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Abstract. The concept of similitude is commonly employed
in the fields of fluid dynamics and engineering but rarely used
in cryospheric research. Here we apply this method to the
problem of ice flow to examine the dynamic similitude of
isothermal ice sheets in shallow-shelf approximation against5

the scaling of their geometry and physical parameters. Carry-
ing out a dimensional analysis of the stress balance we obtain
dimensionless numbers that characterize the flow. Requiring
that these numbers remain the same under scaling we obtain
conditions that relate the geometric scaling factors, the pa-10

rameters for the ice softness, surface mass balance and basal
friction as well as the ice-sheet intrinsic response time to each
other. We demonstrate that these scaling laws are the same
for both the (two-dimensional) flow-line case and the three-
dimensional case and that they are consistent with flow-line15

boundary-layer theory. The theoretically predicted ice-sheet
scaling behavior agrees with results from numerical simula-
tions that we conduct in flow-line and three-dimensional con-
ceptual setups. We further investigate analytically the impli-
cations of geometric scaling of ice sheets for their response20

time. With this study we provide a framework which, under
several assumptions, allows for a fundamental comparison of
the ice-dynamic behavior across different scales. It proofs to
be useful in the design of conceptual numerical model setups
and could also be helpful for designing laboratory glacier ex-25

periments. The concept might also be applied to real-world
systems, e.g., to examine the response times of glaciers, ice
streams or ice sheets to climatic perturbations.

1 Introduction

In the fields of fluid dynamics and engineering scaling laws 30

are used to perform experiments with spatially reduced mod-
els in water channels or wind tunnels to predict the behav-
ior of the associated full-scale system (e.g., Scruton, 1961;
Li et al., 2013). Dimensional analysis and the principle of
similitude allow to derive such scaling laws analytically (e.g., 35

Rayleigh, 1915; Macagno, 1971; Szücs, 1980). For instance,
a dimensional analysis of the Navier-Stokes equation (Kundu
et al., 2012) yields the Reynold’s number (Reynolds, 1883)
as one of the dimensionless parameters of the governing
equation which characterize the dynamics of fluid flow. Un- 40

der the assumption of the similitude principle the Reynold’s
number can provide a scaling law for the fluid’s characteristic
linear dimension, velocity and viscosity that assures similar
flow patterns. The principle of similitude is applied well be-
yond the field of engineering, e.g. in zoology (land mammals 45

move in dynamically similar fashion at equal Froude number,
Alexander and Yayes, 1983) or biology (Stahl, 1962).

The similitude concept is also applied to some extent in the
field of glaciology: in laboratory glacier experiments dimen-
sionless numbers like the Reynold’s, Froude and Ramberg 50

numbers are used to check for (dynamic) similarity between
the geometrically scaled model (based on the properties of
the analogue ice material) and the real-world system (Burton
et al., 2012; Corti et al., 2014). In Halfar (1983) and Bueler
et al. (2005) the similitude principle is used to derive simi- 55

larity solutions of the shallow-ice-approximation (SIA, Hut-
ter, 1983) of the full-Stokes stress balance for the case of an
isothermal, radially symmetric ice sheet.
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Here we apply the concept of similitude to the dynamics
of idealized ice sheets based on the shallow-shelf approxima-
tion (SSA, Morland, 1987; MacAyeal, 1989; Greve and Blat-
ter, 2009). In particular we assume isothermal ice and a spa-
tially uniform basal friction coefficient, conditions that have5

been used to analyze ice-sheet dynamics in a number of pre-
vious studies (e.g., Dupont and Alley, 2005; Goldberg et al.,
2009; Gudmundsson et al., 2012; Pattyn et al., 2013; Asay-
Davis et al., 2015). Neglecting the terms of vertical shearing
in the stress balance and accounting for the small thickness-10

to-length ratio of ice sheets, the SSA represents the relevant
dynamics of floating ice shelves and grounded ice streams.
The capability of numerical SSA models to simulate these
regimes that are characterized by fast plug-like flow has been
demonstrated in various studies (e.g., Goldberg et al., 2009;15

Gudmundsson et al., 2012). The SSA can be complemented
by the SIA (Huybrechts, 1990; Sato and Greve, 2012) to also
include vertical shearing, which is dominant in the more stag-
nant interior parts of an ice sheet (Bueler and Brown, 2009;
Pollard and DeConto, 2012; Thoma et al., 2015), whereas20

higher-order approximations (Schoof and Hindmarsh, 2010;
Larour et al., 2012; Cornford et al., 2015) neglect less stress
components in the full-Stokes stress balance (Favier et al.,
2012). The MISMIP3d benchmark revealed that numerical
models applying the SSA can capture grounding-line dynam-25

ics comparable to more elaborate models in conceptual ex-
periments (Pattyn et al., 2013; Feldmann et al., 2014).

A dimensional analysis of the ice-dynamic equations is
often carried out to compare the magnitudes of the differ-
ent acting forces and thus to derive physically motivated ap-30

proximations, as done when deriving the SSA from the full-
Stokes stress balance (MacAyeal, 1989; Greve and Blatter,
2009). The non-dimensionalized form of the SSA itself and
the involved dimensionless coefficients that result from the
introduction of typical scales for, e.g., ice-sheet thickness and35

velocity, have been used to consider asymptotic limits of SSA
ice flow in previous work (Schoof, 2007a; Dupont and Alley,
2005; Tsai et al., 2015; Haseloff et al., 2015). In the present
study we utilize these coefficients to derive ice-sheet scaling
laws for the geometry, response time and other physical ice-40

sheet parameters, a step that to our knowlegde, has not been
taken before. The scaling behavior of ice sheets, that here
is analyzed in a conceptual way, might be of use to better
understand the large-scale evolution of the polar ice sheets.
Of particular interest is the scaling of the ice-sheet response45

time (Levermann et al., 2013, 2014) against the background
of Antarctic instabilities (Weertman, 1974; Schoof, 2007b;
Rignot et al., 2014; Fogwill et al., 2014; Mengel and Lever-
mann, 2014). The time scales of possible rapid ice discharge
due to instability in the past (Pollard and DeConto, 2009;50

Pollard et al., 2015) and future (Favier et al., 2014; Joughin
et al., 2014; Feldmann and Levermann, 2015b) are highly
uncertain.

The paper is structured as follows: in the next section the
governing equations in SSA are non-dimensionalized to de-55

rive ice-sheet scaling laws for one and two horizontal dimen-
sions, respectively. We also give an alternative approach to
derive the same scaling conditions. Afterwards the analyti-
cally predicted ice-sheet scaling behavior is compared with
results from numerical modeling. To this extent conceptual 60

experiments are designed in two and three spatial dimen-
sions. Steady states as well as the transient response to per-
turbation of the simulated ice sheet are analyzed for a system-
atic variation of the scaling parameters which are prescribed
according to the scaling laws. We then examine analytically 65

the implications of the scaling conditions for the response
times of ice sheets considering the geometric scaling factors
and basal friction parameter as independent variables. Even-
tually we discuss the results and conclude.

