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Abstract. Due to the increasing activity in Arctic, sea ice-ocean models are now frequently used to

produce operational forecasts, for oil spill trajectory modelling and to assist in offshore operations

planning. In this study we propose a method based on a Lagrangian diffusion analysis to evaluate

the sea ice drift properties simulated by two sea ice models, TOPAZ-CICE and neXtSIM, used in

two different sea ice-ocean systems developed for such applications. We compare their results to the5

buoy trajectories of the International Arctic buoy Program (IABP) data set and we find that neXtSIM

performs better than TOPAZ-CICE in simulating the mean and fluctuating sea ice velocities over the

central Arctic in winter. Our analyses indicate that both TOPAZ-CICE and neXtSIM are able to

simulate two distinct sea ice diffusion regimes depending on the time scale considered, similarly to

what is predicted by the steady and homogenous turbulent flow theory. However, the basin-averaged10

absolute diffusion computed from the analysis of drifters trajectories simulated with TOPAZ-CICE

is almost twice as high as the value estimated from both the corresponding drifters trajectories sim-

ulated with neXtSIM and from observed buoy trajectories. Also, the mean Arctic pattern of absolute

diffusion obtained from TOPAZ-CICE shows large differences from the one obtained from the ob-

served buoy trajectories, while the neXtSIM results are much more consistent with the results from15

the buoy trajectories. The information on the mean drift and diffusivity fields provided by our anal-

ysis can be used in an advection/diffusion equation or with Lagrangian passive tracers models to

study the drift of e.g. pollutants or micro-organisms moving with the ice. More generally, the anal-

ysis presented in this paper should be seen as a useful evaluation metric of coupled sea ice-ocean

models that aim at being used in operational forecasting platforms, for process and climate studies.20
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1 Introduction

The main goal of the present study is to evaluate the sea ice velocity fields provided by two sea

ice models that are currently used to produce operational forecast and to simulate pollutant spread

in ice-covered areas. A secondary objective is to provide accurate information on specific statistical

properties of sea ice motion that could be used to better assess the predictability of the ice trajectories,25

hence improving the evaluation of their uncertainty.

In order to state the problem, it is interesting to get back to the review of Drozdowski et al. (2011)

on oil spill trajectory modelling in the presence of sea ice, in which they made the following state-

ment: “The comprehensive oil spill trajectory modelling system can be expected to provide reliable

short term predictions, perhaps for several days to a week. However a spill that occurs in the fall may30

be inaccessible for 6 or more months. The picture for oil spill trajectory modelling for the long term,

say 6 months, is less clear. The multiple pathways for oil movement and the uncertainty in the ocean

currents, sea ice drift and the oil-ice interactions means that deterministic model predictions (i.e. a

definite prediction of where the oil will go) become unreliable, and that probabilistic predictions (i.e.

the model assigns probabilities that the oil will be found at any particular location) are required. The35

key point is that any ice-ocean model used for the oil spill trajectory modelling needs to provide a

credible representation of the large scale spatial variability in the ocean currents and the sea ice drift

in addition to the storm driven variability."

An interesting research task is to investigate what is the regime of diffusion of a pollutant trapped

in sea ice. To do so, one can separate the deterministic from the non-deterministic part of the sea40

ice motion within the theoretical framework developed for turbulent diffusion in fluids. Indeed, pre-

vious studies showed that turbulent theory may be applied to study diffusion properties of sea ice

(Lukovich et al., 2011, 2015; Rampal et al., 2009b; Thorndike, 1986; Colony and Thorndike, 1985).

Following the turbulent theory of Taylor (1921), Thorndike (1986) were able to split sea ice motion

into a predictable mean part, ū, and a random fluctuating part, u′. The predictable part is forced by45

the large scale mean motions in the atmosphere and the ocean, while the random part was suggested

by Thorndike (1986) to be forced by short term fluctuations in the wind and ocean currents. Later,

Rampal et al. (2009b) showed that the fluctuating part of the sea ice motion is also influenced by the

mechanical response of the sea ice cover itself, and presented a method based on the turbulent theory

of Taylor (1921) to extract this fluctuating part from the total motion. Note that similar methodology50

has been applied to study diffusion properties from Lagrangian drifters in the ocean (see e.g., Zhang

et al., 2001; Poulain and Niiler, 1989). With this method it is possible to study the characteristics of

the sea ice motion in a statistical sense, for different conditions and seasons.

In this study we analyse the quality of the sea ice motion fields provided by the TOPAZ-CICE

(hereafter referred as TOPAZ) and neXtSIM sea ice models by comparing synthetic buoy trajectories55

simulated by the models to the corresponding buoy trajectories of the International Arctic buoy

Program (IABP) data set. The statistical properties of these trajectories are analysed to evaluate how
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the mean drift field and the fluctuating part of the sea ice motion are reproduced by the models. The

IABP buoy data set that was used by Rampal et al. (2009b, 2008) covers the period 1979-2011, but

the analysis presented in this paper is restricted to winter conditions. In this study the comparison60

against the measured IABP data is performed for the years 2007 to 2010 during which the spatial

and temporal coverage of the IABP buoys is relatively good, i.e. with more than 40 buoys active

every day, allowing for higher statistical significance in comparisons.

This paper is organised as follows: the different data sets are presented in Section 2, the methods

used for the analysis are presented in Section 3 and the results for the diffusion analysis in Section65

4. The link with passive tracer trajectory modelling is discussed in Appendix A and we finalise the

article with a discussion, a conclusion, and a description of future work.
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2 Data

We use the full 12-hourly buoy positions from the International Arctic Buoy Program data set for the

1979-2011 period as a reference (Rigor, I. G. Compiled by Polar Science Center. 2002. IABP Drift-70

ing Buoy Pressure, Temperature, Position, and Interpolated Ice Velocity, Version 1. subset C. Boul-

der, Colorado USA. NSIDC: National Snow and Ice Data Center. http://dx.doi.org/10.7265/N53X84K7.

