
Detailed response to the editor on manuscript tc-2015-226

“Similitude  of  ice-sheet  dynamics  against  scaling  of  geometry  and physical
parameters” 

by J. Feldmann and A. Levermann

Dear Dr Pattyn,

We would like to thank you for handling the review process and the reviewers
for  their  detailed  look  at  our  manuscript.  We are  very  happy that  the first
reviewer assesses our study as a very fundamental  analysis,  that has been
carried out for other field theories and that he agrees with us that it might
become very helpful in future glaciological applications. We would like to thank
the reviewer for this very positive response and the  very constructive issues
raised.  Two  figures  have  been  added  to  the  manuscript  (Figs.  C1  and  2),
following the suggestion of reviewer #1. 

Unfortunately  we  feel  that  there  might  have  been  a  misunderstanding  by
reviewer  #2  with  respect  to  the  purpose  and  nature  of  our  study.  The
fundamental issues raised by the reviewer seem to root in the fact that he does
not fully understand the logic behind this very basic approach which has been
used in hydrodynamics for a century. We are sorry that we were not able to
make this clearer in our  initial submission. We have now elaborated on the
purpose  of  our  analysis  in  the  detailed  response  and  hope  that  the  editor
agrees with us that the analysis is not as useless as reviewer #2 is convinced it
is. It would be great if our explanations below would convince reviewer #2 that
we provide a theoretical analysis that might be helpful without being able to
claim comprehensiveness.

Please find below the reviewers' comments in italics and our detailed response
in  blue.  We have further  attached a  revised manuscript  that  highlights  the
changes in the submission, as well as a clean revised version.

Best wishes,
J. Feldmann and A. Levermann

Reviewer #1:

The Cryosphere  -  TC2015-226 "Similitude  of  ice-sheet  dynamics  against
scaling of geometry



and physical parameters" by Feldmann and Levermann.

This paper presents a similitude analysis of the Shallow Shelf Approximation
(SSA)  pronostic  equations.  Such similitude  analysis  which  seems commonly
employed in other fields or research might have been ignored by glaciologist.
This contribution is therefore interesting to see the potential of such method. In
this paper, the method is validated against 2D and 3D numerical simulations.
Greater  impacts  of  the  paper  should  certainly  been  expected  by  directly
applying the method to real outlets glaciers of Antarctica or Greenland, but is
certainly  beyond  the  scope  of  this  first  paper  and  would  certainly  require
further developments. This is overall a well written paper, even if it contains
quite  a  lot  of  equations  (which  I  was  not  able  to  verify  all)  and  I  would
recommend its publication in TC. I have few remarks that are listed below.

Response: We would like to thank the reviewer for the readiness to review our
manuscript.  The  reviewer  comments  were  very  constructive  and  helpful  in
improving our manuscript.

Abstract: the abstract is too long and should be shorten. There are repetitions
from the abstract and introduction that could be avoided.
Response:  We  shortened  the  abstract  to  avoid  repetitions  in  abstract  and
introduction.

page 1, line 30: I haven’t done this bibliography, but people working on flubber
experiment as an analogue of ice must have had these questioning about the
similitude  of  their  experiment  and a  real  glacier.  By  the  way,  similitude  of
analogue experiments is an other domain of application for the method that
should be mentioned.
Response:  This  was  a  very  useful  hint.  We now mention  the  application  of
similitude analysis in laboratory glacier experiments in the abstract (page 1,
lines 25-26) and in the introduction (page 1, lines 49-54) of our manuscript.

page 1, line 40 and below: I guess there are much more references than the
one cited so I
would suggest to use "e.g." in front of the references.
Response: We agree and added “e.g.” here and in front of the next references.

page 1, line 63: I don’t get the point. Which has been shown to what?
Response:  We are sorry  for  the lack of  clarity  and have tried  to  make this
clearer (page 2, lines 11-14).

page 2, line 14: I don’t understand what you mean by "which will be put to test
in the forthcoming MISMIP+ intercomparison project"?



Response: This phrase is indeed out-of-context and thus we deleted it.

below Eq. (1): not all the notations introduced in this equation are explained
(e.g. A).
Response: Thanks for the hint. We indeed missed to introduce ice density rho
and gravitational acceleration g and added them below Eq. (1). Ice softness A
was already introduced in the line above Eq. (1).

Equation (4)  is  neglecting basal  mass balance (basal  melting).  It  should be
mentioned.
Response:  That's true. We added a sentence below Eq. (4) (page 3, lines 20-
23). 

page 3, line 20: the use of compression is confusing as compression could refer
to the state of stress. Elongation/Shortening?
Response:  We are glad for the reviewer's suggestion and replaced the terms
here and elsewhere in the manuscript.

page  3,  lines  49-51:  I  am  not  sure  to  clearly  understand  the  two  limits.
Especially the case Φ >> θ since the case of a frozen bed cannot be modeled
assuming the SSA. Also, to which equations do you refer when you said "in
which  non  of  the  stress  balance terms  are  neglected"?  In  the  SSA,  this  is
already not true as it neglects stress regarding to the Stokes equations. This
should be clarified.
Response: These lines were indeed misleading (especially the statement about
the Φ >> θ limit is incorrect, as noted by the reviewer). We re-formulated the
paragraph accordingly (page 3, lines 54-59).

page  4,  line  30:  it  is  not  the  length  of  the  entire  ice-sheet,  but  only  the
grounded part (upstream the GL).
Response: We thank the reviewer for the hint and corrected the line.

page 4, line 29: integration of (Eq. 4) over -> integration of Eq. (4) over (and at
other places in the manuscript)
Response: Done. At other places “(Eq. x)” is intended to avoid double brackets,
i.e. (Eq. (x)), see, e.g. page 4, line 81. If applicable, we will be glad to change
the notation according to the TC conventions in the final typesetting phase.

page 4, lines 31-35: I am not sure to follow what is really demonstrated here
and not sure to see where is the consistency with the BLT of Schoof. Indeed,
the equations derived by the BLT are based on the SSA ones, so that intuitively
I would said that the similitude derived for the SSA also apply for the BLT? You
should present it the other way, and derive directly the scaling relation (24)?



Response:  This  remark  was  indeed second by the  second reviewer  and we
really appreciate that the reviewers demand that we reconsider this section.
Please consider the following: The Shallow Shelf Approximation is a non-linear
differential  equation  and  the  solution  by  Christian  Schoof  required  a  few
additional assumptions, for example he omitted the membrane stresses in the
stress balance and reintroduced them in the boundary conditions. He also does
not consider a time dependence which we reintroduce in the commonly used
way via the mass continuity equation. Given these differences we think it is not
completely trivial that the SSA-scaling that we derive survives all the way to
the final solution given by Schoof (2007b). Obviously it has and that makes it
almost look trivial again. In any case we tend to think that it is at least a nice
illustration of the scaling in one of the solutions of the SSA equation which is a
simpler equation than the full SSA. We would be willing to omit this section if
demanded by the editor and reviewers, but we would prefer to keep it in, if
possible.

page 5, line 45: Is it really constant, which refer to time, whereas here one
wants to said that it is the same value of the friction in the two experiments.
"Same" or "identical" is may be better than "constant"? It should be modified
accordingly all along the manuscript.
Response: We are glad for the valuable hint and changed the terms here and in
the rest of the manuscript.

page 5, line 48: reference to Table 2 is broken
Response: Done.

page 5, line 53: it should be mentioned here that the bedrock also varies in the
transverse direction.
Response: Done.

page  6,  line  26:  Vialov  profiles  are  derived  assuming  the  Shallow  Ice
Approximation (SIA) whereas here the SSA is used. Only in the conclusion it is
mentioned that in a previous paper you have shown that SSA was conducting
to similar profils as Vialov ones. It should be mentioned here.
Response: Done.

page 6, line 71: atmosphere: Rising -> atmosphere: rising (and at other places
in the manuscript)
Response: Done.

page 6, line 82: space (Fig. 7 accounts for only one value of m. -> space (Fig. 7
accounts for only one value of m).
Response: Done.



page 7, line 22: To what refers "respectively"?
Response: Corrected.

page 7, line 33: I don’t understand what you mean here as you have already
started from the SSA equations and not the full Stokes system of equations.
There is a missing citation.
page 7, line 40: again, is used to derive the SSA from the Stokes equations so it
has somehow been used already in the equations you are using here. This part
is a bit confusing and would require some clarifications
Response: We thank the reviewer for the careful  reading. We re-worded the
paragraph (page 7, lines 60-71) to be more precise about what we want to say
and in  particular  make clear that we consider the  SSA stress balance here
(previously we somewhat sloppily only wrote stress balance).

page  7,  line  50:  As  already  mentioned,  I  would  said,  but  may  be  I
misunderstood  something,that  this  is  normal  as  these  BLT  equations  are
derived from the SSA ones...
Response: Please see our response to the above comment related to page 4
lines 31-35.

page 7, line 103: law still then still depends on -> law then still depends on
Response: Done.

page 7, line 106: of m (9): Vertical -> of m (9): vertical
Response: Done.

page 8, line 18: reasonably - and this should be said before.
Response: Done. Also see above.

page 8, lines 37-38: consider rewording and also avoid the repetition for the
value of n.
Response: Done.

page 10, line 33: to Eq. 27 with -> to Eq. (27) with
Response: Done.

B1: define what is RHS and LHS
Response: Done.

page 11, line 28: instantaneously, elimination
Response: Done.



Figures 5 and 6: legend and axis label are not correct. 
Response: These must have got broken during the TCD publishing phase since
the original submitted file had correct labels and legends as is the case for the
revised manuscript.

Why not applying a scaling along x and t? How do you choose the part of the
curve where is made the retreat rate comparison?
Response: We thank the reviewer for the useful hint to scale the time series
along both axis. In the scaled plots the curves of grounding-line position during
the ice-sheet instability collapse approximately into a single curve, indicating
similitude between the experiments as expected from theory (Figs. C1 and C2).
At the same time it is most important to us to visualize the variety of retreat
rates (slopes) during unstable grounding-line retreat simulated in our scaling
experiments  (Figs.  5  and  6).  We  thus  are  in  favor  of  keeping  the  original
unscaled plots  in  the results  section and included the scaled plots  into  the
Appendix (Appendix C). 
The  range,  i.e.  the  section  of  the  curve,  for  the  retreat-rate  comparison
(visualized in Figs. 5 and 6) was chosen by hand originally.  We now use an
objective criterion to define that range (x-range +- 50 km around the minimum
of the bed depression) within which we fit the slopes of approximately constant
grounding-line retreat. We updated Figs. 5 and 6 and their captions accordingly.

In the legend: overlayn -> overlaid 
Response: Done.

legend Fig. 7: to Eq. 32. -> to Eq. (32).
Response: Done.

legend Fig. 9: to Eq. 31 for -> to Eq. (31) for
Response: Done.



Reviewer #2:

Review  of  a  manuscript  “Similitude  of  ice-sheet  dynamics  against
scal-
ing of geometry and physical parameters ” by J. Feldmann and A.
Levermann.

The manuscript presents similarity solutions for the isothermal Shallow Shelf
Approximation (SSA) equations. Though, to my knowledge, such solutions for
the  SSA  have  not  been  derived  before,  the  manuscript  has  a  number  of
conceptual inconsistencies and cannot be published in its present form.
Response:  This  criticism is  in  stark  contrast  to  the  assessment  of  the  first
reviewer and as we will show below this summary is not substantiated by the
reviewer. The requests made by the reviewer are by large extensions of our
work. Some of these requests would in principle be possible, but would alter
the nature of our study. Some are not feasible,  because they would require
strong additional assumption (as for example an assumption about the spatial
or temporal structure of the ice temperature field) that would be much less
justified than the assumptions made in this study. 
In any case, we strongly agree with the first reviewer that our manuscript is
indeed already quite long and has a proper scope. We would like to emphasize
that we do not attempt to give a comprehensive analysis of glaciers, but simply
apply  a  very  fundamental  method  to  one of  the  two most  commonly  used
approximations of the primitive equations of ice dynamics. We agree with the
first  reviewer  that  this  analysis  will  (hopefully)  turn  out  to  be  helpful  in  a
number  of  future  applications.  Our  analysis  is  based  on  a  number  of
assumptions that are clearly and transparently emphasized in the manuscript.
For example we assume an isothermal glacier. This is an obvious reduction of
generality of our analysis, but it does not render it useless. For instance, the
Shallow Ice Approximation is only rigorously valid when the ice is frozen to the
ground which is not necessarily true in ice streams, but despite this constrain
on the applicability of  the approximation,  it  turned out to be very useful  in
glaciological theory. While we appreciate the comments made by the reviewer
and have used them to improve our manuscript whereever this was possible,
we would appreciate if we could keep the nature of our analysis as it is.

