
Reply to Referee 1:

Many thanks for your careful reading and your helpful comments and suggestions. Please find below
point-by-point replies (in black) to your comments and questions (which are reprinted in blue). To give
you an overview of all the changes in the paper, we also provide a di↵-document that highlights the
changes between the initial submission and this re-submission.

Major Comments:

1. This manuscript presents a new model that carry out inversions for the basal geothermal heat flux
from surface velocity observations. This is the first piece of work I am aware of to present such
a model, and does so very clearly. The manuscript is extremely well written and I would say it
is almost ready to be published as it is. Not being an expert in numerics I am probably not the
best person to assess the discussion in section 4, but hopefully another reviewer can analyse this
section more carefully.

We thank the reviewer for appreciating our work and the e↵ort that went into it.

The one major thing I question about this work is the applicability of it to real data. Given uncer-
tainties surrounding other parameters, could such an inversion really give us sensible predictions
for the geothermal heat flux? This question does not take away from the interest of the paper as
a mathematical exercise, but since it is for a cryospheric journal it would be good if the potential
of the model (or lack of) was discussed a bit further in this paper. To address this point I suggest
you add in a section before the conclusions about applicability of the method and future work.
You say in the first paragraph of the introduction that you want to study the prospects for, and
limitations of, inferring the geothermal heat flux form surface ice velocities, but where really is
any discussion of this? Your assessment of the ability to invert depending on length scales of
heat flux and the noise level in velocity observations is obviously very relevant but how does this
correspond to what we expect from real data?

The main point of our paper is the presentation of a (to the best of our knowledge) new formulation
for inference of the basal geothermal heat flux from velocity data, and the presentation of a scalable
algorithm for the solution of this problem. We have extended a paragraph on the applicability
of the method and the assumptions we are making on page 2. While we use model problems in
this present paper, the computational methods are designed such that they will scale to realistic
large-scale problems and work, in principle, with real data. Note that while being simple, the
model problems we use are realistic in terms of dimensions and geometry, constitutive parameters
and boundary conditions. While real world problems are without a doubt more complex and
challenging, we believe that our model problems are useful and the qualitative results regarding
the inversion of geothermal heat flux variations are relevant also for problems with real data and
geometry.

Minor Comments:

2. Abstract, lines 17-19 Long sentence. Split into two.

In the revised manuscript, we have split this sentence into two.

3. Page 6, line 15. Aren’t there some more recent estimates for geothermal heat flux in certain areas
of Antarctica? e.g. Fisher et al, 2015, Science.

We thank the reviewer for pointing out this reference. We incorporated it into our introduction.
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4. Equations 19-23 Could we have a table of variables etc to reference? Had to spend some time
going back to remind myself of what e.g. B⇤ is.

In the revised manuscript, we have added a new table (see Table 1) that lists the variables used
in the forward and adjoint problems. We have also added a description of the adjoint operator
B⇤ below Equation (25).

5. Equations 19-23 explain why some terms in blue.

Does the reviewer refer to Equation 31-34? The blue terms in these equations correspond to terms
in the Hessian expression that involve the adjoint variable, which are neglected for a Gauss-Newton
approximation of the Hessian. We explain this on page 11, lines 6-14.

6. page 15, line 5 Figure 3 referenced before Figure 2 (page 16, line 10). Swap order of figures.

We removed the first (unnecessary) reference to Figure 3 such that now they appear in the correct
order.

7. Figure 4 Legend label overlapping with surrounding box.

The legend box has been removed from both Figure 4 and Figure 5.

2



Reply to Referee 2:

Many thanks for your careful reading and your helpful comments and suggestions. Please find below
point-by-point replies (in black) to your comments and questions (which are reprinted in blue). To give
you an overview of all the changes in the paper, we also provide a di↵-document that highlights the
changes between the initial submission and this re-submission.

Major Comments:

1. This paper deals with the di�cult inverse problem of inferring the geothermal heat flux under an
ice sheet under strict assumptions of non-slip and cold basal conditions. The authors derive the
infinite-dimensional forms required for generation of a Newton’s method. The gradient and Hessian
of the proposed least-squares objective function are fully (thermomechanically) coupled, which
is an advance over work which has been done previously, which often uses so-called incomplete
adjoints. The paper explores the limiting resolution at which geothermal heat flux can be recovered
given assumptions of data density and uncertainty. Additionally, the authors explore the e↵ects
of using an operator-splitting approach for the adjoint problem.

While this paper e↵ectively makes its point regarding the numerics of the problem in question,
I don’t think that it provides enough glaciological relevance to be published in the Cryosphere
as is. Thus I propose two options: first, that the paper be resubmitted to Geoscientific Model
Development, where the paper may get the appreciation it deserves based more solely on its
mathematical merit, or second, that a substantive discussion of the possible implications that this
paper’s results might have for practical glaciology be added. Some examples of the latter might
be the addition of a section that discusses whether, given estimates of error in contemporary
remotely-sensed datasets, this method has any promise towards use on real ice masses. Obviously,
the methods presented in the paper are limited to cold conditions. Where might these assumptions
be valid? What additional factors might complicate the analysis in the real world? Furthermore,
the work presented here is done at a rather low resolution. Is this a result of computational
e�ciency, and would this be a major limiting factor with respect to inverting for heat flux in real
glaciers?

We have added some discussion on the “frozen boundary condition” on page 2 and explicitly
discuss our assumptions and the reason behind these assumptions. To the best of our knowledge,
this is the first paper to propose inferring the geothermal heat flux from flow velocity of the ice
sheet. Thus, we believe it is entirely justified to present model problem examples in order to
study sensitivities and prospects and limitations of this inverse problem. The surface velocity data
that would be used for these inversions is rather accurate (Rignot et al., Science, 2011), so it is
unlikely that this would be a limiting factor for the method. While we use model problems in
this present paper, the computational methods are designed such that they will scale to realistic
large-scale problems. The use of model problems is not a limitation of the approach but of the
current implementation. We believe that new problem formulations and methods should first be
understood and analyzed using model problems (e.g., Petra, Zhu, Stadler, Hughes & Ghattas,
Glaciology, 2012), before developing large-scale high-resolution implementations that incorporate
realistic geometries and real inversion data (e.g., Isaac, Petra, Stadler and Ghattas, JCP 2015).

2. Generally: I think the paper could benefit from some compaction, both at a small scale (e.g.
eliminating as many unnecessary subjective adverbs, such as “significantly”, as possible) and also
at a large scale (some sections read a little bit like a textbook, cf. P19 L6)
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We agree that some authors overuse subjective adverbs such as “significantly” and have elimi-
nated two occurrences and replaced one by “substantially”. With respect to the remaining three
occurrences we believe that it is important to point out that the e↵ect is in fact “significant” and
thus the use of the adverb is necessary and justified. We also made sure that no other unnecessary
subjective adverbs (e.g., “very”) are used anywhere in our paper.

We do not find P19, L6 textbook-like, since this is simply part of the problem description. Did
you intend to point to a di↵erent part of the paper?

3. P1 L13: “small wavelength” is ambiguous, consider “short-wavelength” instead.

We changed “small/large wavelength variation(s)” to “short-/long-wavelength variation(s)”.

4. P2 L2: Stokes’ equations are always “full,” else not Stokes’ equations.

We use the expression “Full Stokes” from the ISMIP-HOM benchmark (Pattyn et al. 2008) and the
book Dynamics of Ice sheets and Glaciers (Greve and Blatter 2009) to emphasis no simplication
is made to the Stokes equations for the solution. We do agree that this terminology is ice-specific
and uncommon in classical continuum mechanics, but we use it here as we believe that many
readers of “The Cryosphere” have a glaciology background.

5. P2 L2: It’s clear that the model is coupled, so the word “multiphysics” isn’t relevant (here and
elsewhere).

We have removed the term “multiphysics” on P2 and a few more times in the paper when it wasn’t
crucial. However we kept it in the discussion of issues that can arise due to the use of one-way
coupled gradients. For this discussion, the geothermal inverse problem is just one example of a
broader class of inverse problems that are governed by a multiphysics forward problem, and our
intention is highlight the possible perils of ignoring two-way coupling in the Jacobian. Thus the
use of the term “multiphysics” indicates wider applicability.

6. P2 L2-7: Consider transposing this first paragraph with the second. As it stands, the (brief)
literature review splits the problem description.

We prefer to keep the original flow of the Introduction section, because in the first paragraph we
want to provide motivation at a higher level. In that paragraph we define the problem of interest,
challenges, and goals, i.e., establish general context and importance. In the second paragraph, we
narrow down the problem, establish specific context, and discuss the relevant research literature.

7. P2 L8-18: The authors might consider addressing the importance of geothermal heat in determin-
ing whether the bed is frozen or not at a given location, which has implications for ice dynamics
(via sliding) that very likely exceed rheological e↵ects.

We now remind the reader of this dependence in that paragraph.

8. P2 L31: ill-posed is redundant in this line.

Since this is the first time in the main text of the manuscript where we say that the inverse problem
is ill-posed, we think that it is important to keep the term, especially for readers not familiar with
the characteristics of an inverse problem.

9. P2 L31: The continuous problem is also a PDE-constrained optimization problem, it’s just being
discretized. Maybe reword to make this more clear.

We reworded that sentence to make it easier to read.
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10. P2 L32: “Only hope” is a bit strong. See for example Pollard and DeConto (2011) “A sim-
ple inverse method for the distribution of basal sliding coe�cients under ice sheets, applied to
Antarctica” for a counter-example.

Our use of “only hope” here is in connection with e�cient solution. Of course if one has infinite
computing time available, one can use a non-derivative method such as simulated annealing to
solve an inverse problem; however a gradient-based method will be orders of magnitude faster.
Nevertheless, we have changed the phrase from “only hope” to “best hope.” We acknowledge
that for certain inverse problems (possibly for the problem of estimating the basal sliding co-
e�cient studied in Pollard and DeConto), ad-hoc/tuning methods can be used. However, the
parameter field updates underlying these methods often end up e↵ectively using approximate
derivative/sensitivity information; in such cases our statement is also correct. We mainly want to
emphasize that some kind of derivative information is crucial for e�cient solution.

11. P3 L5: The second sentence in the paragraph restates the first, and is not more precise.

In the second sentence we add concrete details about the kind of inversion tests we perform.
Hence, we prefer to keep both sentences.

12. P3 L13-35: These sections are a bit too hand-wavey. If the conclusions about one-way versus
two-way coupling are solely a result of the work contained herein, this discussion should not
be attempted with such depth prior to presenting evidence for said results. If this information
is generally understood and valuable as context for the work to be described herein, references
should be added.

We believe that di�culties arising in the one-way coupled approach for multiphysics inverse prob-
lems are not generally understood. In lines 21-35 we provide an intuitive discussion of the issue,
since we think is suitable for an introduction. Later in the paper, we make our statements precise
using the inverse problems studied in this paper to exemplify an inverse problem governed by a
multiphysics forward model. Our intention is to highlight that when a one-way coupled approach
to computing gradients is used, the performance of the numerical method can deteriorate or, even
worse, is not guaranteed to produce the correct solution.

13. P4 L12: The statement that “Section 7 provides concluding remarks” is not necessary.

We have removed that sentence.

14. P4 L14-18: All of this information has already been clearly stated in the introduction and may
not be necessary here.

We have removed most of the introduction to this section.

15. P4 L19: Perhaps just “ice can be modelled as” is su�cient here.

We replaced “Ice sheets and glaciers can be modeled” with “Ice can be modeled”.

16. P4 L20: “Conservation of” rather than “balance of” seem more appropriate.

“Balance of” is the correct continuum mechanics term, since in general the time rate of change
of a quantity (momentum, energy, mass) is balanced by internal and boundary sources. There
is no mass source, so the use of “conservation” is correct for that equation. However the linear
momentum and energy equations do include source terms, and thus “conservation” is not appro-
priate in those contexts. Our use of “balance of” is consistent with that of Theoretical Glaciology,
Mathematical Approaches to Geophysics by Hutter (1983).
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17. P5 L2: Is simultaneous inversion of the flow law exponent and geothermal heat flux undesirable?
If so, state as much.

It is not undesirable, since the ice rheology law is also uncertain. We replaced the “Instead” with
“However” to make it clear that we do not want to suggest that this is undesirable.

18. P5 L28: Since this is primarily a glaciology journal, rather than a mathematical one, please provide
a basic reference when talking about weak forms.

We added a reference to Hughes (2000) when first talking about the weak form and the finite
element method on page 5.

19. P7 L9: “i.e.” not necessary.

This has been removed in the revised manuscript.

20. P8 L12: Clarify that the test functions are acting as Lagrange multipliers.

We have added a statement about that in the second paragraph on page 8.