2 Similitude of shallow ice-sheet dynamics 70

Here we derive scaling laws that determine how the geome-
try, response time and the involved physical parameters for
ice softness, surface mass balance and basal friction have
to relate in order to satisfy similitude between different ice
sheets. This is visualized conceptually in Fig. 1 for two ice 75

sheets which differ in vertical and horizontal scale. Based
on the governing equations in dimensionless form, we ob-
tain dimensionless scale factors which depend on the scales
of the geometric and physical parameters of the ice sheet.
The requirement that each of these factors has to remain the 80

same under a scaling of the parameters makes sure that the
dynamic equations remain exactly the same. The resulting
scaling laws thus put constraints on the parameter scaling,
ensuring similitude between the different ice-sheet configu-
rations. 85

2.1 Basic equations for similitude analysis

The problem addressed here is the one of an isothermal ice-
sheet in SSA (Greve and Blatter, 2009). The two horizontal
components of the stress balance in SSA with spatially uni-
form ice softness A are given by 90
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where vx and vy are the velocity components in x- and y-
direction, respectively, H is the ice thickness, h=H + b the
ice-surface elevation with ice-base elevation b, ρ is the ice
density, g the gravitational acceleration and n denotes Glen’s 95

flow-law exponent. The effective strain rate ε̇e (Greve and
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Blatter, 2009) can be written as
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We choose the basal shear stress in Eqs. (1), τ b = (τb,x, τb,y),
to be given by a Weertman-type sliding law (Greve and Blat-
ter, 2009):5

τ b =−C|v|m−1v, (3)

with horizontal velocity vector v = (vx,vy) and constant
friction coefficient C. The exponent m determines the par-
ticular type of the sliding law including plastic (m= 0, mag-
nitude of basal shear stress independent of velocity, Tulaczyk10

et al., 2000) and linear-viscous (m= 1, basal shear stress
proportional to ice velocity, MacAyeal, 1989) behavior. A
value of m= 1/n= 1/3 is commonly assumed to represent
sliding over rough bed (Schoof, 2007a; Joughin et al., 2009;
Cuffey and Paterson, 2010).15

The evolution equation for the ice thickness, i.e., the ice
thickness equation (ITE), which results out of mass conser-
vation (Greve and Blatter, 2009) reads

∂H

∂t
=−divQ+ a, (4)

with horizontal ice flux Q=Hv and surface mass balance20

a. Throughout the study we focus on the grounded part of
the ice sheet and assume negligible melting/refreezing at its
base. Hence the basal mass balance is not taken into account
in Eq. (4).

2.2 Flow-line case25

In the flow-line case the geometry of an ice sheet can be
scaled in horizontal (x) and vertical (z) direction, using two
scaling factors α and β, respectively (α,β > 1 for elongation
and 0< α,β < 1 for shortening). We define these as

x′ = αx, (5)30

h′(x′) =H ′(x′) + b′(x′) = βH(x) +βb(x) = βh(x), (6)

where the prime denotes the scaled system. In particular,
Eq. (5) states that the ice-sheet length L scales according to
L′ = αL.

Since we neglect the y-direction here, we only have to con-35

sider the x-component of the SSA (Eq. 1a) in which all terms
that include y drop out. The effective strain rate (Eq. 2) thus
simplifies to ε̇e =

∣∣∂vx
∂x

∣∣ and the SSA reads
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The ITE (Eq. 4) in flow line is given by 40

∂H

∂t
=−∂(Hvx)

∂x
+ a. (8)

Now we bring these two equations into non-
dimensionalized form by introducing the dimensionless
variables H∗ = H

H , b∗ = b
H and v∗x = vxT

L , using the scales
H, L and T for ice-sheet thickness, length and response 45

time, respectively. We obtain
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∂x∗
+
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=ω

, (10)

for the SSA and ITE, respectively. In Eq. (9) the two di- 50

mensionless constants θ and φ relate the different involved
stresses to the driving stress. Extending θ with H/L and φ
with L−1 we see that these scale factors relate the mem-
brane stresses (Hindmarsh, 2006) and the basal stresses to the
driving stress, respectively. In the floating ice shelf the driv- 55

ing stress is always fully balanced by the membrane stresses
(no basal resistance, thus C = 0 in Eq. 9). Focussing on the
grounded part of the ice sheet, we assume that its driving
stress is balanced by a combination of membrane stresses
and basal stresses. 60

The two governing equations (9) and (10) of our problem
remain exactly the same as long as each of the dimensionless
factors θ, φ and ω remain the same. In other words, the ice-
sheet dynamics are expected to be similar under a transfor-
mation that leaves these factors unchanged. Thus the scaling 65

of the ice sheet’s typical length and thickness scales accord-
ing to Eqs. (5) and (6), i.e., L′ = αL andH′ = βH in general
requires (some of) the physical parameters a,C,A and its re-
sponse time T to change in order to maintain similarity with
respect to the unscaled ice sheet. We hence can infer three 70

scaling conditions for the time-scale ratio τ = T ′/T :

φ′ = φ ⇒ τ = α1+1/mβ−2/mγ1/m, (11)

θ′ = θ ⇒ τ = β−nζ−1, (12)

ω′ = ω ⇒ τ = βδ−1, (13)

with friction-coefficient ratio γ = C ′/C, ice-softness ratio 75

ζ =A′/A and surface-mass-balance ratio δ = a′/a. This sys-
tem of 3 equations has 6 unknowns from which 4 remain
when we take α and β as given by the applied geometric
transformation. Prescribing one of the three parameter ratios
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γ, δ or ζ hence determines the scaling of the other two pa-
rameters and the time scaling of the system.

We can link the ratios of surface mass balance and ice soft-
ness by combining Eqs. (12) and (13), yielding

δ = βn+1ζ, (14)5

a relation which is independent of the horizontal scaling fac-
tor α. For the case of a scaled ice-sheet geometry that is left
unchanged in vertical direction (β = 1) ice softness and ac-
cumulation hence scale identically.

Using Eqs. (11)-(13) we can further express δ and ζ as10

functions of both geometric scaling ratios and the basal fric-
tion ratio:

δ = α−(1+1/m)β1+2/mγ−1/m. (15)

ζ = α−(1+1/m)β−n+2/mγ−1/m. (16)

Inserting Eq. (14) into Eq. (16) we also obtain a condition15

for the basal-friction ratio as a function of both geometric
scaling parameters and the surface-mass-balance ratio:

γ = α−(1+m)β2+mδ−m. (17)

Results of an application of the derived scaling laws in
numerical flow-line simulations are given in Sec. 320

2.3 Consistency with flow-line boundary-layer theory

Here we show that the scaling conditions derived above by
dimensional analysis under the concept of similitude are
consistent with the boundary-layer theory which was intro-
duced by Schoof (2007b) for a steady-state, unbuttressed,25

isothermal, flow-line ice sheet in SSA. Neglecting membrane
stresses in the SSA stress balance, matched asymptotics are
applied to solve a boundary-layer problem for the transition
zone between grounded and floating ice. This theory thus ap-
plies further assumptions to the SSA and ITE compared to30

the more general versions of these equations that are used in
the present study.