January 2015). For the period 2007 to 2010 we also generate “virtual" buoy trajectories by putting

floats in the TOPAZ and neXtSIM models. The floats are initialised at the same time and position as

the IABP buoys, and are “killed" when the IABP buoy track stops or when the virtual buoy enters75

into an area of simulated open water (sea ice concentrations less than 15%). After removing the few

non-overlapping periods (i.e. the periods for which the trajectories are not available in the three data

sets), three comparable data sets are obtained: i) the observed sea ice trajectories, ii) the trajectories

of virtual sea ice floats simulated by TOPAZ, and iii) the trajectories of virtual sea ice floats sim-

ulated by neXtSIM. Because the buoy positions of the IABP dataset are sampled every 12 hours,80

the virtual TOPAZ and neXtSIM float trajectories originally sampled every hour are sub-sampled to

obtain 12-hourly positions as well.

We increased the number of buoy trajectories by splitting the buoy trajectories longer than 35 days

into as many segments of 35 days as possible, the remaining data being discarded. Since we know

that the memory of a piece of ice of its past motion is less than 10 days (Rampal et al., 2009b),85

each of these 35-days buoy track segments can be assumed to be independent from the others. When

removing non-overlapping segments in the three data sets, we are left with 280 individual floats and

3720 35-day segments in each data set for the period 2007 to 2010.

A polar stereographic projection is used to change the IABP and Virtual buoy positions from

geographic (lat, lon) coordinates to Cartesian (x,y) coordinates in km from the north pole. Velocities90

are then calculated along each buoy track as

u
(
x̃, t̃
)

= (x(t+ ∆t)−x(t))/∆t (1)

v
(
ỹ, t̃
)

= (y (t+ ∆t)− y (t))/∆t (2)

at positions x̃= (x(t+ ∆t) +x(t))/2, ỹ = (y(t+ ∆t) + y(t))/2 and time t̃= t+ ∆t/2. The time

step, ∆t is 12h for the IABP data and for the virtual buoys.95

2.1 IABP

Originally, the raw IABP buoy positions were sampled irregularly in time with a mean time interval

of 1 hour, and with errors ranging from 100 to 300 m depending on the position system (Thomas,

1999). Before being delivered to the scientific community, the buoy positions were interpolated

(using a cubic function) to form an homogeneous trajectory data set giving for each buoy its position100

every 12 hours.

4

The Cryosphere Discuss., doi:10.5194/tc-2015-233, 2016
Manuscript under review for journal The Cryosphere
Published: 26 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



To investigate sea ice motion properties in the pack ice, we restricted the IABP dataset to a region

located in the centre of the Arctic basin (hereafter denoted the Central Arctic domain), i.e. above

70 N, at least at 100 km from the nearest coast and from the section of the 80th parallel going

from Greenland to Severnaya Zemlya. Sea ice dynamics in coastal regions are specific with for105

example the presence of land-fast ice and would require a dedicated study. We also restrict the

analysis to the winter period defined as starting the 1st of November and ending the 15th of May.

Each individual buoy track from the IABP dataset has been checked manually to clean them from

unrealistic “jumps" or "spikes" in the trajectories, or when the dating system was giving obviously

wrong times. These unrealistic “jumps" are due to errors in the positioning system embarked on110

the buoy or in the recordings during the deployment or recovering of the instruments. The period

2007-2010 has been selected for its relatively good coverage, with more than 40 buoys recording

their positions simultaneously every day. Buoy trajectories shorter than 30 days have been removed.

Figure 1 shows all the trajectories analysed in this study. The IABP data set from 1979 to 2011

covers almost the whole Central Arctic domain except the East Siberian and Laptev Seas. The dif-115

ferent data sets for the period 2007 to 2010 (i.e. the one from IABP and the two generated from

model simulations) are much sparser and cover a smaller portion of the Arctic Ocean. As shown

in the Figure 1, these trajectories are rather complex geometrically, e.g. with abrupt changes in the

direction.

2.2 Float tracks generated with the TOPAZ model120

The forecast system TOPAZ is the official Arctic Ocean forecast platform of the European Coperni-

cus Marine Environment Monitoring service (http://marine.copernicus.eu). The ocean part of TOPAZ

uses HYCOM version 2.2, with 28 vertical layers divided into isopycnal layers in the stratified inte-

rior of the open ocean and z-coordinates in the unstratified surface mixed layer (Bleck, 2002). The

ocean model is coupled to a one thickness category sea ice model based on CICE, the Los Alamos125

Sea Ice Model, version 4 (Hunke and Lipscomb, 2010). The part that solves the sea ice dynamics is

built around a standard EVP rheology (Hunke and Dukowicz, 1997) while the one solving sea ice

thermodynamics is described in Drange and Simonsen (1996). The sea ice strength is set to 27 500

N and the advection of sea ice scalar variables is calculated using a 3rd order WENO scheme (Jiang

and Shu, 1995) with a 2nd order Runge-Kutta time discretisation. The sea ice-ocean model is run130

here in free-run mode (i.e., no data assimilation is applied). The model is initialised from a restart

file taken from the free-run simulation described in Sakov et al. (2012). The TOPAZ coupled sea

ice-ocean system provides sea ice variables, such as sea ice velocities, concentration, and thickness,

at a high temporal resolution (i.e. every hour). A more detailed description of the TOPAZ system

may be found in Sakov et al. (2012).135

The applied atmospheric forcing fields are the 6-hourly 10-meter wind velocities from the ERA

interim reanalysis (ERAi) distributed at 80 km spatial resolution (http://www.ecmwf.int/en/research/
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climate-reanalysis/era-interim, ECMWF (2011)). The frictional drag parameters for the atmosphere-

ice stress (ca = 0.0016) and for the ice-ocean stress (cw = 0.0055) are those currently used and

optimised for the TOPAZ operational platform.140

The float tracking with TOPAZ is performed off-line. Hourly sea ice motion simulated by the

model is used to force the off-line float tracking system that moves the floats in the quasi-homogeneous

TOPAZ Arctic grid. We use that grid instead of a regular longitude/latitude grid in order to avoid

singularity errors at and around the Pole. The advantage of the off-line float tracking system is that it

allows us to easily perform experiments for a given time period and location and with a reasonably145

large number of floats. We checked that for the time scale and spatial resolution considered here, this

off-line tracking method is giving similar results to using an online tracking system, while remaining

computationally efficient.