21. P8 Eq. 22: I would like to see a little bit more information about B. It is reasonably obvious how
it can be constructed (i.e. after discretization evaluating the basis functions at the locations of
the observation points). However, since the least-squares misfit isn’t integrated over �t, I fail to
see how by equating it with something that is (namely the adjoint stress) can allow the strong
form to be recovered. It seems to me that the authors are performing an additional integration of
�t that is not being shown in the paper, and I would like to see some additional specificity here.

We use pointwise observations independently from the mesh and as you observe, the operator
requires the evaluation of basis functions at points. In Eq. 22, B is the observation operator that
maps the surface velocity field to a finite number of observation points. B⇤ is the dual of B which
maps the velocity observations to the surface velocity field, i.e., given a vector w defined on the
observation points, (B⇤w, v)�t = (w,Bv) for any function v defined on �t. As a consequence,
B⇤w is a linear combination of Dirac delta functions, weighted by the components of w. After
discretization, the observation operator is denoted by the matrix B, and B⇤ = BT . We added
the definition of B⇤ to the paper.

22. P8 L30: Consider using underbraces to specify what part of the adjoint stress comes from where
(and what gets omitted when using the linearized approximation). This is interesting because it
becomes clear that there exists an additional term derived from the thermomechanically coupling
term that I have never seen considered before.

We prefer to avoid underbraces, but we added a description of the terms (including a reference to
our previous work highlighting the di↵erence) after the definition of the adjoint stress.

23. P9 L3: Throughout the work, the authors use several di↵erent notational conventions to refer to
e↵ective strain-related quantities (i.e. ~̇"II, ~̇" : ~̇", tr(~̇"2)). It would be better to use a consistent
notation throughour (I would favor either the invariant or colon notation, but not the trace
notation).

We have removed the trace notation, but for keeping expressions easy to read, we kept both the
invariant and the colon notation. The former makes the formulation of Glen’s law concise, and
the latter is also used for the scalar product between other second-order tensors.

24. P9 L22: Without stating what this new functional is, I can’t really determine if the computed
variations are correct. Even referring back to Petra (2012), I can’t tell what this Lagrangian on
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the gradient referred to in the text actually looks like. Is it only the forward and adjoint equations
imposed via new Lagrange multipliers, or is there a term to be minimized as well? It’s not clear
from the text.

The incremental equations can be computed in di↵erent ways. We changed the explanation to the
more common way to derive these equations, namely by taking second variations of the Lagrangian
(given in (17)). We have also added a reference to a textbook.

25. P10 L5: The incremental forward problem seems to also resemble the adjoint problem, particularly
in the changes to the viscosity term relative to the self-adjoint case. Is there a more compelling
reason why the forward and incremental forward problems should be more closely related than the
forward and adjoint problems?

P10 L25: Same question as above.

This really depends on the problem under consideration. The incremental equations are lineariza-
tions (and adjoints of linearizations) of the forward equation, which partly explains why they look
familiar.

26. P11 L7: Please make clearer from the outset that the content of this paragraph is paraphrased
from Petra (2012), and that a more thorough discussion of the topic is included there.

We now explicity refer to Petra et al. for more details.

27. P11 L10: Can you cite a reference showing why neglecting terms involving the adjoint variable
guarantees positive-definiteness in the Hessian? Petra (2012) did this as well, but similarly did
not cite a reason for why this should be true.

We added a reference to a paper from Bangerth (2008) to our paper. Additionally, we also point
to the book by Nocedal and Wright, who discuss the Gauss-Newton approximation for nonlinear
least squares problems.

28. P11 L29: Check out the “citet” command in bibtex to get citations that look like “Isaac et al.
(2015)”, rather than “(Isaac et al., 2015)”.

Corrected.

29. P12 L4-6: This front matter is redundant.

We disagree. A well written paper should tell the reader what to expect next and what the plan
for an upcoming section is. For example, based on a reading of this material, the reader may
decide to skip the section or come back to it later.

30. P12-13 Sec. 4.1: The specification of the finite element spaces splits the discussion about stream-
line upwinding. Consider transposing the first and second paragraphs.

We don’t see where such a split is happening. In Section 4.1 we first explain the need for
stabilization, we then define the discretized spaces needed for the SUPG-stabilized discretization
of the forward problem, and we finally close the section with a discussion of the e↵ect of the
stabilization on the optimization problem (which is then further discussed in Section 4.2).

31. P13 L20: The discussion of Galerkin vs. non-Galerkin spaces requires a reference.

In Section 4.1 (toward the end) we have added a reference to a book by Mikhlin.

32. P14 L7: This point was already stated in the previous paragraph.

We changed the explanation to avoid that duplication.
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33. P14 L13: Since the adjoint temperature isn’t used here except as a means to facilitate optimization,
is the lack of equivalency in the small mesh limit between the discrete and continuous (rather,
non SUPG) temperature all that meaningful?

The inconsistency between the discrete and continuous adjoint temperature can degrade the con-
vergence of the discrete adjoint temperature to the continuous adjoint temperature, and thus
degrade the convergence of the discrete inverse solution to the continuous inverse solution. How-
ever, this is a subtle and technical detail.

34. P14 L17: This sentence provides no information.

It does provide some information, basically saying that there is not a clear winner. We have added
a reference to Gunzburger’s book, which discusses and compares the two appraoches in some
detail in Section 2.9.

35. P14 L21-27: I’m not sure that this is true; the authors spent the previous paragraph talking about
how the advantage of OTD is that one can use stabilization terms that vanish as the residual
does, but that this creates other problems. This section would seem to suggest (wrongly) that
it is DTO that has this property. I could of course be wrong, in which case the authors might
humor me by re-writing this section more transparently.

We have made some minor modifications to this paragraph that will hopefully help to clarify this
issue.

36. P14 L32: Perhaps “We consider both a two-dimensional flowline case and a three-dimensional
map plane case” would be more clear.

We prefer to keep the “two- and three-dimensional” wording, which aligns well with the literature,
including the benchmark paper by Pattyn, Perichon, Aschwanden, et al., 2008.

37. P14 L33: s(x) is usually reserved for surface elevations in glaciological parlance, where H(x) is
reserved for ice thickness. In these examples the two appear to coincide because of the flat bed,
but this could become confusing for other examples.

We have corrected this.

38. P14 L33: Why this particular choice of geometry? There are analytical solutions that are somewhat
more realistic than a cosine, such as the Vialov profile. I don’t think it matters much with respect
to the results, but I think that the choice should be elaborated upon a little bit.

The choice of the geometry does not matter much. In reality, the ice sheet surface is irregular,
which is determined by the accumulation rate. We did not choose the Vialov profile since it is
based on the assumption that the accumulation rate is a positive constant over the entire domain,
and all the ablation is by calving at the edge.

39. P16 L5: This could be explored with a little bit more depth. Throughout the remainder of the
work it seems as though the methods presented herein are selecting overly smooth solutions. Could
this be a result of using too aggressive regularization? Additionally, � computed via Morozov’s
discrepancy principle would be di↵erent for each problem. Was it computed independently for
each example, and how did it vary? Would using a smaller value of � allow for better resolution
of the small scale variability in geothermal heat flux or is the lack of detail indeed a result of the
smoothing nature of Stokes’ flow?

For each example, we use the Morozov discrepancy criterion (Vogel, 2002) to find a (near) optimal
regularization parameter such that ku�uobsk ⇡ the noise level, where u is the solution computed
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with various regularization parameters. Indeed, choosing regularization parameters that are too
large would lead to an overly smoothed reconstruction, while a regularization parameter that is too
small for the error in the observations would result in instability in the inverse problem, manifesting
as noise in the inverse solution. We note that when G ⇡ Gtrue, the misfit is close to the noise
level. Therefore, using this criterion, we make sure to avoid fitting the data more closely than
warranted by the true solution (i.e., fitting the noise). The small-scale variations in the geothermal
heat flux, as we explain on top of page 17, cannot be recovered due to the smoothing property of
the thermo-mechanically coupled Stokes solution operator.

40. Figure 3: The chosen colormap is a little di�cult to read. Try something higher contrast.

We wanted to choose a colormap that shows cold ice in blue and tempered ice in red tones,
rather than a colormap like hsv that uses several di↵erent colors. Hence, we’d prefer keeping the
currently used colormap.

41. P17 L2: Once again, I’m not sure whether these results are showing the limits of data recoverability
or if they’re showing the choice of regularization parameter. A bit more exploration of the latter
topic would help to clear this up.

As we explain above, the regularization was carefully chosen (for each example) so that we don’t
fit the noise. This topic is further explored in the following paragraphs, where we systematically
investigate the e↵ect of the SNR on the inversion results.

42. Figure 6: I cannot tell the di↵erence between cyan and blue in this figure.

We assume you refer to the right figure, where the cyan and black solid lines coincide. We now
plot cyan on top of black and remark in the caption that the cyan line is on top of the black solid
line.

43. P19 L6: I am extremely skeptical of the capacity for a model with 2 elements (quadratic or
not) to accurately capture the vertical structure of the temperature field, particularly when said
temperatures are subject to boundary layers (as the authors noted). Is it possible that this low
vertical resolution is contributing to some of the error in the recovered solution? I suppose that
since the same model is being used to generate the surface velocities that this e↵ect would be
lessened, but then that brings up the additional issue of whether the overly simplified temperature
fields induced by the low resolution are leading to an easier job of recovering the geothermal heat
field.

As now discussed at the beginning of Section 5.1, we have compared our two-dimensional results
with results obtained on more refined meshes in the vertical direction. In particular, we have
used 8 uniformly distributed layers of quadratic elements, as well as 6 non-uniform boundary-layer
resolving layers of elements, and we found identical numerical results results.

For the three-dimensional results, we have replaced all numerical results using a finer mesh with
four quadratic elements in the vertical direction. Going from two to four elements we found that
the thermal boundary layers are resolved better. The optimal regularization parameter is the same
as when the coarser mesh was used, and the number of GN iterations stayed the same. The
upstream reconstruction is similar, but the downstream reconstruction worsened compared to the
lower-resoution model. All results reported in the revised version of the paper now use the finer
mesh. We appreciate your suggestions and comments.

We always add noise to the forward solution to generate the synthetic data. This is to lessen the
“inverse crime”.
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44. Figure 9: Add legends to (a) and (b). Also, it would be useful to see an additional plot of
the cosine of the angle between the two-way coupled descent direction and the exact gradient.
Perhaps we would see some “uphill tra�c” there as well.

We added the plot of the cosine of the angle between the search direction based on the exact
(two-way coupled) gradient and the steepest descent direction (negative exact gradient). Since
the Gauss-Newton approximation of the Hessian guarantees that the search direction is a descent
direction, as expected, this new plot does not suggest any “uphill tra�c”.

45. Appendix: Probably not necessary to include this; a reference to any numerical analysis text ought
to be fine.

We removed the Appendix section.
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Abstract. We address the inverse problem of inferring the basal geothermal heat flux from surface velocity observations using

an instantaneous thermomechanically coupled nonlinear Stokes ice flow model. This is a challenging inverse problem since

the map from basal heat flux to surface velocity observables is indirect: the heat flux is a boundary condition for the thermal

advection-diffusion equation, which couples to the nonlinear Stokes ice flow equations, which then determine the surface ice

flow velocity. This multiphysics inverse problem is formulated as a nonlinear least-squares optimization problem with a cost5

functional that includes the data misfit between surface velocity observations and model predictions. A Tikhonov regularization

term is added to render the problem well-posed. We derive adjoint-based gradient and Hessian expressions for the resulting

PDE-constrained optimization problem and propose an inexact Newton method for its solution. As a consequence of the

Petrov-Galerkin discretization of the energy equation, we show that discretization and differentiation do not commute; that

is, the order in which we discretize the cost functional and differentiate it affects the correctness of the gradient. Using two10

and three-dimensional model problems, we study the prospects for and limitations of the inference of the geothermal heat flux

field from surface velocity observations. The results show that the reconstruction improves as the noise level in the observations

decreases, and that small wavelength
:::::::::::::
short-wavelength

:
variations in the geothermal heat flux are difficult to recover. We analyze

the ill-posedness of the inverse problem as a function of the number of observations by examining the spectrum of the Hessian

of the cost functional. Motivated by the popularity of operator-split or staggered solvers for forward multiphysics problems—15

i.e., those that drop two-way coupling terms to yield a one-way coupled forward Jacobian—we study the effect on the inversion

of a one-way coupling of the adjoint energy and Stokes equations. We show that taking such a one-way coupled approach for

the adjoint equations can lead to an incorrect gradient and premature termination of optimization iterations
:
.
::::
This

::
is

:
due to

loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost functional. Nevertheless,

one may still obtain a reasonable approximate inverse solution particularly if important features of the reconstructed solution20

emerge early in optimization iterations, before the premature termination.
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1 Introduction

We consider the following multiphysics inverse problem: given surface velocity observations and a non-Newtonian full Stokes

ice sheet flow model governed by thermomechanically coupled mass, momentum, and energy equations, infer the unknown

basal geothermal heat flux field. Grid-based discretization of the basal heat flux field leads to a high-dimensional inverse

problem. The main aim of this paper is to present an efficient method for solving this large-scale coupled-physics inverse5

problem and to use model problems to study the prospects for, and limitations of, inferring the geothermal heat flux from

surface ice velocities.