According to the boundary-layer theory the ice-sheet sur-
face slope is given by (Schoof, 2007b, Eq. 25)

∂h(x)

∂x
=
∂(H(x) + b(x))

∂x
=
C

ρg

|Q(xgl)|m−1
Q(xgl)

h(x)
m+1 , (18)35

where xgl denotes the grounding-line position and Q(xgl) is
the flux across the grounding line. According to Eqs. (5) and
(6) the scaling of the surface slope reads
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=
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α

∂h(x)
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(19)

and in combination with Eq. (18) we can write40
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(20)

Presuming that the flux across the grounding line is always
positive in x-direction and using once again Eq. (6) yields a
scaling relation for the grounding-line flux

Q′(x′gl) = α−1/mβ(1+2/m)γ−1/mQ(xgl). (21) 45

The boundary-layer method considers the ITE in steady
state (∂H∂t = 0) and hence integration of Eq. (4) over the en-
tire length of the grounded ice sheet yields

Q(xgl) = aL. (22)

Inserting this expression for the grounding-line flux into 50

Eq. (21) we arrive at the same condition for the scaling of
the surface mass balance (Eq. 15) that we obtained from the
principle of similitude in the previous section.

A central result of the boundary-layer theory is an analytic
solution for the grounding-line flux as a function of ice thick- 55

ness at the grounding line (Schoof, 2007b, Eq. 16):

Q(xgl) =

(
A(ρg)

1+n
(1− ρ/ρw)n

4nC

) 1
m+1

H(xgl)
m+n+3
m+1 .

(23)

Inserting this relation into Eq. (21) and applying some basic
algebra we obtain the same scaling relation for the ice soft-
ness as derived in the previous sections (Eq. 16). 60

Setting Q(xgl) = vx(xgl)H(xgl) in Eq. (22) and dividing
by Q′(xgl) we obtain

v′x(x′gl)

vx(xgl)
= αβ−1δ. (24)

Since the boundary-layer theory assumes steady-state con-
ditions, we introduce a velocity scale V = L/T to be able 65

to derive a response-time relation. This yields v′x/vx = α/τ
and the response-time scaling law resulting from Eq. (24) is
identical to Eq. (13).

Thus the same 3 independent equations that determine the
ice-sheet scaling behavior and were derived by the means of 70

similarity analysis in the previous section also result from
boundary-layer theory.

2.4 Two-dimensional case with one time and one length
scale

The two-dimensional SSA (Eq. 1) is derived from the full- 75

Stokes equation using a single horizontal length scale L and
time scale T , respectively (Greve and Blatter, 2009). Con-
tinuing this line of thought, we introduce the dimension-
less velocity in y-direction, v∗y =

vyT
L , in addition to the di-

mensionless variables from Sec. 2.2 to non-dimensionalize 80

the SSA equations. The dimensionless effective strain rate
(Eq. 2) then reads

ε̇∗e = T ε̇e (25)
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For the x-component of the SSA (Eq. 1a) we hence obtain
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The same coefficients Θ and Φ result from the y-component
of the SSA, which is not specified here. The non-
dimensionalized ITE (Eq. 4) reads5

∂H∗

∂t∗
=−div (H∗v∗) +

aT
H︸︷︷︸
=Ω

. (27)

Comparison between the flow-line and the two-dimensional
SSA and ITE shows that we obtained the same number of
dimensionless factors that appear at the same place and are
identical to each other, i.e., θ = Θ, φ= Φ and ω = Ω. Hence10

under the assumption of a single horizontal length scale the
scaling relations for the two-dimensional SSA are the same
as in the flow-line case.

2.5 Two-dimensional case with time and length scales
for both horizontal directions15

Starting again from the two-dimensional SSA (Eq. 1) we
now make the less-constraining assumption of two horizontal
length scales Lx and Ly and accordingly two time scales Tx
and Ty , yielding the dimensionless velocities v∗x = vxTx

Lx
and

v∗y =
vyTy
Ly

. In this case the effective strain rate (Eq. 2) does20

not simplify to a single term as in the previous sections but
consists of several mixed terms. The SSA thus expands to a
much longer expression which we detail in the Appendix A.
Although we obtain a multiple of dimensionless coefficients
that need to remain the same for the ice sheet to fulfill simi-25

larity under scaling, the resulting scaling laws are identical to
the ones derived above (see Appendix A). This implies that
our requirement of similarity results in the constraint that the
ice sheet can have only one time scale T = Tx = Ty and one
length scale L= Lx = Ly as opposed to our initial assump-30

tion of distinct scales for each horizontal direction.
We investigate ice-sheet scaling also in a three-

dimensional setup in the next section.

3 Comparison with simulations

We compare our analytical findings with results from numer-35

ical simulations applying the Parallel Ice Sheet Model in con-
ceptual geometric setups. The model is the same as used in

(Feldmann and Levermann, 2015a) but here run in SSA-only
mode. We define a reference topographic geometry which
is prescribed in an unscaled reference experiment (indexed 40

as “ref”) along with the parameter values shown in Table 1.
The scaling experiments use geometrically scaled versions of
the reference bed topography and the physical parameters are
modified according to the scaling laws derived in Sec. 2.2.

Halfing the horizontal and/or vertical length scales of the 45

reference topography we obtain three geometric configu-
rations which are shortened in vertical (α,β) = (1.0,0.5),
horizontal (α,β) = (0.5,1.0) or both directions (α,β) =
(0.5,0.5), respectively. To be able to calculate the other phys-
ical parameters a,A,C that apply to the scaling experiments 50

according to the 3 scaling relations (Eqs. 15 - 17) we need
to prescribe one more scaling ratio in addition to α and β.
Setting γ = 1 (identical basal friction) and δ = 1 (identical
surface mass balance), thus two sub-sets of simulations are
generated. The resulting scaling ratios which determine the 55

parameter values are shown in Table 2 for each of the seven
experiments. We apply the described procedure using 1) a
flow-line setup (one horizontal and one vertical direction, bed
topography in black in Fig. 2) and 2) a three-dimensional
channel-flow setup (flow-line setup extended into second 60

horizontal direction with valley-shaped bedrock in this di-
rection to form a bed trough, see Fig. 4). Details are given in
Appendix B.