The float-tracking system initialises floats at a prescribed start position (longitude and latitude)

and starting time (year, month, day and hour), then moves the floats with a simple Eulerian method150

and kills the floats at a prescribed end time (year, month, day and hour) so that it matches the end of

the corresponding real IABP buoy’s trajectories. The Eulerian sea ice velocities given by the TOPAZ

model are interpolated to the position of the virtual Lagrangian floats every hour. Floats drifting out

of the simulated sea ice cover, i.e. where sea ice concentration is below 15% in the present case, are

not tracked further. The virtual buoy tracks are stored as longitude and latitude positions.155

2.3 Float tracks generated with the neXtSIM model

neXtSIM is a fully-Lagrangian thermodynamic-dynamic sea ice model, using an adaptive finite ele-

ment mesh and a mechanical framework based on the elasto-brittle rheology (Rampal et al., 2015).

The domain used for the simulations with the neXtSIM model is defined from TOPAZ (version 4)

coastlines and open boundaries. It covers the Arctic and North-Atlantic Oceans, extending from an160

open boundary at 43◦N in the North-Atlantic to an open boundary in the Bering Strait. The mean

resolution of the finite element mesh used by neXtSIM is about 10 km. Thermodynamic growth and

melt of the ice are based on Semtner (1976) and the ice model is coupled to a slab ocean model.

The temperature and salinity in the slab ocean model are constantly nudged towards values of the

TOPAZ reanalysis in order to simulate oceanic heat and salt transfer. A complete description of this165

stand-alone version of the neXtSIM sea ice model as well as his coupling to the slab ocean model

may be found in Rampal et al. (2015).

The neXtSIM model is able to simulate the observed evolution of the sea ice volume, extent and

area over an annual time scale (Rampal et al., 2015). However, the simulated drift and deformation

fields have only been extensively evaluated for the winter season in Rampal et al. (2015) and Bouil-170

lon and Rampal (2015). The three simulations used for this study are therefore starting on September

15th and finishing on May 15th 2007, 2008 and 2009, and our analysis is restricted to winter time,

i.e. from November to May. The model is initialised with the ice concentration derived from the

6

The Cryosphere Discuss., doi:10.5194/tc-2015-233, 2016
Manuscript under review for journal The Cryosphere
Published: 26 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



AMSR-E passive microwave sensor (Kaleschke et al., 2001; Spreen et al., 2008, data obtained from

the Integrated Climate Date Center, University of Hamburg, Germany, http://icdc.zmaw.de) and the175

TOPAZ ice thickness, within the area reported by AMSR-E as being covered with ice. The mod-

elled ice thickness of the TOPAZ model is known to be biased (too low) and so we increase the

initial thickness uniformly so that the total volume is the same as that given by the PIOMAS model

on September 15th 2007, 2008 and 2009 (Zhang and Rothrock, 2003). The good performance of

PIOMAS in simulating Arctic sea ice volume as compared to available observations is reported in180

Schweiger et al. (2011). The temperature and salinity of the slab ocean model are initialised with

temperature and salinity from TOPAZ.

The model is forced with the ocean state of the TOPAZ4 reanalysis (see Sakov et al., 2012). The

oceanic forcing variables are sea surface height, velocity at 30 m depth, and sea surface temperature

and salinity (for more details, see Rampal et al. (2015)). The atmospheric state comes from the Arctic185

System Reanalysis, Interim version (ASR-Interim hereafter) (http://rda.ucar.edu/datasets/ds631.4/,

Byrd Polar Research Centre/The Ohio State University (2012). Accessed 01 Jan 2014). The ASR-

Interim is a high resolution atmospheric reanalysis (30 km) known to reproduce particularly well the

near-surface wind fields in the Arctic region (Bromwich et al., 2015).

The frictional drag parameter for the atmosphere-ice boundary layer is closely linked to the ap-190

plied atmospheric forcing field and directly impacts sea ice motion. The common approach to op-

timise this parameter is to compare the simulated and observed sea ice drift over the whole Arctic

basin. However, this approach leads to interdependence between the optimisation of the mechanical

parameters and the optimisation of the air drag coefficient. Instead, we developed a tuning methodol-

ogy that has the advantage of differentiating the choice of the air drag coefficient from the mechanical195

parameters. This method and its results are presented in Rampal et al. (2015). We here use the values

for the air drag parameter (ca = 0.0076) found to be optimal when using the ASR wind forcing and

the same value of water drag parameter as in TOPAZ (cw = 0.0055)

The float tracking with neXtSIM is performed at run time. The main reason for doing this is

that the Lagrangian advection used in the neXtSIM model offers some additional challenges to a200

post-processing approach over the Eulerian advection used in TOPAZ. Using this approach, the

tracking system is initialised with floats that have the same positions and starting dates as the IABP

buoys. These positions then change as the underlying mesh moves and are interpolated onto the

new mesh after each remeshing step. (See Rampal et al. (2015) for more details on the remeshing

procedure.) The virtual drifters are removed when the corresponding IABP buoy tracks stop or when205

the simulated local ice concentration falls below 15%. The procedure of adding and removing buoys

is therefore the same as the one followed for the aforementioned off-line float tracking system used

with TOPAZ.
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3 Methods

The method used to analyse the Lagrangian particles/floats obtained from IABP, TOPAZ and neXtSIM210

is similar to the one presented in Rampal et al. (2009b) and is based on the theory proposed by Taylor

(1921) to study turbulent fluid. For the decomposition of the motion into a mean and a fluctuating

part, we follow the classical approach used to study Lagrangian trajectories (see for example Zhang

et al., 2001).

3.1 Diffusion theory of Taylor (1921)215

Following the theory developed for turbulent fluids by Taylor (1921), diffusion describes in a statisti-

cal sense how an individual particle moves apart from any of its previous position. Taylor’s diffusion

theory is valid for steady and homogeneous turbulent flow without mean flow and for which the fluc-

tuating velocity follows a Gaussian distribution. When following a single particle in such conditions,

the variance of its fluctuating displacement 〈r′2(t)〉 should in theory evolves as220

〈r′2(t)〉= 2〈u′2〉
t∫

0

t1∫

0

C(τ)dτdt1 (3)

where 〈u′2〉, the variance of the fluctuating velocity, is constant in time and C(τ), the Lagrangian

normalized autocorrelation function, is defined as

C(τ) =
1

〈u′2〉Tmax

Tmax∫

0

u′(t)u′(t+ τ)dt. (4)

where Tmax is the duration of the particle trajectory (here 35 days) and u′(t) is its fluctuating velocity225

at time t defined following the method described in Section 3.2.