Major concerns

The  first  major  concern  is  an  assumption  that  ice  is  isothermal  and  the
independence  of  the  ice  softness  parameter  of  other  parameters,  e.g.  ice
thickness or surface mass-balance. Thicker ice is usually softer than thinner
ice, hence more deformable. Physically, A−1/n decreases with increasing ice
thickness.  The  constant  θ  (eqn.  9)  implies  the  opposite.  Though,



mathematically  there  is  nothing  wrong  with  this  assumption,  the  derived
similarity  solutions  are  not  suitable  for  glaciological  applications.  One
possibility to resolve this inconsistency could be to consider temperature itself
(or  depth-averaged  or  depth-integrated  temperature)  instead  of  the  ice
softness  parameter  A.  It  still  can  be  spatially  uniform  in  the  horizontal
direction, but vary with an ice-stream of ice-shelf characteristic thickness.

Response:  We  appreciate  the  reviewer’s  concern,  but  it  is  based  on  a
fundamental misunderstanding. We do not claim that theta is a constant, we
just say that if it is a constant, and thus the ice is self-similar, then there are
specific  relations  that  need  to  be  true.  This  seems  to  be  the  underlying
misunderstanding of most of  the reviewer’s criticism as we highlight below.
Furthermore, we might not have made it clear enough that the theory that we
derive is only valid under certain assumptions. The assumption of isothermal
ice was mentioned in the abstract and a number of times in the manuscript
itself. There is a vast amount of glaciological theory published that assumes
isothermal  ice  (see  added  references  on  page  2,  lines  7-9).  It  is  a  strong
assumption  which  is  not  always  valid  but  it  allows  for  insights  into  other
aspects  of  ice  dynamics  that  do  not  depend  strongly  on  the  spatial  and
temporal thermal structure of the ice. Obviously the temperature dependence
of the softness is accounted for in these kind of theories, but the changes with
space and time are neglected. We have now changed the introduction (page 2,
lines 4-9) as well as the discussion (page 8, lines 90-103) to make it clearer
that we assume isothermal ice and that our conclusions are only valid within
this restriction. 
Future  analysis  not  assuming  isothermal  ice  but  allowing  for  a  spatial
distribution of temperature within the ice might be interesting even though in
that case it would have to be decided which is a generic spatial structure that
can be assumed without  restricting  the results  too strongly.  In  order to get
results that fully integrate the thermal evolution of the ice sheet, numerical
models are of course available. 
At this stage, we would appreciate if the editor and reviewer would allow us to
keep  the  analysis  restricted  to  isothermal  ice  after  we  have  now  further
emphasized that this is a restriction. 

The second major  concern is  the chosen dependence of  the surface mass-
balance  ratio  δ  on  the  friction-coefficient  ratio  γ  (eqn.  15).  Physically,  the
surface mass-balance depends on a climate,  and has no connection to ice-
stream properties like basal friction. Though, there is a connection between the
basal friction coefficient and the ice stiffness parameter (eqn. 16), it is very
weak, as frictional  heating affects ice temperature,  hence its  stiffness, only
very small part of the ice column, close to its bottom.
Response: We are sorry, but also this comment is based on a misunderstanding



of the theory. We do, of course, never assume that the surface-mass-balance
ratio depends on the friction coefficient. We would have no grounds for that. In
fact it would be stupid to assume that two very different boundary conditions
are intimately linked to each other without having a strong physical reason for
that.  The  equation  that  the  reviewer  is  referring  to  is  a  result  and  not  an
assumption. Perhaps it helps to paraphrase the spirit of these kind of scaling
analysis  as  follows:  If two  ice  sheets  are  self-similar  then the  equation  of
motion (the SSA equation) dictates that these relations have to be fulfilled.
That is to say: if for example you find a glacier with a certain ice thickness and
a certain bed slope etc. and if this glacier has the same qualitative profile as
another one which however has a different thickness and a different bed slope
etc. then our analysis shows (for isothermal ice) that the SSA equation dictates
that the basal friction and the surface mass balance need to have a specific
relation otherwise this glacier cannot be in equilibrium with its environment
under the SSA equations. We are sorry that our manuscript obviously was not
clear enough for the reviewer to understand this point and are glad that the
first reviewer understood the concept. We have tried to make this now clearer
in the manuscript (page 7, lines 94-104).

There is no relevance of the similarity solutions derived in this study to the
Shoof’s (2007) boundary layer theory. The system of equations considered in
both studies is the same, so it  is not surprising that the flux formulation is
identical (in a non-dimensional form).
Response: Please see our response to the same remark made by reviewer #1
in reference to page 4 lines 31-35.

Throughout the text, the described ice flow is referred to as “ice-sheet” flow.
This is misleading, because the SSA equations are valid only in ice-stream and
ice-shelf settings, and are inapplicable to the rest of an ice sheet. Equally, the
use of  the Vialov  profile (even as a motivation)  is  incorrect.  This  profile  is
derived based on the Shallow Ice Approximation (SIA).
Response:  The SSA has  been  used to  describe  the  dynamics  of  ice  sheets
before, for example by Schoof (2007a), Goldberg et al. (2009), Gudmundsson
et  al.  (2012),  and  whenever  SSA-only  modes  are  used  in  model
intercomparisons. While it is true that the SSA has restrictions, for example that
it can only be used for the depth-averaged horizontal flow, it is not true that it
is a completely invalid representation of ice sheet flow. We however appreciate
the reviewer’s concern and have changed the phrase “ice sheet flow” to “ice
flow”. We think that it is clear to the reader that we only analyse SSA dynamics.
We have also made some changes in order to highlight that the Vialov profile is
derived from the SIA equation (page 6, lines 47-52). In the manuscript we use it
for comparison with an analytic result. We believe that this is enlightening for
the reader and that omitting this comparison would be a shame. Since we do



nothing  unscientific or  intransparent  here,  we would  appreciate if  we could
keep it in.

The mass-conservation equation (4), for some reasons called in this study the
“ice  thickness  equation  (ITE)”,  omits  the  basal  mass-balance.  This  may  be
appropriate for ice streams, however, on ice shelves with strong basal melting
neglecting this term is incorrect.
Response: We are grateful for the reviewer's scrutiny, but again this comment
is not relevant to our analysis. We never said that we study ice shelves in the
presence of basal melt as there are a lot of things we do not study. Equivalent
equations  to  those  we  derive  here  are  present  in  every  textbook  of
hydrodynamics for about 100 years (I personally own a copy of the book by Sir
Horace Lamb from the 19th century which describes the similarity analysis for
the Navier-Stokes equation). To our knowledge these equations are, however,
not present in the glaciological literature for the SSA dynamics. Thus, while we
do not claim to be comprehensive in our analysis in the sense that we have a
theory  for  all  ice  dynamics,  we  believe  that  these  equations  make  some
scientific contribution in their present form and would be grateful if we could
publish them without including basal melt. In order to avoid misunderstanding,
we now make clear in the text where we define the ice thickness equation (Eq.
4) that throughout the study we neglect the basal mass balance (page 3, lines
21-24 and lines 57-58; page 4, lines 47-48). The term “ice thickness equation”
is used frequently in glaciological textbooks and we would like to keep it here.

The  abstract  implies  that  the  similarity  analysis  has  never  been applied  in
glaciology.  This  is  not true; Halfar (19833)  and Buler et  al.  (2005) describe
similarity solutions for various configurations of the SIA.
Response:  We  thank  the  reviewer  for  this  helpful  advice.  We  modified  the
abstract and now provide examples for previous use of the similarity concept in
the field of glaciology in the introduction,  including the mentioned similarity
solutions  for  the  SIA  and  laboratory  experiments  in  which  glacier  flow  is
simulated using a replacement material for ice (page 1, lines 48-58).

Minor concerns

P. 3 Line 20 α, β < 1 suggests that α and β can be negative.
Response: We thank the reviewer for the hint and added 0 as the lower bound.

P.3 Lines 41-51. Sentences starting with “In Eq. (9). . . ” do not make sense. A
statement “ψ >> θ, holding for ice frozen to bedrock” is incorrect. The SSA is
inapplicable in circumstances whereice is frozen to bedrock.
Response: We are grateful to the reviewer for pointing to this statement that is
indeed incorrect in the SSA context. We re-formulated the paragraph.



P. 3 eqn (14) and P.4 eqn (17), though mathematically are correct, physically
not so. The ice softness and surface mass balance are unlikely scale identically.
The basal  friction  is  independent  (to a  leading order)  of  the surface mass-
balance.
Response:  Please see our answer to the reviewers  second “major  concern”.
This is not a claim we make, it is a result of the similarity assumption and thus
one of the consequences for “similar ice geometries”. Since ice softness and
surface mass balance can vary independently it would indeed be invalid (to put
it mildly) to assume that scale with each other, but we do not do this. We hope
this  has become clearer in the  text now.

P.5  Lines  50-55.  The numerical  simulations  are one-dimensional  (a  flow-line
setup)  and  two-dimensional  (channel-flow  setup).  The  SSA  are  vertically
integrated equations and do not have vertical dimension.
Response: That is correct and so is our analysis. We do not see a problem here,
but perhaps we are missing the reviewer’s point here.

In many places references are missing (e.g. p.7 line 34).
Response: Done.

In summary, the presented similarity analysis of the SSA equations has little to
do with ice-stream and ice-shelf  flow.  The derived set of  the dimensionless
parameters is perfectly fine for an abstract set of equations of the SSA form.
However,  shortcomings  of  the  study  described  above  most  likely  lead  to
erroneous  conclusions  of  the  similarity  behaviour  of  the  ice  streams,  ice
shelves and grounding lines.
Response: We are happy that the reviewer assesses our similarity analysis to
be mathematically “perfectly fine”. In light of the fact that similar analysis for
the Navier-Stokes equation have been used for decades to build airplanes and
ships  and  have  been  proven  tremendously  helpful  for  the  theoretical
understanding of hydrodynamic flow, we are confident that our analysis is not
completely  useless.  While  we  cannot  hope  to  have  similar  impact  on  the
glaciological community as the hydrodynamics similarity analysis, we believe
that this analysis is at least useful enough to be published.
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Abstract. The concept of similitude is commonly em-
ployed in the fields of fluid dynamics and engineering where
scaling laws are derived from the governing equation of flow
dynamics, e.g., the Navier-Stokes equation. Here we transfer

:::
but

:::::
rarely

::::
used

::
in
::::::::::

cryospheric
::::::::

research.
:::::
Here

:::
we

:::::
apply this5

method to the problem of ice-sheet
:::
ice flow to examine the

dynamic similitude of ice sheets
:::::::::
isothermal

:::
ice

::::::
sheets

::
in

:::::::::::
shallow-shelf

::::::::::::
approximation

:
against the scaling of their ge-

ometry and physical parameters. Carrying out a dimensional
analysis of the stress balance for isothermal ice sheets in10

shallow-shelf approximation we obtain dimensionless num-
bers that characterize the flow, similar to the Reynolds or
Froude numbers in fluid dynamics. Requiring that these num-
bers remain constant

:::
the

::::
same

:
under scaling we obtain con-

ditions that relate the geometric scaling factors, the parame-15

ters for the ice softness, surface mass balance and basal fric-
tion as well as the ice-sheet intrinsic response time to each
other. We demonstrate that these scaling laws are the same
for both the (two-dimensional) flow-line case and the three-
dimensional case and that they are consistent with flow-line20

boundary-layer theory. The theoretically predicted ice-sheet
scaling behavior agrees with results from numerical simula-
tions that we conduct in flow-line and three-dimensional con-
ceptual setups. In a set of experiments the setup geometry
is scaled systematically and the physical parameters are25

prescribed according to the derived scaling laws. We further
investigate analytically the implications of geometric scal-
ing of ice sheets for their response timeunder constant basal
conditions finding that thicker (thinner) ice sheets have a
shorter (longer) response time and that the opposite holds for30

the horizontal ice-sheet extent.
:
. With this study we provide

a framework which, under several assumptions, allows for a
fundamental comparison of the ice-dynamic behavior across

different scales. It proofs to be useful in the design of concep-
tual model setups but

::::::::
numerical

::::::
model

:::::
setups

::::
and

:::::
could

:::
also 35

::
be

::::::
helpful

:::
for

::::::::
designing

:::::::::
laboratory

::::::
glacier

:::::::::::
experiments.