The experiments are designed to perturb an ice sheet in
equilibrium, triggering a marine ice-sheet instability that un- 65

folds unaffected by the ceased perturbation. The speed of
unstable grounding-line retreat and the equilibrium ice-sheet
profiles before and after the instability serve as a measure to
compare the scaling of the dynamic response and the steady-
state geometry, respectively. 70

3.1 Comparing time scales of instability

All of our simulations show a similar pattern of grounding-
line evolution after perturbation (Figs. 5 and 6): after a phase
of little to negligible grounding-line retreat the retreat rate
increases (grounding line passes the coastal sill and enters 75

the retrograde slope), reaching its maximum value around
the minimum of the bed depression before declining to zero
(grounding line stabilizes on inland up-sloping bed). The ini-
tial and final grounding-line positions of comparable setups
(continuous lines) match or are close to each other. The simi- 80

larity of ice-sheet shapes between different geometric config-
urations becomes apparent when laying the modeled steady-
state ice-sheet profiles on top of each other and scaling the
spatial axes according to α and β (shown exemplarily in
Figs. 2 and 3). 85

The simulations clearly differ in the time scale of the MISI
evolution which can be measured by the grounding-line re-
treat rate ẋgl =

∂xgl

∂t . To compare different simulations we
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introduce a retreat-rate scaling ratio:

χ̇=
ẋ′gl
ẋgl

=
α

τ
. (28)

Dependent on which additional parameter is prescribed to be
identical under geometric scaling, we replace the time-scale
ratio using Eq. (11) or Eq. (13) to obtain scaling laws for the5

retreat rate as functions of the geometric scaling ratios only:

γ = 1 ⇒ χ̇= α−1/mβ2/m, (29)

δ = 1 ⇒ χ̇= αβ−1. (30)

We can thus calculate the retreat-rate ratios for all consid-
ered geometric configurations (Table 2). The grounding-line10

curves of our simulations are approximately linear over the
time period during which the grounding line passes the bed
depression and its retreat rate is largest. We fit a slope to the
linear section of the unscaled simulation (purple slope fit-
ted to black curve in Figs. 5 and 6), to obtain our reference15

retreat rate. Using the calculated retreat-rate ratios from Ta-
ble 2 we can predict the grounding-line retreat rates for the
scaled setups. Superimposing the linear sections of the scaled
experiments with the respective analytically calculated slope
(Figs. 5 and 6) gives a good match between numerical results20

and theory (see Figs. C1 and C2 for scaled versions of the
time series). Our simulation ensemble of scaled ice sheets
thus exhibits similarity as predicted from theory, regarding
transient ice-sheet dynamics and steady-state geometry.

4 Implications for the response times of ice sheets25

Based on the scaling laws derived in Sec. 2 we explore an-
alytically the implications of a scaling of ice-sheet param-
eters and geometry for the response-time scaling. Making
the assumption that the basal friction parameter stays the
same (γ = 1) while allowing different values for the surface30

mass balance and the ice softness we are able to calculate the
response-time ratio τ (Eq. 11) as a function that only depends
on the geometric scaling (α and β) and the friction exponent
m:

τ = α1+1/mβ−2/m. (31)35

Using this equation in combination with Eqs. (12) and (13)
we obtain contour maps for the ratios τ , ζ and δ in the α-β
phase space (Figs. 7a-c for the common choice of an expo-
nent value of m= 1/n with n= 3 Schoof, 2007a; Greve and
Blatter, 2009; Cuffey and Paterson, 2010). Therein the blue40

and red areas correspond to the regimes of an increasing and
decreasing parameter value under geometric scaling, respec-
tively, which are separated by a white curve along which the
considered parameter remains the same.

4.1 Linking horizontal and vertical scales 45

To be able to follow physically motivated curves through the
phase space we link the horizontal and the vertical scale. In
idealized flow-line experiments (Feldmann and Levermann,
2015a) it has been shown that the Vialov ice-sheet profile
(Vialov, 1958; Greve and Blatter, 2009), though derived un- 50

der the assumption of the shallow-ice approximation, can be
used to also approximate SSA ice-sheet profiles. Motivated
by the Vialov profile, for which the central (maximum) ice-
sheet thickness is proportional to the square root of the ice-
sheet length, we assume a relation between the ice-thickness 55

scaleH and the length scale L of the form

H∼Lq with 0< q ≤ 1. (32)

With α= L′/L and β =H′/H it follows that for the postu-
lated ice-sheet proportion the two geometric scaling factors
are linked such that 60

β = αq, (33)

and Eq. (31) then reads

τ = α
m−2q+1

m . (34)

We are interested in finding a critical value of the exponent in
Eq. (31) which determines a threshold in the α-β phase space 65

between the two regimes of increasing (τ < 1) and decreas-
ing (τ > 1) ice-sheet response time under applied geometric
scaling. Assuming horizontal elongation (α > 1), which ac-
cording to Eq. (33) implies also vertical elongation (β > 1,
see Fig. 7d), it follows that τ < 1 only if the exponent in 70

Eq. (34) is negative. Hence there exists a critical threshold

qc =
m+ 1

2
, (35)

with m ∈ (0,1] and thus qc ∈ ( 1
2 ,1], above which the scaled,

i.e. elongated, system responds faster compared to the un-
scaled system. This is visualized in Fig. 7a for m= 1/3. The 75

area between the dashed (q = qc = 2/3) and the continuous
(q = 1) curves is in the regime of τ < 1 for α > 1. Vice versa,
for a shortened ice sheet (α < 1 and hence β < 1) in the area
between these two curves holds τ > 1. The same qualitative
scaling applies to the ice softness whereas the surface mass 80

balance scales oppositely (Figs. 7b and c).
An exponent of q = 1/2 which represents Vialov propor-

tions constitutes the lower aymptotic limit of the domain of
all possible qc (limit m→ 0, Eq. 34 requires m> 0 for α
to remain finite). Thus a Vialov-shaped ice sheet exhibits 85

a response-time scaling oppositely to the scaling explained
above (the dotted Vialov curve in Fig. 7a lies always out-
side the region between continuous and dahed curve, inde-
pendently of m).

Assuming Vialov conditions under identical friction, the 90

scaling of the response time (Eq. 31), surface mass balance
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(Eq. 15) and ice softness (Eq. 16), respectively, becomes in-
dependent of m which is visualized in Fig 8. Evaluating the
curves in the left vicinity of α= 1, meaning a small reduc-
tion in both vertical and horizontal ice-sheet extent, yields a
plausible scaling of the ice-sheet parameters in a warming at-5

mosphere: rising atmospheric temperatures cause an increase
in surface mass balance (δ > 1 in Fig. 7c, Frieler et al., 2015)
and also lead to a softening of the ice (ζ > 1 in Fig. 7b, Cuf-
fey and Paterson, 2010). The response time then decreases
(τ < 1 in Fig. 7a). In this picture a warming-induced ice-10

sheet retreat would hence shift the ice sheet into the regime
of faster response to perturbation, tending to accelerate po-
tential further retreat.