Ice sheet models are characterized by unknown or uncertain parameters stemming from the lack of direct observations

of the interior and the base of the ice sheet. Unknown parameters include those that represent basal friction, basal topogra-

phy, rheology, geothermal heat flux, and ice thickness. The geothermal heat flux parameter field, in particular, has a strong10

influence on the thermal state of the ice, and hence plays a critical role in understanding the dynamics of the ice sheet

through its effect on basal and internal ice temperatures (Fahnestock et al., 2001; Maule et al., 2005; Petrunin et al., 2013).

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Fahnestock et al., 2001; Maule et al., 2005; Petrunin et al., 2013; Fisher et al., 2015).

:::
The

:::::
direct

:::::::::::
measurement

::
of

:::
the

:::::::::
geothermal

:::
heat

::::
flux

::
is

::::
only

::::::
locally

:::::::
available

:::::::::::::::::
(Fisher et al., 2015). Estimates of this parameter field have been obtained via inference using

global seismic tomographic models (Shapiro and Ritzwoller, 2004), satellite magnetic data models (Maule et al., 2005), or15

tectonic models (Pollack et al., 1993). However, these inferred basal heat flux fields do not agree with one another in large

regions. While sensitivity studies show that the resulting uncertainties in the geothermal heat flux have an impact on the ice

flow, especially in the slow flow regions (Pollard et al., 2005; Larour et al., 2012), to the best of our knowledge, inversion for

the geothermal heat flux from surface velocity observations has not been addressed previously.

When formulating the thermomechanically coupled inverse problem, we must assume an appropriate thermal regime,
::::::
which20

:::::::
depends

:::::::
critically

:::
on

:::
the

:::::::::
geothermal

::::
heat

::::
flux. Ice sheets and glaciers can be in one of the following four thermal states: (1)

all of the ice is below the melting point; (2) the melting point is reached only at the bed; (3) a basal layer of finite thickness

is at melting point; or (4) all of the ice is at the melting point except for a surface layer (Paterson, 1994, p. 205). While in the

first case, the thermal basal boundary condition is simply characterized by the geothermal heat flux, in the other three cases,

this condition must be modified to include the heat generated by friction at the base and to account for melting. Due to the25

unknown basal state of the ice, these latter three cases lead to more complex inverse problems, which .
::::::
These

::::::
inverse

::::::::
problems

typically involve variational inequalities in the forward problem . To make the inverse problem tractable, here
::::
since

:::
the

:::::::
thermal

::::::
regime

:::::::
depends

::
on

:::
the

::::::::::
geothermal

::::
heat

::::
flux.

:::::
Here,

:
we assume that all of the ice is below the melting point. We also

::
In

:::
the

:::::
model

::::::::
problems

::::::
studied

::
in

::::
this

:::::
paper

::
we

::::::
ensure

::::
this

::
by

::::::::
providing

::
a

::::::::
moderate

:::::
(about

:::
the

:::::::
average

::
of

:::
the

:::::::::
geothermal

::::
heat

::::
flux

::
at

::
the

:::::
base

::
of

:::::::::
Antarctica)

::::::::::
geothermal

::::
heat

::::
flux.

::
In

:::::::
addition,

:::
we

:
assume the ice flow is in a steady state.

::::
These

:::::::::::
assumptions

:::::
result30

::
in

:
a
:::::::
tractable

::::::
inverse

::::::::
problem

:::
that

::::::
allows

::
us

::
to

:::::
study

:::
the

::::::::
sensitivity

:::
of

:::
the

::
ice

::::
flow

:::::::
velocity

::::
with

::::::
respect

::
to
:::
the

::::::::::
geothermal

::::
heat

:::
flux

::::
and

:::
thus

:::
the

::::::::::::
characteristics

::
of

:::
the

::::::
inverse

::::::::
problem.

:

The inverse problem is formulated as a regularized nonlinear least squares minimization problem governed by thermome-

chanically coupled nonlinear Stokes and thermal advection-diffusion equations. The cost functional we minimize represents

2



the sum of the squared differences between observed and predicted surface velocities and a regularization term that renders

this ill-posed inverse problem well-posed. Discretizing the infinite-dimensional geothermal heat flux field
:::
and

:::
the

:::::::::
governing

:::::
PDEs leads to a large-scale PDE-constrained numerical optimization problem; as such, derivative-based optimization meth-

ods offer the only
:::
best

:
hope for its efficient solution (Gunzburger, 2003; Hinze et al., 2009; Borzì and Schulz, 2012; De los

Reyes, 2015). In Petra et al. (2012), we presented an infinite-dimensional adjoint-based inexact Gauss-Newton method for the5

inference of basal friction and rheology parameters from surface velocity observations and a nonlinear Stokes model of ice

sheet flow. Here, we extend our previous work to the present inverse problem of inferring the geothermal heat flux in a ther-

momechanically coupled ice flow model. This problem also serves as a prototype for a broader class of multiphysics inverse

problems.

We systematically study how well finite-amplitude variations of the geothermal heat flux can be recovered from noisy10

surface velocity observations. To be precise, we invert for geothermal heat flux fields that contain large and small wavelength

::::::::::::::
short-wavelength

:
variations using velocity observations with various degrees of error. Our results show that the quality of

the reconstructed geothermal heat flux deteriorates with smaller wavelength
:::::::::::::::
shorter-wavelength

:
variations and with increasing

noise level in the observations. In addition, we study the influence of the number of observations and find that the reconstruction

improves as the number of observation points increases, provided the discretization of the model equations is sufficiently fine to15

capture the additional information from a larger number of observations. To analyze prospects and limitations of the inversion,

we also investigate the spectrum of the Hessian of the data misfit part of the cost functional, which provides information about

directions in parameter space that can be recovered from observations.

A common approach to the numerical solution of multiphysics problems uses operator splitting; namely, motivated by the

difficulty of either solving a two-way coupled system, or else by the difficulty of computing the Jacobian of a coupling term,20

one discards certain coupling terms in the Jacobian of the forward problem to reduce the two-way coupled problem to one

that is coupled in one direction. The coupled problem is then solved by iterating back-and-forth between the solution of single

physics components. This approach, which we term “one-way coupled,” can often yield convergence to the solution of the fully

coupled multiphysics problem, depending on the spectral radius of a certain iteration matrix. The one-way coupled approach

has been used successfully for the solution of thermomechanically coupled ice sheet forward problems in Dahl-Jensen (1989);25

Hvidberg (1996); Price et al. (2007); Zwinger et al. (2007); Zhang et al. (2011).

However, when solving the corresponding multiphysics inverse problem using gradient-based methods, the use of such a

one-way coupled approach may be problematic. In particular, sacrificing coupling terms in the Jacobian (while often acceptable

for the forward problem) will lead to an incorrect adjoint operator, since this operator is given by the transpose of the Jacobian.

This approximate adjoint operator leads to an incorrect adjoint solution, which then leads to an incorrect gradient. Since the30

necessary optimality condition for the inverse problem states that the gradient must vanish, an incorrect gradient leads to the

wrong solution of the inverse problem. Moreover, since line search methods require descent on the cost functional in a direction

based on the gradient, the inconsistency between the cost functional and its gradient can lead to failure of the line search and

thus lack of convergence. Thus, sacrificing coupling terms as is commonly done for the forward problem may not lead to

convergent inverse iterations, and if the inverse iterations do converge, they will converge to the wrong inverse solution.35
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In general, how much of a difference this will make to the solution of the inverse problem will depend on the strength of the

coupling terms that have been neglected in the adjoint problem. In particular, despite a gradient that has been computed from an

incorrect adjoint equation, and early termination of optimization iterations, one might still obtain a reasonable approximation of

the correct inverse solution. To illustrate these issues in the context of a thermomechanically coupled ice sheet inverse problem,

we neglect certain coupling terms in the Jacobian (as might be done in a forward solver), leading to an incorrect adjoint operator.5

We then compare inversion results obtained using an approximate gradient based on a one-way coupled adjoint operator—to

which we refer as a “one-way coupled gradient”—with inversions that use the correct gradient (i.e., based on the fully-coupled

adjoint). The results indicate that using this one-way coupled gradient instead of the correct gradient leads to a deterioration in

the convergence rate of the inverse solver and eventual failure of the line search, but that the resulting inverse solution for the

geothermal flux does not differ substantially from the correct inverse solution.10

The remaining sections of this paper are organized as follows. In Section 2, we describe the forward ice sheet problem and

the corresponding inverse problem for the geothermal heat flux. In Section 3, we give expressions for the adjoint-based gradient

and action of the Hessian of the cost functional. Then, in Section 4 we present the discretization of the forward problem, which

involves a stabilization technique applied to prevent oscillatory solutions when the heat equation is advection-dominated, and

discuss the optimize-then-discretize and discretize-then-optimize approaches for computing the gradient of the cost functional.15

In Section 5, we present inversion results for two- and three-dimensional model problems and in Section 6 we discuss the

fully coupled versus one-way coupled approaches to computing the gradient for thermomechanically coupled ice sheet inverse

problem. Finally, Section 7 provides concluding remarks.

2 Formulation of the inverse problem

In this section, we state the multiphysics forward problem describing the thermomechanically coupled dynamics of ice flow20

and formulate an inverse problem , in which we seek
::
We

::::
first

::::
state

:::
the

:::::::
forward

:::
and

::::
then

::::::::
formulate

:::
the

::::::
inverse

:::::::
problem

:
to infer

the unknown geothermal heat flux at the base of a moving mass of ice from pointwise velocity observationsat its top surface.

The inverse problem is formulated as a minimization problem with a least squares data misfit cost functional.
::::
from

:::::::
surface

::::::
velocity

:::::::::::
observations.

:

2.1 The forward problem25

Ice sheets and glaciers can be modeled as viscous, incompressible, non-Newtonian, heat-conducting fluids. Assuming the mass

of ice occupying a domain ⌦ is in steady state, the balance of mass, linear momentum, and energy state that (Hutter, 1983)

r ·u= 0, (1)

�r ·�u = ⇢g, (2)

⇢cu ·r✓�r · (Kr✓) = 2⌘ tr( ˙"u
2

):

˙

"u
:
, (3)30
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where u is the velocity field, ✓ the temperature field, �u the stress tensor, ⇢ the density, g the acceleration of gravity, c the

specific heat capacity, and K the thermal conductivity. The stress, �u, can be decomposed as �u = ⌧u � Ip, where ⌧u is the

deviatoric stress tensor, p the pressure, and I the second-order unit tensor. A commonly employed isotropic constitutive law is

Glen’s flow law (Glen, 1955),

⌧u = 2⌘(u,✓) ˙"u, with ⌘(u,✓) :=
1

2

A(✓)�
1
n
˙

"

1�n
2n

II

, (4)5

where ⌘(u,✓) is the effective viscosity, ˙"u :=

1

2

(ru+ru

T

) the strain rate tensor, ˙"
II

:=

1

2

tr(

˙

"

2

u):::::::::::::
˙

"

II

:=

1

2

˙

"u :

˙

"u the second

invariant of the strain rate tensor,
::::
where

:::
‘:’

:::::::
denotes

:::
the

:::::
scalar

:::::::
product

:::::::
between

:::::::::::
second-order

:::::::
tensors,

:
and n Glen’s flow law

exponent. Here, A depends on the ice temperature according to the Arrhenius relation A(✓) =A
0

exp

⇣
� Q

R✓

⌘
, where Q is

the activation energy, R Boltzmann’s constant, and A
0

a pre-exponential constant (Paterson, 1994). The appropriate value of

Glen’s flow law exponent n has been a matter of debate; one could invert for it as a spatial field from surface velocities (Petra10

et al., 2012). Instead
:::::::
However, here we use the constant value n= 3, which is typically used in glaciology (Paterson, 1994;

Van der Veen, 2013). To avoid singularities in Glen’s flow law, we add a small positive number ✏ to ˙

"

II

in (4), such that the

modified viscosity

⌘(u,✓) :=
1

2

A(✓)�
1
n
(

˙

"

II

+ ✏)
1�n
2n (5)

is bounded from below (Hutter, 1983; Jouvet and Rappaz, 2012).15

The energy equation (3) is an advection-diffusion equation for the temperature field with a strain heating term on the right

hand side. Note that the Stokes system (1, 2) and the energy equation (3) are two-way coupled: the velocity governed by the

Stokes equations is the advection velocity in the energy equation and it additionally enters through the strain heating term on

the right side of (3). In the opposite direction, the temperature enters in the Stokes equations through the viscosity term given

in (4) and thus affects the flow field.20

The domain ⌦ is taken as a two- or three-dimensional ice slab with the following boundary conditions. On the top surface,

�

t

, we impose a traction-free boundary condition for the momentum equation and an imposed temperature for the energy

equation. At the base of the ice sheet, �
b

, we assume that the ice is below the pressure melting point and frozen to the bedrock.