:::
The

::::::
concept

:
might also be applied to real-world systems, e.g., to

examine the response times of glaciers, ice streams or ice
sheets to climatic perturbations.

1 Introduction 40

In the fields of fluid dynamics and engineering scaling laws
are used to perform experiments with spatially reduced mod-
els in water channels or wind tunnels to predict the behav-
ior of the associated full-scale system (e.g., Scruton, 1961;
Li et al., 2013). Dimensional analysis and the principle of 45

similitude allow to derive such scaling laws analytically (e.g.,
Rayleigh, 1915; Macagno, 1971; Szücs, 1980). For instance,
a dimensional analysis of the Navier-Stokes equation (Kundu
et al., 2012) yields the Reynold’s number (Reynolds, 1883)
as one of the dimensionless parameters of the governing 50

equation which characterize the dynamics of fluid flow. Un-
der the assumption of the similitude principle the Reynold’s
number can provide a scaling law for the fluid’s characteristic
linear dimension, velocity and viscosity that assures similar
flow patterns. The principle of similitude is applied well be- 55

yond the field of engineering, e.g. in zoology (land mammals
move in dynamically similar fashion at equal Froude number,
Alexander and Yayes, 1983) or biology (Stahl, 1962).

:::
The

:::::::::
similitude

:::::::
concept

::
is

::::
also

::::::
applied

:::
to

:::::
some

:::::
extent

::
in

::
the

:::::
field

:::
of

::::::::::
glaciology:

::
in

:::::::::
laboratory

:::::::
glacier

::::::::::
experiments 60

:::::::::::
dimensionless

::::::::
numbers

:::::
like

:::
the

::::::::::
Reynold’s,

:::::::
Froude

::::
and

:::::::
Ramberg

:::::::::
numbers

::::
are

:::::
used

:::
to

:::::::
check

::::
for

:::::::::
(dynamic)

::::::::
similarity

:::::::
between

::::
the

:::::::::::
geometrically

::::::
scaled

::::::
model

::::::
(based
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::
on

::::
the

:::::::::
properties

::
of

::::
the

::::::::
analogue

::::
ice

::::::::
material)

::::
and

:::
the

::::::::
real-world

:::::::
system

::
(Burton et al., 2012; Corti et al.,

2014).
:::

In
:

Halfar (1983)
:::
and

::
Bueler et al. (2005)

::
the

::::::::
similitude

::::::::
principle

::
is

::::
used

::
to

::::::
derive

::::::::
similarity

::::::::
solutions

::
of

::
the

:::::::::::::::::::::::
shallow-ice-approximation

:
(SIA, Hutter, 1983)

::
of

:::
the5

:::::::::
full-Stokes

:::::
stress

:::::::
balance

::::
for

:::
the

:::::
case

::
of

:::
an

::::::::::
isothermal,

::::::
radially

:::::::::
symmetric

:::
ice

:::::
sheet.

Here we apply the concept of similitude to ice-sheet
dynamics . Our investigation is

::
the

:::::::::
dynamics

::
of

::::::::
idealized

::
ice

::::::
sheets

:
based on the shallow-shelf approximation (SSA, 10

Morland, 1987; MacAyeal, 1989; Greve and Blatter, 2009))
of the full-Stokes stress balance.

:::
In

::::::::
particular

::::
we

::::::
assume

::::::::
isothermal

::::
ice

:::::
and

::
a
::::::::

spatially
::::::::

uniform
::::::

basal
:::::::

friction

:::::::::
coefficient,

::::::::::
conditions

::::
that

:::::
have

:::::
been

:::::
used

:::
to

:::::::
analyze

:::::::
ice-sheet

:::::::::
dynamics

::
in

::
a
:::::::
number

::
of

::::::::
previous

::::::
studies

:
(e.g., 15

Dupont and Alley, 2005; Goldberg et al., 2009; Gudmunds-
son et al., 2012; Pattyn et al., 2013; Asay-Davis et al., 2015).
Neglecting the terms of vertical shearing in the stress bal-
ance and accounting for the small thickness-to-length ra-
tio of ice sheets, the SSA represents the relevant dynam- 20

ics of floating ice shelves and grounded ice streams, i. e.,
regions

:
.
:::
The

:::::::::
capability

::
of

::::::::
numerical

::::
SSA

::::::
models

::
to

:::::::
simulate

::::
these

:::::::
regimes

:
that are characterized by fast plug-like flow ,

which has been shown in numerical applications
:::
has

::::
been

:::::::::::
demonstrated

::
in

::::::
various

::::::
studies

:
(e.g., Goldberg et al., 2009; 25

Gudmundsson et al., 2012). The SSA can be complemented
by the shallow-ice approximation

:::
SIA

:
(Huybrechts, 1990;

Sato and Greve, 2012) to also include vertical shearing,
which is dominant in the more stagnant interior parts of an
ice sheet (Bueler and Brown, 2009; Pollard and DeConto, 30

2012; Thoma et al., 2015), whereas higher-order approxi-
mations (Schoof and Hindmarsh, 2010; Larour et al., 2012;
Cornford et al., 2015) neglect less stress components in the
full-Stokes stress balance (Favier et al., 2012). The MIS-
MIP3d benchmark revealed that numerical models applying 35

the SSA can capture grounding-line dynamics comparable
to more elaborate models in conceptual experiments (Pattyn
et al., 2013; Feldmann et al., 2014)which will be put to test
in the forthcoming MISMIP+ intercomparison project .

A dimensional analysis of the ice-dynamic equations is 40

often carried out to compare the magnitudes of the differ-
ent acting forces and thus to derive physically motivated ap-
proximations, as done when deriving the SSA from the full-
Stokes stress balance (MacAyeal, 1989; Greve and Blatter,
2009). The non-dimensionalized form of the SSA itself and 45

the involved dimensionless coefficients that result from the
introduction of typical scales for, e.g., ice-sheet thickness and
velocity, have been used to consider asymptotic limits of SSA
ice-sheet

::
ice

:
flow in previous work (Schoof, 2007a; Dupont

and Alley, 2005; Tsai et al., 2015; Haseloff et al., 2015). In 50

the present study we utilize these coefficients to derive ice-
sheet scaling laws for the geometry, response time and other
physical ice-sheet parameters, a step that to our knowlegde,
has not been taken before. The scaling behavior of ice sheets,
that here is analyzed in a conceptual way, might be of use to 55

better understand the large-scale evolution of the polar ice
sheets. Of particular interest is the scaling of the ice-sheet re-
sponse time (Levermann et al., 2013, 2014) against the back-
ground of Antarctic instabilities (Weertman, 1974; Schoof,
2007b; Rignot et al., 2014; Fogwill et al., 2014; Mengel and 60

Levermann, 2014). The time scales of possible rapid ice dis-
charge due to instability in the past (Pollard and DeConto,
2009; Pollard et al., 2015) and future (Favier et al., 2014;
Joughin et al., 2014; Feldmann and Levermann, 2015b) are
highly uncertain.

The paper is structured as follows: In
::
in

:
the next section

the governing equations in SSA are non-dimensionalized to5

derive ice-sheet scaling laws for one and two horizontal di-
mensions, respectively. We also give an alternative approach
to derive the same scaling conditions. Afterwards the analyt-
ically predicted ice-sheet scaling behavior is compared with
results from numerical modeling. To this extent conceptual10

experiments are designed in two and three spatial dimen-
sions. Steady states as well as the transient response to per-
turbation of the simulated ice sheet are analyzed for a system-
atic variation of the scaling parameters which are prescribed
according to the scaling laws. We then examine analytically15

the implications of the scaling conditions for the response
times of ice sheets considering the geometric scaling factors
and basal friction parameter as independent variables. Even-
tually we discuss the results and conclude.

2 Similarity
:::::::::
Similitude of shallow ice-sheet dynamics20

Here we derive scaling laws that determine how the geome-
try, response time and the involved physical parameters for
ice softness, surface mass balance and basal friction have
to relate in order to satisfy similitude between different ice
sheets. This is visualized conceptually in Fig. 1 for two ice25

sheets which differ in vertical and horizontal scale. Based on
the governing equations in dimensionless form, we obtain di-
mensionless scale factors which depend on the scales of the
geometric and physical parameters of the ice sheet. The re-
quirement that each of these factors has to remain constant30

::
the

:::::
same

:
under a scaling of the parameters makes sure that

the dynamic equations remain exactly the same. The result-
ing scaling laws thus put constraints on the parameter scal-
ing, ensuring similitude between the different ice-sheet con-
figurations.35

2.1 Basic equations for similitude analysis

The problem addressed here is the one of an isothermal ice-
sheet in SSA (Greve and Blatter, 2009). The two horizontal
components of the stress balance in SSA with spatially uni-
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form ice softness A are given by40

A−1/n

(
∂

∂x

[
Hε̇1/n−1

e

(
2
∂vx
∂x

+
∂vy
∂y

)]
+

1

2

∂

∂y

[
Hε̇1/n−1

e

(
∂vx
∂y

+
∂vy
∂x

)])
+ τb,x = ρgH

∂h

∂x
,

A−1/n

(
∂

∂y

[
Hε̇1/n−1

e

(
2
∂vy
∂y

+
∂vx
∂x

)]
+

1

2

∂

∂x

[
Hε̇1/n−1

e

(
∂vy
∂x

+
∂vx
∂y

)])
+ τb,y = ρgH

∂h

∂y
,

(1)

where vx and vy are the velocity components in x- and y-
direction, respectively, H is the ice thickness, h=H + b the
ice-surface elevation with ice-base elevation b,

::
ρ
::
is
:::
the

:::
ice

::::::
density,

::
g

:::
the

::::::::::
gravitational

::::::::::
acceleration

:
and n denotes Glen’s 45

flow-law exponent(, a common choice is n= 3). The effec-
tive strain rate ε̇e (Greve and Blatter, 2009) can be written as

ε̇e =

[(
∂vx
∂x

)2

+

(
∂vy
∂y

)2

+
∂vx
∂x

∂vy
∂y

+
1

4

(
∂vx
∂y

+
∂vy
∂x

)2
]1/2

,

(2)

We choose the basal shear stress in Eqs. (1), τ b = (τb,x, τb,y), 50

to be given by a Weertman-type sliding law (Greve and Blat-
ter, 2009):

τ b =−C|v|m−1v, (3)

with horizontal velocity vector v = (vx,vy) and constant
friction coefficient C. The exponent m determines the par- 55

ticular type of the sliding law including plastic (m= 0, mag-
nitude of basal shear stress independent of velocity, Tulaczyk
et al., 2000) and linear-viscous (m= 1, basal shear stress
proportional to ice velocity, MacAyeal, 1989) behavior. A
value of m= 1/n= 1/3 is commonly assumed to represent 60

sliding over rough bed (Schoof, 2007a; Joughin et al., 2009;
Cuffey and Paterson, 2010).

The evolution equation for the ice thickness, i.e., the ice
thickness equation (ITE), which results out of mass conser-
vation (Greve and Blatter, 2009) reads 65

∂H

∂t
=−divQ+ a, (4)

with horizontal ice flux Q=Hv and surface mass balance
a.