For very long time intervals τ , the autocorrelation vanishes and the integral of C(τ)

Γ =

∞∫

0

C(τ)dτ. (5)

is then a constant. This constant Γ is referred as the Lagrangian integral time scale and determines

the transition between two diffusion regimes. For time much shorter than Γ, we are in the “ballistic"230

regime and Equation 3 becomes

〈r′2(t)〉= 〈u′2〉t2, t << Γ, (6)

(this simply comes from the fact that C(τ) tends to the limiting value unity for small t). For time

much longer than Γ, we are in the “Brownian" regime (also called “random walk" regime) and

Equation 3 becomes235

〈r′2(t)〉= 2〈u′2〉Γt+α, t >> Γ, (7)
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where α is a constant defined as α=−2
∫∞
0
τC(τ)dτ (LaCasce, 2008). The second regime is similar

to the one driven by molecular diffusion (i.e., where fluctuating velocities are also uncorrelated) but

with much larger diffusion coefficients.

Following Lagrangian turbulent theory, diffusivity (noted K) is defined as follows:240

K =
1
2
d〈r′2(t)〉

dt
. (8)

In the “ballistic" regime (with Equation 6), diffusivity increases with time and may be calculated as

K = 〈u′2〉t. (9)

In the “Brownian" regime (with Equation 7), diffusivity (also called absolute diffusivity in that case)

is constant and may be calculated as245

K = 〈u′2〉Γ. (10)

In the present study we will use the absolute diffusivity to compare the different data sets.

3.2 Decomposition of the sea ice motion

As shown in the previous section, one may look at statistical properties of fluctuating displacements

to study diffusion properties. Therefore, we need to decompose the total sea ice motion into a mean250

and a fluctuating part. We here shortly describe how this decomposition is performed and how the

fluctuating part of the motion is then described. A more complete and detailed presentation of the

methodology, in particular of how to choose the appropriate temporal and spatial averaging scales,

can be found in Rampal et al. (2009b).

3.2.1 Mean velocity calculation255

From the list of positions xi
q of a buoy q given with a regular time interval ∆t, one can evaluate its

position and velocity at time t= tiq + 0.5∆t by computing:

xq(t) =
(
xi+1

q + xi
q

)
/2, (11)

uq(t) =
(
xi+1

q −xi
q

)
/∆t. (12)

By doing the same for all the available buoys, one can build a data set recording all the velocities260

computed at a time scale ∆t.

From that data set a mean velocity field ūL,T (x, t) can be defined for a given spatial and temporal

scale, L and T , by averaging all the buoy velocities uk recorded at a distance less than L/2 from x

and within the time window [t−T/2; t+T/2]. The averaging operator used here is

ūL,T (x, t) =
1∑
kwk

∑

k

wkuk, (13)265

where wk are the weight coefficients defined as

wk = e

(
− r2k

2L2−
τ2k
2T2

)
with rk =

√
(xk −x)2 + (yk − y)2 and τ = tk − t. (14)
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This mean velocity is then evaluated at each recorded position xq(t) and subtracted from the recorded

velocities to define the fluctuating velocities by computing

u′q(t) = uq(t)− ūL,T (xq(t), t). (15)270

As seen in Equation 15, the fluctuating velocities depend on the value of the averaging scales,

L and T . This dependance and the fact that the autocorrelation function has to remain close to 0

for long time interval τ provide an elegant method to determine the appropriate value for L and

T . First we compute for each buoy trajectory q and pair of averaging scales L and T , the normal-

ized autocorrelation function, CL,T
q , using Equation 4. Secondly, we calculate an ensemble average275

autocorrelation function as

χL,T (τ) =
1∑

q T
q
max

∑

q

T q
maxC

L,T
q (τ) (16)

where the influence of each buoy is weighted by the time length of its trajectory, T q
max. Finally, we

select the averaging scales for which χL,T (τ) remains close to 0 for large τ . An example of χL,T (τ)

function obtained with L= 400 km and T = 165 days is presented in Figure 2. The results of this280

analysis are detailed and discussed in Section 4.

An equivalent method to the one described above is to define the appropriate spatial and temporal

averaging scales as the lowest scales for which ΓL,T remains quasi constant (i.e., less than 1%

change). Since we cannot integrate Equation 5 to infinity, the average integral time scale ΓL,T for

the selected period is computed as285

ΓL,T =

t0∫

0

χL,T (τ)dτ (17)

where t0 is the first time χL,T (τ) crosses zero (see for instance Poulain and Niiler, 1989; Rampal

et al., 2009b). In the example of Figure 2, t0 = 6 days and the integration time scale Γ forL= 400 km

and T = 165 days is equal to 1.5days. Note that the absolute diffusivity (K = 1.0× 103 m2 s−1) for

the example of Figure 2 is also given for information but will be discussed in Section 4. We verified290

by plotting ΓL,T (not shown) that a plateau is reached for averaging scales larger than L= 400 km

and T = 165 days, which is then the appropriate averaging scale for the example shown here.
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4 Results

The result of the diffusion analysis applied to the whole IABP data set from 1979 to 2011 is used as a

reference to get an overall picture for the Central Arctic region. In addition, we present a comparison295

between observed and simulated float trajectories for the winter seasons 2007 to 2010. We restrict

our analysis here to winter seasons because of the too sparse buoy trajectories available in the IABP

dataset during summer, and because the performance of the neXtSIM model has been extensively

assessed so far for winter only (Rampal et al., 2015).

Figure 3 shows the maps with all the buoy trajectories for each winter season from the IABP300

data set, the TOPAZ model and the neXtSIM model. From this figure, we can already see that the

trajectories from the neXtSIM model are more similar to observations than the ones from the TOPAZ

model. We clearly see that, in general, the TOPAZ trajectories are longer than their corresponding

ones in the IABP data set. The short IABP trajectories north of the Canadian Arctic Archipelago

(clearly seen in 2007/2008 winter) are the result of the significantly thicker and more ridged sea ice,305

which leads to nearly zero speed in that region. This dynamical sea ice response, i.e. the expected

drift behaviour of a solid thick plate of ice surrounded by closed boundaries and stressed by external

forces, is captured by neXtSIM but not by TOPAZ. To better describe the differences between the

simulated and observed trajectories, we analyse separately the mean drift and the fluctuating part of

the motion by applying the so-called Taylor’s decomposition to the sea ice velocities.310

4.1 Decomposition of the sea ice motion

To compute the mean part of the motion, Rampal et al. (2009b) determined that the appropriate aver-

aging scales to be used for the entire IABP data set are L= 400 km and T = 5.5 months (165 days)

for winter, and L= 200 km and T = 2.5 months for summer. These spatial and temporal averaging

scales are defined as the smallest values for which the integral time ΓL,T remains quasi constant. By315

performing a similar analysis as in Rampal et al. (2009b) for the IABP data but only from 2007 to

2010, we found that the same averaging scales should be used and so we did to compute the mean

part of the motion at each location of buoy along their track in the present study.