4.2 Role of basal friction exponentm

The response-time scaling considered here is a function of15

the basal friction exponent m (Eq. 31) and the visualization
of the response-time ratio in the α-β phase space (Fig. 7 ac-
counts for only one value of m). To examine the influence
of m on the scaling we cut several hypersurfaces through the
phase space, sampling the domain of the exponent.20

Fixing the horizontal scale, i.e., going along α= 1, yields
that vertical elongation (shortening) always results in a
shorter (longer) ice-sheet response time (Fig. 9a). In this case
the parameter choice of m only determines the curvature of
τ(β). Fixing the vertical scale (β = 1) results in opposite be-25

havior of τ , i.e., horizontal elongation (shortening) always
yields a longer (shorter) ice-sheet response time (Fig. 9b).
Equal geometric scaling of the two directions (α= β) gives
a similiar picture as obtained for α= 1 (the magnitude of the
negative β-exponent is always larger than the α-exponent),30

with the difference that here the time scaling becomes inde-
pendent of the geometric scaling for m= 1 (Fig. 9c).

Requiring the response-time scaling law (Eq. 31) to be in-
dependent of m yields the relation β = α

1−m(k−1)
2 (with k a

real number) and thus τ = αk. In general, a negative (posi-35

tive) value of k then results in a faster (slower) response when
elongating (shortening) the ice sheet horizontally. The case
of k = 0 yields the same time scale (τ = 1), independent of
the α value (Fig. 9d). The case of k = 1 corresponds to the
Vialov case for which the time-scale ratio increases linearly40

when elongating the ice sheet horizontally.

5 Discussion and conclusions

Carrying out a dimensional analysis of the stress balance in
SSA and the equation of mass conservation we derive ice-
sheet scaling conditions for the vertical and horizontal length45

scales, the response time and the relevant physical parame-
ters which determine ice-sheet behavior.

Specifically, we find that the scaling relations derived for
the SSA in flow line (Eqs. 11-13) also hold for the SSA in
two horizontal dimensions under the assumption of a single50

horizontal time scale and a single length scale. Only the two-
dimensional SSA accounts for stress components that allow
for horizontal shearing and hence the effect of buttressing.

Our analysis also shows that although the full SSA ac-
counts for both horizontal dimensions there can only exist 55

one time scale T and one length scale L, as opposed to one
for each dimension (Tx, Ty and Lx, Ly) under the principle
of similitude.

To non-dimensionalize the SSA stress balance we intro-
duce scales for ice-sheet length, thickness and time with- 60

out assuming typical numerical values for these scales. We
thus do not neglect further terms in the SSA stress balance
by comparing orders of magnitudes of acting stresses (as
done in, e.g., Schoof, 2007a) but consider the general case in
which both membrane and basal stresses balance the driving 65

stress (Eqs. 9 and 26). In other studies the scales for ice-sheet
thickness, length and time are used to express the friction pa-
rameter C resulting in a dimensionless SSA stress balance
that is characterized by a single scaling parameter (often de-
noted as ε, Schoof, 2007a; Tsai et al., 2015). In the present 70

study we consider C as an independent parameter/scale and
thus obtain two scaling parameters θ and φ in the SSA stress
balance. The resulting scaling laws hence involve the scaling
of the basal roughness explicitely. The same holds for the
scaling of the surface mass balance a. 75

The scaling laws derived here are consistent with
boundary-layer theory which considers the transition zone
between the grounded and floating regimes of a rapidly slid-
ing equilibrium ice sheet in flow line (Schoof, 2007b). The
conditions that don’t involve a time scale (Eqs. 15 and 16) 80

follow directly out of the analytic equations for steady-state
ice-sheet geometry and the grounding-line flux that result
from boundary-layer theory. To obtain the scaling relation
also for the ice-sheet response time (Eq. 13) out of the steady-
state theory it is necessary to introduce a velocity scale. 85

The presented scaling conditions can provide rules in the
design of model setups for numerical simulations as well as
laboratory experiments to obtain parameter sets that leave
the ice-sheet geometry (shape and extent) unchanged. For in-
stance, a doubling of the basal-friction parameter under iden- 90

tical surface mass balance requires the ice softness to be re-
duced to 1/8 (Eqs. 14 and 15), or a doubling in surface mass
balance under identical basal friction requires a doubling of
the ice-softness value (Eqs. 15). Note that these equations by
no means make a statement about the physical dependency 95

between ice softness, basal friction or surface mass balance.
Our results, derived under the principle of similitude, provide
conditions that have to be fulfilled in order to respect self-
similarity of idealized ice sheets. In other words: if two (ide-
alized) glaciers, that are in equilibrium with their environ- 100

ment and the SSA equation, have the same qualitative shape
but differ, e.g., in surface mass balance then they also need to
differ in basal friction and their specific relation is given by
the scaling conditions.
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For the numerical simulations conducted in this study
we apply parameter configurations that half the geometric
scale in horizontal and/or vertical direction with respect to
the reference. The resulting ice-sheet response times range
over three orders of magnitude (see Table 2). Irrespective5

of whether in a two- or three-dimensional setup the mod-
eled ice-sheet dynamics, represented by the rate of unstable
grounding-line retreat (Figs. 5 and 6) as well as the geom-
etry, represented by ice-sheet shape and grounding line po-
sition in equilibrium (Figs. 2 – 4), exhibit the scaling be-10

havior predicted from the analytical calculations to a good
approximation. For the flow-line setup three scaled parame-
ter sets show different qualitative ice-sheet evolution com-
pared to the reference, while still complying with the ex-
pected response-time scaling. This difference is attributed to15

the design of the reference setup, i.e., the closeness of the ini-
tial steady-state grounding line to the point of instability (lo-
cal bed maximum). Very small deviations from this position
trigger unperturbed instability or prevent landward induced
instability in the scaled setups (see Appendix B).20

In contrast to the flow-line configuration the three-
dimensional setup inherently accounts for the buttressing ef-
fect in the initial steady-state simulation due to the presence
of a confined ice shelf (Dupont and Alley, 2005; Gudmunds-
son et al., 2012). However, the ice shelf is removed in the25

course of perturbation to prevent scale-dependent influences
that would originate from a forcing through sub-shelf melt-
ing, surface accumulation or ice softness. Thus the speed of
grounding line retreat (and hence ice-sheet response time)
is only indirectly affected by the former buttressing effect.30

An investigation of the response-time scaling under direct in-
fluence of ice-shelf buttressing requires a carefully designed
experimental setup that maintains the ice shelf during pertur-
bation (as in Asay-Davis et al., 2015) and accounts for the
scaling also in the applied forcing.35

To analytically investigate the implications of geometric
scaling for the ice-sheet response time we make the simpli-
fying assumption of identical basal friction (γ = 1). Though
the response-time scaling law then still depends on the slid-
ing exponent m (Eq. 31) the qualitative response-time scal-40

ing (shorter or longer response time) turns out to be indepen-
dent of the choice of m (Fig. 9): vertical ice-sheet elonga-
tion (shortening) leads to a faster (slower) ice-sheet response
and the opposite holds for the horizontal direction. In other
words, thicker or shorter ice sheets tend to respond faster than45

thinner or longer ones. Equal scaling in horizontal and ver-
tical direction (α= β) yields that larger ice sheets respond
faster than smaller ones.

