles over hundreds of kilometers shows that even though there is a local30

component in the snow stratigraphy (e.g. layer thickness, average density) the general pattern is dominated by non-local

processes in North Greenland. We assume that an important factor for that is the origin of weather and precipitation as air

masses dominantly move in from the West to the East (Chen et al., 1997).

11



We observe large interannual accumulation variations locally but almost none on average, which can be explained by the

smoothing of the surface by accumulation before new surface structures are caused by dunes and drift. The exceptionally warm

summer
::
of 2012 is clearly visible in the water isotope data, additionally 2014 shows the second highest summer values of δ18O

within the study period.

Relating the various snow properties we find a distinct anticorrelation of smoothened density and δ18O in accordance with5

previous literature. Furthermore we deduce a positive linear relation between δ18O and accumulation rate, whose slope seems

to be constant for the period considered while the offset varies between the years and thus might be temperature-dependent.

This, however, poses the question whether models commonly used in the dating of deep ice cores (e.g. Parrenin et al., 2007,

for the EPICA Dome C ice core) do correctly reconstruct accumulation rates from the δ18O values, especially for times with

significantly differing annual mean temperatures such as glacials.10

Future work should include the automatic recognition of wind crusts and layering from CT images and the application of the

described methods on different scales for both Antarctica and Greenland to gain further insight into the variablity of physical

properties in the snowpack.
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Table 1. Measurement positions
::::
sites along the traverse, see also Fig. 1. The missing liner numbers (e.g. N2E_01) result from multiple

samples being taken at some locations. Nonetheless, only one profile per position
::::::
location was used for this study.

Position
:::
Site Longitude Latitude Traverse kilometer

NEEM (N2E_02) 51.06914° W 77.444337° N 0.00

N2E_03 50.11° W 77.3669° N 24.80

N2E_04 49.23077° W 77.25429° N 49.66

N2E_05 48.170872° W 77.120098° N 79.76

N2E_06 47.13806° W 76.98195° N 109.73

N2E_07 46.14227° W 76.84788° N 138.90

N2E_08 45.27375° W 76.71337° N 165.57

N2E_09 44.78786° W 76.52426° N 190.03

N2E_10 44.09225° W 76.40034° N 212.78

N2E_11 43.06116° W 76.32535° N 241.07

N2E_12 42.051636° W 76.248888° N 269.01

N2E_14 41.16026° W 76.1777° N 293.92

N2E_15 40.29929° W 76.10455° N 318.25

N2E_16 39.31873° W 76.01559° N 346.32

N2E_17 38.46937° W 75.93539° N 370.88

N2E_19 37.69747° W 75.85845° N 393.48

N2E_20 36.54374° W 75.70614° N 429.25

EGRIP (N2E_22) 35.985618° W 75.629343° N 446.83

Table 2. Fitting parameters for our adaption of the DTW algorithm.

Property (step) Step size (l) Maximal
::::::::
Maximum surface offset (s) Maximal

::::::::
Maximum bottom offset (b)

δ18O (coarse) 3 cm 15 cm 75 cm

Density (fine) 0.1 cm 10 cm 10 cm
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Table 3. Melt layers, the water isotopic season of origin for the surrounding snow and mean annual accumulation rates for each position
::
site.

The given depths indicate the vertical center of the respective melt layer. The upper two melt layers are always located in snow from summer

2012. For the lower ones, the season of origin for the surrounding snow is given, where S indicates summer and W winter. The accumulation

rates are annual mean values for all available years at the particular position
:::::
location.

Position
::
Site

:
Depth 1 [m] Depth 2 [m] Depth 3 [m] Snow origin Depth 4 [m] Snow origin Accumulation [kgm−2 a−1]

NEEM 1.76 1.84 224.69

N2E_03 1.61 1.68 1.76 S2012 193.8

N2E_04 1.47 1.60 1.77 W11/12 1.87 W11/12 205.04

N2E_05 1.35 1.54 1.67 W11/12 171.55

N2E_06 1.48 1.67 193.46

N2E_07 1.37 1.50 165.38

N2E_08 1.37 1.41 162.67

N2E_09 1.33 1.42 155.85

N2E_10 1.31 1.39 135.01

N2E_11 1.21 1.36 1.50 W11/12 137.58

N2E_12 1.15 1.21 124.73

N2E_14 1.12 1.18 117.30

N2E_15 1.10 1.20 126.78

N2E_16 1.13 1.16 1.33 W11/12 115.06

N2E_17 1.19 1.23 1.50 W11/12 129.88

N2E_19 1.13 1.17 1.42 S2011 132.16

N2E_20 1.35 1.41 1.48 W11/12 1.61 S2011 145.93

EGRIP 1.22 1.32 1.57 W11/12 139.57

Table 4. Mean deviations of the given year from the average local annual (winter to winter
:::::::::::
winter-to-winter) accumulation rate and δ18O. For

each year, data from all available sites were used.