Applying the averaging scales L= 400 km and T = 165 days with the procedure described in

section 3.2.1, we split the velocity field into a mean, ū, and a fluctuating part, u′. The fluctuating sea320

ice displacement is then derived from the fluctuating velocities as

r′x(t) = r′x(t−∆t) +u′(t)∆t

r′y(t) = r′y(t−∆t) + v′(t)∆t, (18)

with r′x(t= 0) = 0 and r′y(t= 0) = 0 and where ∆t is the time step in the data set.

Figure 4 shows an example of the partition of the displacement of an IABP buoy into its mean

and fluctuation trajectories. With this partitioning method, the mean motion can be considered ho-325

mogeneous and stationary at temporal and spatial scales smaller or equal to T and L, whereas the
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fluctuating motion contains the unpredictable part linked to turbulent and small scale motion. The

loops in the fluctuation trajectory seen on Figure 4 are typical small scale motion features and shall

be related to the response of sea ice to local and non-stationary oceanic eddies and atmospheric

perturbations.330

4.2 Mean velocity field

The mean velocity fields for each winter season and for the three data sets, i.e. IABP, TOPAZ and

neXtSIM, are shown in Figure 5. Unsurprisingly, the two main features in the mean Arctic-wide sea

ice circulation computed with our method are the Beaufort Gyre and the Transpolar drift. However,

we note that the strength and the size of the Beaufort Gyre, as well as the strength of the Transpolar335

drift, vary from one year to the other. This inter-annual variability is well represented by both TOPAZ

and neXtSIM. The two models, however, perform differently in terms of the magnitude and the

spatial distribution of the mean sea ice drift. The TOPAZ model generally overestimates the mean

field and does not correctly reproduce the spatial patterns. In particular the size of the Beaufort Gyre

is often overestimated and the model does not reproduce the low velocities in the “lower" part of the340

Beaufort Gyre, along the Canadian Arctic Archipelago (see, for example, the first line of Figure 5).

The mean ice drift simulated by the neXtSIM model is much more similar to the observations in that

respect. Indeed, it better reproduces the patterns and intensity of the mean ice drift in the Beaufort

Sea, Eurasian basin and along the Canadian Arctic Archipelago where the ice is almost immobile

according to the observations.345

The statistical distribution of the mean velocity also gives valuable information and can be used

to evaluate the output of sea ice models. Figure 6 shows the probability density function of the

mean speed (i.e., the norm of the mean velocities), Ū =
√
ū2 + v̄2, as computed from the IABP

buoy data and from the TOPAZ and neXtSIM virtual buoy data for the period 2007-2010. The mean

speed distribution from the observations fits well with an exponential function. The exponential350

distribution has the peculiarity of being fully determined by the mean value, which is also equal to

the standard deviation. In the case of the IABP data, the mean value of the mean drift is equal to

2.45 cm s−1. The same analysis performed on the two models indicates that TOPAZ produces mean

velocities following a Gaussian distribution instead of an exponential distribution with a mean of the

distribution equal to 3.38 cm s−1. The mean velocities simulated by the neXtSIM model follow an355

exponential distribution with a mean equal to 2.00 cm s−1, slightly lower than the observations. We

conclude that the TOPAZ model overestimates the mean ice drift by about 38%, whereas neXtSIM

underestimates the mean drift by about 18%.

4.3 Fluctuating velocity field

When removing the mean part of the velocity field we are left with the fluctuating velocity field360

u′(x). If the mean part is removed correctly (according to the Taylor’s theory applied here), the
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fluctuating velocities should be symmetrically distributed around zero. This is the case in our results

(not shown), meaning that one can directly look at the speed (i.e., norm of the velocity) without

losing information. The PDFs of the fluctuating speeds are plotted in Figure 7 with the Gaussian

and exponential fits indicated for reference. We clearly see the fluctuating speeds of the IABP buoy365

data follow an exponential distribution with a mean equal to 6.9 cm s−1. It is important to note here

that the data follow an exponential distribution instead of a Gaussian distribution, as expected in

fully developed turbulence (Batchelor, 1960; Frisch, 1995) and observed in different turbulent fluids

(Van Atta and Chen, 1970; Zhang et al., 2001). This means that the sea ice fluctuating speed can

be much larger than a standard deviation away from the (zero) mean. However, such non-Gaussian370

distributions for fluctuating speeds are also observed for oceanic surface currents during energetic

events associated with large organised structures such as jets and vortices. Such a signature for sea

ice may indicate that sea ice dynamics are dominated by the passage of large perturbations over the

Arctic, whereas less energetic features have less impact on sea ice motion. This selective sensitivity

to energetic events may be related to the intrinsic properties of solids associated with threshold375

mechanics. This seems to be supported by the fact that for weaker seasonal sea ice, the observed

fluctuating velocities rather follow Gaussian statistics (Lukovich et al., 2011).

The fluctuating speeds from TOPAZ are too high on average (by about 30%) with a mean value

equal to 8.97 cm s−1, and their statistics do not follow an exponential distribution, hence missing the

highest values of observed fluctuating speed. The fluctuating speeds from neXtSIM are slightly too380

low (by about 10%) with a mean value equal to 6.14 cm s−1 and follow an exponential distribution

within the range 0 to 30 cm s−1. The neXtSIM model also misses the highest values of observed sea

ice fluctuating speed. The differences between the performances of the two models might come from

the different rheologies, but also from the differences in the initial conditions and external forcings

that are used. For example the too thin ice pack of TOPAZ at the onset of the freezing season may385

contribute to the overestimation of the winter drift (Rampal et al., 2011; Ólason and Notz, 2014) and

could be more prone to have fluctuating speeds following a Gaussian distribution as discussed by

Lukovich et al. (2011). The forcings are also not the same since the atmospheric reanalysis ASR-

interim, used here to force neXtSIM, has higher spatial and temporal resolution than ERA-interim,

used here to force TOPAZ. Another difference to be notified is the fact that the results of TOPAZ390

presented here come from a free run with no data assimilation whereas the results of neXtSIM are

produced with the ocean forcing of the TOPAZ reanalysis including data assimilation. To find and

explain the origins of the models performances is out of scope of the present paper and would require

a dedicated analysis. However, as the forcing fields and the rheology used in TOPAZ are widely used

in the sea ice modelling community, we expect the performances shown here by the TOPAZ system395

as a reasonable reference of most of the available coupled ocean-sea ice forecasting platforms.