Assuming a relation between the horizontal and vertical
scale of the form β = αq with 0< q ≤ 1, we find a critical50

m-dependent threshold qc for the exponent (Eq. 35) above
which larger (smaller) ice sheets always exhibit a shorter
(longer) response time. The case of q = 1/2 represents the
lower asymptotic limit for all possible qc and corresponds
to an ice sheet with Vialov-type proportions for which the55

central ice thickness is the square root of the horizontal ex-
tent. Conceptual flow-line experiments similar to the ones
conducted here (Feldmann and Levermann, 2015a) revealed
that the Vialov profile, which results under simplified condi-
tions from the SIA of the full-Stokes stress balance in flow 60

line, can also reasonably approximate the ice-sheet shape in
SSA. In the same study a comparison between steady-state
ice-sheet profiles before and after collapse suggested a scal-
ing of β = α1/2. For such an ice sheet the time scaling is
identical to the scaling of its length, i.e., elongation (shorten- 65

ing) results in slower (faster) response which is opposite be-
havior than for the above discussed case of q > qc > 1/2. A
thought experiment that is consistent with the scaling behav-
ior derived for this kind of profile reveals that in the course
of an ice-sheet retreat that is triggered by atmospheric warm- 70

ing the ice-sheet response would become faster, with self-
accelerating effect on further retreat (Fig 8). Note that all
the consideration made above presume self-similarity of ice
sheets and are only valid for a fixed basal-friction parameter.

In place of prescribing basal friction, the assumption of 75

identical surface mass balance (δ = 1) or ice softness (ζ = 1),
results in a more trivial response-time scaling which either
equals the vertical scaling (Eq. 13) or depends on the vertical
scaling via a power-law relation with exponent −n (Eq. 12),
respectively. Since n is always positive (Cuffey and Pater- 80

son, 2010) in the latter case the response time decreases with
increasing vertical extent. There are several other ways to an-
alyze the implications of the scaling conditions derived here
on ice-sheet dynamics that are not covered in this study.

Our approach includes several assumptions (shallow stress 85

balance, isothermal ice, choice of sliding law, parameter con-
straints) and thus simplifies the problem of ice flow. At the
same time it allows for the fundamental scaling analysis con-
ducted here which incorporates the relevant physics of fast
ice flow and results in scaling conditions that relate important 90

physical parameters of an ice sheet to each other. A simil-
itude analysis based on a less simplified stress balance than
the one used here would certainly better account for the com-
plexity of real-world systems, but is beyond the scope of the
current study. All statements on the ice-sheet scaling behav- 95

ior made here therefore need to be considered in the light
of the idealized character of the underlying simplified SSA
stress balance.

The SSA is of vertically-integrated form and thus in par-
ticular does not account for variations of ice-sheet velocity 100

within the ice column. The assumption of uniform ice soft-
ness further reduces complexity, neglecting the dependency
of the ice softness on ice temperature which typically varies
in horizontal and vertical direction. The applied Weertman-
type sliding law (Eq. 3) is a common choice (Fowler, 1981; 105

Schoof, 2007a; Pattyn et al., 2013) amongst others used to
describe the sliding of ice sheets over bedrock (Greve and
Blatter, 2009; Cuffey and Paterson, 2010; Tsai et al., 2015).
Though we prescribe a uniform basal friction coefficient the
resulting basal stress field that enters the SSA can vary spa- 110
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tially and temporally. The sliding law covers diverse types
of sliding behavior depending on the sliding exponent m in
Eq. (31). Except for the plastic limit (m= 0) it relates the
scale of basal stress to the scale of velocity, resulting in a
scaling law which links the scaling of ice-sheet geometry,5

friction and response time, respectively (Eq. 11).
Our analytic exploration of the derived ice-sheet scaling

behavior applies several constraints to the parameter space
and is thus far from being holistic but is aimed to allow for
(simplified) statements on the influence of geometric scal-10

ing on response time. The set of scaling conditions presented
here shall provide a model which allows for a fundamen-
tal comparison of the large-scale scaling of the geometry
and relevant parameters that determine ice-sheet dynamics.
In particular the response-time scaling conditions might be15

suitable to analyze speed of the transient response to climatic
perturbations of the polar ice sheets that took place in the past
or might become relevant for the future.

Appendix A: Two-dimensional case with two time and
length scales for both horizontal directions20

Introducing the dimensionless velocities v∗x = vxTx
Lx

and v∗y =
vyTy
Ly

the non-dimensionalized form of the effective strain
rate (Eq. 2) reads

ε̇e =

[
T −2
x

(
∂v∗x
∂x∗

)2

+ T −2
y

(
∂v∗y
∂y∗

)2

+ T −1
x T −1

y

∂v∗x
∂x∗

∂v∗y
∂y∗

+
1

4

(
LxL−1

y T −1
x

∂v∗x
∂y∗

+L−1
x LyT −1

y

∂v∗y
∂x∗

)2
]1/2

.

(A1)

Insertion into Eq. (1a) yields the following expression for the 25

x-component of the two-dimensional SSA:

∂

∂x∗

H∗

[

2A−1/n

ρgHTx

] 2n
1−n

ε̇2e︸ ︷︷ ︸
I


1−n
2n

∂v∗x
∂x∗

+H∗


[
A−1/n

ρgHTy

] 2n
1−n

ε̇2e︸ ︷︷ ︸
II


1−n
2n

∂v∗y
∂y∗



+
1

2

∂

∂y∗

H∗

[
A−1/nL2

x

ρgHL2
yTx

] 2n
1−n

ε̇2e︸ ︷︷ ︸
III


1−n
2n

∂v∗x
∂y∗

+H∗


[
A−1/n

ρgHTy

] 2n
1−n

ε̇2e︸ ︷︷ ︸
IV


1−n
2n

∂v∗y
∂x∗


+
Lm+1
x C

ρgH2T mx︸ ︷︷ ︸
=Φx

v∗x
m−H∗ ∂(h∗+ b∗)

∂x∗
= 0,

(A2)

with the dimensionless coefficient Φx which has the same
form as Φ (Eq. 26) but is specific for the x-direction. The
terms I , II = IV and III are evaluated in the following to 30

obtain dimensionless factors for the SSA equation. The first
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expression I reads:

I =

[
2A−1/n

ρgHT 1/n
x

]
︸ ︷︷ ︸

ΘI,1

2n
1−n (

∂v∗x
∂x∗

)2

+

[
2A−1/n

ρgHTxT
1−n
n

y

]
︸ ︷︷ ︸

ΘI,2

2n
1−n (∂v∗y

∂y∗

)2

+

[
2A−1/n

ρgHT
1+n
2n

x T
1−n
2n

y

]
︸ ︷︷ ︸

ΘI,3

2n
1−n

∂v∗x
∂x∗

∂v∗y
∂y∗

+
1

4


[

2A−1/n

ρgHT 1/n
x

(Lx
Ly

) 1−n
n

]
︸ ︷︷ ︸

ΘI,4

n
1−n

∂v∗x
∂y∗

+

[
2A−1/n

ρgHTxT
1−n
n

y

(Ly
Lx

) 1−n
n

]
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ΘI,5

n
1−n

∂v∗y
∂x∗

)