Hence, the boundary conditions are no-slip conditions for the momentum equation and thermal flux conditions for the energy

equation representing the flux of geothermal heat into the ice from below (Greve and Blatter, 2009). Additional conditions for25

the lateral boundaries for the model problems used in our study are specified in Section 5.
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In summary, the forward problem is given by

r ·u= 0 in ⌦, (6)

�r ·�u = ⇢g in ⌦, (7)

⇢cu ·r✓�r · (Kr✓) = 2⌘ tr( ˙"u
2

):

˙

"u
:

in ⌦, (8)

�un= 0, ✓ = ✓
s

on �

t

, (9)5

u= 0, Kr✓ ·n=G on �

b

, (10)

+ additional lateral B.C.s,

where n is the outward unit normal vector on �

t

or �

b

, ✓
s

is the prescribed temperature at the top surface, and G is the

geothermal heat flux, and the expressions for the stress �u have been given previously.

Next, we present a weak form of the forward problem (6)–(10), which serves as the basis for the finite element discretization10

of these equations
:::::::::::::
(Hughes, 2000), and is also used in the Lagrangian functional in Section 3. This weak form is found by

multiplying the Stokes system (1, 2) and the energy equation (3) by test functions, integrating over ⌦, integrating by parts

where appropriate and adding up the three weak equations. The weak form of the forward problem (6)–(10) is thus: Find

(u,p,✓) 2 U ⇥P ⇥ T such that

a(u,p,✓; ˆv, q̂, ˆ�) = h⇢g, ˆvi
⌦

+ hG, ˆ�i
�b , (11)15

for all test functions (ˆv, q̂, ˆ�) 2 U ⇥P ⇥ T
0

, where

a(u,p,✓; ˆv, q̂, ˆ�) =

Z

⌦

(2⌘(u,✓) ˙"u :

˙

"

ˆv � pr · ˆv� q̂r ·u)dx+

Z

⌦

(⇢cˆ�u ·r✓+Kr✓ ·rˆ�)dx�
Z

⌦

(2

ˆ�⌘(u,✓) ˙"u :

˙

"u)dx,

and

h⇢g, ˆvi
⌦

=

Z

⌦

⇢g · ˆvdx, and hG, ˆ�i
�b =

Z

�b

ˆ�Gds.

Here, ˙"
ˆv is the strain rate tensor based on ˆ

v, and ‘:’ denotes the scalar product between second-order tensors. The spaces in the20

above equations are defined as

U = {u : ⌦! Rd

��
u|

�b = 0},
P = {p : ⌦! R},
T = {✓ : ⌦! R

�� ✓|
�t = ✓

s

},
T
0

= {ˆ� : ⌦! R
�� ˆ�|

�t = 0},
Q = {G : �

b

! R},

(12)

where all functions are assumed to be sufficiently regular for the weak form (11) to be well defined. In the next section, we

formulate an inverse problem to infer the unknown geothermal heat flux G present in the basal boundary conditions from

surface velocity observations.25
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2.2 The inverse problem

The geothermal heat flux field G(x) is, in general, not directly observable and thus uncertain. For instance, the current estimates

for G(x) in Antarctica differ significantly (Shapiro and Ritzwoller, 2004; Maule et al., 2005). Therefore, our goal is to infer

this field from available surface ice velocity observations by exploiting the temperature dependence of the flow, which enters

through the dependence of the viscosity on the ice temperature. The inverse problem is formulated as follows: Given (possibly5

noisy) pointwise observations of the ice surface velocity, uobs, we wish to infer the geothermal heat flux field G(x) at the base

of the ice sheet that best reproduces the observed velocity via the coupled thermomechanics ice flow model (6)–(10). This can

be formulated as the following nonlinear least squares optimization problem,

min

G2Q
J (G) :=

1

2

kBu(G)�u

obsk2 +R(G), (13)

where the dependence of the velocity u on the geothermal heat flux G is given by the solution of the coupled thermomechanics10

ice flow model (6)–(10), and B is an observation operator that maps the surface velocity field to velocity observations at a set

of observation points on �

t

.

The first term in the cost functional J (G) is the data misfit that represents the error between the observed velocity field u

obs

and that predicted by the thermomechanics ice flow model, u. The regularization term R(G) imposes regularity on the inversion

field, such as smoothness. Often, this reflects prior knowledge on the model parameters. In the absence of regularization, the15

inverse problem is ill-posed; in particular, the solution is not unique in that many model parameter fields may be consistent

with the data to within the observational noise, and thus the solution is highly sensitive to errors in the observations (Engl

et al., 1996; Vogel, 2002). For instance, as will be discussed in Section 5, small wavelength
:::::::::::::
short-wavelength

:
components in

the geothermal heat flux cannot be identified from surface observations, and thus have to be constrained by the regularization.

Here we apply a gradient-type Tikhonov regularization, i.e.,20

R(G) :=

�

2

Z

�b

|TrG|2 ds, (14)

where T := I �n⌦n is the tangential operator, “⌦” represents the tensor (or outer) product, and I is the second-order unit

tensor. This regularization imposes a greater penalty on more oscillatory components of G, and, thus, smoothly varying fields

are preferred in the inversion of the geothermal heat flux. The regularization parameter � > 0 controls the strength of the

imposed smoothness relative to the data misfit.25

3 Solution of the inverse problem via an adjoint-based inexact Newton method

To compute the minimizer for the large-scale optimization problem (13), we employ a derivative-based descent method and

thus require derivatives of the nonlinear least squares optimization problem (13) with respect to the parameter G. To improve

over linearly-convergent methods (such as nonlinear conjugate gradients) or superlinearly-convergent methods (such as limited

memory BFGS), here we advocate a Newton method, which employs Hessian information (i.e., second derivatives) to provide30
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an (asymptotic) quadratic convergence rate. Moreover, typically Newton’s method converges in a number of iterations that is

independent of the parameter dimension/mesh size, which is typically not true of gradient-only methods (Petra et al., 2012).

Beyond the faster convergence, in our experience the use of Hessian information for highly nonlinear inverse problems such

as those involving ice sheet models is typically able to obtain another one or two orders of magnitude reduction in the norm of

the gradient, leading to the extraction of additional details in the reconstructed parameter field.5

Starting with an initial guess for the parameter field G, Newton’s method iteratively updates the parameter field based on

minimizing a sequence of quadratic approximations of the cost functional, J , using gradient and Hessian information of J
with respect to G. That is, the parameter is updated by

Gnew =G+↵ ˜G, (15)

where G is the current model parameter field, ↵ is the step length, appropriately chosen so that the cost functional J is10

sufficiently decreased at each iteration, and ˜G is the direction which is obtained by solving the linear system

H(G)(

˜G) =�G(G). (16)

Here, G(G) and H(G) denote the gradient and the Hessian of the least squares cost functional J , respectively, evaluated at the

current parameter field G.

In this section, we provide expressions for the gradient G(G) and Hessian H(G). For the efficient computation of gradient15

and Hessian operators, we employ adjoint methods (see, for example, (Gunzburger, 2003; Tröltzsch, 2010; Borzì and Schulz,

2012)). All expressions in this section are given in infinite-dimensional form, which has several advantages compared to

discretizing the optimization problem first and then differentiating. First, one avoids differentiating through artifacts of the

discretization or solver, which may not even be differentiable. Second, it is much easier and “cleaner” to derive gradient

and Hessian information at the infinite-dimensional level. Third, the resulting expressions are in weak form, which provides20

a natural and systematic path to discretization by Galerkin finite elements. The downside to differentiating at the infinite-

dimensional level is that the resulting gradient and Hessian expressions may not be “consistent.” These issues will be discussed

in the next section.

In what follows, we use the formal Lagrange approach, which computes the gradient by taking variations of a Lagrangian

functional. The Lagrangian functional L combines the cost functional (13) with the weak form (11) of the forward problem,25

with test functions ˆ

v, q̂ and ˆ�becoming
:
.
:::::
These

::::
test

::::::::
functions

::
act

:::
as

::::::::
Lagrange

:::::::::
multipliers

::::
and

::::::
become

:
the adjoint velocity v,

adjoint pressure q, and adjoint temperature �:

L(u,p,✓; v, q,�; G) := J (G)+ a(u,p,✓;v, q,�)�h⇢g,vi
⌦

�hG,�i
�b . (17)

The gradient of J with respect to the unknown heat flux G is found by requiring that variations of the Lagrangian L with

respect to the forward and adjoint variables vanish. The gradient G(G) is then found by taking the variation of L with respect30

to G. In strong form, the gradient evaluated at G, G(G), is then given by:

G(G) :=

8
<

:
�r · (�TrG)�� on �

b

,

(�TrG) ·n on @�
b

,
(18)
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where n is the outer normal vector on @�
b

. Variations of L with respect to the adjoint variables (v, q, �) simply recover the

forward problem. On the other hand, variations of L with respect to the forward variables (u, p, ✓) yield the so-called adjoint

problem, which is given in strong form by

r ·v = 0 in ⌦, (19)

�r ·�v =�⇢c�r✓ in ⌦, (20)5

�⇢cu ·r��r · (Kr�) = F
�

in ⌦, (21)

�= 0, �vn= B⇤
(u

obs �Bu) on �

t

, (22)

v = 0, Kr� ·n= 0 on �

b

, (23)

+ additional lateral B.C.s.

::::
Here,

::::
B⇤

::
is

:::
the

::::::
adjoint

::
of

::::
the

::::::::::
observation

:::::::
operator,

::::::
which

:::::
maps

:::::
point

::::::::::
observations

:::
on

:::
�

t ::
to

:
a
::::::::

function.
:::

In
::::::::
particular,

::
if
:::
B10

::::::::::
corresponds

::
to

:::
the

::::::::
evaluation

::
of

::
a
:::::::::
sufficiently

:::::::
smooth

:::::::
function

::
at

:::::
points,

:::
the

::::::
adjoint

:::
B⇤

:::::
maps

:
a
:::::::::::::::
finite-dimensional

::::::
vector

::
to

:::
the

:::
sum

::
of
:::::
Dirac

:::::
delta

::::::::
functions

::::::::::::
corresponding

::
to

::::
these

::::::
points,

::::::::
weighted

::
by

:::
the

:::::
input

::::::
vector. The adjoint stress �v in (20) depends

on the forward velocity u and the temperature ✓, and is given by

�v := 2⌘(u,✓)
⇥�
I+

1�n

2n

˙

"u ⌦ ˙

"u

˙

"

II

+ ✏

�
˙

"v � 1+n

n
� ˙"u

⇤� Iq,

where ˙

"v is the adjoint strain rate tensor and is given by 1

2

(rv+rv

T

), I is the fourth-order identity tensor, and “⌦” rep-15

resents the tensor (or outer) product between second-order tensors.
::::
Note

::::
that

:::
�v ::::::::

coincides
::::
with

::::
the

::::::
adjoint

:::::
stress

:::::::
derived

::
by

::::::::::::::::::
Petra et al. (2012) for

:::
the

:::::::::
isothermal

:::::
Stokes

:::::::
model,

:::::
except

:::
the

::::
term

:::::::::::
proportional

::
to

:::
the

::::::
adjoint

::::::::::
temperature

::
�,

::::::
which

:::::
arises

:::
due

::
to

:::
the

:::::
strain

::::::
heating

::::
term

:::
on

:::
the

::::
right

::::
hand

::::
side

::
of

:
(8)

:
. The right hand side in the adjoint energy equation (21) is given by

F
�

:=� 2Q⌘

nR✓2
(� ˙"u :

˙

"u � ˙

"u :

˙

"v).