Using the fluctuating part, u′ of the velocity we calculate the fluctuating displacement compo-

nents r′x and r′y , see Equation 18, and the norm r′ of the fluctuating displacement. By analysing

13

The Cryosphere Discuss., doi:10.5194/tc-2015-233, 2016
Manuscript under review for journal The Cryosphere
Published: 26 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



the characteristics of the norm we quantify how the distance between any particular trajectory and

the mean trajectory evolves through time. To increase the robustness and statistical significance of400

our analysis, we artificially increase the number of buoy trajectories by splitting each trajectory into

35-day segments starting every 12 hours, i.e. every time a new buoy position along-track is available.

By doing so, we make sure that the variance of the fluctuating velocities 〈u′2(t)〉, where t here goes

from 0 to 35 days, is almost constant. We verified that for each data set the deviation of 〈u′2(t)〉 to

the mean values 〈u′2〉 is maximum of about 10%.405

Figure 8 shows the evolution of the norm of the fluctuating displacement for every tenth segments

retrieved from the IABP trajectories for the winter periods from 1979 to 2011. The dashed red line

indicates the distance corresponding to 3 standard deviations of the fluctuating displacement. The

standard deviation of the fluctuating displacement is the square root of 〈r′2(t)〉, which is defined as

〈r′2(t)〉= 〈r′2x (t) + r′2y (t)〉. (19)410

The standard deviation of the fluctuating displacement may be a crucial piece of information for

the planning of a recovery operation in a case of drifting oil or pollutant that is trapped or attached to

the ice, as it gives an estimate of how the size of the searching area around the predicted mean drift

should increase through time, in a statistical sense. If an operator can only trust the mean drift, which

is the case for forecast longer than a few days, and if the size of the polluted ice is so small that it can415

be considered as a single particle (i.e. one can assume no relative dispersion of the pollutant), the

searching area could be defined as a circular region with a radius depending on the standard deviation

of the fluctuating displacement. We verified that about 68.9%, 95.9% and 99.6% of the fluctuating

displacements are smaller than 1, 2 and 3 standard deviations, which means that the fluctuating

displacement distribution is in the Gaussian attraction basin. Another way of representing the same420

information is to draw the relative displacement as if seen from the mean drift (see bottom panel

of Figure 8). In this example, the searching radius (defined here as equal to 3 standard deviations)

should be about 87 km after 5 days (corresponding to a surface area of 24000 km2), and about 206 km

after 30 days (corresponding to a surface area of 134000 km2). As the mean speed and deformation

in the Central Arctic are increasing (Rampal et al., 2009a), we may expect higher values for recent425

and coming years.

Another way of analysing the results is to look at the variance of the fluctuating displacement,

〈r′2(t)〉, as a function of time (see Figure 9). This variance is sometimes called “dispersion" or

“spread" around the trajectory given by the mean drift. In this paper, we rather use the term “sin-

gle particle dispersion" or "absolute dispersion" to mark the difference with the relative dispersion,430

which indicates how the distance between two particles evolves through time. In these log-log plots

the two diffusion regimes are indicated by the dashed lines showing the slope of the initial “ballistic"

regime where the displacement grows with t2, 〈r′2(t)〉 ∼ t2, and the later “Brownian" regime where

the displacement grows with t, 〈r′2(t)〉 ∼ t, as in the Taylor (1921) turbulent diffusion theory. The

time scale at which the regime transition occurs corresponds to the integral time scale, Γ which is435
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estimated as described in section 3.2.1. The value of Γ is equal to 1.4 days for the IABP data for

the full winter data set, which is a value similar to the one found by Rampal et al. (2009b). For

comparison, for surface ocean drift the integral times range from 1 day to 4.5 days, depending on

the location (i.e., near coasts, or in the open ocean). For the atmosphere, typical integral times at

altitudes lower than 300 m are five orders of magnitude smaller than for the one found for sea ice.440

On the left panel, we also indicate with dotted lines the two asymptotic solutions for 〈r′2(t)〉 for

t << Γ (from Eq. 6) and for t >> Γ (from Eq. 7) where the constant α is neglected). These equations

only depend on 〈u′2〉 and Γ, which are given in Table 1, meaning that one can use them to estimate

the variance (and then the standard deviation and searching radius as explained above) for any time

t.445

The right panel of Fig. 9 shows the evolution of the fluctuating displacement variance for the

observed and simulated trajectories for the winters 2007-2010. The change in the slope is well re-

produced by the two models, meaning that the difference between the EVP sea ice rheology used by

the sea ice model of TOPAZ and the EB rheology used in neXtSIM is not discriminatory this time.

However, the magnitude of the diffusion is largely overestimated with TOPAZ. This overestimation450

is reflected in the diffusivity parameter computed from equation 10 (see Table 1), which is almost

twice as large for TOPAZ than for both neXtSIM and the observations.

If we compare diffusion properties of sea ice to diffusion properties of passive tracers in the ocean,

we see that the diffusive memory, i.e. the integral time scale Γ, as well as the absolute diffusivity

K are of the same order of magnitude. Using ocean drifters in the North Atlantic, Zhang et al.455

(2001) calculated that Γ = 1.5− 2.5 days and K = 1− 7× 103 m2 s−1 while Poulain and Niiler

(1989) calculated that Γ = 4−5 days and K ∼ 4×103 m2 s−1 for surface drifters in the Californian

Current System.