::::::::::
Throughout

:::
the

:::::
study

:::
we

:::::
focus

:::
on

:::
the

::::::::
grounded

::::
part

::
of

::
the

:::
ice

:::::
sheet

::::
and

::::::
assume

:::::::::
negligible

:::::::::::::::
melting/refreezing

::
at

::
its

::::
base.

::::::
Hence

:::
the

::::
basal

:::::
mass

::::::
balance

::
is
:::
not

:::::
taken

::::
into

::::::
account 70

::
in

:::
Eq.

:::
(4).

:

2.2 Flow-line case

In the flow-line case the geometry of an ice sheet can be
scaled in horizontal (x) and vertical (z) direction, using two

scaling factors α and β, respectively (α,β > 1 for stretching 75

and α,β < 1 for compression
:::::::::
elongation

:::
and

:::::::::::
0< α,β < 1

::
for

::::::::
shortening). We define these as

x′ = αx, (5)
h′(x′) =H ′(x′) + b′(x′) = βH(x) +βb(x) = βh(x), (6)

where the prime denotes the scaled system. In particular, 80

Eq. (5) states that the ice-sheet length L scales according to
L′ = αL.

Since we neglect the y-direction here, we only have to con-
sider the x-component of the SSA (Eq. 1a) in which all terms
that include y drop out. The effective strain rate (Eq. 2) thus
simplifies to ε̇e =

∣∣∂vx
∂x

∣∣ and the SSA reads

2A−1/n ∂

∂x

[
H

∣∣∣∣∂vx∂x
∣∣∣∣1/n−1

∂vx
∂x

]
−Cvmx − ρgH

∂(H + b)

∂x
= 0.

(7)

The ITE (Eq. 4) in flow line is given by

∂H

∂t
=−∂(Hvx)

∂x
+ a. (8)5

Now we bring these two equations into non-
dimensionalized form by introducing the dimensionless
variables H∗ = H

H , b∗ = b
H and v∗x = vxT

L , using the scales
H, L and T for ice-sheet thickness, length and response
time, respectively. We obtain10

2A−1/nT −1/n

ρgH︸ ︷︷ ︸
=θ

∂

∂x∗

[
H∗
∣∣∣∣∂v∗x∂x∗

∣∣∣∣1/n−1
∂v∗x
∂x∗

]

− CL
m+1T −m
ρgH2︸ ︷︷ ︸

=φ

v∗x
m−H∗ ∂(H∗+ b∗)

∂x∗
= 0,

(9)

and

∂H∗

∂t∗
=−∂(H∗v∗x)

∂x∗
+
aT
H︸︷︷︸
=ω

, (10)

for the SSA and ITE, respectively. In Eq. (9) the two di-
mensionless constants θ and φ relate the different involved15

stresses to the driving stress. Extending θ with H/L and
φ with L−1 we see that these scale factors relates

::::
relate

the membrane stresses (Hindmarsh, 2006) and the basal
stresses to the driving stress, respectively. Here we do not
assume one of the limits for which

::
In

:::
the

:::::::
floating

:::
ice

::::
shelf20

the driving stress is either fully supported by
::::::
always

::::
fully

:::::::
balanced

:::
by

:::
the

:
membrane stresses (φ� θ, situation in an

ice shelf) or basal shear stresses (φ� θ, holding for ice
frozen to bedrock), respectively, but consider the general case
in which non of the stress balance terms are neglected

::
no25

::::
basal

:::::::::
resistance,

:::::
thus

::::::
C = 0

::
in

::::
Eq.

:::
9).

:::::::::
Focussing

:::
on

:::
the
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::::::::
grounded

:::
part

:::
of

:::
the

:::
ice

::::::
sheet,

:::
we

::::::
assume

::::
that

:::
its

::::::
driving

::::
stress

:::
is

:::::::
balanced

:::
by

::
a
:::::::::::
combination

::
of

:::::::::
membrane

:::::::
stresses

:::
and

::::
basal

:::::::
stresses.

The two governing equations (9) and (10) of our problem30

remain exactly the same as long as each of the dimension-
less factors θ, φ and ω are kept constant

::::::
remain

:::
the

:::::
same.

In other words, the ice-sheet dynamics are expected to be
similar under a transformation that leaves these factors un-
changed. Thus the scaling of the ice sheet’s typical length and35

thickness scales according to Eqs. (5) and (6), i.e., L′ = αL
and H′ = βH in general requires (some of) the physical pa-
rameters a, C, A and its response time T to change in order
to maintain similarity with respect to the unscaled ice sheet.
We hence can infer three scaling conditions for the time-scale 40

ratio τ = T ′/T :

φ′ = φ ⇒ τ = α1+1/mβ−2/mγ1/m, (11)

θ′ = θ ⇒ τ = β−nζ−1, (12)

ω′ = ω ⇒ τ = βδ−1, (13)

with friction-coefficient ratio γ = C ′/C, ice-softness ratio 45

ζ =A′/A and surface-mass-balance ratio δ = a′/a. This sys-
tem of 3 equations has 6 unknowns from which 4 remain
when we take α and β as given by the applied geometric
transformation. Prescribing one of the three parameter ratios
γ, δ or ζ hence determines the scaling of the other two pa- 50

rameters and the time scaling of the system.
We can link the ratios of surface mass balance and ice soft-

ness by combining Eqs. (12) and (13), yielding

δ = βn+1ζ, (14)

a relation which is independent of the horizontal scaling fac- 55

tor α. For the case of a scaled ice-sheet geometry that is left
unchanged in vertical direction (β = 1) ice softness and ac-
cumulation hence scale identically.

Using Eqs. (11)-(13) we can further express δ and ζ as
functions of both geometric scaling ratios and the basal fric- 60

tion ratio:

δ = α−(1+1/m)β1+2/mγ−1/m. (15)

ζ = α−(1+1/m)β−n+2/mγ−1/m. (16)

Inserting Eq. (14) into Eq. (16) we also obtain a condition
for the basal-friction ratio as a function of both geometric 65

scaling parameters and the surface-mass-balance ratio:

γ = α−(1+m)β2+mδ−m. (17)

Results of an application of the derived scaling laws in
numerical flow-line simulations are given in Sec. 3

2.3 Consistency with flow-line boundary-layer theory 70

Here we show that the scaling conditions derived above by
dimensional analysis under the concept of similitude , are

consistent with the boundary-layer theory which was intro-
duced by Schoof (2007b) for an

:
a
::::::::::
steady-state,

:
unbuttressed,

isothermal, flow-line ice sheet in SSA. Neglecting membrane 75

stresses in the
::::
SSA stress balance, matched asymptotics are

applied to solve a boundary-layer problem for the transition
zone between grounded and floating ice. The

:::
This

::::::
theory

:::
thus

::::::
applies

::::::
further

::::::::::
assumptions

::
to

:::
the

::::
SSA

:::
and

::::
ITE

::::::::
compared

::
to

::
the

:::::
more

::::::
general

::::::::
versions

::
of

::::
these

:::::::::
equations

:::
that

:::
are

::::
used

::
in 80

::
the

:::::::
present

:::::
study.

::::::::
According

:::
to

:::
the

::::::::::::
boundary-layer

::::::
theory

:::
the

:
ice-sheet sur-

face slope is then given by (Schoof, 2007b, Eq. 25)

∂h(x)

∂x
=
∂(H(x) + b(x))

∂x
=
C

ρg

|Q(xgl)|m−1
Q(xgl)

h(x)
m+1 , (18)

where xgl denotes the grounding-line position and Q(xgl) is
the flux across the grounding line. According to Eqs. (5) and
(6) the scaling of the surface slope reads

∂h′(x′)
∂x′

=
β

α

∂h(x)

∂x
(19)

and in combination with Eq. (18) we can write5

C ′

ρg

∣∣∣Q′(x′gl)∣∣∣m−1

Q′(x′gl)

h′(x′)m+1 =
β

α

C

ρg

|Q(xgl)|m−1
Q′(xgl)

h(x)
m+1 .

(20)

Presuming that the flux across the grounding line is always
positive in x-direction and using once again Eq. (6) yields a
scaling relation for the grounding-line flux

Q′(x′gl) = α−1/mβ(1+2/m)γ−1/mQ(xgl). (21)10

The boundary-layer method considers the ITE in steady
state (∂H∂t = 0) and hence integration of (Eq.

:
(4) over the en-

tire ice-sheet length
:::::
length

::
of

:::
the

::::::::
grounded

:::
ice

:::::
sheet yields

Q(xgl) = aL. (22)

Inserting this expression for the grounding-line flux into15

Eq. (21) we arrive at the same condition for the scaling of
the surface mass balance (Eq. 15) that we obtained from the
principle of similitude in the previous section.

A central result of the boundary layer
::::::::::::
boundary-layer the-

ory is an analytic solution for the grounding-line flux as a20

function of ice thickness at the grounding line (Schoof2007,
Eq. (16))(Schoof, 2007b, Eq. 16):

Q(xgl) =

(
A(ρg)

1+n
(1− ρ/ρw)n

4nC

) 1
m+1

H(xgl)
m+n+3
m+1 .

(23)

Inserting this relation into Eq. (21) and applying some basic
algebra we obtain the same scaling relation for the ice soft-25

ness as derived in the previous sections (Eq. 16).
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Setting Q(xgl) = vx(xgl)H(xgl) in Eq. (22) and dividing
by Q′(xgl) we obtain

v′x(x′gl)

vx(xgl)
= αβ−1δ. (24)

Since the boundary-layer theory assumes steady-state con-30

ditions, we introduce a velocity scale V = L/T to be able
to derive a response-time relation. This yields v′x/vx = α/τ
and the response-time scaling law resulting from Eq. (24) is
identical to Eq. (13).

Thus the same 3 independent equations that determine the35

ice-sheet scaling behavior and were derived by the means of
similarity analysis in the previous section also result from
boundary-layer theory.

2.4 Two-dimensional case with one time and one length
scale 40

The two-dimensional SSA (Eq. 1) is derived from the full-
Stokes equation using a single horizontal length scale L and
time scale T , respectively (Greve and Blatter, 2009). Con-
tinuing this line of thought, we introduce the dimension-
less velocity in y-direction, v∗y =

vyT
L , in addition to the di- 45

mensionless variables from Sec. 2.2 to non-dimensionalize
the SSA equations. The dimensionless effective strain rate
(Eq. 2) then reads

ε̇∗e = T ε̇e (25)

For the x-component of the SSA (Eq. 1a) we hence obtain 50

A−1/nT −1/n

ρgH︸ ︷︷ ︸
=Θ

(
∂

∂x∗

[
ε̇e ∗1/n−1H∗

(
2
∂v∗x
∂x∗

+
∂v∗y
∂y∗

)]

+
1

2

∂

∂y∗

[
ε̇e ∗(1−n)/nH∗

(
∂v∗x
∂y∗

+
∂v∗y
∂x∗

)])
− CL

m+1T −m
ρgH2︸ ︷︷ ︸

=Φ

vx∗m−H∗
∂(h∗+ b∗)

∂x∗
= 0.

(26)

The same coefficients Θ and Φ result from the y-component
of the SSA, which is not specified here. The non-
dimensionalized ITE (Eq. 4) reads

∂H∗

∂t∗
=−div (H∗v∗) +

aT
H︸︷︷︸
=Ω

. (27) 55

Comparison between the flow-line and the two-dimensional
SSA and ITE shows that we obtained the same number of
dimensionless factors that appear at the same place and are
identical to each other, i.e., θ = Θ, φ= Φ and ω = Ω. Hence
under the assumption of a single horizontal length scale the 60

scaling relations for the two-dimensional SSA are the same
as in the flow-line case.

2.5 Two-dimensional case with time and length scales
for both horizontal directions

Starting again from the two-dimensional SSA (Eq. 1) we 65

now make the less-constraining assumption of two horizon-
tal length scales Lx and Ly and accordingly two time scales
Tx and Ty , yielding the dimensionless velocities v∗x = vxTx

Lx

and v∗y =
vyTy
Ly

. In this case the effective strain rate (Eq. 2)
does not simplify to a single term as in the previous sec- 70

tions but consists of several mixed terms. The SSA thus ex-
pands to a much longer expression which we detail in the
Appendix A. Although we obtain a multiple of dimension-
less coefficients that need to remain constant

::
the

:::::
same

:
for

the ice sheet to fulfill similarity under scaling, the resulting
scaling laws are identical to the ones derived above (see Ap-
pendix A). This implies that our requirement of similarity
results in the constraint that the ice sheet can have only one
time scale T = Tx = Ty and one length scale L= Lx = Ly5

as opposed to our initial assumption of distinct scales for
each horizontal direction.