2

,

(A3)

from which we obtain five dimensionless factors
ΘI,1, ...,ΘI,5. Applying the same steps for expressions

II and III yields ten more coefficients: 5

II = IV : ΘII,1 = ΘIV,1 =
2A−1/n

ρgHT
1−n
n

x Ty
(A4)

ΘII,2 = ΘIV,2 =
2A−1/n

ρgHT 1/n
y

(A5)

ΘII,3 = ΘIV,3 =
2A−1/n

ρgHT
1−n
2n

x T
1+n
2n

y

(A6)

ΘII,4 = ΘIV,4 =
2A−1/n

ρgHT
1−n
n

x Ty

(Lx
Ly

) 1−n
n

(A7)

ΘII,5 = ΘIV,5 =
2A−1/n

ρgHT 1/n
y

(Ly
Lx

) 1−n
n

(A8) 10

III : ΘIII,1 =
2A−1/n

ρgHT 1/n
x

(Lx
Ly

)2

(A9)

ΘIII,2 =
2A−1/n

ρgHTxT
1−n
n

y

(Lx
Ly

)2

(A10)

ΘIII,3 =
2A−1/n

ρgHT
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x T
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2n

y

(Lx
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)2

(A11)

ΘIII,4 =
2A−1/n

ρgHT 1/n
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(Lx
Ly

) 1+n
n

(A12)

ΘIII,5 =
2A−1/n

ρgHTxT
1−n
n

y

(Lx
Ly

)−1+3n
n

(A13) 15

In order to obtain the same equations independent of an ap-
plied ice-sheet scaling the dimensionless coefficients need to
remain the same. We start with the first set of coefficients:

Θ′I,1
!
= ΘI,1 ⇒ τx = β−nζ−1, (A14)

Θ′I,2
!
= ΘI,2 ⇒ τx = β−1ζ−1/nτ

− 1−n
n

y , (A15) 20

Θ′I,3
!
= ΘI,3 ⇒ τx = β−

2n
1+n ζ−

2
1+n τ

− 1−n
1+n

y , (A16)

Θ′I,4
!
= ΘI,4 ⇒ τx = β−nζ−1

(
αx
αy

)1−n
, (A17)

Θ′I,5
!
= ΘI,5 ⇒ τx = β−1ζ−1/n

(
αx
αy

) 1−n
n

τ
− 1−n

n
y .

(A18)

We immediately see that Eq. (A14) gives the same time scal-
ing (in x-direction) as derived for the more constraint cases, 25

i.e., in flow-line (Eq. 12) as well as for the two-dimensional
case that assumes only one time and length scale, respec-
tively (Sec. 2.4). Comparison of Eqs. (A14) and (A17) di-
rectly yields the condition αx = αy . Furthermore, replacing
β and ζ in Eq. (A15) using Eq. (A14) we obtain τx = τy . 30
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These two conditions can also be deduced by the compari-
son of scaling relations that are derived from different coeffi-
cients, e.g., ΘI,1,ΘII,2 and ΘIII,1. The same procedure can
be carried out for the y-component of the SSA leading to the
same outcome due to the symmetry of both horizontal com-5

ponents of the SSA. Applying our findings it follows Φx = Φ
in Eq. (A2) and the dimensionless ITE is identical to Eq. (27)
with the same coefficient Ω.

We thus found that in order to fulfill the required scaling
similarity in the considered two-dimensional SSA-case there10

can only exist one horizontal length scale and one time scale
(as opposed to one in each horizontal direction, as assumed
initially). All the scaling relations derived for the flow-line
SSA case (Eqs. 11 - 13) hold here.

Appendix B: Experimental design of numerical15

simulations

B1 Flow-line simulations

For the two-dimensional simulations, we use the symmet-
ric flow-line geometry and the sequence of experiments de-
scribed in Feldmann and Levermann (2015a): an ice sheet in20

equilibrium (grey profile in Fig.-2) is perturbed in its right-
hand-side basin, forcing the grounding line to retreat onto the
basin’s inward down-sloping bed section (Fig.-2, red profile).
After cessation of the perturbation the grounding line con-
tinues to retreat indicating that a MISI has been triggered.25

The resulting far-inland spreading dynamic ice-sheet thin-
ning eventually initiates a second MISI in the connected left-
hand-side basin (see Feldmann and Levermann, 2015a, for a
detailed examination of the mechanism which is visualized
in their Fig. 4a). This second MISI is induced only through30

internal ice dynamics without any direct forcing and hence
we expect that the speed of the instability is a suitable mea-
sure to reflect the ice-sheet inherent response time.

For three parameter sets the simulations deviate
from the above described scenario. In two simulations35

(2Dα=1,β= 1
2 ,δ=1 and 2Dα= 1

2 ,β=1,γ=1) the ice sheet does
not find a steady state with a grounding-line location on
the ocean side of the coastal sill but collapses after several
thousand years and equilibrates on the central bed portion. In
simulation 2Dα=1,β= 1

2 ,γ=1 only the first MISI is triggered40

but not the second (referred to as “stable” scenario S in
Feldmann and Levermann, 2015a). Though the unstable
retreat in these three simulations does not take place as
unperturbed as in the scenario described further above we
nevertheless use the speed of retreat to estimate ice-sheet45

response time also for these scaled setups.

B2 Three-dimensional simulations

For the three-dimensional experiments we extend our flow-
line geometry by introducing a second horizontal dimension
(y) to obtain channel-like ice flow in three dimensions with50

similar geometry as in Gudmundsson et al. (2012) and Asay-
Davis et al. (2015). The bed topography b(x,y) is a superpo-
sition of two components: the bed component in x-direction,
bx(x), is as described in Feldmann and Levermann (2015a)
but lowered uniformly by -300 m (Fig. 3). The component in 55

y-direction, by(y), is taken from Gudmundsson et al. (2012).
The superposition of both, b(x,y) = bx + by , yields a bed
trough which is symmetric in both x- and y-direction (Fig. 4).
While the main ice flow is still in x-direction (from the inte-
rior through the bed trough towards the ocean) there is also 60

a flow component in y-direction, i.e., from the channel’s lat-
eral ridges down into the trough. Resulting convergent flow
and associated horizontal shearing enable the emergence of
buttressing, and hence ice dynamics in this setup differ sub-
stanitally from the flow-line case. In particular the buttress- 65

ing effect stabilizes the grounding line further downstream
than would be expected in a flow-line configuration (com-
pare Figs. 2 to 3 where the steady-state grounding lines are
approximately at the same position but the local bed eleva-
tion differs by several 100 m). 70

Spinning up the model we obtain a symmetric ice sheet in
equilibrium with a stable bay-shaped grounding line. Along
the centerline of the setup (y = 0) the grounding line is lo-
cated downstream of the coastal sill, similar to the flow-line
case (Figs. 4 and 3 in grey). Two symmetric ice shelves have 75

formed which are fringed and fed by ice from the inland and
lateral direction. The steady-state ice sheet is then perturbed
by removing all floating ice instantaneously after which a
continuous elimination of all ice that crosses the grounding
line is applied. This scaling-independent perturbation initi- 80

ates grounding-line retreat onto the inland-downsloping bed
and the synchronously unfolding MISIs provide a measure
for the ice-sheet response time.

