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Abstract. The concept of similitude is commonly employed
in the fields of fluid dynamics and engineering where scal-
ing laws are derived from the governing equation of flow
dynamics, e.g., the Navier-Stokes equation. Here we trans-
fer this method to the problem of ice-sheet flow to exam-5

ine the dynamic similitude of ice sheets against the scal-
ing of their geometry and physical parameters. Carrying out
a dimensional analysis of the stress balance for isothermal
ice sheets in shallow-shelf approximation we obtain dimen-
sionless numbers that characterize the flow, similar to the10

Reynolds or Froude numbers in fluid dynamics. Requiring
that these numbers remain constant under scaling we obtain
conditions that relate the geometric scaling factors, the pa-
rameters for the ice softness, surface mass balance and basal
friction as well as the ice-sheet intrinsic response time to each15

other. We demonstrate that these scaling laws are the same
for both the (two-dimensional) flow-line case and the three-
dimensional case and that they are consistent with flow-line
boundary-layer theory. The theoretically predicted ice-sheet
scaling behavior agrees with results from numerical simu-20

lations that we conduct in flow-line and three-dimensional
conceptual setups. In a set of experiments the setup geome-
try is scaled systematically and the physical parameters are
prescribed according to the derived scaling laws. We further
investigate analytically the implications of geometric scal-25

ing of ice sheets for their response time under constant basal
conditions finding that thicker (thinner) ice sheets have a
shorter (longer) response time and that the opposite holds for
the horizontal ice-sheet extent. With this study we provide
a framework which, under several assumptions, allows for a30

fundamental comparison of the ice-dynamic behavior across
different scales. It proofs to be useful in the design of con-
ceptual model setups but might also be applied to real-world

systems, e.g., to examine the response times of glaciers, ice
streams or ice sheets to climatic perturbations. 35

1 Introduction

In the fields of fluid dynamics and engineering scaling laws
are used to perform experiments with spatially reduced mod-
els in water channels or wind tunnels to predict the behavior
of the associated full-scale system (Scruton, 1961; Li et al., 40

2013). Dimensional analysis and the principle of similitude
allow to derive such scaling laws analytically (Rayleigh,
1915; Macagno, 1971; Szücs, 1980). For instance, a dimen-
sional analysis of the Navier-Stokes equation (Kundu et al.,
2012) yields the Reynold’s number (Reynolds, 1883) as one 45

of the dimensionless parameters of the governing equation
which characterize the dynamics of fluid flow. Under the
assumption of the similitude principle the Reynold’s num-
ber can provide a scaling law for the fluid’s characteristic
linear dimension, velocity and viscosity that assures similar 50

flow patterns. The principle of similitude is applied well be-
yond the field of engineering, e.g. in zoology (land mammals
move in dynamically similar fashion at equal Froude number,
Alexander and Yayes, 1983) or biology (Stahl, 1962).

Here we apply the concept of similitude to ice-sheet dy- 55

namics. Our investigation is based on the shallow-shelf ap-
proximation (SSA, Morland, 1987; MacAyeal, 1989; Greve
and Blatter, 2009)) of the full-Stokes stress balance. Ne-
glecting the terms of vertical shearing in the stress balance
and accounting for the small thickness-to-length ratio of ice 60

sheets, the SSA represents the relevant dynamics of floating
ice shelves and grounded ice streams, i.e., regions that are
characterized by fast plug-like flow, which has been shown in
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numerical applications (Goldberg et al., 2009; Gudmundsson
et al., 2012). The SSA can be complemented by the shallow-
ice approximation (Hutter, 1983; Huybrechts, 1990; Sato
and Greve, 2012) to also include vertical shearing, which
is dominant in the more stagnant interior parts of an ice5

sheet (Bueler and Brown, 2009; Pollard and DeConto, 2012;
Thoma et al., 2015), whereas higher-order approximations
(Schoof and Hindmarsh, 2010; Larour et al., 2012; Corn-
ford et al., 2015) neglect less stress components in the full-
Stokes stress balance (Favier et al., 2012). The MISMIP3d10

benchmark revealed that numerical models applying the SSA
can capture grounding-line dynamics comparable to more
elaborate models in conceptual experiments (Pattyn et al.,
2013; Feldmann et al., 2014) which will be put to test in the
forthcoming MISMIP+ intercomparison project (Asay-Davis15

et al., 2015).
A dimensional analysis of the ice-dynamic equations is

often carried out to compare the magnitudes of the differ-
ent acting forces and thus to derive physically motivated ap-
proximations, as done when deriving the SSA from the full-20

Stokes stress balance (MacAyeal, 1989; Greve and Blatter,
2009). The non-dimensionalized form of the SSA itself and
the involved dimensionless coefficients that result from the
introduction of typical scales for, e.g., ice-sheet thickness and
velocity, have been used to consider asymptotic limits of SSA25

ice-sheet flow in previous work (Schoof, 2007a; Dupont and
Alley, 2005; Tsai et al., 2015; Haseloff et al., 2015). In the
present study we utilize these coefficients to derive ice-sheet
scaling laws for the geometry, response time and other phys-
ical ice-sheet parameters, a step that to our knowlegde, has30

not been taken before. The scaling behavior of ice sheets,
that here is analyzed in a conceptual way, might be of use
to better understand the large-scale evolution of the polar ice
sheets. Of particular interest is the scaling of the ice-sheet re-
sponse time (Levermann et al., 2013, 2014) against the back-35

ground of Antarctic instabilities (Weertman, 1974; Schoof,
2007b; Rignot et al., 2014; Fogwill et al., 2014; Mengel and
Levermann, 2014). The time scales of possible rapid ice dis-
charge due to instability in the past (Pollard and DeConto,
2009; Pollard et al., 2015) and future (Favier et al., 2014;40

Joughin et al., 2014; Feldmann and Levermann, 2015b) are
highly uncertain.

The paper is structured as follows: In the next section the
governing equations in SSA are non-dimensionalized to de-
rive ice-sheet scaling laws for one and two horizontal dimen-45

sions, respectively. We also give an alternative approach to
derive the same scaling conditions. Afterwards the analyti-
cally predicted ice-sheet scaling behavior is compared with
results from numerical modeling. To this extent conceptual
experiments are designed in two and three spatial dimen-50

sions. Steady states as well as the transient response to per-
turbation of the simulated ice sheet are analyzed for a system-
atic variation of the scaling parameters which are prescribed
according to the scaling laws. We then examine analytically
the implications of the scaling conditions for the response55

times of ice sheets considering the geometric scaling factors
and basal friction parameter as independent variables. Even-
tually we discuss the results and conclude.