As can be seen from (19)–(23), the adjoint problem is driven by the misfit between observed and predicted surface velocity on20

the top boundary, i.e., B⇤
(u

obs �Bu). Since the observations are of ice velocity on the top surface �

t

, the data misfit shows

up in the adjoint problem as a source term for the Neumann boundary condition on �

t

, (22). Observations in the interior of

⌦ would amount to a similar contribution on the right hand side of (20). Since the adjoint equation depends on (u,p,✓), each

gradient computation also requires the solution of the forward problem (6)–(10). Solution of the adjoint problem (19)–(23)

provides the adjoint temperature � needed to evaluate the gradient in (18).25

Now that the computation of the gradient, which forms the right-hand side of the Newton system (16) has been described,

we present the computation of the Hessian operator, H, on the left-hand side of the Newton system. We note that explicitly

forming and storing the Hessian matrix resulting upon discretization is not an option, since computing each column would

require at least a linearized forward solve. Instead, we solve the Newton system (16) using the linear conjugate gradient (CG)

method, which does not require the explicit Hessian, but only the action of the Hessian on a vector at each CG iteration. We30

next present expressions for this Hessian action on vectors in terms of the solution of a pair of linearized forward and adjoint
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problems. These expressions are simply stated here; an analogous derivation, for the isothermal case, is presented in (Petra

et al., 2012). The action of the Hessian operator in a given CG direction ˜G, evaluated at the current iterate, G, can be expressed

in strong form as

H(G)(

˜G) :=

8
<

:
�r · (�Tr ˜G)� ˜� on �

b

,

(�Tr ˜G) ·n on @�
b

.
(24)

Beyond the forward and adjoint equations that must be solved to evaluate the gradient, the Hessian action requires two addi-5

tional forward-like equations: the incremental forward and incremental adjoint equations. These can be derived by constructing

a new Lagrangian for the gradient, which imposes both the forward and adjoint equations as constraints, and taking variations

with respect to the Lagrange multipliers that enforce these equations.
::::
using

:::::::
second

:::::::::
derivatives

::
of

:::
the

::::::::::
Lagrangian

:::::::::
functional

:::::::::::::::::::::
(Borzì and Schulz, 2012). The resulting incremental forward problem, which is to be solved for the incremental forward ve-

locity, pressure, and temperature variables, (˜u, p̃, ˜✓), is given by10

r · ˜u= 0 in ⌦, (25)

�r ·�
˜u = 0 in ⌦, (26)

⇢cu ·r˜✓�r · (Kr˜✓) = F
˜

✓

in ⌦, (27)

˜✓ = 0, �
˜un= 0 on �

t

, (28)

˜

u= 0, Kr˜✓ ·n=

˜G on �

b

, (29)15

+ additional lateral B.C.s.

with

�

˜u := 2⌘(u,✓)

✓
I+

1�n

2n

˙

"u ⌦ ˙

"u

˙

"

II

+ ✏

◆
˙

"

˜u � Q

nR✓2
˜✓ ˙"u

�
� I p̃,

F
˜

✓

:=�⇢c˜u ·r✓+2⌘

✓
1+n

n
˙

"u :

˙

"

˜u � Q

nR✓2
˜✓ ˙"u :

˙

"u

◆
.20

Note that the incremental forward problem (25)–(29) resembles the forward problem, and in fact corresponds to a linearized

(with respect to all variables) version of it. Both the operator and the right hand side depend on the forward variables (u,p,✓),

and the right hand side also depends on the CG direction ˜G.

10



The resulting incremental adjoint problem, to be solved for the incremental adjoint velocity, pressure, and temperature

(˜v, q̃, ˜�), is then given by

r · ˜v = 0 in ⌦, (30)

�r ·�
˜v + ⇢c˜�r✓ =r · ⌧v � ⇢c�r˜✓ in ⌦, (31)

�⇢cu ·r˜��r · (Kr˜�) = F
˜

�

+

ˆF in ⌦, (32)5

˜�= 0, �
˜vn=�B⇤B˜

u�⌧vn on �

t

, (33)

˜

v = 0, Kr˜� ·n= 0 on �

b

, (34)

+ additional lateral B.C.s.

with

�

˜v := 2⌘(u,✓)

✓
I+

1�n

2n

˙

"u ⌦ ˙

"u

˙

"

II

+ ✏

◆
˙

"

˜v � 1+n

n
˜� ˙"u

�
� I q̃,10

⌧v := 2⌘(u,✓)


1�n

2n

✓
˙

"u :

˙

"v

˙

"

II

+ ✏
I+

˙

"u ⌦ ˙

"v + ˙

"v ⌦ ˙

"u

˙

"

II

+ ✏

◆
˙

"

˜u +

1�n

2n

1� 3n

2n

(

˙

"u :

˙

"v)( ˙"u ⌦ ˙

"u)

(

˙

"

II

+ ✏)2
˙

"

˜u

�1+n

n
�

✓
I+

1�n

2n

˙

"u ⌦ ˙

"u

˙

"

II

+ ✏

◆
˙

"

˜u +

Q

nR✓2
˜✓

✓
1+n

n
� ˙"u �

✓
I+

1�n

2n

˙

"u ⌦ ˙

"u

˙

"

II

+ ✏

◆
˙

"v

◆�
,

F
˜

�

:=

Q

nR✓2
⌘(u,✓)

�
˙

"u :

˙

"

˜v � ˜� ˙"u :

˙

"u

�
,

15

ˆF := ⇢c˜u ·r�+

Q⌘(u,✓)

nR✓2
˙

"

˜u :

˙

"v +
Q⌘(u,✓)

nR✓2

✓
1�n

2n

˙

"u :

˙

"

˜u

˙

"

II

+ ✏
˙

"u :

˙

"v � 1+n

n
� ˙"u :

˙

"

˜u

◆

�2Q˜✓⌘(u,✓)

nR✓2

✓
Q

nR✓2
+

2

✓2

◆
(

˙

"u :

˙

"v �� ˙"u :

˙

"u) .

Note that the incremental adjoint problem (30)–(34) resembles the adjoint problem and is in fact its linearization with respect

to the forward and adjoint variables and the unknown geothermal heat flux. Its operator depends on the forward variables only

(as does the incremental forward operator), while its right hand side source terms depend on not just the forward variables (as20

does the incremental forward problem), but on the adjoint and incremental forward variables as well.

In conclusion, to evaluate the expression for the gradient (18) for a given value of the geothermal heat flux G, we first solve

the forward problem (6)–(10), followed by the adjoint problem (19)–(23) (given the forward solution). To then evaluate the

Hessian action (24) in a given direction ˜G at each CG iteration, we solve the incremental forward problem (25)–(29) (given

the forward solution), and then solve the incremental adjoint equation (30)–(34) (given the forward, adjoint, and incremental25

forward solutions).

It is well known that the Newton update direction computed by solving (16) is a descent direction only if the Hessian is

positive definite, which is only guaranteed close to a minimizer (Nocedal and Wright, 2006). As in (Petra et al., 2012), the
:::
The

11



remedy we apply here
:::
(for

:::::
more

::::::
details,

:::
see

::::::::::::::::::::::::::::::
Petra et al. (2012); Bangerth (2008)) is to neglect terms in the Hessian expression

that involve the adjoint variable, that is, the terms highlighted in blue in (31)–(33). This leads to the so-called Gauss-Newton

approximation of the Hessian
::::::::::::::::::::::
(Nocedal and Wright, 2006), which (with appropriate regularization) is guaranteed to be positive

definite. Moreover, since accurate solution of the Newton system (16) is needed only close to the minimum of the regularized

data misfit functional J , we terminate the CG iterations early for iterates that are far from the converged solution. This so-5

called inexact Newton method terminates the CG iterations when the norm of the residual of the linear system (16) drops below

a tolerance that is proportional to the norm of the gradient, i.e.,
:
we terminate at CG iteration i when

kH(G)(

˜Gi

)+G(G)k  �kG(G)k,

where the so-called forcing term � itself can depend on kG(G)k. Far from the minimum—when the relative gradient is large—

the tolerance is also large, and the CG iterations are terminated early to prevent oversolving. As the minimum is approached,10

the norm of the gradient decreases, thereby enforcing an increasingly more accurate solution of the Newton system (16). The

criterion above is often able to significantly reduce the overall number of CG iterations—and thus the required number of

incremental forward/adjoint solves—while still maintaining fast local convergence. When � is taken as the order of square root

of the gradient, the inexact Newton method retains superlinear convergence (Eisenstat and Walker, 1996).

It is critical that the total number of CG iterations be as small as possible, since as mentioned above, each iteration re-15

quires a pair of forward/adjoint incremental problem solves. Despite the significant reduction in overall number of CG iter-

ations provided by inexact solution of the Newton step, the number can still be large if a good preconditioner is not used.

An effective preconditioner is simply the inverse of the regularization operator, which amounts to a Laplacian solve on the

basal surface. This is because the Hessian of the data misfit operator, like many ill-posed infinite-dimensional inverse oper-

ators, has eigenvalues that decay to zero; preconditioning by an inverse Laplacian simply increases the rate of decay. Thus20

the resulting preconditioned Hessian behaves like a compact perturbation of the identity with smooth dominant eigenfunc-

tions, for which CG converges rapidly and in a number of iterations that is independent of the mesh size; see, for example,

(Isaac et al., 2015)
::::::::::::::
Isaac et al. (2015). This is the preconditioner we use in the numerical examples below.

Once a descent direction is computed by inexact solution of the Newton step equation (16), we must guarantee that sufficient

decrease in J is obtained in that direction so that convergence of the iterations can be assured. This is achieved by a line search25

that finds a step size ↵ satisfying the so-called Armijo condition (Nocedal and Wright, 2006), which has the attractive property

that it requires only cost functional evaluations, and not gradient information. The Newton iterations are repeated until the

norm of the gradient of J is sufficiently small. The inexact Newton method is summarized in Algorithm 1, in which we use

µ= 0.5 and ⌫ = 10

�4 for the line search.

4 Discretization30

In this section, we describe the discretization of the forward and the inverse problems and discuss a stabilization technique

required to avoid oscillations for advection-dominated problems. We compare two approaches for computating the gradient of

the cost functional, namely the optimize-then-discretize (OTD) and the discretize-then-optimize (DTO) approaches.

12



Algorithm 1 ADJOINT-BASED INEXACT NEWTON

Initialize/define variables G
1

, ↵, µ, ⌫, "tol

for k = 1, . . . do

(u
k

,p
k

,✓
k

) solve the forward equation with G
k

(v
k

, q
k

,�
k

) solve the adjoint equation with (u
k

,✓
k

)

G
k

 compute the discrete gradient

if ||G
k

||< "tol then

converged

end if

Perform preconditioned inexact CG iterations for solving H
k

˜G
k

=�G
k

to compute ˜G
k

(each iteration requires solution of a pair of

incremental forward/adjoint problems)

↵ 1, descent = 0

while descent = 0 do

G
k+1

 G
k

+↵ ˜G
k

Solve the forward equation with G
k+1

if J (G
k+1

) J (G
k

)+ ⌫↵hG
k

, ˜G
k

i
�b then

descent = 1

else

↵ µ↵

end if

end while

end for

4.1 Discretization of the forward problem and SUPG stabilization

For advection-dominated problems, the standard Galerkin finite element method applied to the energy equation (3) can result in

strongly oscillatory solutions, unless the mesh size is less than 2K/(⇢c|u|), which results in a smaller critical mesh size as the

Peclet number increases. To avoid this onerous mesh size restriction for high Peclet flows, we discretize (3) with the Streamline

Upwind Petrov-Galerkin (SUPG) method (Brooks and Hughes, 1982), which suppresses oscillations on coarser meshes. The5

SUPG method adds a stabilization term to the standard Galerkin weak form. This term involves the element residual and thus

vanishes at the exact solution, so preserving the correct solution of the energy equation in the limit of infinitesimal mesh size.

We use quadratic elements for temperature, and the Taylor-Hood element pair for velocity and pressure (quadratic elements

for velocity and linear elements for pressure). We let ⌦0
= {⌦

e

} be a family of quadrilateral elements of ⌦, denoting by Q
1

(⌦

e

)

bilinear or trilinear functions (in R2 and R3, respectively) and by Q
2

(⌦

e

) biquadratic or triquadratic functions (in R2 and R3,10
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respectively) defined on ⌦

e

. The discretized spaces are then given by:

Uh

= {uh 2 U : u

h|
⌦e 2Q

2

(⌦

e

)

d 8 ⌦

e

2 ⌦

0},
Ph

= {ph 2 P : Ph|
⌦e 2Q

1

(⌦

e

)8⌦
e

2 ⌦

0},
T h

= {✓h 2 T : ✓h|
⌦e 2Q

2

(⌦

e

) 8 ⌦

e

2 ⌦

0},
T h

0

= {ˆ�h 2 T
0

:

ˆ�h|
⌦e 2Q

2

(⌦

e

) 8 ⌦

e

2 ⌦

0},
Qh

= {Gh 2Q :Gh|
⌦e 2Q

1

(⌦

e

) 8 ⌦

e

2 ⌦

0}.