We investigate ice-sheet scaling also in a three-
dimensional setup in the next section.

3 Comparison with simulations10

We compare our analytical findings with results from numer-
ical simulations applying the Parallel Ice Sheet Model in con-
ceptual geometric setups. The model is the same as used in
(Feldmann and Levermann, 2015a) but here run in SSA-only
mode. We define a reference topographic geometry which15

is prescribed in an unscaled reference experiment (indexed
as “ref”) along with the parameter values shown in Table 1.
The scaling experiments use geometrically scaled versions of
the reference bed topography and the physical parameters are
modified according to the scaling laws derived in Sec. 2.2.20

Halfing the horizontal and/or vertical length scales of the
reference topography we obtain three geometric configu-
rations which are shrinked

::::::::
shortened

:
in vertical (α,β) =

(1.0,0.5), horizontal (α,β) = (0.5,1.0) or both directions
(α,β) = (0.5,0.5), respectively. To be able to calculate the25

other physical parameters a,A,C that apply to the scaling
experiments according to the 3 scaling relations (Eqs. 15 -
17) we need to prescribe one more scaling ratio in addition
to α and β. Setting γ = 1 (constant

::::::
identical

:
basal friction)

and δ = 1 (constant
:::::::
identical surface mass balance), thus two30

sub-sets of simulations are generated. The resulting scaling
ratios which determine the parameter values are shown in
Table 2 for each of the seven experiments. We apply the
described procedure using 1) a flow-line setup (one hori-
zontal and one vertical direction, bed topography in black35

in Fig. 2) and 2) a three-dimensional channel-flow setup
(flow-line setup extended by

::::
into second horizontal direc-

tion , bed topography shown in Figs. 3 and 4)as detailed
:::
with
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:::::::::::
valley-shaped

:::::::
bedrock

::
in

:::
this

::::::::
direction

::
to

::::
form

::
a
:::
bed

::::::
trough,

:::
see

:::
Fig.

:::
4).

::::::
Details

:::
are

:::::
given in Appendix B.40

The experiments are designed to perturb an ice sheet in
equilibrium, triggering a marine ice-sheet instability that un-
folds unaffected by the ceased perturbation. The speed of
unstable grounding-line retreat and the equilibrium ice-sheet
profiles before and after the instability serve as a measure to45

compare the scaling of the dynamic response and the steady-
state geometry, respectively.

3.1 Comparing time scales of instability

All of our simulations show a similar pattern of grounding-
line evolution after perturbation (Figs. 5 and 6): After

:::
after50

a phase of little to negligible grounding-line retreat the re-
treat rate increases (grounding line passes the coastal sill
and enters the retrograde slope), reaching its maximum value
around the minimum of the bed depression before declining
to zero (grounding line stabilizes on inland up-sloping bed). 55

The initial and final grounding-line positions of comparable
setups (continuous lines) match or are close to each other.
The similarity of ice-sheet shapes between different geomet-
ric configurations becomes apparent when laying the mod-
eled steady-state ice-sheet profiles on top of each other and 60

scaling the spatial axes according to α and β (shown exem-
plarily in Figs. 2 and 3).

The simulations clearly differ in the time scale of the MISI
evolution which can be measured by the grounding-line re-
treat rate ẋgl =

∂xgl

∂t . To compare different simulations we 65

introduce a retreat-rate scaling ratio:

χ̇=
ẋ′gl
ẋgl

=
α

τ
. (28)

Dependent on which additional parameter is held constant

::::::::
prescribed

:::
to

::
be

::::::::
identical

:
under geometric scaling, we re-

place the time-scale ratio using Eq. (11) or Eq. (13) to obtain 70

scaling laws for the retreat rate as functions of the geometric
scaling ratios only:

γ = 1 ⇒ χ̇= α−1/mβ2/m, (29)

δ = 1 ⇒ χ̇= αβ−1. (30)

We can thus calculate the retreat-rate ratios for all consid- 75

ered geometric configurations (Table 2). The grounding-line
curves of our simulations are approximately linear over the
time period during which the grounding line passes the bed
depression and its retreat rate is largest. We fit a slope to the
linear section of the unscaled simulation (purple slope fit- 80

ted to black curve in Figs. 5 and 6), to obtain our reference
retreat rate. Using the calculated retreat-rate ratios from Ta-
ble 2 we can predict the grounding-line retreat rates for the
scaled setups. Superimposing the linear sections of the scaled
experiments with the respective analytically calculated slope 85

(Figs. 5 and 6) gives a good match between numerical results
and theory

::::
(see

::::
Figs.

:::
C1

::::
and

:::
C2

:::
for

::::::
scaled

:::::::
versions

::
of

:::
the

::::
time

::::::
series). Our simulation ensemble of scaled ice sheets

thus exhibits similarity as predicted from theory, regarding
transient ice-sheet dynamics and steady-state geometry. 90

4 Implications for the response times of ice sheets

Based on the scaling laws derived in Sec. 2 we explore an-
alytically the implications of a scaling of ice-sheet param-
eters and geometry for the response-time scaling. Making
the assumption of a constant

:::
that

:::
the basal friction parameter 95

::::
stays

:::
the

::::
same

:
(γ = 1) while allowing a variation in

::::::
different

:::::
values

:::
for

:::
the

:
surface mass balance and

::
the

:
ice softness we

are able to calculate the response-time ratio τ (Eq. 11) as a
function that only depends on the geometric scaling (α and
β) and the friction exponent m:

τ = α1+1/mβ−2/m. (31)

Using this equation in combination with Eqs. (12) and (13)
we obtain contour maps for the ratios τ , ζ and δ in the5

α-β phase space (Figs. 7a-c for the common choice of an
exponent value of m= 1/n with n= 3 (Figs. 7a-c for the
common choice of an exponent value ofm= 1/nwith n= 3
Schoof, 2007a; Greve and Blatter, 2009; Cuffey and Pater-
son, 2010). Therein the blue and red areas correspond to the10

regimes of an increasing and decreasing parameter value un-
der geometric scaling, respectively, which are separated by a
white curve along which the considered parameter remains
constant

::
the

:::::
same.

4.1 Linking horizontal and vertical scales15

To be able to follow physically motivated curves through
the phase space we link the horizontal and the vertical
scale. Motivated by

::
In

:::::::
idealized

::::::::
flow-line

::::::::::
experiments (Feld-

mann and Levermann, 2015a)
:
it
::::
has

::::
been

::::::
shown

::::
that

:
the

Vialov ice-sheet profile (Vialov, 1958; Greve and Blat-20

ter, 2009),
::::::
though

:::::::
derived

:::::
under

::::
the

::::::::::
assumption

:::
of

:::
the

:::::::::
shallow-ice

:::::::::::::
approximation,

:::
can

:::
be

::::
used

::
to

::::
also

::::::::::
approximate

::::
SSA

:::::::
ice-sheet

::::::::
profiles.

::::::::
Motivated

:::
by

:::
the

::::::
Vialov

::::::
profile,

:
for

which the central (maximum) ice-sheet thickness is propor-
tional to the square root of the ice-sheet length

:
,
:
we assume25

a relation between the ice-thickness scale H and the length
scale L of the form

H∼Lq with 0< q ≤ 1. (32)

With α= L′/L and β =H′/H it follows that for the postu-
lated ice-sheet proportion the two geometric scaling factors30

are linked such that

β = αq, (33)

and Eq. (31) then reads

τ = α
m−2q+1

m . (34)
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We are interested in finding a critical value of the exponent in35

Eq. (31) which determines a threshold in the α-β phase space
between the two regimes of increasing (τ < 1) and decreas-
ing (τ > 1) ice-sheet response time under applied geometric
scaling. Assuming horizontal stretching

::::::::
elongation

:
(α > 1),

which according to Eq. (33) implies also vertical stretching40

::::::::
elongation

:
(β > 1, see Fig. 7d), it follows that τ < 1 only if

the exponent in Eq. (34) is negative. Hence there exists a crit-
ical threshold

qc =
m+ 1

2
, (35)

with m ∈ (0,1] and thus qc ∈ ( 1
2 ,1], above which the scaled,45

i.e. stretched
::::::::
elongated, system responds faster compared to

the unscaled system. This is visualized in Fig. 7a for m=
1/3. The area between the dashed (q = qc = 2/3) and the
continuous (q = 1) curves is in the regime of τ < 1 for α > 1.
Vice versa, for a shrinked

:::::::
shortened

:
ice sheet (α < 1 and 50

hence β < 1) in the area between these two curves holds
τ > 1. The same qualitative scaling applies to the ice softness
whereas the surface mass balance scales oppositely (Figs. 7b
and c).

An exponent of q = 1/2 which represents Vialov propor- 55

tions constitutes the lower aymptotic limit of the domain of
all possible qc (limit m→ 0, Eq. 34 requires m> 0 for α
to remain finite). Thus a Vialov-shaped ice sheet exhibits
a response-time scaling oppositely to the scaling explained
above (the dotted Vialov curve in Fig. 7a lies always out- 60

side the region between continuous and dahed curve, inde-
pendently of m).

Assuming Vialov conditions under constant
::::::
identical

:
fric-

tion, the scaling of the response time (Eq. 31), surface mass
balance (Eq. 15) and ice softness (Eq. 16), respectively, be- 65

comes independent of m which is visualized in Fig 8. Eval-
uating the curves in the left vicinity of α= 1, meaning a
small reduction in both vertical and horizontal ice-sheet ex-
tent, yields a plausible scaling of the ice-sheet parameters
in a warming atmosphere: Rising

::::
rising

:
atmospheric temper- 70

atures cause an increase in surface mass balance (δ > 1 in
Fig. 7c, Frieler et al., 2015) and also lead to a softening of
the ice (ζ > 1 in Fig. 7b, Cuffey and Paterson, 2010). The re-
sponse time then decreases (τ < 1 in Fig. 7a). In this picture
a warming-induced ice-sheet retreat would hence shift the 75

ice sheet into the regime of faster response to perturbation,
tending to accelerate potential further retreat.

4.2 Role of basal friction exponentm

The response-time scaling considered here is a function of
the basal friction exponent m (Eq. 31) and the visualization 80

of the response-time ratio in the α-β phase space (Fig. 7 ac-
counts for only one value of m

:
). To examine the influence

of m on the scaling we cut several hypersurfaces through the
phase space, sampling the domain of the exponent.

Fixing the horizontal scale, i.e., going along α= 1, yields 85

that vertical stretching (shrinking
::::::::
elongation

::::::::::
(shortening) al-

ways results in a short
:::::
shorter

:
(longer) ice-sheet response

time (Fig. 9a). In this case the parameter choice of m only
determines the curvature of τ(β). Fixing the vertical scale
(β = 1) results in opposite behavior of τ , i.e., horizontal 90

stretching (shrinking
::::::::
elongation

::::::::::
(shortening) always yields a

longer (shorter) ice-sheet response time (Fig. 9b). Equal ge-
ometric scaling of the two directions (α= β) gives a similiar
picture as obtained for α= 1 (the magnitude of the negative
β-exponent is always larger than the α-exponent), with the 95

difference that here the time scaling becomes independent of
the geometric scaling for m= 1 (Fig. 9c).

Requiring the response-time scaling law (Eq. 31) to be in-
dependent of m yields the relation β = α

1−m(k−1)
2 (with k a

real number) and thus τ = αk. In general, a negative (posi-
tive) value of k then results in a faster (slower) response when
stretching (shrinking

:::::::::
elongating

::::::::::
(shortening) the ice sheet

horizontally. The case of k = 0 yields a constant
:::
the

::::
same

time scale (τ = 1), independent of the α value (Fig. 9d). The5

case of k = 1 corresponds to the Vialov case for which the
time-scale ratio increases linearly when stretching

::::::::
elongating

the ice sheet horizontally.