2 Similarity of shallow ice-sheet dynamics

Here we derive scaling laws that determine how the geome- 60

try, response time and the involved physical parameters for
ice softness, surface mass balance and basal friction have
to relate in order to satisfy similitude between different ice
sheets. This is visualized conceptually in Fig. 1 for two ice
sheets which differ in vertical and horizontal scale. Based 65

on the governing equations in dimensionless form, we ob-
tain dimensionless scale factors which depend on the scales
of the geometric and physical parameters of the ice sheet.
The requirement that each of these factors has to remain con-
stant under a scaling of the parameters makes sure that the 70

dynamic equations remain exactly the same. The resulting
scaling laws thus put constraints on the parameter scaling,
ensuring similitude between the different ice-sheet configu-
rations.

2.1 Basic equations for similitude analysis 75

The problem addressed here is the one of an isothermal ice-
sheet in SSA (Greve and Blatter, 2009). The two horizontal
components of the stress balance in SSA with spatially uni-
form ice softness A are given by
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where vx and vy are the velocity components in x- and y-
direction, respectively, H is the ice thickness, h=H + b the
ice-surface elevation with ice-base elevation b and n denotes
Glen’s flow-law exponent (Cuffey and Paterson (2010), a
common choice is n= 3). The effective strain rate ε̇e (Greve 85

and Blatter, 2009) can be written as
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(2)

We choose the basal shear stress in Eqs. (1), τ b = (τb,x, τb,y),
to be given by a Weertman-type sliding law (Greve and Blat-
ter, 2009): 90

τ b =−C|v|m−1v, (3)
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with horizontal velocity vector v = (vx,vy) and constant
friction coefficient C. The exponent m determines the par-
ticular type of the sliding law including plastic (m= 0, mag-
nitude of basal shear stress independent of velocity, Tulaczyk
et al., 2000) and linear-viscous (m= 1, basal shear stress5

proportional to ice velocity, MacAyeal, 1989) behavior. A
value of m= 1/n= 1/3 is commonly assumed to represent
sliding over rough bed (Schoof, 2007a; Joughin et al., 2009;
Cuffey and Paterson, 2010).

The evolution equation for the ice thickness, i.e., the ice10

thickness equation (ITE), which results out of mass conser-
vation (Greve and Blatter, 2009) reads

∂H

∂t
=−divQ+ a, (4)

with horizontal ice flux Q=Hv and surface mass balance
a.15

2.2 Flow-line case

In the flow-line case the geometry of an ice sheet can be
scaled in horizontal (x) and vertical (z) direction, using two
scaling factors α and β, respectively (α,β > 1 for stretching
and α,β < 1 for compression). We define these as20

x′ = αx, (5)
h′(x′) =H ′(x′) + b′(x′) = βH(x) +βb(x) = βh(x), (6)

where the prime denotes the scaled system. In particular,
Eq. (5) states that the ice-sheet length L scales according to
L′ = αL.25

Since we neglect the y-direction here, we only have to con-
sider the x-component of the SSA (Eq. 1a) in which all terms
that include y drop out. The effective strain rate (Eq. 2) thus
simplifies to ε̇e =

∣∣∂vx

∂x

∣∣ and the SSA reads

2A−1/n ∂
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]
−Cvmx − ρgH

∂(H + b)
∂x

= 0.

(7)

30

The ITE (Eq. 4) in flow line is given by

∂H

∂t
=−∂(Hvx)

∂x
+ a. (8)

Now we bring these two equations into non-
dimensionalized form by introducing the dimensionless
variables H∗ = H

H , b∗ = b
H and v∗x = vxT

L , using the scales35

H, L and T for ice-sheet thickness, length and response
time, respectively. We obtain
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and

∂H∗

∂t∗
=−∂(H∗v∗x)

∂x∗
+
aT
H︸︷︷︸
=ω

, (10) 40

for the SSA and ITE, respectively. In Eq. (9) the two di-
mensionless constants θ and φ relate the different involved
stresses to the driving stress. Extending θ with H/L and φ
with L−1 we see that these scale factors relates the mem-
brane stresses (Hindmarsh, 2006) and the basal stresses to the 45

driving stress, respectively. Here we do not assume one of the
limits for which the driving stress is either fully supported by
membrane stresses (φ� θ, situation in an ice shelf) or basal
shear stresses (φ� θ, holding for ice frozen to bedrock), re-
spectively, but consider the general case in which non of the 50

stress balance terms are neglected.
The two governing equations (9) and (10) of our problem

remain exactly the same as long as each of the dimensionless
factors θ, φ and ω are kept constant. In other words, the ice-
sheet dynamics are expected to be similar under a transfor- 55

mation that leaves these factors unchanged. Thus the scaling
of the ice sheet’s typical length and thickness scales accord-
ing to Eqs. (5) and (6), i.e., L′ = αL andH′ = βH in general
requires (some of) the physical parameters a,C,A and its re-
sponse time T to change in order to maintain similarity with 60

respect to the unscaled ice sheet. We hence can infer three
scaling conditions for the time-scale ratio τ = T ′/T :

φ′ = φ ⇒ τ = α1+1/mβ−2/mγ1/m, (11)

θ′ = θ ⇒ τ = β−nζ−1, (12)

ω′ = ω ⇒ τ = βδ−1, (13) 65

with friction-coefficient ratio γ = C ′/C, ice-softness ratio
ζ =A′/A and surface-mass-balance ratio δ = a′/a. This sys-
tem of 3 equations has 6 unknowns from which 4 remain
when we take α and β as given by the applied geometric
transformation. Prescribing one of the three parameter ratios 70

γ, δ or ζ hence determines the scaling of the other two pa-
rameters and the time scaling of the system.

We can link the ratios of surface mass balance and ice soft-
ness by combining Eqs. (12) and (13), yielding

δ = βn+1ζ, (14) 75

a relation which is independent of the horizontal scaling fac-
tor α. For the case of a scaled ice-sheet geometry that is left
unchanged in vertical direction (β = 1) ice softness and ac-
cumulation hence scale identically.