The values of diffusivity given here above are mean values over the Central Arctic, but the mag-

nitude of the fluctuating displacements could highly vary from one region to the others. To inves-460

tigate the regional distribution of the fluctuating displacements, we compute the diffusivity fields

(see Figure 10). This analysis shows that in addition to the mean diffusivity the neXtSIM model

also represents very well its spatial variability, with rather low diffusivity values along the Canadian

Arctic Archipelago (i.e. up to about 0.5× 103 m2s−2) and larger values in the East Siberian Sea and

in Beaufort Sea. We computed the correlation coefficient between the diffusivity map obtained from465

observations and those obtained from TOPAZ and neXtSIM, and found 0.7 and 0.85, respectively.

One should note that the diffusivity fields could, for example, be used to evaluate the fluctuating dis-

placement variance for t >> Γ by using the relationship 〈r′2(t)〉= 2Kt, which in turn could be used

to estimate the searching radius in case of pollutant spill in ice-covered waters as rs = 3
√
〈r′2(t)〉.
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5 Conclusions470

Homogeneous and stationary sea ice drift fields can be defined from Lagrangian trajectories by using

averaging scales equal to L= 400 km and T = 5.5 months for winter, and L= 200 km and T =

2.5 months for summer. The mean drift presents an important inter-annual variability with varying

magnitude and position of two main features, the Beaufort Gyre and the Transpolar drift. The mean

drift velocities in winter in the Central Arctic have a mean value of about 2.5 cm s−1 (i.e., about475

2.1 km day−1) for the period 2007-2010 and follow an exponential distribution, meaning that values

much larger than the mean may be encountered. The mean drift could be used to predict trajectories

on time scales of several weeks and months.

The fluctuating velocities are isotropic and follow an exponential distribution with a mean value

of about 7 cm s−1 (i.e., about 6 km day−1) for the winters 2007-2010. The ensemble average auto-480

correlation function crosses the zero axis at around 6 days, meaning that fluctuating velocities are

uncorrelated for larger time scales. Fluctuating displacements may be considered as Gaussian since

about 68.9%, 95.9% and 99.6% of the fluctuating displacements are smaller than 1, 2 and 3 standard

deviations. If we are looking for the position of a single ice particle, the searching area around the

position predicted by the mean drift could be defined as a circular region with a radius equal to 3485

standard deviations of the fluctuating displacement. On average for the winter periods 1979-2011,

we find that the searching radius should be about 87 km after 5 days (corresponding to a surface area

of 24000 km2), and about 206 km after 30 days (corresponding to a surface area of 134000 km2).

This of course may vary from one region to another, depending on the local dynamical regime of sea

ice, e.g. like in the Beaufort Sea, the transpolar drift area and the marginal ice zone. Also, the size490

of the searching area may have varied over time, with expected higher values for recent and coming

years due to the observed increasing mean sea ice speed and deformation in the Arctic.

The fluctuating displacement variance evolves following two regimes of diffusion as a function

of the time scale considered: a “ballistic" regime for time scales shorter than about 1 day and for

which the variance grows with t2, and a “Brownian" regime for time scales much larger than 1 day495

and for which the variance grows with t. The evolution of the variance can be fully described by two

parameters 〈u′2〉 (the fluctuating velocity variance) and Γ (the integral time scale). For example, for

very large t, the variance can be estimated as 〈r′2(t)〉= 2Kt, where K, the absolute diffusivity, is

computed as K = 〈u′2〉Γ. For the winters 1979-2011, K is estimated as equal to 1.2×103 m2s−2,

which is in the range of values found in the literature for sea ice and oceanic surface. Diffusivity500

is not constant within the Arctic basin, with significantly lower values along the Canadian Arctic

Archipelago. One should also note that the diffusivity fields or constant can be used along with the

mean drift into an advection-diffusion equation or with Lagrangian stochastic models to estimate the

probability for a particle to be in a given position after a given time.

Sea ice-ocean models should be able to represent correctly the inter-annual variability, but also the505

statistical and geographical distribution of the mean drift, which seems clearly not to be the case for
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the TOPAZ system. The mean velocities in TOPAZ are on average 40% too high, follow a Gaussian

instead of an exponential distribution and do not represent correctly the circulation patterns in Arctic.

On another hand the neXtSIM model performs better, in particular in terms of statistical and spatial

distributions.510

The fluctuating velocities in the TOPAZ model are too high on average and follow a Gaussian

distribution, whereas observations follow an exponential distribution. The fluctuating velocities in

the neXtSIM model are slightly lower on average compared to observations, but their distribution

follows an exponential model like the observations. The fluctuating velocity variance is too large in

the TOPAZ model, leading to an absolute diffusivity almost twice as large as the one estimated from515

the observations and from the neXtSIM model. The differences in performance of the two modelling

platforms might partly result from the fundamental difference in their sea ice dynamical framework

and in particular the rheology they use. They may also come from differences in the initial conditions

(in particular the initial thickness field) and forcings fields each model used. However, one should

still remind that despite these differences both these models are finely tuned with respect to their520

configuration (atmospheric forcing, initial conditions, etc...) in order to get the best performance

overall, and with regard to sea ice drift in particular.
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Appendix A: Link with passive tracer trajectory modelling

Both the mean and the fluctuating parts of the motion are important information for passive tracer

trajectory modelling in ice covered areas. The mean drift indicates the general direction that will be525

followed by the ice for the next weeks (T = 165 days for the central Arctic in winter) and could be

correctly provided by medium-resolution seasonal prediction models or retrieved from sea ice drift

observation data sets by averaging sea ice drift over the last T/2 period. The fluctuating part may be

analysed to indicate how a particular trajectory may differ from the trajectory predicted by the mean

drift.530

When the characteristics of turbulent fluids are reproduced in a particular medium, the information

on the mean drift and absolute diffusivity can directly be used to predict the trajectory of any passive

tracer moving with this medium (LaCasce, 2008). Continuous passive tracer models generally use

the classical advection-diffusion equation
∂C

∂t
+ ū · ∇C =∇ · (K∇C), (A1)535

where ū is the mean velocity field defined with the right averaging scales (L and T ) and K is the

corresponding diffusivity field or constant parameter. This equation can be used in two cases. If the

release of the passive tracer has occurred in a so short time and over a so small area that the tracer

can be viewed as a single particle with a unique position at a given time, then the advection-diffusion

equation can be viewed as a stochastic differential equation where C describes the probability for540

the particle to be in a given position after a given time. If the tracer is released (i.e., via a source term

in equation A1) during a long period (typically T ) or over a large area (typically L), then C can be

viewed as the passive tracer concentration, or in the two-dimensional case as the volume of pollutant

per surface area (Monin and Yaglom, 1975).