5 Discussion and conclusions

Carrying out a dimensional analysis of the stress balance in10

SSA and the equation of mass conservation we derive ice-
sheet scaling conditions for the vertical and horizontal length
scales, the response time and the relevant physical parame-
ters which determine ice-sheet behavior.

Specifically, we find that the scaling relations derived for15

the SSA in flow line (Eqs. 11-13) also hold for the SSA in
two horizontal dimensions under the assumtion

:::::::::
assumption

of a single horizontal time and length scale, respectively
::::
scale

:::
and

:
a
::::::
single

:::::
length

::::
scale. Only the two-dimensional SSA ac-

counts for stress components that allow for horizontal shear-20

ing and hence the effect of buttressing.
Our analysis also shows that although the full SSA ac-

counts for both horizontal dimensions there can only exist
one time scale T and one length scale L, as opposed to one
for each dimension (Tx, Ty and Lx, Ly) under the principle25

of similitude.
To non-dimensionalize the

::::
SSA

:
stress balance we intro-

duce scales for ice-sheet length, thickness and time with-
out assuming typical numerical values for these scales. We
thus do not compare orders of magnitudes of acting stresses30

to neglect
::::::
neglect

::::::
further

:
terms in the stress balance as is

often done in the course of a dimensional analysis (citation)

::::
SSA

:::::
stress

:::::::
balance

::
by

::::::::::
comparing

::::::
orders

::
of

::::::::::
magnitudes

::
of

:::::
acting

:::::::
stresses

:
(as done in, e.g., Schoof, 2007a) but con-

sider the general case of comparable magnitudes of
::
in

:::::
which35

::::
both membrane and basal stresses , respectively.

::::::
balance

:::
the

::::::
driving

:::::
stress

:::::
(Eqs.

::
9
::::
and

:::::
26). In other studies not only

::
the

::::::
scales

::
for

:
ice-sheet length, thicknessand velocity but also

::::::::
thickness,

:::::
length

::::
and

::::
time

:::
are

::::
used

::
to

::::::
express

:
the friction pa-



8 J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling

rameter C is expressed by typical scales of length, thickness40

and time resulting in a dimensionless
::::
SSA stress balance that

is characterized by a single scaling parameter (often denoted
as ε, Schoof, 2007a; Tsai et al., 2015). In the present study
we consider C as an independent parameter

:::::
/scale and thus

obtain two scaling parameters θ and φ in the stress balance45

(Eqs. 9 and 26)
::::
SSA

:::::
stress

:::::::
balance. The resulting scaling

laws hence involve the scaling of the basal roughness ex-
plicitely. The same holds for the scaling of the surface mass
balance a.

The scaling laws derived here are consistent with50

boundary-layer theory which considers the transition zone
between the grounded and floating regimes of a rapidly slid-
ing equilibrium ice sheet in flow line (Schoof, 2007b). The
conditions that don’t involve a time scale (Eqs. 15 and 16)
follow directly out of the analytic equations for steady-state 55

ice-sheet geometry and the grounding-line flux that result
from boundary-layer theory. To obtain the scaling relation
also for the ice-sheet response time (Eq. 13) out of the steady-
state theory it is necessary to introduce a velocity scale.

The presented scaling conditions can provide rules in the 60

design of model setups for numerical simulations
::
as

::::
well

::
as

::::::::
laboratory

::::::::::
experiments

:
to obtain parameter sets that leave the

ice-sheet geometry (absolute shape and extent) unchanged.
For instance, a doubling of the basal-friction parameter un-
der constant

::::::
identical

:
surface mass balance requires the ice 65

softness to be reduced to 1/8
:::::
(Eqs.

::
14

:::
and

::::
15), or a doubling

in surface mass balance under constant
::::::
identical

:
basal fric-

tion requires a doubling of the ice-softness value
:::::
(Eqs.

:::
15).

::::
Note

::::
that

:::::
these

::::::::
equations

:::
by

:::
no

::::::
means

:::::
make

::
a
::::::::
statement

::::
about

::::
the

:::::::
physical

::::::::::
dependency

::::::::
between

:::
ice

::::::::
softness,

::::
basal 70

::::::
friction

::
or

:::::::
surface

::::
mass

:::::::
balance.

::::
Our

:::::::
results,

::::::
derived

:::::
under

::
the

::::::::
principle

:::
of

:::::::::
similitude,

:::::::
provide

:::::::::
conditions

::::
that

::::
have

::
to

::
be

:::::::
fulfilled

::
in

:::::
order

::
to

::::::
respect

::::::::::::
self-similarity

::
of

::::::::
idealized

::
ice

:::::
sheets.

:::
In

:::::
other

::::::
words:

::
if

::::
two

:::::::::
(idealized)

:::::::
glaciers,

::::
that

:::
are

::
in

:::::::::
equilibrium

::::
with

:::::
their

::::::::::
environment

:::
and

:::
the

:::::
SSA

:::::::
equation, 75

::::
have

:::
the

:::::
same

:::::::::
qualitative

:::::
shape

::::
but

:::::
differ,

::::
e.g.,

:::
in

::::::
surface

::::
mass

:::::::
balance

::::
then

::::
they

::::
also

::::
need

:::
to

:::::
differ

::
in

:::::
basal

::::::
friction

:::
and

::::
their

:::::::
specific

::::::
relation

::
is

:::::
given

::
by

:::
the

:::::::
scaling

::::::::
conditions.

For the numerical simulations conducted in this study
we apply parameter configurations that half the geometric 80

scale in horizontal and/or vertical direction with respect to
the reference. The resulting ice-sheet response times range
over three orders of magnitude (see Table 2). Irrespective
of whether in a two- or three-dimensional setup the mod-
eled ice-sheet dynamics, represented by the rate of unstable 85

grounding-line retreat (Figs. 5 and 6) as well as the geom-
etry, represented by ice-sheet shape and grounding line po-
sition in equilibrium (Figs. 2 – 4), exhibit the scaling be-
havior predicted from the analytical calculations to a good
approximation. For the flow-line setup three scaled parame- 90

ter sets show different qualitative ice-sheet evolution com-
pared to the reference, while still complying with the ex-
pected response-time scaling. This difference is attributed to
the design of the reference setup, i.e., the closeness of the ini-

tial steady-state grounding line to the point of instability (lo- 95

cal bed maximum). Very small deviations from this position
trigger unperturbed instability or prevent landward induced
instability in the scaled setups (see Appendix B).

In contrast to the flow-line configuration the three-
dimensional setup inherently accounts for the buttressing ef- 100

fect in the initial steady-state simulation due to the presence
of a confined ice shelf (Dupont and Alley, 2005; Gudmunds-
son et al., 2012). However, the ice shelf is removed in the
course of perturbation to prevent scale-dependent influences
that would originate from a forcing through sub-shelf melt- 105

ing, surface accumulation or ice softness. Thus the speed of
grounding line retreat (and hence ice-sheet response time)
is only indirectly affected by the former buttressing effect.
An investigation of the response-time scaling under direct in-
fluence of ice-shelf buttressing requires a carefully designed
experimental setup that maintains the ice shelf during pertur-
bation (as in Asay-Davis et al., 2015) and accounts for the5

scaling also in the applied forcing.
To analytically investigate the implications of geometric

scaling for the ice-sheet response time we make the simpli-
fying assumption of constant

::::::
identical

:
basal friction (γ = 1).

Though the response-time scaling law still then still depends10

on the sliding exponent m (Eq. 31) the qualitative response-
time scaling (shorter or longer response time) turns out to be
independent of the choice of m (

:::
Fig.

:
9): Vertical

::::::
vertical ice-

sheet stretching (compression
:::::::::
elongation

::::::::::
(shortening) leads

to a faster (slower) ice-sheet response and the opposite holds15

for the horizontal direction. In other words, thicker or shorter
ice sheets tend to respond faster than thinner or longer ones.
Equal scaling in horizontal and vertical direction (α= β)
yields that larger ice sheets respond faster than smaller ones.

Assuming a relation between the horizontal and vertical20

scale of the form β = αq with 0< q ≤ 1, we find a critical
m-dependent threshold qc for the exponent (Eq. 35) above
which larger (smaller) ice sheets always exhibit a shorter
(longer) response time. The case of q = 1/2 represents the
lower asymptotic limit for all possible qc and corresponds to25

an ice sheet with Vialov-type proportions for which the cen-
tral ice thickness is the square root of the horizontal extent.
Conceptual flow-line experiments similar to the ones con-
ducted here (Feldmann and Levermann, 2015a) revealed that
the Vialov profile, which results under simplified conditions30

from the shallow-ice approximation
:::
SIA

:
of the full-Stokes

stress balance in flow line, can also reasonable
::::::::
reasonably

approximate the ice-sheet shape in SSA. In the same study
a comparison between steady-state ice-sheet profiles before
and after collapse suggested a scaling of β = α1/2. For such35

an ice sheet the time scaling is identical to the scaling of its
length, i.e., stretching (compression

:::::::::
elongation

::::::::::
(shortening)

results in slower (faster) response which is opposite behavior
than for the above discussed case of q > qc > 1/2. A thought
experiment that is consistent with the scaling behavior de-40

rived for this kind of profile reveals that in the course of
an ice-sheet retreat that is triggered by atmospheric warm-
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ing the ice-sheet response would become faster, with self-
accelerating effect on further retreat (Fig 8). Note that all
the consideration made above

::::::
presume

::::::::::::
self-similarity

::
of

:::
ice45

:::::
sheets

:::
and

:
are only valid for a constant

::::
fixed

:
basal-friction

parameter.
In place of prescribing basal friction, the assumption of a

constant
:::::::
identical

:
surface mass balance (δ = 1) or ice soft-

ness (ζ = 1), results in a more trivial response-time scaling50

which either equals the vertical scaling (Eq. 13) or depends
on the vertical scaling via a power-law relation with expo-
nent −n (Eq. 12), respectively. Since n is always positive
also here the qualitative time scaling does not depend on the
parameter value(Cuffey and Paterson, 2010)

:
in

:::
the

::::
latter

::::
case55

::
the

::::::::
response

::::
time

:::::::::
decreases

::::
with

:::::::::
increasing

::::::
vertical

::::::
extent.

There are several other ways to analyze the implications of
the scaling conditions derived here on ice-sheet dynamics
that are not covered in this study.

Our approach includes several assumptions (shallow stress 60

balance, isothermal iceflow, choice of sliding law, parameter
constraints) and thus simplifies the problem of ice sheet flow.
At the same time it allows for the fundamental scaling analy-
sis conducted here which incorporates the relevant physics of
fast ice flow and results in scaling conditions that relate im- 65

portant physical parameters of an ice sheet to each other.
:
A

::::::::
similitude

:::::::
analysis

:::::
based

:::
on

:
a
::::
less

:::::::::
simplified

:::::
stress

::::::
balance

:::
than

:::
the

::::
one

::::
used

::::
here

:::::
would

::::::::
certainly

:::::
better

:::::::
account

::
for

:::
the

:::::::::
complexity

::
of

:::::::::
real-world

::::::::
systems,

:::
but

::
is
:::::::

beyond
:::
the

:::::
scope

::
of

:::
the

::::::
current

:::::
study.

::::
All

:::::::::
statements

::
on

:::
the

::::::::
ice-sheet

::::::
scaling 70

:::::::
behavior

:::::
made

::::
here

::::::::
therefore

:::::
need

::
to

:::
be

:::::::::
considered

::
in

:::
the

::::
light

::
of

:::
the

::::::::
idealized

::::::::
character

::
of

:::
the

::::::::::
underlying

::::::::
simplified

::::
SSA

:::::
stress

:::::::
balance.

The
::::
SSA

::
is
:::

of
:::::::::::::::::

vertically-integrated
:::::

form
::::

and
:::::

thus
::
in

::::::::
particular

:::::
does

::::
not

:::::::
account

::::
for

:::::::::
variations

:::
of

::::::::
ice-sheet 75

::::::
velocity

::::::
within

:::
the

:::
ice

:::::::
column.