Using Eqs. (11)-(13) we can further express δ and ζ as 80

functions of both geometric scaling ratios and the basal fric-
tion ratio:

δ = α−(1+1/m)β1+2/mγ−1/m. (15)

ζ = α−(1+1/m)β−n+2/mγ−1/m. (16)
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Inserting Eq. (14) into Eq. (16) we also obtain a condition
for the basal-friction ratio as a function of both geometric
scaling parameters and the surface-mass-balance ratio:

γ = α−(1+m)β2+mδ−m. (17)

Results of an application of the derived scaling laws in5

numerical flow-line simulations are given in Sec. 3

2.3 Consistency with flow-line boundary-layer theory

Here we show that the scaling conditions derived above by
dimensional analysis under the concept of similitude, are
consistent with the boundary-layer theory which was intro-10

duced by Schoof (2007b) for an unbuttressed, isothermal,
flow-line ice sheet in SSA. Neglecting membrane stresses in
the stress balance, matched asymptotics are applied to solve
a boundary-layer problem for the transition zone between
grounded and floating ice. The ice-sheet surface slope is then15

given by (Schoof, 2007b, Eq. 25)

∂h(x)
∂x

=
∂(H(x) + b(x))

∂x
=
C

ρg

|Q(xgl)|m−1
Q(xgl)

h(x)m+1 , (18)

where xgl denotes the grounding-line position and Q(xgl) is
the flux across the grounding line. According to Eqs. (5) and
(6) the scaling of the surface slope reads20
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∂x′

=
β

α

∂h(x)
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(19)

and in combination with Eq. (18) we can write
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Presuming that the flux across the grounding line is always
positive in x-direction and using once again Eq. (6) yields a25

scaling relation for the grounding-line flux

Q′(x′gl) = α−1/mβ(1+2/m)γ−1/mQ(xgl). (21)

The boundary-layer method considers the ITE in steady
state (∂H∂t = 0) and hence integration of (Eq. 4) over the en-
tire ice-sheet length yields30

Q(xgl) = aL. (22)

Inserting this expression for the grounding-line flux into
Eq. (21) we arrive at the same condition for the scaling of
the surface mass balance (Eq. 15) that we obtained from the
principle of similitude in the previous section.35

A central result of the boundary layer theory is an ana-
lytic solution for the grounding-line flux as a function of ice
thickness at the grounding line (Schoof2007, Eq. (16)):

Q(xgl) =

(
A(ρg)1+n(1− ρ/ρw)n

4nC

) 1
m+1

H(xgl)
m+n+3

m+1 .

(23)

Inserting this relation into Eq. (21) and applying some basic 40

algebra we obtain the same scaling relation for the ice soft-
ness as derived in the previous sections (Eq. 16).

Setting Q(xgl) = vx(xgl)H(xgl) in Eq. (22) and dividing
by Q′(xgl) we obtain

v′x(x′gl)
vx(xgl)

= αβ−1δ. (24) 45

Since the boundary-layer theory assumes steady-state con-
ditions, we introduce a velocity scale V = L/T to be able
to derive a response-time relation. This yields v′x/vx = α/τ
and the response-time scaling law resulting from Eq. (24) is
identical to Eq. (13). 50

Thus the same 3 independent equations that determine the
ice-sheet scaling behavior and were derived by the means of
similarity analysis in the previous section also result from
boundary-layer theory.

2.4 Two-dimensional case with one time and one length 55

scale

The two-dimensional SSA (Eq. 1) is derived from the full-
Stokes equation using a single horizontal length scale L and
time scale T , respectively (Greve and Blatter, 2009). Con-
tinuing this line of thought, we introduce the dimension- 60

less velocity in y-direction, v∗y = vyT
L , in addition to the di-

mensionless variables from Sec. 2.2 to non-dimensionalize
the SSA equations. The dimensionless effective strain rate
(Eq. 2) then reads

ε̇∗e = T ε̇e (25) 65

For the x-component of the SSA (Eq. 1a) we hence obtain
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(26)

The same coefficients Θ and Φ result from the y-component
of the SSA, which is not specified here. The non-
dimensionalized ITE (Eq. 4) reads 70

∂H∗

∂t∗
=−div (H∗v∗) +

aT
H︸︷︷︸
=Ω

. (27)

Comparison between the flow-line and the two-dimensional
SSA and ITE shows that we obtained the same number of
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dimensionless factors that appear at the same place and are
identical to each other, i.e., θ = Θ, φ= Φ and ω = Ω. Hence
under the assumption of a single horizontal length scale the
scaling relations for the two-dimensional SSA are the same
as in the flow-line case.5

2.5 Two-dimensional case with time and length scales
for both horizontal directions

Starting again from the two-dimensional SSA (Eq. 1) we
now make the less-constraining assumption of two horizontal
length scales Lx and Ly and accordingly two time scales Tx10

and Ty , yielding the dimensionless velocities v∗x = vxTx

Lx
and

v∗y = vyTy

Ly
. In this case the effective strain rate (Eq. 2) does

not simplify to a single term as in the previous sections but
consists of several mixed terms. The SSA thus expands to a
much longer expression which we detail in the Appendix A.15

Although we obtain a multiple of dimensionless coefficients
that need to remain constant for the ice sheet to fulfill simi-
larity under scaling, the resulting scaling laws are identical to
the ones derived above (see Appendix A). This implies that
our requirement of similarity results in the constraint that the20

ice sheet can have only one time scale T = Tx = Ty and one
length scale L= Lx = Ly as opposed to our initial assump-
tion of distinct scales for each horizontal direction.

We investigate ice-sheet scaling also in a three-
dimensional setup in the next section.25

3 Comparison with simulations

We compare our analytical findings with results from numer-
ical simulations applying the Parallel Ice Sheet Model in con-
ceptual geometric setups. The model is the same as used in
(Feldmann and Levermann, 2015a) but here run in SSA-only30

mode. We define a reference topographic geometry which
is prescribed in an unscaled reference experiment (indexed
as “ref”) along with the parameter values shown in Table 1.
The scaling experiments use geometrically scaled versions of
the reference bed topography and the physical parameters are35

modified according to the scaling laws derived in Sec. 2.2.
Halfing the horizontal and/or vertical length scales of the

reference topography we obtain three geometric configu-
rations which are shrinked in vertical (α,β) = (1.0,0.5),
horizontal (α,β) = (0.5,1.0) or both directions (α,β) =40

(0.5,0.5), respectively. To be able to calculate the other phys-
ical parameters a,A,C that apply to the scaling experiments
according to the 3 scaling relations (Eqs. 15 - 17) we need
to prescribe one more scaling ratio in addition to α and β.
Setting γ = 1 (constant basal friction) and δ = 1 (constant45

surface mass balance), thus two sub-sets of simulations are
generated. The resulting scaling ratios which determine the
parameter values are shown in Table ?? for each of the seven
experiments. We apply the described procedure using 1) a
flow-line setup (one horizontal and one vertical direction, bed50

topography in black in Fig. 2) and 2) a three-dimensional
channel-flow setup (flow-line setup extended by second hor-
izontal direction, bed topography shown in Figs. 3 and 4) as
detailed in Appendix B.