Discrete passive tracer models may also be used. In this case, the displacement dxi in the i direc-545

tion needs to be defined for each independent objects. The simplest approach, known as the “random

walk" model, neglects the transition between “ballistic" and the “Brownian" regimes and simply

defines the dxi by

dxi = ūidt+
√

2
√
〈u′2i 〉dwi, (A2)

where u′i is the fluctuating velocity in the i direction and dwi is a Weiner process. This equation is550

strictly equivalent to the advection-diffusion equation of continuous models.

To also represent the “ballistic" regime, a more complex approach consists in applying the stochas-

tic term on the evolution of the velocity, leading to the following set of equations:

dxi = (ui + ūi)dt (A3)

dui =− 1
Ti
uidt+

√
2
Ti

√
〈u′2i 〉dwi. (A4)555

Despite its greater complexity, this model is not suitable for all applications, as it assumes that

particle velocities are uncorrelated in space.
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Such approaches can be used to study the evolution of passive tracer in a medium only if it exhibits

the same characteristics as molecular diffusion (particles velocities are uncorrelated in space). When

this condition is not satisfied, which is indeed the case for sea ice and the ocean surface, the passive560

tracer model has to be included or directly forced by a dynamical model simulating the motion fields.

The most used approach in passive tracer trajectory modelling (e.g. for oil spill modelling) consists

in setting a bunch of virtual floats in the region of interest and defining their motion as a function

of the sea ice drift, wind and oceanic currents simulated by dynamical models, using an off-line or

in-line tracking system similar to the ones presented in Section 2.2 and 2.3. However before using565

such dynamical models for passive tracer modelling, one should verify that these models reproduce

well the mean drift and the fluctuating part of the motion, and the diffusion analysis presented in

Section 3 is a powerful tool to perform such a validation.
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a) b)

c) d)

Figure 1. Buoy tracks from a) the IABP dataset for 1979 to 2011, b) the IABP dataset for winter seasons 2007

to 2010, c) the TOPAZ simulations for winter seasons 2007 to 2010, and d) the neXtSIM simulations for winter

seasons 2007 to 2010.

22

The Cryosphere Discuss., doi:10.5194/tc-2015-233, 2016
Manuscript under review for journal The Cryosphere
Published: 26 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 2. Ensemble averaged fluctuating velocity autocorrelation function for the IABP dataset for winter sea-

sons 1979 to 2001. The values of the integral time scale Γ and mean horizontal diffusivity K̄ for this particular

period are indicated.
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Figure 3. IABP buoys tracks (left) and their corresponding virtual tracks simulated by TOPAZ (centre) and

neXtSIM (right) for the winters 2007/2008 (top), 2008/2009 (middle), and 2009/2010 (bottom).
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Figure 4. Trajectory of the buoy 8.0002 from the IABP dataset (thin black) partitioned into a mean (thick black)

and fluctuations (red) trajectories using the method described in section 3.
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Figure 5. Mean sea ice velocity field computed from the IABP buoys dataset (left) and the corresponding

floats dataset generated with TOPAZ (centre), and neXtSIM (right) for the winters 2007/2008 (top), 2008/2009

(middle), and 2009/2010 (bottom). The mean velocity vectors are shown on a 400× 400 km regular grid, with

coordinates (x̂, ŷ). The plotted vectors are the weighted average of the mean Lagrangian velocities of the buoys

located within a circle of radius L/2 centred on (x̂, ŷ). The applied weight is w = e−r2/(2L2) where r is the

distance between a given buoy position and the grid point, i.e. r =
√

(x− x̂)2 + (y− ŷ)2).
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Figure 6. Probability density function of the mean speed of the IABP buoys (left), and of the corresponding

virtual floats in TOPAZ (middle) and neXtSIM (right) for the period 2007-2010. The Gaussian (light grey line)

and exponential (black dots) fits of the data are also indicated.
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Figure 7. Probability density function of the fluctuating speed of the IABP buoys (left), and of the corresponding

virtual floats in TOPAZ (middle) and neXtSIM (right) for the winter periods 2007-2010. The Gaussian (light

grey line) and exponential (black dots) fits of the data are also indicated.
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Figure 8. Time evolution of the norm of the fluctuating displacement r′ for every tenth 35-days segments

extracted from the IABP buoys tracks for the winters 1979-2011 (top). The dashed red line indicates 3 standard

deviations of the fluctuating displacement. Fluctuating part of the buoy trajectories and estimated searching area

radius after 5 and 30 days (bottom).
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Figure 9. Ensemble mean of the variance of the fluctuating displacement < r′2 > for the winter seasons 1979-

2011 (for IABP only, left panel) and 2007-2011 (for IABP, TOPAZ and neXtSIM, right panel). The dashed

lines show the theoretical “ballistic" (〈r′2(t)〉 ∼ t2) and “Brownian" (〈r′2(t)〉 ∼ t) regimes. The green lines on

the left panel correspond to the equations 6 and 7 and are shown for reference.
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Figure 10. Mean diffusivity fields obtained from the analysis of the IABP buoys trajectories (left), TOPAZ floats

trajectories (middle), and neXtSIM floats trajectories (right) for the winters 2007-2010. The local diffusivity

values are shown as colours in 400× 400 km boxes. Note that the mean diffusivity K̄ averaged over the whole

Arctic basin from the values shown here for each boxes is slightly different than the estimate given in Table 1

due to differences in the averaging method.
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Table 1. This table shows the total number of floats (Nrf ), the number of 35 days segments (Nseg), the

calculated integration time scale (Γ), the variance 〈u′2〉 and the calculated diffusivity K for the different dataset

(IABP, TOPAZ and neXtSIM) and time periods used in this study. All these Lagrangian statistics were computed

following the diffusion theory of Taylor (1921) and using L = 400 km and T = 165 days as averaging scales

to calculate the Lagrangian mean velocities

Source Period Nrf Nseg Γ(day) 〈ú2〉(km2 day−2) K103(m2s−1)

IABP 1979-2011 1406 19110 1.4 73 1.2

IABP 2007-2010 280 3720 1.1 64 0.8

TOPAZ 2007-2010 280 3720 1.5 89 1.5

neXtSIM 2007-2010 280 3720 1.3 52 0.8
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