::::
The

::::::::::
assumption

::
of

:::::::
uniform

::
ice

::::::::
softness

:::::::
further

:::::::
reduces

:::::::::::
complexity,

::::::::::
neglecting

:::
the

::::::::::
dependency

::
of

:::
the

::::
ice

:::::::
softness

:::
on

:::
ice

:::::::::::
temperature

:::::
which

:::::::
typically

:::::
varies

::
in
:::::::::

horizontal
::::
and

::::::
vertical

::::::::
direction.

::::
The

:
ap-

plied Weertman-type sliding law (Eq. 3) is a common choice 80

(Fowler, 1981; Schoof, 2007a; Pattyn et al., 2013) amongst
others used to describe the sliding of ice sheets over bedrock
(Greve and Blatter, 2009; Cuffey and Paterson, 2010; Tsai
et al., 2015). It

::::::
Though

:::
we

::::::::
prescribe

:
a
:::::::
uniform

:::::
basal

::::::
friction

::::::::
coefficient

:::
the

::::::::
resulting

::::
basal

:::::
stress

::::
field

::::
that

:::::
enters

:::
the

::::
SSA 85

:::
can

::::
vary

:::::::
spatially

:::
and

::::::::::
temporally.

::::
The

::::::
sliding

:::
law covers di-

verse types of sliding behavior depending on the sliding ex-
ponent m in Eq. (31). Except for the plastic limit (m= 0) it
relates the scale of basal stress to the scale of velocity, re-
sulting in a scaling law which links the scaling of ice-sheet 90

geometry, friction and response time, respectively (Eq. 11).
Our analytic exploration of the derived ice-sheet scaling

behavior applies several constraints to the parameter space
and is thus far from being holistic but is aimed to allow for
(simplified) statements on the influence of geometric scal- 95

ing on response time. The set of scaling conditions presented
here shall provide a model which allows for a fundamen-

tal comparison of the large-scale scaling of the geometry
and relevant parameters that determine ice-sheet dynamics.
In particular the response-time scaling conditions might be 100

suitable to analyze speed of the transient response to climatic
perturbations of the polar ice sheets that took place in the past
or might become relevant for the future.

Appendix A: Two-dimensional case with two time and
length scales for both horizontal directions 105

Introducing the dimensionless velocities v∗x = vxTx
Lx

and v∗y =
vyTy
Ly

the non-dimensionalized form of the effective strain
rate (Eq. 2) reads

ε̇e =

[
T −2
x

(
∂v∗x
∂x∗

)2

+ T −2
y

(
∂v∗y
∂y∗

)2

+ T −1
x T −1

y

∂v∗x
∂x∗

∂v∗y
∂y∗

+
1

4

(
LxL−1

y T −1
x

∂v∗x
∂y∗

+L−1
x LyT −1

y

∂v∗y
∂x∗

)2
]1/2

.

(A1)

Insertion into Eq. (1a) yields the following expression for the
x-component of the two-dimensional SSA:

∂

∂x∗

H∗

[

2A−1/n

ρgHTx

] 2n
1−n

ε̇2e︸ ︷︷ ︸
I


1−n
2n

∂v∗x
∂x∗

+H∗


[
A−1/n

ρgHTy

] 2n
1−n

ε̇2e︸ ︷︷ ︸
II


1−n
2n

∂v∗y
∂y∗



+
1

2

∂

∂y∗

H∗

[
A−1/nL2

x

ρgHL2
yTx

] 2n
1−n

ε̇2e︸ ︷︷ ︸
III


1−n
2n

∂v∗x
∂y∗

+H∗


[
A−1/n

ρgHTy

] 2n
1−n

ε̇2e︸ ︷︷ ︸
IV


1−n
2n

∂v∗y
∂x∗


+
Lm+1
x C

ρgH2T mx︸ ︷︷ ︸
=Φx

v∗x
m−H∗ ∂(h∗+ b∗)

∂x∗
= 0,

(A2)5

with the dimensionless coefficient Φx which has the same
form as Φ (Eq. 26) but is specific for the x-direction. The
terms I , II = IV and III are evaluated in the following to
obtain dimensionless factors for the SSA equation. The first
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expression I reads: 10

I =

[
2A−1/n

ρgHT 1/n
x

]
︸ ︷︷ ︸

ΘI,1

2n
1−n (

∂v∗x
∂x∗

)2

+

[
2A−1/n

ρgHTxT
1−n
n

y

]
︸ ︷︷ ︸

ΘI,2

2n
1−n (∂v∗y

∂y∗

)2

+

[
2A−1/n

ρgHT
1+n
2n

x T
1−n
2n

y

]
︸ ︷︷ ︸

ΘI,3

2n
1−n

∂v∗x
∂x∗

∂v∗y
∂y∗

+
1

4


[

2A−1/n

ρgHT 1/n
x

(Lx
Ly

) 1−n
n

]
︸ ︷︷ ︸

ΘI,4

n
1−n

∂v∗x
∂y∗

+

[
2A−1/n

ρgHTxT
1−n
n

y

(Ly
Lx

) 1−n
n

]
︸ ︷︷ ︸

ΘI,5

n
1−n

∂v∗y
∂x∗

)

2

,

(A3)

from which we obtain five dimensionless factors
ΘI,1, ...,ΘI,5. Applying the same steps for expressions

II and III yields ten more coefficients:

II = IV : ΘII,1 = ΘIV,1 =
2A−1/n

ρgHT
1−n
n

x Ty
(A4)

ΘII,2 = ΘIV,2 =
2A−1/n

ρgHT 1/n
y

(A5)

ΘII,3 = ΘIV,3 =
2A−1/n

ρgHT
1−n
2n

x T
1+n
2n

y

(A6)

ΘII,4 = ΘIV,4 =
2A−1/n

ρgHT
1−n
n

x Ty

(Lx
Ly

) 1−n
n

(A7)

5

ΘII,5 = ΘIV,5 =
2A−1/n

ρgHT 1/n
y

(Ly
Lx

) 1−n
n

(A8)

III : ΘIII,1 =
2A−1/n

ρgHT 1/n
x

(Lx
Ly

)2

(A9)

ΘIII,2 =
2A−1/n

ρgHTxT
1−n
n

y

(Lx
Ly

)2

(A10)

ΘIII,3 =
2A−1/n

ρgHT
1+n
2n

x T
1−n
2n

y

(Lx
Ly

)2

(A11)

ΘIII,4 =
2A−1/n

ρgHT 1/n
x

(Lx
Ly

) 1+n
n

(A12)10

ΘIII,5 =
2A−1/n

ρgHTxT
1−n
n

y

(Lx
Ly

)−1+3n
n

(A13)

In order to obtain the same equations independent of an ap-
plied ice-sheet scaling the dimensionless coefficients need to
remain constant

::
the

:::::
same. We start with the first set of coeffi-

cients:15

Θ′I,1
!
= ΘI,1 ⇒ τx = β−nζ−1, (A14)

Θ′I,2
!
= ΘI,2 ⇒ τx = β−1ζ−1/nτ

− 1−n
n

y , (A15)

Θ′I,3
!
= ΘI,3 ⇒ τx = β−

2n
1+n ζ−

2
1+n τ

− 1−n
1+n

y , (A16)

Θ′I,4
!
= ΘI,4 ⇒ τx = β−nζ−1

(
αx
αy

)1−n
, (A17)

Θ′I,5
!
= ΘI,5 ⇒ τx = β−1ζ−1/n

(
αx
αy

) 1−n
n

τ
− 1−n

n
y .

(A18)

20

We immediately see that Eq. (A14) gives the same time scal-
ing (in x-direction) as derived for the more constraint cases,
i.e., in flow-line (Eq. 12) as well as for the two-dimensional
case that assumes only one time and length scale, respec-
tively (Sec. 2.4). Comparison of Eqs. (A14) and (A17) di-25

rectly yields the condition αx = αy . Furthermore, replacing



J. Feldmann and A. Levermann: Similitude of ice-sheet dynamics against scaling 11

β and ζ in Eq. (A15) using Eq. (A14) we obtain τx = τy .
These two conditions can also be deduced by the compari-
son of scaling relations that are derived from different coeffi-
cients, e.g., ΘI,1,ΘII,2 and ΘIII,1. The same procedure can 30

be carried out for the y-component of the SSA leading to the
same outcome due to the symmetry of both horizontal com-
ponents of the SSA. Applying our findings it follows Φx = Φ
in Eq. (A2) and the dimensionless ITE is identical to Eq. 27

:::
(27)

:
with the same coefficient Ω. 35

We thus found that in order to fulfill the required scaling
similarity in the considered two-dimensional SSA-case there
can only exist one horizontal length scale and one time scale
(as opposed to one in each horizontal direction, as assumed
initially). All the scaling relations derived for the flow-line 40

SSA case (Eqs. 11 - 13) hold here.

Appendix B: Experimental design of numerical
simulations

B1 Flow-line simulations

For the two-dimensional simulations, we use the symmet- 45

ric flow-line geometry and the sequence of experiments de-
scribed in Feldmann and Levermann (2015a): An

::
an

:
ice sheet

in equilibrium (grey profile in Fig.-2) is perturbed in its RHS

::::::::::::
right-hand-side

:
basin, forcing the grounding line to retreat

onto the basin’s inward down-sloping bed section (Fig.-2, 50

red profile). After cessation of the perturbation the ground-
ing line continues to retreat indicating that a MISI has been
triggered. The resulting far-inland spreading dynamic ice-
sheet thinning eventually initiates a second MISI in the con-
nected LHS

:::::::::::
left-hand-side

:
basin (see Feldmann and Lever- 55

mann, 2015a, for a detailed examination of the mechanism
which is visualized in their Fig. 4a). This second MISI is in-
duced only through internal ice dynamics without any direct
forcing and hence we expect that the speed of the instability
is a suitable measure to reflect the ice-sheet inherent response 60

time.
For three parameter sets the simulations deviate

from the above described scenario. In two simulations
(2Dα=1,β= 1

2 ,δ=1 and 2Dα= 1
2 ,β=1,γ=1) the ice sheet does

not find a steady state with a grounding-line location on 65

the ocean side of the coastal sill but collapses after several
thousand years and equilibrates on the central bed portion. In
simulation 2Dα=1,β= 1

2 ,γ=1 only the first MISI is triggered
but not the second (referred to as “stable” scenario S in
Feldmann and Levermann, 2015a). Though the unstable 70

retreat in these three simulations does not take place as
unperturbed as in the scenario described further above we
nevertheless use the speed of retreat to estimate ice-sheet
response time also for these scaled setups.

B2 Three-dimensional simulations

For the three-dimensional experiments we extend our flow-
line geometry by introducing a second horizontal dimension
(y) to obtain channel-like ice-sheet

::
ice

:
flow in three dimen-

sions with similar geometry as in Gudmundsson et al. (2012)5

and Asay-Davis et al. (2015). The bed topography b(x,y) is
a superposition of two components: The

::
the

:
bed component

in x-direction, bx(x), is as described in Feldmann and Lever-
mann (2015a) but lowered uniformly by -300 m (Fig. 3). The
component in y-direction, by(y), is taken from Gudmunds-10

son et al. (2012). The superposition of both, b(x,y) = bx+by ,
yields a bed trough which is symmetric in both x- and y-
direction (Fig. 4). While the main ice-sheet

::
ice

:
flow is still in

x-direction (from the interior through the bed trough towards
the ocean) there is also a flow component in y-direction, i.e.,15

from the channel’s lateral ridges down into the trough. Re-
sulting convergent flow and associated horizontal shearing
enable the emergence of buttressing, and hence ice dynamics
in this setup differ substanitally from the flow-line case. In
particular the buttressing effect stabilizes the grounding line20

further downstream than would be expected in a flow-line
configuration (compare Figs. 2 to 3 where the steady-state
grounding lines are approximately at the same position but
the local bed elevation differs by several 100 m).