The experiments are designed to perturb an ice sheet in 55

equilibrium, triggering a marine ice-sheet instability that un-
folds unaffected by the ceased perturbation. The speed of
unstable grounding-line retreat and the equilibrium ice-sheet
profiles before and after the instability serve as a measure to
compare the scaling of the dynamic response and the steady- 60

state geometry, respectively.

3.1 Comparing time scales of instability

All of our simulations show a similar pattern of grounding-
line evolution after perturbation (Figs. 5 and 6): After a
phase of little to negligible grounding-line retreat the re- 65

treat rate increases (grounding line passes the coastal sill
and enters the retrograde slope), reaching its maximum value
around the minimum of the bed depression before declining
to zero (grounding line stabilizes on inland up-sloping bed).
The initial and final grounding-line positions of comparable 70

setups (continuous lines) match or are close to each other.
The similarity of ice-sheet shapes between different geomet-
ric configurations becomes apparent when laying the mod-
eled steady-state ice-sheet profiles on top of each other and
scaling the spatial axes according to α and β (shown exem- 75

plarily in Figs. 2 and 3).
The simulations clearly differ in the time scale of the MISI

evolution which can be measured by the grounding-line re-
treat rate ẋgl = ∂xgl

∂t . To compare different simulations we
introduce a retreat-rate scaling ratio: 80

χ̇=
ẋ′gl
ẋgl

=
α

τ
. (28)

Dependent on which additional parameter is held constant
under geometric scaling, we replace the time-scale ratio us-
ing Eq. (11) or Eq. (13) to obtain scaling laws for the retreat
rate as functions of the geometric scaling ratios only: 85

γ = 1 ⇒ χ̇= α−1/mβ2/m, (29)

δ = 1 ⇒ χ̇= αβ−1. (30)

We can thus calculate the retreat-rate ratios for all consid-
ered geometric configurations (Table ??). The grounding-
line curves of our simulations are approximately linear over 90

the time period during which the grounding line passes the
bed depression and its retreat rate is largest. We fit a slope
to the linear section of the unscaled simulation (purple slope
fitted to black curve in Figs. 5 and 6), to obtain our reference
retreat rate. Using the calculated retreat-rate ratios from Ta- 95

ble ?? we can predict the grounding-line retreat rates for the
scaled setups. Superimposing the linear sections of the scaled
experiments with the respective analytically calculated slope
(Figs. 5 and 6) gives a good match between numerical results
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6 J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling

and theory. Our simulation ensemble of scaled ice sheets thus
exhibits similarity as predicted from theory, regarding tran-
sient ice-sheet dynamics and steady-state geometry.

4 Implications for the response times of ice sheets

Based on the scaling laws derived in Sec. 2 we explore ana-5

lytically the implications of a scaling of ice-sheet parameters
and geometry for the response-time scaling. Making the as-
sumption of a constant basal friction parameter (γ = 1) while
allowing a variation in surface mass balance and ice softness
we are able to calculate the response-time ratio τ (Eq. 11) as10

a function that only depends on the geometric scaling (α and
β) and the friction exponent m:

τ = α1+1/mβ−2/m. (31)

Using this equation in combination with Eqs. (12) and (13)
we obtain contour maps for the ratios τ , ζ and δ in the α-β15

phase space (Figs. 7a-c for the common choice of an expo-
nent value of m= 1/n with n= 3 (Schoof, 2007a; Greve
and Blatter, 2009; Cuffey and Paterson, 2010). Therein the
blue and red areas correspond to the regimes of an increasing
and decreasing parameter value under geometric scaling, re-20

spectively, which are separated by a white curve along which
the considered parameter remains constant.

4.1 Linking horizontal and vertical scales

To be able to follow physically motivated curves through the
phase space we link the horizontal and the vertical scale. Mo-25

tivated by the Vialov ice-sheet profile (Vialov, 1958; Greve
and Blatter, 2009), for which the central (maximum) ice-
sheet thickness is proportional to the square root of the ice-
sheet length we assume a relation between the ice-thickness
scaleH and the length scale L of the form30

H∼Lq with 0< q ≤ 1. (32)

With α= L′/L and β =H′/H it follows that for the postu-
lated ice-sheet proportion the two geometric scaling factors
are linked such that

β = αq, (33)35

and Eq. (31) then reads

τ = α
m−2q+1

m . (34)

We are interested in finding a critical value of the exponent in
Eq. (31) which determines a threshold in the α-β phase space
between the two regimes of increasing (τ < 1) and decreas-40

ing (τ > 1) ice-sheet response time under applied geometric
scaling. Assuming horizontal stretching (α > 1), which ac-
cording to Eq. (33) implies also vertical stretching (β > 1,

see Fig. 7d), it follows that τ < 1 only if the exponent in
Eq. (34) is negative. Hence there exists a critical threshold 45

qc =
m+ 1

2
, (35)

with m ∈ (0,1] and thus qc ∈ ( 1
2 ,1], above which the scaled,

i.e. stretched, system responds faster compared to the un-
scaled system. This is visualized in Fig. 7a for m= 1/3. The
area between the dashed (q = qc = 2/3) and the continuous 50

(q = 1) curves is in the regime of τ < 1 for α > 1. Vice versa,
for a shrinked ice sheet (α < 1 and hence β < 1) in the area
between these two curves holds τ > 1. The same qualitative
scaling applies to the ice softness whereas the surface mass
balance scales oppositely (Figs. 7b and c). 55

An exponent of q = 1/2 which represents Vialov propor-
tions constitutes the lower aymptotic limit of the domain of
all possible qc (limit m→ 0, Eq. 34 requires m> 0 for α
to remain finite). Thus a Vialov-shaped ice sheet exhibits
a response-time scaling oppositely to the scaling explained 60

above (the dotted Vialov curve in Fig. 7a lies always out-
side the region between continuous and dahed curve, inde-
pendently of m).

Assuming Vialov conditions under constant friction, the
scaling of the response time (Eq. 31), surface mass balance 65

(Eq. 15) and ice softness (Eq. 16), respectively, becomes in-
dependent of m which is visualized in Fig 8. Evaluating the
curves in the left vicinity of α= 1, meaning a small reduc-
tion in both vertical and horizontal ice-sheet extent, yields
a plausible scaling of the ice-sheet parameters in a warm- 70

ing atmosphere: Rising atmospheric temperatures cause an
increase in surface mass balance (δ > 1 in Fig. 7c, Frieler
et al., 2015) and also lead to a softening of the ice (ζ > 1
in Fig. 7b, Cuffey and Paterson, 2010). The response time
then decreases (τ < 1 in Fig. 7a). In this picture a warming- 75

induced ice-sheet retreat would hence shift the ice sheet into
the regime of faster response to perturbation, tending to ac-
celerate potential further retreat.