(35)

The SUPG-stabilized discretization of (11) is thus as follows: Find (u

h,ph,✓h) 2 Uh ⇥Ph ⇥ T h such that

a
s

(u

h,ph,✓h; ˆvh, q̂h, ˆ�h

) = h⇢g, ˆvhi
⌦

+ hGh, ˆ�hi
�b (36)

for all (ˆvh, q̂h, ˆ�h

) 2 Uh ⇥Ph ⇥ T h

0

, where5

a
s

(u

h,ph,✓h; ˆvh, q̂h, ˆ�h

) = a(uh,ph,✓h; ˆvh, q̂h, ˆ�h

)+

X

e

h⌧
e

⇢cuh ·rˆ�h, R
✓

i
⌦e , (37)

with the residual R
✓

of the forward energy equation in (8) given by

R
✓

(u

h,✓h) := ⇢cuh ·r✓h �K�✓h � ⌘(uh,✓h) ˙"uh :

˙

"uh . (38)

As can be seen in (37), the test function for the energy equation residual is a multiple of uh ·rˆ�h and, in particular, depends

on u

h. The stabilization factor ⌧
e

� 0 controls the weight of the stabilization term and influences the quality of the discrete10

solution. Often, by analogy with the optimal one-dimensional choice, ⌧
e

= (coth(Pe)�1/Pe)h/(2⇢c|u|), where h is the ele-

ment diameter in the direction of the advective velocity u, and Pe= ⇢c|u|h/2K is the local Peclet number, which determines

whether the problem is locally convection-dominated or diffusion dominated (Brooks and Hughes, 1982). The introduction of

this stabilization term makes (36) a non-Galerkin discretization
:::::::::::::
(Mikhlin, 1964), which has consequences for the computation

of the derivatives of J (G) as defined in (13), which is the subject of the next section.15

4.2 Optimize-then-discretize (OTD) versus discretize-then-optimize (DTO)

The numerical solution of the inverse problem requires the computation of gradients of J with respect to G. These gradients

are computed using an adjoint system of equations, and there are two approaches: the optimize-then-discretize (OTD) and

the discretize-then-optimize (DTO) approach. In OTD, one derives the adjoint equations at the infinite-dimensional (i.e., the

PDE) level, and then discretizes both the forward system (6)-(10) and the adjoint system (19)–(23) independently.
::::
Note

::::
that20

::
the

:::::::
adjoint

::::::
energy

:::::::
equation

:
(21)

:
is

::::
also

::
an

::::::::::::::::
advection-diffusion

::::::::
equation,

::::
but

::::
with

::::::::
advection

:::::::
velocity

::::
�u.

:
As a consequence,

one would then use SUPG stabilization for the forward and adjoint energy equations. In DTO, the forward problem and the

cost functional J (·) are discretized first, resulting in a finite-dimensional optimization problem. Then, for this discretized

optimization problem, gradients are computed using a finite-dimensional Lagrangian function, resulting in a finite-dimensional

system of adjoint equations. For more details, we refer the reader to Gunzburger (2003) and Hinze et al. (2009).25
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For Galerkin discretizations, OTD and DTO usually coincide, i.e., they result in exactly the same finite-dimensional gradient.

However, the operations of optimization and discretization do not commute when the forward problem is discretized by SUPG.

For OTD, the adjoint energy equation is also an advection-diffusion equation, but with advection velocity �u. Thus, it also

requires stabilization. If
::
As SUPG is used to stabilize the adjoint equation, the discrete gradient becomes inconsistent with the

discrete cost functional. This is because the discrete adjoint of SUPG stabilization for the forward equation is not equivalent5

to SUPG stabilization of the adjoint equation. The implication of an inconsistent gradient is that the computed gradient may

not actually lead to a direction of descent with respect to the discretized cost functional, which can result in a failure in the

line search and lack of convergence. In the DTO approach, the SUPG stabilization term in (37) produces a contribution in the

adjoint equation that has a stabilizing effect. However, this contribution is not a weighted residual of the continuous adjoint

energy equation, which can degrade the convergence of the discrete adjoint temperature to the continuous adjoint temperature10

(Collis and Heinkenschloss, 2002). On the other hand, the resulting gradient is consistent with the discrete cost functional, and

therefore convergence is guaranteed with a Gauss-Newton method and an appropriate line search.

Both DTO and OTD approaches have advantages and disadvantages, and the preference for one over the other depends on

the circumstances of the problem at hand
::::::::::::::::
(Gunzburger, 2003). For sufficiently smooth problems, the differences between OTD

and DTO diminish as the mesh size is reduced, and the approaches are equivalent in the limit. In the numerical results of15

the next section, we choose DTO so that we can be assured a direction of descent without having to refine the mesh beyond

what is necessary for accurate approximation of the forward, adjoint, and parameter fields. That means that the
:::
The

:
resulting

expressions for the discrete gradient and Hessian constructed via the DTO approach are just
::::::
specific

:
approximations of the

expressions for the continuous gradient and Hessian presented in the previous section, and will converge to those expressions

as the mesh is refined. Thus, the
:::
The

:
infinite-dimensional expressions provided in the previous section continue to provide20

useful intuition on the nature of the gradient and Hessian action (for example the resemblance of the incremental forward and

adjoint operators to the forward and adjoint operators, the 4th order anisotropy of the effective viscosity in the adjoint and

incremental operators, the role of the boundary conditions, etc.).

5 Numerical results and discussion

In this section, we study properties of the multiphysics inverse problem to infer the unknown geothermal heat flux field from25

surface velocity observations. In particular, we study the limits of our ability to invert for the heat flux as a function of the

length scales of the heat flux and of the noise level in the velocity observations.

We consider a two- and a three-dimensional ice slab, ⌦, of length L= 80 km and thickness
:::
the

::::::
surface

::::::::
elevation s given by

s(x) = (H �H
0

)cos

⇣⇡x
2L

⌘
+H

0

, (39)

where x 2 [0,L], H = 2 km is the maximum ice thickness, and H
0

= 0.1 km is the ice thickness at the outflow boundary �

o

.30

The coordinate system and the ice slab domain for the two-dimensional problem are shown in Figure 1; the three-dimensional

geometry is an extrusion in the y-direction of this geometry.
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In all model problems, we assume that the surface temperature increases as the elevation decreases as follows(see also

Figure 3):
:
:

✓
s

(x) = ✓
0

+ a(H � s(x)), (40)

where ✓
0

=�50

o

C is the temperature at x= 0, and a is the lapse rate, taken to be a= 6.5 o

Ckm

�1.

The boundary conditions are as follows:5

– on the top surface, �
t

, we assume zero traction for the velocity and the surface temperature ✓
s

defined in (40), i.e.,

�un= 0, ✓ = ✓
s

;

– on the bottom surface �

b

, we assume that the ice is frozen to the bedrock, i.e., we apply a no sliding condition, and

assume a geothermal heat flux condition for the temperature, i.e.,

u= 0, Kr✓ ·n=G;10

– on the outflow boundary, �
o

, we ignore the atmospheric stress (i.e., the atmospheric pressure and wind stress), which is

small compared to the typical stresses in an ice sheet, and thus impose a traction-free condition; the surface temperature

✓
s

is as defined in (40), i.e.,

�un= 0, ✓ = ✓
s

;

– we assume that �
i

is an ice divide, i.e., there is no inflow, no shear stress and no heat flux, i.e.,15

u ·n= 0, T�un= 0, Kr✓ ·n= 0;

– in addition, for the three-dimensional problem, we impose periodic boundary conditions on the fore and aft boundaries,

i.e.,

u|
�fore = u|

�aft , �un|�fore = �un|�aft ,

20

✓|
�fore = ✓|

�aft , Kr✓ ·n|
�fore =Kr✓ ·n|

�aft .

The values for the physical constants used in the numerical experiments are taken from Greve and Blatter (2009) and are shown

in Table 2.

For all numerical experiments, we extract surface velocities at points from forward solution fields with specified “truth”

geothermal heat flux field as synthetic observations, and add random Gaussian noise to lessen the “inverse crime”, which25

occurs when the same numerical method is used to both synthesize the observations and drive the inverse solution (e.g., Kaipio
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and Somersalo, 2005). We specify the noise level through the signal-to-noise ratio (SNR), which is defined as the ratio between

the average surface velocity hui of N obs observation points and the standard deviation of the added noise, �noise, i.e.,

SNR =

hui
�noise

, with hui=

vuut 1

N obs

N

obsX

k=1

ku
k

k2. (41)

We choose a regularization parameter that approximately satisfies Morozov’s discrepancy principle (Vogel, 2002), i.e., we find

a regularization parameter such that hu
�

�u

obsi ⇡ �, where � is the noise level and u

�

is the surface velocity at the observations5

points corresponding to the inferred geothermal heat flux for a regularization parameter �.

5.1 Two-dimensional model problem

First, we consider inversion for a geothermal heat flux in a two-dimensional problem. We discretize the domain, ⌦, into

quadrilaterals (Figure 2), and employ biquadratic elements for the velocity components, bilinear elements for pressure, and

biquadratic elements for temperature. Linear elements are used for the unknown geothermal heat flux G defined on �

b

, un-10

less otherwise specified. For this discretization
::
the

:::::::::::::
40⇥ 4-element

::::::::::::
discretization

::::::
shown

::
in

::::::
Figure

::
2, the combined number

of unknowns for the velocity, pressure, and temperature fields is 2,392, and for the geothermal heat flux it is 41.
::
We

:::::
have

:::::::::::
experimented

::::
with

::::
finer

::::::::
uniform

:::
and

:::::::::::
non-uniform

::::::
meshes

::::
and

::::::::
obtained

::::::
similar

:::::
result,

::::::
hence

:::::
unless

:::::::::
otherwise

::::::::
specified

:::
the

:::::
results

:::::::::
presented

::
in

:::
this

:::::::
section

:::
are

:::::
based

::
on

::::
the

::::
mesh

::::::
shown

::
in
::::::

Figure
::
2.
:

Unless specified otherwise, we use 50 uniformly

distributed observation points on the top surface.15

Inversion for heat flux containing large

::::
long- and small wavelength

::::::::::::::
short-wavelength variations. We first study inversion

with a “truth” geothermal heat flux defined by

G(x) =
1

20

+

1

20

exp

✓
� (x�L/2)2

2(L/10)2

◆
+

1

100

sin

 
2⇡x

L

20⇡x

L
::::

!
. (42)

Here, the second and third term contribute a large and a small wavelength
:::::::::::::
long-wavelength

::::
and

:
a
::::::::::::::
short-wavelength

:
variation to

the geothermal heat flux, respectively; the resulting “truth” heat flux is visualized in Figure 4b. The Gauss-Newton algorithm20

terminates after 8 Gauss-Newton iterations (requiring a total of 105 CG iterations), when a decrease in the norm of the gradient

by a factor of 105 was achieved.

In Figure 3, we show the forward solution (temperature and velocity fields) obtained by solving (6)–(10) with the geothermal

heat flux given by (42). This figure shows that the ice is in a cold state, i.e., the temperature is below the pressure melting point.

We note that a temperature boundary layer is formed at the base of the ice corresponding to the accumulation zone due to the25

flow of cold ice from the surface and due to the advection dominating the diffusion. As the warmer ice close to the base flows

toward the surface in the ablation zone, another temperature boundary layer forms at the surface at the right part of the ablation

zone.

Figure 4a shows the synthetic pointwise velocity observations, obtained by extracting the surface velocities shown in Fig-

ure 3 at the observation points, followed by adding independent noise corresponding to SNR = 20 to each observation. The30

reconstruction of the geothermal heat flux and the corresponding recovered velocity fields are shown in Figures 4b and 4a,

17



respectively. Figure 4a illustrates that inversion is able to fit the data to within the noise. However, while the large-wavelength

:::::::::::::
long-wavelength

:
component of the geothermal heat flux is well recovered, the small-wavelength

:::::::::::::
short-wavelength

:
variations

cannot be reconstructed. This can be explained by the fact that the sensitivity of the surface velocity to the small-wavelength

::::::::::::::
short-wavelength

:
variations in G is low, due to the smoothing property of the Stokes operator. These low sensitivities are

overwhelmed by the noise in the data, making the reconstruction of the small-wavelength
::::::::::::::
short-wavelength component of G5

impossible. Taken together, these results reinforce the ill-posedness of the inverse problem.

Inversion for different SNR and different wavelength variation in the geothermal heat flux. We continue with a systematic

study of the consequence of the wavelength variation of the geothermal heat flux and of the SNR on the reconstruction. For

this study, we consider different wavelengths of variations in the “truth” geothermal heat flux

G(x) =
3

50

� 2

50

sin

✓
2⇡x

L
w

◆
, (43)10

where L
w

is taken as 80, 40 or 20 km. As before, we solve the forward problem with the true geothermal heat flux field (43)

for the different wavelengths. Then we add noise with a given SNR to the resulting point velocity observations and use these

synthetic observations to reconstruct the geothermal heat flux field.

In Figure 5, we show inversion results for different wavelength variations and for different noise levels. To assess the

reconstruction quantitatively, in Table 3 we report on the relative error between the “truth” and reconstructed geothermal flux15

fields for various wavelengths variations and noise levels. This relative error is computed as follows:

e(G) =

kG�GtruekL2

kG
0

�GtruekL2

, (44)

where G
0

= 0.06 Wm

�2 is the mean of the “truth” geothermal heat flux Gtrue. Based on the results summarized in Figure 5

and Table 3, we make the following observations:

1. For fixed wavelength, the reconstructed geothermal heat flux G approaches Gtrue as the noise level decreases.20

2. For fixed noise level, smaller wavelength
::::::::::::::::
shorter-wavelength variations of the geothermal heat flux are more difficult to

reconstruct.