Spinning up the model we obtain a symmetric ice sheet in25

equilibrium with a stable bay-shaped grounding line. Along
the centerline of the setup (y = 0) the grounding line is lo-
cated downstream of the coastal sill, similar to the flow-line
case (Figs. 4 and 3 in grey). Two symmetric ice shelves have
formed which are fringed and fed by ice from the inland and30

lateral direction. The steady-state ice sheet is then perturbed
by removing all floating ice instantaniously

::::::::::::
instantaneously

after which a continuous elemition
::::::::::
elimination

:
of all ice

that crosses the grounding line is applied. This scaling-
independent perturbation initiates grounding-line retreat onto35

the inland-downsloping bed and the synchronously unfolding
MISIs provide a measure for the ice-sheet response time.

Appendix C:
:::::
Scaled

:::::
time

:::::
series

::
of

:::::::::::::
grounding-line

::::::
retreat

:::
For

::
an

:::::::::
alternative

::::::::::
comparison

::
of

::::::::::::
grounding-line

::::::
retreat

::::
rates

:::::::
between

:::
the

:::::::
different

::::::
scaling

::::::::::
experiments

::::::::
described

::
in

::::
Sec.

:
340

::
we

::::
plot

::::::
scaled

:::::
time

:::::
series

:::
of

:::
the

:::::::::
grounding

::::
line

:::::::
position

:::::
(Figs.

:::
C1

::::
and

::::
C2,

:::
see

:::::
Figs.

::
5
::::

and
:::

6
::::

for
:::
the

::::::::
unscaled

::::::::
versions).

:::
The

::::::
scaling

::
is

::::::
applied

:::::
along

::::
both

::::
axes

::::::::
according

::
to

::
the

:::::::
scaling

::::
ratios

:::
of

:::::::
response

::::
time

::
τ

:::
and

::::::::
horizontal

::::::::
geometry

:
α
::::

that
:::
are

:::::::::
calculated

:::::
from

::::::
theory

::::::
(Table

:::
2).

:::::::::
Focussing

::
on45

::
the

:::::::
section

::
of
:::::::::

maximum
::::::::::

retreat-rate
:::::::::
magnitude

::::::
where

:::
the

:::::::
unstable

::::::
retreat

::
is

::::::::::
independent

:::
of

:::
the

::::::
applied

:::::::::::
perturbation,

::
the

::::::::
different

::::::
curves

:::::::
collapse

::::
into

::
a
:::::
single

::::::
curve

::
to

::
a

::::
good

::::::::::::
approximation.

::::
The

:::::
scaled

:::::
speed

::
of

:::
the

::::::::
simulated

:::::::::
instablities

:
is
::::::

hence
:::::::::::::

approximately
::::

the
::::::

same,
:::::::::

indicating
:::::::::

similitude50
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:::::::
between

:::
the

::::::::::
experiments

::
of

:::
the

::::::
scaling

::::::::
ensemble

::
as

:::::::
expected

::::
from

::::::
theory.
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Table 1. Parameter values as prescribed in the unscaled reference simulations for the flow-line setup (2D) and the three-dimensional channel
setup (3D), respectively. For the scaling experiments the bed geometry (bx and by) and the parameters a, A and C are multiplied with the
scaling ratios from to Table 2. The terms “BC-300” and “BC0” refer to the bed geometries described in Feldmann and Levermann (2015a)
and by,G refers to y-component of the bed topography used in Gudmundsson et al. (2012).

Parameter 2Dref 3Dref Unit Physical meaning

a 0.6 0.5 myr−1 Surface mass balance
bx “BC-300” “BC0” - 300 m x-component of bed topography
by - by,G y-component of bed topography
A 10−25 Pa−3s−1 Ice softness
C 107 Pam−1/3s1/3 Basal friction parameter
g 9.81 m s−2 Gravitational acceleration
m 1/3 Basal friction exponent
n 3 Exponent in Glen’s law
ρi 900 kgm−3 Ice density
ρw 1000 kgm−3 Sea-water density

Table 2. Scaling ratios as used for our numerical simulations. Prescribed scaling ratios are highlighted in blue, the other result from Eqs. (11)-
(17), (29) and (30). Each row corresponds to a scaling experiment, that is carried out in flow line (“2D”) and in a three-dimensional channel
setup (“3D”). The parameters values prescribed in the simulations are obtained by multiplying bx, by , C, a and A (see Table 1) with the
given ratios α, β, γ, δ and ζ. The analytic values for χ̇ are used to fit the sections of linear grounding-line retreat in Figs. 5 and 6.

Simulation name α β γ δ ζ τ χ̇

2D/3DREF :ref: 1 1 1 1 1 1 1

2D/3Dα=1,β= 1
2
,γ=1 1 1

2
1 1

128
1
8

64 1
64

2D/3Dα= 1
2
,β= 1
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,γ=1

1
2

1
2

1 1
8

2 4 1
8

2D/3Dα= 1
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2

1 1 16 16 1
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8
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2
,δ=1 1 1

2
( 1
2
)7/3 1 16 1

2
2

2D/3Dα= 1
2
,β= 1

2
,δ=1

1
2
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1 16 1
2

1

2D/3Dα= 1
2
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1 ( 1
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Figure 1. Schematic of the similitude-analysis method carried out in this study. A reference system (blue ice sheet and bed topography) with
geometric scales h and L, time scale T and physical parameters ice softness A, basal friction coefficient C and surface mass balance a is
scaled in horizontal and vertical direction (red contours, primed system). The goal is to derive the scaled parameters of the primed system
under which dynamic similarity between both ice sheets holds. A dimensional analysis of the governing equations yields dimensionless scale
factors which have to remain constant

::
the

::::
same

:
under scaling to attain similitude. The resulting scaling laws determine the scaled (primed)

parameters.
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Figure 2. Ice sheet profiles at three different stages of the flow-line simulations 2Dα= 1
2
,β= 1

2
,γ=1 (continuous) and 2Dref (dashed). Output of

the reference simulation is scaled by factor 0.5 in both horizontal and vertical direction to allow for comparison of shapes between the two
simulations.
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Figure 3. Steady-state ice-sheet profiles for cross section along the centerline (y = 0) of the three-dimensional channel setup for simulations
3Dα= 1

2
,β= 1

2
,γ=1 (continuous) and 3Dref (dashed). Output of the reference simulation is scaled by 0.5 in both horizontal and vertical direction

to allow for comparison of shapes between the two simulations.
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Figure 4. Bed topography of the three-dimensional channel setup, here shown in the scaled version with α= β = 0.5 (see Fig. 3 for a cross
section along y = 0). Steady-state grounding-line positions for simulations 3Dα= 1

2
,β= 1

2
,γ=1 (continuous) and 3Dref (dashed). Grey lines

mark the position of the coastal sill and the bed depression, respectively. Output of the reference simulation is scaled by 0.5 in horizontal
direction to allow for comparison of shapes between the two simulations.
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Figure 5. Time series of grounding-line position for the reference and three geometrically scaled flow-line experiments for which
:::
with

:
(a)
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identical

:
basal friction and (b)
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identical

:
surface mass balanceis held constant, respectively. Grey horizontal lines indicate location of the

minimum of the bed depression for both the scaled und unscaled case around which the grounding line retreats unstable and retreat rates are
approximately constant. In this

::
the

:
range

::
of

:::::::
±50 km

:::::
around

:::
the

::::::::
minimum

::::::::
depression the slope of the curve of the unscaled simulation is

fitted to obtain a reference retreat rate of 0.47
:::
0.54

:
km/yr (purple slope fitted to black curve)which

:
.
::::
This

::::
slope is used to predict the slopes,

i.e., retreat rates, for the scaled experiments (other curves overlayn
::::::
overlaid

:
by purple lines with predicted slopes) according to Table 1.
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Figure 6. Time series of centerline grounding-line position (along y = 0) for the reference and three geometrically scaled 3D channel
experiments for which

:::
with (a)

::::::
identical basal friction and (b)

::::::
identical surface mass balanceis held constant, respectively. The Fitting

:::::
fitting

method is the same as described in Fig. 5
:::
with

::
a

:::::::
reference

:::::
retreat

:::
rate

::
of

:::
1.18

::::::
km/yr.
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Figure 7. Scaling of (a) response time (Eq. 11), (b) ice softness (Eq. 16) and (c) surface mass balance (Eq. 15) in the α-β phase space
for γ = 1 and m= 1/3. Panel (d) shows value of the exponent q if the two horizontal scales are linked according to Eq. (32

:
). Dotted line

represents scaling of an ice sheet with Vialov proportions. Dashed line denotes critical threshold τ = 1.
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Figure 8. Scaling of response time τ , surface mass balance δ and ice softness ζ under the assumption of Vialov-type geometric scaling
(β = α1/2) and constant

::::::
identical basal friction (γ = 1). The resulting scaling conditions are independent of m and given in the legend

(n=3).
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Figure 9. Response-time scaling for hypersurfaces through the α-β-m phase space according to Eq.
:
(31)

:
for (a) α= 1, (b) β = 1, (c) α= β

and (d) the constraint that the response time scales independently of m. In each panel the legend gives the scaling law for τ that results from
the applied constraint.
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Figure C1.
:::::
Scaled

::::
time

::::
series

::
of
::::::::::::

grounding-line
::::::
position

:::
for

:::
the

:::::::
reference

:::
and

::::
three

:::::::::::
geometrically

:::::
scaled

:::::::
flow-line

:::::::::
experiments

::::
with

:::
(a)

::::::
identical

:::::
basal

::::::
friction

:::
and

:::
(b)

::::::
identical

::::::
surface

:::::
mass

::::::
balance,

::::::::::
respectively.

:::
For

:::::
better

:::::::::
comparison

:::
the

:::::::::::
grounding-line

:::::
curves

:::
are

::::::
shifted

::::
along

:::
the

::::
time

:::
axis

::
to
::::::

overlap
::::::

where
::
the

::::::::
grounding

::::
line

:::::
passes

:::
the

::::::::
minimum

::
of

:::
the

:::
bed

::::::::
depression

:::::
(grey

::::::::
horizontal

::::
line).

::::::
Around

::::
this

::::
point

::
the

:::::
scaled

::::::
curves

::
of

::::::
unstable

:::::::::::
grounding-line

:::::
retreat

:::::::::::
approximately

:::::::
collapse

:::
into

:
a
:::::
single

:::::
curve,

::::::::
indicating

:::
that

::
the

:::::
scaled

:::::
speed

::
of

:::
the

:::::::::::
grounding-line

:::::::
instability

::
is

:::::::::::
approximately

::
the

:::::
same

::::::::
throughout

:::
the

:::::::
ensemble

::
of

:::::
scaling

::::::::::
experiments.

:::
See

:::
Fig.

::
5
::
for

:::::::
unscaled

::::::
version

::
of

:::
this

:::::
figure.

a b
0 100 200 300

Time (yr)

200

400

600

G
ro

un
di

ng
-li

ne
po

si
tio

n
(k

m
)

3Dref
3Dα=1,β= 1

2 ,δ=1

3Dα= 1
2 ,β= 1

2 ,δ=1

3Dα= 1
2 ,β=1,δ=1

0 100 200 300
Time (yr)

200

400

600

G
ro

un
di

ng
-li

ne
po

si
tio

n
(k

m
)

3Dref
3Dα=1,β= 1

2 ,γ=1

3Dα= 1
2 ,β= 1

2 ,γ=1

3Dα= 1
2 ,β=1,γ=1

Figure C2.
:::::
Scaled

::::
time

:::::
series

::
of

::::::::
centerline

:::::::::::
grounding-line

:::::::
position

:::::
(along

:::::
y = 0)

:::
for

:::
the

:::::::
reference

::::
and

::::
three

:::::::::::
geometrically

:::::
scaled

:::
3D

::::::
channel

:::::::::
experiments

::::
with

::
(a)

::::::
identical

::::
basal

::::::
friction

:::
and

:::
(b)

::::::
identical

::::::
surface

::::
mass

:::::::
balance,

:::::::::
respectively

::::::::
(analogous

::
to

:::
Fig.

::::
C1).

:::
See

:::
Fig.

::
6

::
for

:::::::
unscaled

::::::
version

::
of

:::
this

:::::
figure.