4.2 Role of basal friction exponentm

The response-time scaling considered here is a function of 80

the basal friction exponent m (Eq. 31) and the visualization
of the response-time ratio in the α-β phase space (Fig. 7 ac-
counts for only one value of m. To examine the influence of
m on the scaling we cut several hypersurfaces through the
phase space, sampling the domain of the exponent. 85

Fixing the horizontal scale, i.e., going along α= 1, yields
that vertical stretching (shrinking) always results in a short
(longer) ice-sheet response time (Fig. 9a). In this case the pa-
rameter choice of m only determines the curvature of τ(β).
Fixing the vertical scale (β = 1) results in opposite behavior 90

of τ , i.e., horizontal stretching (shrinking) always yields a
longer (shorter) ice-sheet response time (Fig. 9b). Equal ge-
ometric scaling of the two directions (α= β) gives a similiar
picture as obtained for α= 1 (the magnitude of the negative
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J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling 7

β-exponent is always larger than the α-exponent), with the
difference that here the time scaling becomes independent of
the geometric scaling for m= 1 (Fig. 9c).

Requiring the response-time scaling law (Eq. 31) to be in-
dependent of m yields the relation β = α

1−m(k−1)
2 (with k a5

real number) and thus τ = αk. In general, a negative (posi-
tive) value of k then results in a faster (slower) response when
stretching (shrinking) the ice sheet horizontally. The case of
k = 0 yields a constant time scale (τ = 1), independent of
the α value (Fig. 9d). The case of k = 1 corresponds to the10

Vialov case for which the time-scale ratio increases linearly
when stretching the ice sheet horizontally.

5 Discussion and conclusions

Carrying out a dimensional analysis of the stress balance in
SSA and the equation of mass conservation we derive ice-15

sheet scaling conditions for the vertical and horizontal length
scales, the response time and the relevant physical parame-
ters which determine ice-sheet behavior.

Specifically, we find that the scaling relations derived for
the SSA in flow line (Eqs. 11-13) also hold for the SSA in20

two horizontal dimensions under the assumtion of a single
horizontal time and length scale, respectively. Only the two-
dimensional SSA accounts for stress components that allow
for horizontal shearing and hence the effect of buttressing.

Our analysis also shows that although the full SSA ac-25

counts for both horizontal dimensions there can only exist
one time scale T and one length scale L, as opposed to one
for each dimension (Tx, Ty and Lx, Ly) under the princi-
ple of similitude. To non-dimensionalize the stress balance
we introduce scales for ice-sheet length, thickness and time30

without assuming typical numerical values for these scales.
We thus do not compare orders of magnitudes of acting
stresses to neglect terms in the stress balance as is often done
in the course of a dimensional analysis (citation) but consider
the general case of comparable magnitudes of membrane and35

basal stresses, respectively. In other studies not only ice-sheet
length, thickness and velocity but also the friction parame-
ter C is expressed by typical scales of length, thickness and
time resulting in a dimensionless stress balance that is char-
acterized by a single scaling parameter (often denoted as ε,40

Schoof, 2007a; Tsai et al., 2015). In the present study we
consider C as an independent parameter and thus obtain two
scaling parameters θ and φ in the stress balance (Eqs. 9 and
26). The resulting scaling laws hence involve the scaling of
the basal roughness explicitely. The same holds for the scal-45

ing of the surface mass balance a.
The scaling laws derived here are consistent with

boundary-layer theory which considers the transition zone
between the grounded and floating regimes of a rapidly slid-
ing equilibrium ice sheet in flow line (Schoof, 2007b). The50

conditions that don’t involve a time scale (Eqs. 15 and 16)
follow directly out of the analytic equations for steady-state

ice-sheet geometry and the grounding-line flux that result
from boundary-layer theory. To obtain the scaling relation
also for the ice-sheet response time (Eq. 13) out of the steady- 55

state theory it is necessary to introduce a velocity scale.
The presented scaling conditions can provide rules in the

design of model setups for numerical simulations to obtain
parameter sets that leave the ice-sheet geometry (absolute
shape and extent) unchanged. For instance, a doubling of the 60

basal-friction parameter under constant surface mass balance
requires the ice softness to be reduced to 1/8, or a doubling in
surface mass balance under constant basal friction requires a
doubling of the ice-softness value.

For the numerical simulations conducted in this study 65

we apply parameter configurations that half the geometric
scale in horizontal and/or vertical direction with respect to
the reference. The resulting ice-sheet response times range
over three orders of magnitude (see Table ??). Irrespective
of whether in a two- or three-dimensional setup the mod- 70

eled ice-sheet dynamics, represented by the rate of unstable
grounding-line retreat (Figs. 5 and 6) as well as the geom-
etry, represented by ice-sheet shape and grounding line po-
sition in equilibrium (Figs. 2 – 4), exhibit the scaling be-
havior predicted from the analytical calculations to a good 75

approximation. For the flow-line setup three scaled parame-
ter sets show different qualitative ice-sheet evolution com-
pared to the reference, while still complying with the ex-
pected response-time scaling. This difference is attributed to
the design of the reference setup, i.e., the closeness of the ini- 80

tial steady-state grounding line to the point of instability (lo-
cal bed maximum). Very small deviations from this position
trigger unperturbed instability or prevent landward induced
instability in the scaled setups (see Appendix B).

In contrast to the flow-line configuration the three- 85

dimensional setup inherently accounts for the buttressing ef-
fect in the initial steady-state simulation due to the presence
of a confined ice shelf (Dupont and Alley, 2005; Gudmunds-
son et al., 2012). However, the ice shelf is removed in the
course of perturbation to prevent scale-dependent influences 90

that would originate from a forcing through sub-shelf melt-
ing, surface accumulation or ice softness. Thus the speed of
grounding line retreat (and hence ice-sheet response time)
is only indirectly affected by the former buttressing effect.
An investigation of the response-time scaling under direct in- 95

fluence of ice-shelf buttressing requires a carefully designed
experimental setup that maintains the ice shelf during pertur-
bation (as in Asay-Davis et al., 2015) and accounts for the
scaling also in the applied forcing.