3. For small
::::
short

:
wavelength (e.g., L

w

= 20 km, see Figure 5f) and small noise (e.g., SNR = 100), the wave crests and

valleys of the truth heat flux are recovered, but the magnitude of the reconstruction is smaller than of the “truth” geother-

mal heat flux. For the case with larger noise (e.g, SNR = 20), the reconstruction does not detect the crests and valleys,25

although the corresponding surface velocity still matches the observations within the noise (see the black curve in Fig-

ure 5f). The results in Table 3 confirm these findings, in particular we note that the relative errors for the small
::::
short

wavelength and large noise (i.e.
:
, L

w

= 20 km with SNR = 20 or SNR = 10) is roughly 100%, i.e., the reconstruction fails

to capture the variations of the “truth” geothermal heat flux.

Influence of the number of observations and the mesh resolution. We consider 10, 25, 50, and 100 uniformly distributed30

observation points and two different meshes, namely a mesh consisting of 40⇥4 elements with linear elements for the geother-

mal heat flux, and a mesh consisting of 80⇥ 4 elements, which uses quadratic finite elements for the unknown heat flux. The
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“truth” geothermal heat flux field is given by (43) and the noise level in the observations is SNR = 20. In Figure 6a, we show

the “truth” and the reconstructed geothermal heat flux fields for 10, 25, 50 and 100 observation points. This figure shows that

the reconstruction improves significantly as the number of observation points increases.

To study the influence of the number of observations and of the mesh resolution on the ill-posedness of the inversion, we

study the properties of the Hessian matrix of the data misfit component of J (i.e., the Hessian of the first term in the cost5

function defined by (13)). To explain why the Hessian of the data misfit provides insight into the ill-posedness of an inverse

problem, consider a Taylor expansion of the data misfit term in J about the solution of the inverse problem (13). When the

inverse solution is able to fit the data to within the noise and the noise is small, the gradient of the data misfit component of

J is negligible, and the local behavior of J is governed by the Hessian term. Perturbations of the geothermal heat flux in

directions associated with large eigenvalues of the data misfit Hessian result in a significant
::::
large

:
change of the cost functional10

and are thus well constrained by the data misfit term. On the other hand, the cost functional is not sensitive to perturbations in

parameter directions associated with small eigenvalues of the Hessian and, as a consequence, these directions are only weakly

(or not at all) constrained. The more such directions exist, the more ill-posed the inverse problem is. Thus, the spectrum

of the Hessian provides information on which directions in the parameter space can be reliably recovered (namely, those

corresponding to large eigenvalues) and which directions are poorly or not at all recoverable (those corresponding to small or15

zero eigenvalues). The Hessian also plays an analogous role in quantifying uncertainty in the inversion in the framework of

Bayesian inference (Tarantola, 2005). Here, the inverse of the Hessian provides an approximation to the covariance matrix of

the posterior probability density function, which is regarded as the solution of an appropriately formulated Bayesian inverse

problem. An approximation of the inverse Hessian can be computed even for large-scale inverse problems by exploiting low-

rank properties that are typical for many ill-posed inverse problems (Flath et al., 2011; Petra et al., 2014; Kalmikov and20

Heimbach, 2014).

Since we are using a Newton method to solve the inverse problem, the Hessian matrix is available (or more correctly, its

action in a particular direction, as presented in Section 3, is available, and this is all that is required to extract the spectrum

using a Lanczos method). In the following, we use the spectrum of the data misfit component of the Hessian to characterize

how the ill-posedness of the inverse problem varies with the number of observations and the mesh resolution. In Figure 6b,25

the spectra of the data misfit Hessians for different numbers of observations and the two different mesh resolutions are shown.

If we were to include the regularization in the Hessians (i.e., consider the full Hessian of the cost functional J , not only

the data misfit term), these spectra would not collapse to zero but remained bounded from below. Figure 6b shows that the

spectra of the data misfit Hessians decay rapidly, in particular for the cases with a small number of observation points. This

illustrates the severe ill-posedness of the geothermal heat flux inversion problem considered here. Note that since the observed30

data are the horizontal and vertical components of the velocity fields at points on the top surface, the rank of the data misfit

Hessian cannot be larger than twice the number of the observations points; this can be seen, for instance, in the spectrum for

the case with 10 observation points. As the number of observation points increases, the number of nonzero eigenvalues of the

data misfit Hessian increases. However, the largest eigenvalues, which correspond to the parameter directions most strongly

constrained by the data, do not change as the number of observations increases. Thus, these parameter directions are already35
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well constrained by a small number of observations. Also, note that the finer discretization of the model and the heat flux

becomes more important as more observations are available. This is because the additional information obtained from more

observations can be used to better inform the geothermal heat flux only if the finite element discretization of that heat flux and

of the model equations has sufficiently many degrees of freedom to capture that information.

5.2 Three-dimensional model problem5

Next, we consider a three-dimensional model problem with domain ⌦ of length and width L= 80 km and height given by (39).

A cross section of the geometry is shown in Figure 1. We discretize the domain, ⌦, using 20⇥10⇥2
:
4 hexahedra. The combined

number of degrees of freedom for velocity, pressure and temperature is 17,913
:::::
32,151

:
and for the geothermal heat flux it is

231. In this numerical experiment, we aim to reconstruct the spatially varying geothermal heat flux

G(x,y) =
1

20

+

1

20

exp

✓
� (y�L/2)2

2(L/10)2

◆
, (45)10

where (x,y) 2 [0,L]⇥ [0,L]. We use 20⇥20 uniformly distributed pointwise velocity observations at the top surface, and add

noise to the synthetic observations such that SNR = 20. The algorithm converged after 6 Gauss-Newton iterations (involving a

total of 30
::
42 CG iterations), where we again terminated the iterations as soon as the norm of the gradient was decreased by a

factor of 105.

The top row in Figure 7 shows the velocity observations on the top surface and the surface velocities obtained with the15

reconstructed geothermal heat flux. The bottom row shows the “truth” and the reconstructed geothermal heat flux fields. We

note that the higher geothermal heat flux in the center warms up the ice, results in lower viscosity and, thus, faster ice flow. Also

note that the inverse solution is able to fit the reconstructed velocity to the observations to within the noise. The geothermal

heat flux in the upstream part is well recovered, but the reconstruction deteriorates downstream. We attribute this phenomenon

to the fact that the heating effect mostly affects the downstream surface flow and, hence, the larger heat flux near the outflow20

boundary has little effect on the ice flow velocity on the surface above. In Figure 8, we show the temperature field based on the

reconstructed geothermal heat flux. We note that the ice is cold, with a temperature field comparable to the two-dimensional

model problem on each slice (Fig. 8a). In Figure 8b, we show the temperature at the base �
b

of the ice. Note that the temperature

is higher in the center due to the non-uniform geothermal heat flux, but it is below the melting point everywhere in �

b

.

6 Fully-coupled versus one-way coupled approaches in multiphysics inversion25

Multiphysics forward problems are commonly solved using so-called “one-way coupled” or “operator-split” approaches. For

example, for a coupled problem with two physics components, the first physics subproblem would be solved assuming the state

variables of the second physics subproblem remain fixed, after which the second physics subproblem is solved using the just-

computed first physics state variables. One then iterates until convergence, which is guaranteed only if the spectral radius of a

certain iteration matrix is less than unity. If the iteration converges, it converges to the correct solution. Such one-way coupled30

solvers have been used successfully for ice flow forward problems (Dahl-Jensen, 1989; Hvidberg, 1996; Price et al., 2007;
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Zwinger et al., 2007; Zhang et al., 2011), in which case the solver iterates back-and-forth between Stokes and energy equation

solves, passing velocities from the former to the latter, and temperatures from the latter to the former. The convergence rate is

only linear, as opposed to quadratic for a fully-coupled Newton forward solver, but one might still prefer the one-way coupled

approach due to its ability to capitalize on existing single-physics solvers and codes, its avoidance of computing Jacobians of

coupling terms, and the difficulties of designing preconditioners for the fully-coupled Jacobian. Therefore, it is tempting to use5

the same operator from a one-way coupled forward solver to also solve the adjoint problem during inversion. However, this

also leads to an incorrect adjoint operator, since it discards some of the coupling blocks within the operator. This in turn leads to

an incorrect gradient, which can lead to inaccurate or incorrect solutions of the inverse problem, depending on how strong the

coupling terms in the Jacobian of the fully coupled problem are. In this section we illustrate this issue using the multiphysics

inverse problem given by the coupled system consisting of the Stokes equations (1) and (2), and the energy equation (3). In the10

rest of this section, to simplify the notation, we drop the h superscripts on discrete variables.

In the following discussion, we express the forward problem (6)–(10) in terms of the residuals of the discretized equations,

as follows:

r

u

(u,p,✓) = 0, r

p

(u) = 0, r

✓

(u,✓) = 0,

where u, p, and ✓ denote the discretized velocity, pressure, and temperature, respectively, and r

u

, r
p

, and r

✓

are the discrete15

residuals of the momentum, mass, and energy equations, respectively. The discrete adjoint system corresponding to (19)–(23)

can be written as
2

664

BT

uu

B
up
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✓u

BT

up

0 0

BT

u✓
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3

775

2

664

v

q

�

3

775=

2

664

f

v

0

0

3

775 , (46)

where v, q, and � denote the discretized adjoint velocity, pressure, and temperature, respectively, and f

v

is the right hand side

of the discrete adjoint momentum equation corresponding to the misfit term in (22). Here, B
uu

= @r
u

/@u, B
up

= @r
u

/@p,20

B
u✓

= @r
u

/@✓, B
✓u

= @r
✓

/@u, B
✓✓

= @r
✓

/@✓. We note that the submatrix [BT

uu

,B
up

;BT

up

,0] is the transpose of the lin-

earized discrete Stokes operator (which is in fact symmetric), and B
u✓

and B
✓u

are Jacobians of the coupling terms between

the Stokes and the energy equations. In particular, B
u✓

is the term corresponding to the derivative of the momentum residual

r

u

with respect to the temperature, and B
✓u

is the term corresponding to the derivative of the energy residual r
✓

with respect to

the velocity. We call the gradients obtained when neglecting either of these coupling matrices in the adjoint systems “one-way25

coupled gradients” and denote these by Gowc. Next, we study the consequences of the use of one-way coupled gradients on the

inversion.

As an illustration of neglecting Jacobians of coupling terms in the adjoint equation, we neglect BT

✓u

in (46). Note that we

retain BT

u✓

in the adjoint operator. This allows us to uncouple the adjoint Stokes equation from the adjoint energy equation,

leading to a block triangular system. This can be solved by first solving for the adjoint velocity and pressure, and then computing30

the adjoint temperature using the just-computed adjoint velocity. Because we have neglected a block within the adjoint operator,

we obtain an incorrect adjoint solution, which then leads to an incorrect gradient. How incorrect the gradient is depends on the
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“magnitude” of B
✓u

. To study the implications of using the resulting one-way coupled gradient Gowc in an inverse problem, we

compare the inverse solution based on the one-way coupled gradient with the solution obtained with the exact gradient Gexact.

We summarize our findings in Figure 9. Since the one-way coupled gradient is not the correct gradient of the cost functional J ,

a descent direction is not guaranteed, and as a result the Gauss-Newton method for solving the inverse problem (13) terminates

when the search direction based on the one-way coupled gradient is not a descent direction for J . Thus the solution of the5

inverse problem based on the one-way coupled gradient can differ from the correct solution not only because the incorrect

optimality condition is being satisfied, but also because the search direction can terminate prematurely due to inconsistency

of the gradient and cost functional. However, despite the fact that we attempt to solve the wrong optimality conditions (i.e.,

vanishing of the one-way coupled gradient rather than the exact gradient), and despite the premature termination, one can still

obtain a reasonable approximation of the inverse solution. This is depicted in Figure 9a, which shows the inferred geothermal10

heat flux based both on the exact gradient and on the one-way coupled gradient. As can be seen, they are close to each other.

In Figure 9b we show the convergence of the norm of the gradient for two iterations, one corresponding to the correct

gradient, and one corresponding to the one-way coupled gradient. Note that the one-way coupled gradient iteration terminates

prematurely after 11 iterations. Figure 9c explores why the one-way coupled iteration terminated early.

First, we plot the angle between the exact gradient Gexact and the one-way coupled gradient Gowc, i.e,15

cos�
2

cos�
1

::::
=

hGexact,Gowci�b

kGexactk
L

2kGowck
L

2
. (47)

As can be seen, initially the one-way coupled gradient direction coincides with the exact gradient direction, but the angle

between them increases substantially in the later iterations. Beyond this incorrectness, the Gauss-Newton search direction

based on the one-way coupled gradient is not even a descent direction for the cost function J , leading to the premature

termination of the Gauss-Newton iterations. This is because the one-way coupled gradient is not consistent with the contours20

of J (which are computed using the correct forward model). Note that a search direction ˜G is a descent direction only if its

angle �
1::
�
2:

with respect to the negative gradient direction �Gexact is less than ⇡/2, i.e., cos(�
1

)> 0

::::::::::
cos(�

2

)> 0 (Nocedal and

Wright, 2006, p. 21). The cosine of �
1::
�
2:

is thus given by

cos�
1

cos�
2

::::
=

h�Gexact, ˜Gi
�b

kGexactk
L

2k ˜Gk
L

2

, (48)

where ˜G is the Newton search directionbased on the one-way coupled approach. Figure 9c plots the values of cos�
1:::::
cos�

2

.25

As can be seen, the line search
:::
with

:::
the

::::::
search

::::::::
direction

:::::
based

:::
on

:::
the

:::::::
one-way

:::::::
coupled

::::::::
approach

:
fails at iteration 11, when

cos(�
1

)< 0

::::::::::
cos(�

2

)< 0. In other words, not only is the computed search direction incorrect (relative to that of a correct

Gauss-Newton step), but it does not even point downhill!