Appendix C: Scaled time series of grounding-line retreat

For an alternative comparison of grounding-line retreat rates 85

between the different scaling experiments described in Sec. 3
we plot scaled time series of the grounding line position
(Figs. C1 and C2, see Figs. 5 and 6 for the unscaled ver-
sions). The scaling is applied along both axes according to
the scaling ratios of response time τ and horizontal geom- 90

etry α that are calculated from theory (Table 2). Focussing
on the section of maximum retreat-rate magnitude where the
unstable retreat is independent of the applied perturbation,
the different curves collapse into a single curve to a good ap-
proximation. The scaled speed of the simulated instablities 95

is hence approximately the same, indicating similitude be-
tween the experiments of the scaling ensemble as expected
from theory.
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Table 1. Parameter values as prescribed in the unscaled reference simulations for the flow-line setup (2D) and the three-dimensional channel
setup (3D), respectively. For the scaling experiments the bed geometry (bx and by) and the parameters a, A and C are multiplied with the
scaling ratios from to Table 2. The terms “BC-300” and “BC0” refer to the bed geometries described in Feldmann and Levermann (2015a)
and by,G refers to y-component of the bed topography used in Gudmundsson et al. (2012).

Parameter 2Dref 3Dref Unit Physical meaning

a 0.6 0.5 myr−1 Surface mass balance
bx “BC-300” “BC0” - 300 m x-component of bed topography
by - by,G y-component of bed topography
A 10−25 Pa−3s−1 Ice softness
C 107 Pam−1/3s1/3 Basal friction parameter
g 9.81 m s−2 Gravitational acceleration
m 1/3 Basal friction exponent
n 3 Exponent in Glen’s law
ρi 900 kgm−3 Ice density
ρw 1000 kgm−3 Sea-water density

Table 2. Scaling ratios as used for our numerical simulations. Prescribed scaling ratios are highlighted in blue, the other result from Eqs. (11)-
(17), (29) and (30). Each row corresponds to a scaling experiment, that is carried out in flow line (“2D”) and in a three-dimensional channel
setup (“3D”). The parameters values prescribed in the simulations are obtained by multiplying bx, by , C, a and A (see Table 1) with the
given ratios α, β, γ, δ and ζ. The analytic values for χ̇ are used to fit the sections of linear grounding-line retreat in Figs. 5 and 6.

Simulation name α β γ δ ζ τ χ̇

2D/3Dref 1 1 1 1 1 1 1
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Figure 1. Schematic of the similitude-analysis method carried out in this study. A reference system (blue ice sheet and bed topography) with
geometric scales h and L, time scale T and physical parameters ice softness A, basal friction coefficient C and surface mass balance a is
scaled in horizontal and vertical direction (red contours, primed system). The goal is to derive the scaled parameters of the primed system
under which dynamic similarity between both ice sheets holds. A dimensional analysis of the governing equations yields dimensionless scale
factors which have to remain the same under scaling to attain similitude. The resulting scaling laws determine the scaled (primed) parameters.
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Figure 2. Ice sheet profiles at three different stages of the flow-line simulations 2Dα= 1
2
,β= 1

2
,γ=1 (continuous) and 2Dref (dashed). Output of

the reference simulation is scaled by factor 0.5 in both horizontal and vertical direction to allow for comparison of shapes between the two
simulations.
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Figure 3. Steady-state ice-sheet profiles for cross section along the centerline (y = 0) of the three-dimensional channel setup for simulations
3Dα= 1

2
,β= 1

2
,γ=1 (continuous) and 3Dref (dashed). Output of the reference simulation is scaled by 0.5 in both horizontal and vertical direction

to allow for comparison of shapes between the two simulations.
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Figure 4. Bed topography of the three-dimensional channel setup, here shown in the scaled version with α= β = 0.5 (see Fig. 3 for a cross
section along y = 0). Steady-state grounding-line positions for simulations 3Dα= 1

2
,β= 1

2
,γ=1 (continuous) and 3Dref (dashed). Grey lines

mark the position of the coastal sill and the bed depression, respectively. Output of the reference simulation is scaled by 0.5 in horizontal
direction to allow for comparison of shapes between the two simulations.
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Figure 5. Time series of grounding-line position for the reference and three geometrically scaled flow-line experiments with (a) identical
basal friction and (b) identical surface mass balance, respectively. Grey horizontal lines indicate location of the minimum of the bed depres-
sion for both the scaled und unscaled case around which the grounding line retreats unstable and retreat rates are approximately constant. In
the range of ±50 km around the minimum depression the slope of the curve of the unscaled simulation is fitted to obtain a reference retreat
rate of 0.54 km/yr (purple slope fitted to black curve). This slope is used to predict the slopes, i.e., retreat rates, for the scaled experiments
(other curves overlaid by purple lines with predicted slopes) according to Table 1.
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Figure 6. Time series of centerline grounding-line position (along y = 0) for the reference and three geometrically scaled 3D channel
experiments with (a) identical basal friction and (b) identical surface mass balance, respectively. The fitting method is the same as described
in Fig. 5 with a reference retreat rate of 1.18 km/yr.
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Figure 7. Scaling of (a) response time (Eq. 11), (b) ice softness (Eq. 16) and (c) surface mass balance (Eq. 15) in the α-β phase space
for γ = 1 and m= 1/3. Panel (d) shows value of the exponent q if the two horizontal scales are linked according to Eq. (32). Dotted line
represents scaling of an ice sheet with Vialov proportions. Dashed line denotes critical threshold τ = 1.
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Figure 8. Scaling of response time τ , surface mass balance δ and ice softness ζ under the assumption of Vialov-type geometric scaling
(β = α1/2) and identical basal friction (γ = 1). The resulting scaling conditions are independent of m and given in the legend (n=3).
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and (d) the constraint that the response time scales independently of m. In each panel the legend gives the scaling law for τ that results from
the applied constraint.
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Figure C1. Scaled time series of grounding-line position for the reference and three geometrically scaled flow-line experiments with (a)
identical basal friction and (b) identical surface mass balance, respectively. For better comparison the grounding-line curves are shifted
along the time axis to overlap where the grounding line passes the minimum of the bed depression (grey horizontal line). Around this
point the scaled curves of unstable grounding-line retreat approximately collapse into a single curve, indicating that the scaled speed of the
grounding-line instability is approximately the same throughout the ensemble of scaling experiments. See Fig. 5 for unscaled version of this
figure.
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Figure C2. Scaled time series of centerline grounding-line position (along y = 0) for the reference and three geometrically scaled 3D
channel experiments with (a) identical basal friction and (b) identical surface mass balance, respectively (analogous to Fig. C1). See Fig. 6
for unscaled version of this figure.