To analytically investigate the implications of geometric 100

scaling for the ice-sheet response time we make the simpli-
fying assumption of constant basal friction (γ = 1). Though
the response-time scaling law still then still depends on the
sliding exponent m (Eq. 31) the qualitative response-time
scaling (shorter or longer response time) turns out to be inde- 105

pendent of the choice of m (9): Vertical ice-sheet stretching
(compression) leads to a faster (slower) ice-sheet response
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8 J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling

and the opposite holds for the horizontal direction. In other
words, thicker or shorter ice sheets tend to respond faster than
thinner or longer ones. Equal scaling in horizontal and ver-
tical direction (α= β) yields that larger ice sheets respond
faster than smaller ones.5

Assuming a relation between the horizontal and vertical
scale of the form β = αq with 0< q ≤ 1, we find a critical
m-dependent threshold qc for the exponent (Eq. 35) above
which larger (smaller) ice sheets always exhibit a shorter
(longer) response time. The case of q = 1/2 represents the10

lower asymptotic limit for all possible qc and corresponds to
an ice sheet with Vialov-type proportions for which the cen-
tral ice thickness is the square root of the horizontal extent.
Conceptual flow-line experiments similar to the ones con-
ducted here (Feldmann and Levermann, 2015a) revealed that15

the Vialov profile, which results under simplified conditions
from the shallow-ice approximation of the full-Stokes stress
balance in flow line, can also reasonable approximate the ice-
sheet shape in SSA. In the same study a comparison between
steady-state ice-sheet profiles before and after collapse sug-20

gested a scaling of β = α1/2. For such an ice sheet the time
scaling is identical to the scaling of its length, i.e., stretch-
ing (compression) results in slower (faster) response which
is opposite behavior than for the above discussed case of
q > qc > 1/2. A thought experiment that is consistent with25

the scaling behavior derived for this kind of profile reveals
that in the course of an ice-sheet retreat that is triggered by
atmospheric warming the ice-sheet response would become
faster, with self-accelerating effect on further retreat (Fig 8).
Note that all the consideration made above are only valid for30

a constant basal-friction parameter.
In place of prescribing basal friction, the assumption of a

constant surface mass balance (δ = 1) or ice softness (ζ = 1),
results in a more trivial response-time scaling which either
equals the vertical scaling (Eq. 13) or depends on the vertical35

scaling via a power-law relation with exponent −n (Eq. 12),
respectively. Since n is always positive (often chosen as 3,
see Cuffey and Paterson, 2010) also here the qualitative time
scaling does not depend on the parameter value. There are
several other ways to analyze the implications of the scaling40

conditions derived here on ice-sheet dynamics that are not
covered in this study.

Our approach includes several assumptions (shallow stress
balance, isothermal ice flow, choice of sliding law, parameter
constraints) and thus simplifies the problem of ice sheet flow.45

At the same time it allows for the fundamental scaling anal-
ysis conducted here which incorporates the relevant physics
of fast ice flow and results in scaling conditions that relate
important physical parameters of an ice sheet to each other.

The applied Weertman-type sliding law (Eq. 3) is a com-50

mon choice (Fowler, 1981; Schoof, 2007a; Pattyn et al.,
2013) amongst others used to describe the sliding of ice
sheets over bedrock (Greve and Blatter, 2009; Cuffey and
Paterson, 2010; Tsai et al., 2015). It covers diverse types
of sliding behavior depending on the sliding exponent m in55

Eq. (31). Except for the plastic limit (m= 0) it relates the
scale of basal stress to the scale of velocity, resulting in a
scaling law which links the scaling of ice-sheet geometry,
friction and response time, respectively (Eq. 11).

Our analytic exploration of the derived ice-sheet scaling 60

behavior applies several constraints to the parameter space
and is thus far from being holistic but is aimed to allow for
(simplified) statements on the influence of geometric scal-
ing on response time. The set of scaling conditions presented
here shall provide a model which allows for a fundamen- 65

tal comparison of the large-scale scaling of the geometry
and relevant parameters that determine ice-sheet dynamics.
In particular the response-time scaling conditions might be
suitable to analyze speed of the transient response to climatic
perturbations of the polar ice sheets that took place in the past 70

or might become relevant for the future.

Appendix A: Two-dimensional case with two time and
length scales for both horizontal directions

Introducing the dimensionless velocities v∗x = vxTx

Lx
and v∗y =

vyTy

Ly
the non-dimensionalized form of the effective strain 75

rate (Eq. 2) reads

ε̇e =

[
T −2
x

(
∂v∗x
∂x∗

)2

+ T −2
y

(
∂v∗y
∂y∗

)2

+ T −1
x T −1

y

∂v∗x
∂x∗

∂v∗y
∂y∗

+
1
4

(
LxL−1

y T −1
x

∂v∗x
∂y∗

+L−1
x LyT −1

y

∂v∗y
∂x∗

)2
]1/2

.

(A1)
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J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling 9

Insertion into Eq. (1a) yields the following expression for the
x-component of the two-dimensional SSA:

∂

∂x∗



H∗




[
2A−1/n

ρgHTx

] 2n
1−n

ε̇2e
︸ ︷︷ ︸

I




1−n
2n

∂v∗x
∂x∗

+H∗




[
A−1/n

ρgHTy

] 2n
1−n

ε̇2e
︸ ︷︷ ︸

II




1−n
2n

∂v∗y
∂y∗




+
1
2
∂

∂y∗



H∗




[
A−1/nL2

x

ρgHL2
yTx

] 2n
1−n

ε̇2e
︸ ︷︷ ︸

III




1−n
2n

∂v∗x
∂y∗

+H∗




[
A−1/n

ρgHTy

] 2n
1−n

ε̇2e
︸ ︷︷ ︸

IV




1−n
2n

∂v∗y
∂x∗




+
Lm+1
x C

ρgH2T mx︸ ︷︷ ︸
=Φx

v∗x
m−H∗ ∂(h∗+ b∗)

∂x∗
= 0,

(A2)

with the dimensionless coefficient Φx which has the same
form as Φ (Eq. 26) but is specific for the x-direction. The5

terms I , II = IV and III are evaluated in the following to
obtain dimensionless factors for the SSA equation. The first

expression I reads:

I =

[
2A−1/n

ρgHT 1/n
x

]

︸ ︷︷ ︸
ΘI,1

2n
1−n (

∂v∗x
∂x∗

)2

+

[
2A−1/n

ρgHTxT
1−n

n
y

]

︸ ︷︷ ︸
ΘI,2

2n
1−n (∂v∗y

∂y∗

)2

+

[
2A−1/n

ρgHT
1+n
2n

x T
1−n
2n

y

]

︸ ︷︷ ︸
ΘI,3

2n
1−n

∂v∗x
∂x∗

∂v∗y
∂y∗

+
1
4




[
2A−1/n

ρgHT 1/n
x

(Lx
Ly

) 1−n
n

]