Year ȧ anomaly [kgm−2 a−1] δ18O anomaly [‰] Unavailable positions
:::
sites

2014 -2.66 -0.88 -

2013 5.26 -1.25 -

2012 3.20 3.64 NEEM, N2E_06

2011 -7.37 -2.31 NEEM, N2E_03-N2E
::
03

:
–
::::
N2E_09
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Figure 1. The N2E traverse route with the measurement positions
:::
sites according to Table 1.

Figure 2. Example 2D CT image of a one meter liner (depth: 1− 2m
::::
depth) and a zoomed section showing two melt layers aligned with

the respective densities. In the left image a distinct density layering (e.g. blue triangle), several melt layers (e.g. blue circle) and wind crusts

(e.g. blue square) are visible. Above the lower zoomed melt layer a clear percolation pattern (blue arrow) can be seen on the right hand side

of the snow core.
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Figure 3. a) Basic and b) constrained stepping patterns for the DTW algorithm.
::::
Usage

::
of

:::
cell

:::::::::::
[i, j] indicates

:::
that

:::
the

:::
i’th

::::::
element

::
of

::
the

::::
first

:::
and

::
the

:::
j’th

:::::::
element

:
of
:::

the
::::::
second

:::
data

::
set

::::
were

:::::::
matched.

:
The basic pattern allows for a single value to be assigned to arbitrarily many of the

other data set, while for the constrained stepping each value can only be matched
:::::::
identified with one or two others.
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Figure 4. Alignment of the data from NEEM and N2E_11. a) First, the raw δ18O data from N2E_11 (orange) are fit to those of NEEM (blue)

resulting in the red curve. b) Then, the calculated (coarse) shifts are applied to the raw N2E_11 density data to obtain the red curve as an

input for a second alignment with the raw NEEM density profile (blue). We end up with the pink curve as a final result. c) The applied coarse

(black) and fine (gray) shifts.
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Figure 5. Root mean square matrix of the density alignment. The n’th field in the m’th row refers to the error of fitting data from the n’th

and m’th liner. The darker the color, the lower the error and therefore the higher the agreement. Between
:::
The

::::
most

::::::
notable

::::::
change

:
in
:::::

snow

::::::
structure

:::
can

::
be

:::::::
observed

:::::::
between the fourth and the fifth column (or row)a notable change in snow structure can be observed.

Figure 6. Moving
:::::::::
Continuous depth scale

:::::::
alignment, example density profiles and melt layers. A colormap was applied uniformly at the first

position
:::
site (NEEM) and then transformed the same way as the depths were aligned

::::::
assigned. Thus snow within the same color band was

matched during the fitting process. Measured
:::::
Linear

::::::::::
interpolation

:::
was

::::
used

::::::
between

:::
the

:::::::
sampled

::::
sites.

::
In

:::::
black,

:::::::
measured

:
density profiles

for the labeled positions
:::::::
locations are shown in black

:
at
:::
the

::::
same

:::::
scale,

:::::::
centered

:::::
around

::::
their

::::::::
respective

::::
mean

:::::
values. The white lines and

points indicate the melt layer positions detected from the CT scans (cf. Table 3).
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Figure 7. Representative density profile for the traverse region. The gray area indicates a one standard deviation error band in both x- and

y-direction as there are uncertainties in the depth alignment as well as the averaged densities of all positions
:::
sites. Here, the depth scale was

adjusted to the NEEM accumulation rate and has to be rescaled according to accumulation rate for different sites.
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Figure 8. The measured density profile and three surrogates for the first position
::
site

:
(NEEM). The random

::::::
artificial profiles are based on the

seasonal δ18O component of the density and have the same statistical properties as the original curve.
::::
Each

:::::
profile

::
is

:::::::
displayed

::
at

:::
the

::::
same

::::
scale

:::
and

::
has

::::
been

:::::::
centered

:::::
around

::
its

:::::
mean.
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Figure 9. Average densities along the traverse through North Greenland (May 2015) in the top 1m and 0.1m derived from CT data.
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Figure 10. δ18O signal versus accumulation rate for the years 2012 – 2014. The lines were obtained by linear least squares fitting with

coefficients of determination of R2 = 0.52 for 2012, R2 = 0.27 for 2013 and R2 = 0.37 for 2014. The data points for 2013 show a few

outliers
::
the

:::::
largest

:::::
spread

:
and were omitted for clarity.
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Figure 11. Comparison of the NEEM δ18O signal with the stacked density profile on the NEEM depthscale
::::
depth

:::::
scale smoothed using

10 cm running means. The summer maxima for 2012 – 2014 are
:::
were

:
marked.

21