These results illustrate several important characteristics of approximations made in inverse problems governed by multi-

physics forward models. First, discarding the Jacobians of coupling terms within the adjoint operator can result in substantially30

incorrect gradients. This could lead to incorrect solution of the inverse problem, due to the fact that the vanishing of the gradient

constitutes the first order necessary condition for solution of the inverse problem. It could also lead to premature termination of

the iterations, due to the loss of a descent direction stemming from inconsistency of the gradient with the contours of the cost
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function. Second, despite the incorrect gradient, it may still be possible to obtain a reasonable solution to the inverse problem,

particularly if the discrepancy between exact and approximate gradients remains small for a sufficient number of iterations to

provide a good approximate inverse solution.

7 Conclusions

We have formulated an inverse problem for estimating the uncertain geothermal heat flux at the base of an ice sheet or glacier in5

a thermomechanically coupled nonlinear Stokes model from surface velocity observations. Since the forward problem involves

an advection-dominated energy equation, a streamline upwind Petrov-Galerkin (SUPG) stabilization was used to suppresses

non-physical oscillations in the temperature field. This required use of a discretize-then-optimize approach to compute adjoint-

based gradients and Hessians. We advocated an inexact Newton method to solve the discretized inverse problem. Using two

and three-dimensional model problems, we studied the identifiability of the geothermal heat flux field on the basal boundary.10

We found that the quality of the reconstruction deteriorates with smaller wavelength
:::::::::::::::
shorter-wavelength

:
variations of this heat

flux and with increasing noise in the observations. In particular, a geothermal heat flux with a mean value of 0.06 Wm

�2 can

be reconstructed accurately from observations that contain 1% noise (SNR = 100) when the wavelength-to-ice-thickness ratio

is ⇠20, and when the observations contain 5% noise (SNR = 20), for a wavelength-to-ice-thickness ratio of ⇠40. In addition,

we studied the influence of the number of observations and the mesh resolution on the reconstruction and found that the15

reconstruction improves significantly
:::::::::::
substantially as the number of observation points increases, provided the discretization

is fine enough.

Moreover, we derived expressions for the gradient and the Hessian of the cost functional for a fully thermomechanically

coupled Stokes forward model. We discussed problems that can occur when the gradient is approximated by a so-called one-

way coupled approach, in which the two-way coupling of Stokes and the energy equations is replaced by one-way coupling, as20

is frequently done within forward solvers. The results show that the inversion based on a one-way coupled approach can fail to

converge due to the inconsistency of the gradient and the cost functional, leading to the loss of a descent direction. Nevertheless,

one might still obtain a reasonable approximate inverse solution, particularly if important features of the reconstructed solution

emerge early in optimization iterations, before the iterations terminate prematurely.

We have used synthetic observations on idealized geometries to probe the limits of invertibility for the geothermal heat flux25

field. We have assumed that the ice is cold everywhere and thus enforced a no-slip boundary condition at the base. In reality,

the ice may reach the pressure melting point at some basal locations. This requires a different set of boundary conditions,

which account for ice either below or at the melting point. Solution of thermomechanically coupled ice flow models with such

variational inequality boundary conditions is the subject of our current work.

8 Newton’s method for the forward problem30
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Here we briefly discuss the solution of the forward problem –using Newton’s method. We again omit h superscripts on discrete

variables. To determine an initial guess u
0

,p
0

,✓
0

for the Newton solver, we first solve for the velocity and pressure u

0

,p
0

by

setting ✓(x,y) = ✓
s

(x), and compute the stabilization factor ⌧ = ⌧(u
0

) for the SUPG method. Then, we solve for the initial

temperature ✓
0

using u

0

. Finally, we take (u

k

,p
k

,✓
k

) as initial guess and solve (u

k+1

,p
k+1

,✓
k+1

) from the coupled system

simultaneously. All the above nonlinear solves are done using Newton’s method and choosing a step length such that the5

residual of the forward problem is sufficiently decreased at each iteration.
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Table 1.
::::::
Primary

:::::::
variables

::
in

:::
the

::::::
forward

:::
and

:::::
adjoint

::::::::
problems.

:::::
Symbol

: ::::::
Variable

:
u
: ::::::

velocity

:
p

::::::
pressure

:
✓

::::::
absolute

:::::::::
temperature

::
�u: ::::

stress
:::::
tensor

:
⌘

::::::
effective

:::::::
viscosity

::
˙"u ::::

strain
:::
rate

:::::
tensor

::
˙"
II ::

the
:::::
second

:::::::
invariant

::
of

:::
the

::::
strain

:::
rate

:::::
tensor

:

:
n
: ::

the
::::::
outward

::::
unit

:::::
normal

:::::
vector

:

::
✓
s :::::

surface
:::::::::
temperature

:

:
G
: ::::::::

geothermal
:::
heat

::::
flux

:
J
: :::

cost
:::::::
functional

:

:
B
: ::::::::

observation
:::::::
operator

:
R
: ::::::::::

regularization

:
T
: :::::::

tangential
::::::
operator

:

:
�

::::::::::
regularization

:::::::
parameter

:

:
G
: ::::::

gradient

:
H
: ::::::

Hessian

:
v

:::::
adjoint

::::::
velocity

:

:
q

:::::
adjoint

::::::
pressure

:

:
�

:::::
adjoint

:::::::::
temperature

::
B⇤

:::::
adjoint

:::::::::
observation

::::::
operator

:

::
�v :::::

adjoint
::::
stress

:::::
tensor

:

::
˙"v :::::

adjoint
::::
strain

:::
rate

:::::
tensor

:

5
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Table 2. Notation, units,
::::::::
Parameters

:
and values for parameters and constants. Shown are Glen’s flow law exponent n, the pre-exponential

constant A
0

, the activation energy Q, the universal gas constant R, the gravitational acceleration g, the heat capacity of ice c, the thermal

conductivity K, and the density ⇢ of ice. Note that we choose Q and A
0 :::

and
::
Q for the case that the temperature of the ice is below -10o

C,

as the solutions are mostly within this range.

:::::
Symbol

:
Parameter Value SI Unit

n
:::::
Glen’s

:::
flow

:::
law

:::::::
exponent

:
3 -

A
0 :::::::::::

pre-exponential
:::::::
constant 3.985⇥10�13

Pa

�3

s

�1

Q
:::::::
activation

:::::
energy

:
6⇥104

J(mol)

�1

R
::::::
universal

:::
gas

:::::::
constant 8.314 J(molK)

�1

g
:::::::::
gravitational

:::::::::
acceleration

:
9.81 ms

�2

c
:::
heat

::::::
capacity

::
of

:::
ice 2009 J(kgK)

�1

K
:::::
thermal

::::::::::
conductivity 2.10 W(mK)

�1

⇢
:::::
density

:
910 kgm

�3

Table 3. The relative error e(G), computed using (44), between the “truth” (43) and the reconstructed geothermal flux for wavelength

variations L
w

= 80, 40 and 20 km and for signal-to-noise ratios SNR = 100, 20 and 10.

L
w

SNR

100 20 10

80 0.038 0.136 0.266

40 0.136 0.570 0.938

20 0.528 0.999 1.002

x

z

0

H

L

⌦

�
i

�
o

�
b

�
t

Figure 1. Coordinate system and cross section through a three-dimensional slab of ice, as used in the computational experiments (exaggerated

in height for visualization).
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Figure 2. Two-dimensional mesh (exaggerated in height for visualization).

Figure 3. Temperature and velocity found by solving the forward problem with geothermal heat flux given in (42). The color visualizes the

temperature (in o

C) and the arrows show the corresponding velocity field.
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Figure 4. Reconstruction of geothermal heat flux G in two-dimensional model problem with SNR = 20. (a) surface velocity observations (red

dots show horizontal component; red squares vertical component) and reconstructed velocities (black solid line shows horizontal component;

black dashed line shows vertical component); (b) “truth” and reconstructed geothermal heat flux (the dashed line shows the “truth” geothermal

heat flux defined in (42); the solid line shows the reconstructed geothermal heat flux).
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Figure 5. Reconstructions of geothermal heat flux with different noise levels and different wavelength variations for the two-dimensional

model problem. In (a), (b) and (c) we display synthetic observations (red circles for horizontal component and red squares for vertical

component; the data correspond to SNR = 20) computed from the “truth” heat fluxes Gtrue with L
w

= 80, L
w

= 40, and L
w

= 20 shown

as red dashed lines in (d), (e) and (f), respectively. Also shown in (a), (b) and (c) are the velocity components (solid and dashed black lines)

corresponding to the reconstructed heat fluxes shown as black solid lines in (d), (e) and (f). In (d), (e) and (f) we additionally show the

reconstruction of the geothermal heat fluxes from surface velocity data with SNR = 100 (blue solid lines).
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Figure 6. Shown in (a) are the “truth” (red dashed line) and the reconstructed geothermal heat flux fields for 10 (magenta), 25 (blue), 50

(black), and 100 (cyan) uniformly distributed observation points.
:::
The

:::::::::::
corresponding

::::::
relative

::::
error

::::::::
computed

::::
using

:
(44)

:::
are

:::::
0.425,

:::::
0.374,

:::::
0.243,

:::
and

:::::
0.195. These reconstructions are computed using the finer discretization, which uses 80 quadratic elements for the heat flux; the

reconstructions obtained with the coarser discretization are similar. In (b), the corresponding (normalized) spectrum of the data misfit Hessian

for the two different discretizations (solid lines correspond to the 40⇥ 4 element mesh with a linear basis for the heat flux, and dashed lines

correspond to the 80⇥ 4 element mesh with a quadratic basis for the heat flux) and different numbers of observation points are shown. We

note that the cyan solid line is covered by
:::::
covers the black solid line as the recoverable information is limited by the mesh resolution.
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Figure 7. Reconstruction of geothermal heat flux G for the three-dimensional model problem. Shown in (a) are observations of the surface

velocity (arrows and contour lines) with SNR = 20, and (b) shows the surface velocity corresponding to the reconstructed geothermal heat

flux. In (c), we show the “truth” geothermal heat flux defined in (45), and (d) shows the reconstructed heat flux.
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Figure 8. The temperature field (in o

C) corresponding to the reconstructed geothermal heat flux G for the three-dimensional model problem.

Shown in (a) are slices through the domain, and (b) shows the temperature at the base �

b

.
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Figure 9. Reconstructions of the geothermal heat flux based on the one-way coupled gradient obtained when the coupling matrix BT

✓u

is

neglected in the adjoint system for observations with SNR = 20. Shown in (a) is the “truth” geothermal heat flux Gtrue (red dashed line), the

reconstructions G based on the exact gradient (blue dash-dot line), and based on the one-way coupled gradient (black solid line). In (b), the

norm
:::::::
evolution of the gradients during the iteration is shown. The blue dashed line shows the convergence

::::
norm of the inexact Gauss-Newton

algorithm when the exact gradient is used. The black solid line show the convergence
:::::
shown for

:::
two

::::::
different

:::::::
solutions

::
of the Gauss-Newton

method based on the one-way coupled gradient
:::::::::
minimization

:::::::
problem, i.e.,

:::
one

::::
using

:
the norm of the exact gradient in each iteration. For

the iteration
::::
(blue

::::::
dashed)

:::
and

:::
one

:
using the one-way coupled

::::
(black

:::::
solid)

:
gradient, we

:
.
::
We

:
show in (c) the cosine of the angle between

the search direction
::::::
one-way

::::::
coupled

::::::
gradient

:
and the steepest descent direction

::::
exact

::::::
gradient

::
in

::::
each

::::::
iteration

:
(black solid line; see (47))

and the cosine of the angle between the one-way coupled gradient
:::::
search

:::::::
direction and the exact gradient in each iteration

::::::
steepest

::::::
descent

::::::
direction

:
(
::::
black

:::::
dashed

::::
line:

:::::
based

::
on

:::
the

:::::::
one-way

::::::
coupled

:::::::
gradient;

:
blue dashed line:

:::::
based

::
on

:::
the

::::
exact

:::::::
gradient; see (48)). When the

former
::::
latter value becomes negative, the search direction is not a descent direction and the algorithm terminates as the line search fails.
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