︸ ︷︷ ︸
ΘI,4

n
1−n

∂v∗x
∂y∗

+

[
2A−1/n

ρgHTxT
1−n

n
y

(Ly
Lx

) 1−n
n

]

︸ ︷︷ ︸
ΘI,5

n
1−n

∂v∗y
∂x∗

)

2

,

(A3)

from which we obtain five dimensionless factors 10

ΘI,1, ...,ΘI,5. Applying the same steps for expressions
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10 J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling

II and III yields ten more coefficients:

II = IV : ΘII,1 = ΘIV,1 =
2A−1/n

ρgHT
1−n

n
x Ty

(A4)

ΘII,2 = ΘIV,2 =
2A−1/n

ρgHT 1/n
y

(A5)

ΘII,3 = ΘIV,3 =
2A−1/n

ρgHT
1−n
2n

x T
1+n
2n

y

(A6)

ΘII,4 = ΘIV,4 =
2A−1/n

ρgHT
1−n

n
x Ty

(Lx
Ly

) 1−n
n

(A7)

5

ΘII,5 = ΘIV,5 =
2A−1/n

ρgHT 1/n
y

(Ly
Lx

) 1−n
n

(A8)

III : ΘIII,1 =
2A−1/n

ρgHT 1/n
x

(Lx
Ly

)2

(A9)

ΘIII,2 =
2A−1/n

ρgHTxT
1−n

n
y

(Lx
Ly

)2

(A10)

ΘIII,3 =
2A−1/n

ρgHT
1+n
2n

x T
1−n
2n

y

(Lx
Ly

)2

(A11)

ΘIII,4 =
2A−1/n

ρgHT 1/n
x

(Lx
Ly

) 1+n
n

(A12)10

ΘIII,5 =
2A−1/n

ρgHTxT
1−n

n
y

(Lx
Ly

)−1+3n
n

(A13)

In order to obtain the same equations independent of an ap-
plied ice-sheet scaling the dimensionless coefficients need to
remain constant. We start with the first set of coefficients:

Θ′I,1
!= ΘI,1 ⇒ τx = β−nζ−1, (A14)15

Θ′I,2
!= ΘI,2 ⇒ τx = β−1ζ−1/nτ

− 1−n
n

y , (A15)

Θ′I,3
!= ΘI,3 ⇒ τx = β−

2n
1+n ζ−

2
1+n τ

− 1−n
1+n

y , (A16)

Θ′I,4
!= ΘI,4 ⇒ τx = β−nζ−1

(
αx
αy

)1−n
, (A17)

Θ′I,5
!= ΘI,5 ⇒ τx = β−1ζ−1/n

(
αx
αy

) 1−n
n

τ
− 1−n

n
y .

(A18)

We immediately see that Eq. (A14) gives the same time scal-20

ing (in x-direction) as derived for the more constraint cases,
i.e., in flow-line (Eq. 12) as well as for the two-dimensional
case that assumes only one time and length scale, respec-
tively (Sec. 2.4). Comparison of Eqs. (A14) and (A17) di-
rectly yields the condition αx = αy . Furthermore, replacing25

β and ζ in Eq. (A15) using Eq. (A14) we obtain τx = τy .

These two conditions can also be deduced by the compari-
son of scaling relations that are derived from different coeffi-
cients, e.g., ΘI,1,ΘII,2 and ΘIII,1. The same procedure can
be carried out for the y-component of the SSA leading to the 30

same outcome due to the symmetry of both horizontal com-
ponents of the SSA. Applying our findings it follows Φx = Φ
in Eq. (A2) and the dimensionless ITE is identical to Eq. 27
with the same coefficient Ω.

We thus found that in order to fulfill the required scaling 35

similarity in the considered two-dimensional SSA-case there
can only exist one horizontal length scale and one time scale
(as opposed to one in each horizontal direction, as assumed
initially). All the scaling relations derived for the flow-line
SSA case (Eqs. 11 - 13) hold here. 40

Appendix B: Experimental design of numerical
simulations

B1 Flow-line simulations

For the two-dimensional simulations, we use the symmet-
ric flow-line geometry and the sequence of experiments de- 45

scribed in Feldmann and Levermann (2015a): An ice sheet
in equilibrium (grey profile in Fig.-2) is perturbed in its RHS
basin, forcing the grounding line to retreat onto the basin’s
inward down-sloping bed section (Fig.-2, red profile). After
cessation of the perturbation the grounding line continues to 50

retreat indicating that a MISI has been triggered. The result-
ing far-inland spreading dynamic ice-sheet thinning eventu-
ally initiates a second MISI in the connected LHS basin (see
Feldmann and Levermann, 2015a, for a detailed examination
of the mechanism which is visualized in their Fig. 4a). This 55

second MISI is induced only through internal ice dynamics
without any direct forcing and hence we expect that the speed
of the instability is a suitable measure to reflect the ice-sheet
inherent response time.

For three parameter sets the simulations deviate 60

from the above described scenario. In two simulations
(2Dα=1,β= 1

2 ,δ=1 and 2Dα= 1
2 ,β=1,γ=1) the ice sheet does

not find a steady state with a grounding-line location on
the ocean side of the coastal sill but collapses after several
thousand years and equilibrates on the central bed portion. In 65

simulation 2Dα=1,β= 1
2 ,γ=1 only the first MISI is triggered

but not the second (referred to as “stable” scenario S in
Feldmann and Levermann, 2015a). Though the unstable
retreat in these three simulations does not take place as
unperturbed as in the scenario described further above we 70

nevertheless use the speed of retreat to estimate ice-sheet
response time also for these scaled setups.

B2 Three-dimensional simulations

For the three-dimensional experiments we extend our flow-
line geometry by introducing a second horizontal dimension 75

(y) to obtain channel-like ice-sheet flow in three dimensions
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J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling 11

with similar geometry as in Gudmundsson et al. (2012) and
Asay-Davis et al. (2015). The bed topography b(x,y) is a
superposition of two components: The bed component in x-
direction, bx(x), is as described in Feldmann and Levermann
(2015a) but lowered uniformly by -300 m (Fig. 3). The com-5

ponent in y-direction, by(y), is taken from Gudmundsson
et al. (2012). The superposition of both, b(x,y) = bx + by ,
yields a bed trough which is symmetric in both x- and y-
direction (Fig. 4). While the main ice-sheet flow is still in
x-direction (from the interior through the bed trough towards10

the ocean) there is also a flow component in y-direction, i.e.,
from the channel’s lateral ridges down into the trough. Re-
sulting convergent flow and associated horizontal shearing
enable the emergence of buttressing, and hence ice dynamics
in this setup differ substanitally from the flow-line case. In15

particular the buttressing effect stabilizes the grounding line
further downstream than would be expected in a flow-line
configuration (compare Figs. 2 to 3 where the steady-state
grounding lines are approximately at the same position but
the local bed elevation differs by several 100 m).20

Spinning up the model we obtain a symmetric ice sheet in
equilibrium with a stable bay-shaped grounding line. Along
the centerline of the setup (y = 0) the grounding line is lo-
cated downstream of the coastal sill, similar to the flow-line
case (Figs. 4 and 3 in grey). Two symmetric ice shelves have25

formed which are fringed and fed by ice from the inland and
lateral direction. The steady-state ice sheet is then perturbed
by removing all floating ice instantaniously after which a
continuous elemition of all ice that crosses the grounding
line is applied. This scaling-independent perturbation initi-30

ates grounding-line retreat onto the inland-downsloping bed
and the synchronously unfolding MISIs provide a measure
for the ice-sheet response time.
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Table 1. Parameter values as prescribed in the unscaled reference simulations for the flow-line setup (2D) and the three-dimensional channel
setup (3D), respectively. For the scaling experiments the bed geometry (bx and by) and the parameters a, A and C are multiplied with the
scaling ratios from to Table ??. The terms “BC-300” and “BC0” refer to the bed geometries described in Feldmann and Levermann (2015a)
and by,G refers to y-component of the bed topography used in Gudmundsson et al. (2012).

Parameter 2Dref 3Dref Unit Physical meaning

a 0.6 0.5 myr−1 Surface mass balance
bx “BC-300” “BC0” - 300 m x-component of bed topography
by - by,G y-component of bed topography
A 10−25 Pa−3s−1 Ice softness
C 107 Pa m−1/3s1/3 Basal friction parameter
g 9.81 m s−2 Gravitational acceleration
m 1/3 Basal friction exponent
n 3 Exponent in Glen’s law
ρi 900 kg m−3 Ice density
ρw 1000 kg m−3 Sea-water density

Table 2. Scaling ratios as used for our numerical simulations. Prescribed scaling ratios are highlighted in blue, the other result from Eqs. (11)-
(17), (29) and (30). Each row corresponds to a scaling experiment, that is carried out in flow line (“2D”) and in a three-dimensional channel
setup (“3D”). The parameters values prescribed in the simulations are obtained by multiplying bx, by , C, a and A (see Table 1) with the
given ratios α, β, γ, δ and ζ. The analytic values for χ̇ are used to fit the sections of linear grounding-line retreat in Figs. 5 and 6.

Simulation name α β γ δ ζ τ χ̇

2D/3DREF 1 1 1 1 1 1 1

2D/3Dα=1,β= 1
2 ,γ=1 1 1

2
1 1
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64 1
64
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Figure 1. Schematic of the similitude-analysis method carried out in this study. A reference system (blue ice sheet and bed topography) with
geometric scales h and L, time scale T and physical parameters ice softness A, basal friction coefficient C and surface mass balance a is
scaled in horizontal and vertical direction (red contours, primed system). The goal is to derive the scaled parameters of the primed system
under which dynamic similarity between both ice sheets holds. A dimensional analysis of the governing equations yields dimensionless scale
factors which have to remain constant under scaling to attain similitude. The resulting scaling laws determine the scaled (primed) parameters.
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Figure 2. Ice sheet profiles at three different stages of the flow-line simulations 2Dα= 1
2 ,β= 1

2 ,γ=1 (continuous) and 2Dref (dashed). Output of
the reference simulation is scaled by factor 0.5 in both horizontal and vertical direction to allow for comparison of shapes between the two
simulations.
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Figure 3. Steady-state ice-sheet profiles for cross section along the centerline (y = 0) of the three-dimensional channel setup for simulations
3Dα= 1

2 ,β= 1
2 ,γ=1 (continuous) and 3Dref (dashed). Output of the reference simulation is scaled by 0.5 in both horizontal and vertical direction

to allow for comparison of shapes between the two simulations.
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Figure 4. Bed topography of the three-dimensional channel setup, here shown in the scaled version with α= β = 0.5 (see Fig. 3 for a cross
section along y = 0). Steady-state grounding-line positions for simulations 3Dα= 1

2 ,β= 1
2 ,γ=1 (continuous) and 3Dref (dashed). Grey lines

mark the position of the coastal sill and the bed depression, respectively. Output of the reference simulation is scaled by 0.5 in horizontal
direction to allow for comparison of shapes between the two simulations.
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Figure 5. Time series of grounding-line position for the reference and three geometrically scaled flow-line experiments for which (a) basal
friction and (b) surface mass balance is held constant, respectively. Grey horizontal lines indicate location of the minimum of the bed
depression for both the scaled und unscaled case around which the grounding line retreats unstable and retreat rates are approximately
constant. In this range the slope of the curve of the unscaled simulation is fitted to obtain a reference retreat rate of 0.47 km/yr (purple slope
fitted to black curve) which is used to predict the slopes, i.e., retreat rates, for the scaled experiments (other curves overlayn by purple lines
with predicted slopes) according to Table 1.
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Figure 6. Time series of centerline grounding-line position (along y = 0) for the reference and three geometrically scaled 3D channel
experiments for which (a) basal friction and (b) surface mass balance is held constant, respectively. The Fitting method is the same as
described in Fig. 5

The Cryosphere Discuss., doi:10.5194/tc-2015-226, 2016
Manuscript under review for journal The Cryosphere
Published: 18 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling 17

0.5

1.0

1.5

β

τ = α1+1/mβ−2/ma

q = 1
qc = 2/3

q = 1/2

ζ = α−1−1/mβ2/m−nb

0.5 1.0 1.5
α

0.5

1.0

1.5

β

δ = α−1−1/mβ1+2/mc

0.5 1.0 1.5
α

q = logαβd

0

1

2
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for γ = 1 and m= 1/3. Panel (d) shows value of the exponent q if the two horizontal scales are linked according to Eq. 32. Dotted line
represents scaling of an ice sheet with Vialov proportions. Dashed line denotes critical threshold τ = 1.
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Figure 8. Scaling of response time τ , surface mass balance δ and ice softness ζ under the assumption of Vialov-type geometric scaling
(β = α1/2) and constant basal friction (γ = 1). The resulting scaling conditions are independent of m and given in the legend (n=3).
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Figure 9. Response-time scaling for hypersurfaces through the α-β-m phase space according to Eq. 31 for (a) α= 1, (b) β = 1, (c) α= β
and (d) the constraint that the response time scales independently of m. In each panel the legend gives the scaling law for τ that results from
the applied constraint.
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