
Editor 

Dear authors, 

 thank you for revising your manuscript according to the suggestions and concerns of the reviewers. I am 

glad to have received additional comments, which I ask you to carefully consider in your next revisions. 

Please assure to specifically address comments in report #2 of reviewer #1, and to include a careful 

revision of the abstract to properly represent the contents and conclusions of the manuscript. 

 Thank you and best regards 

 Christian Haas 

 

Dear Dr Haas, 

we are grateful for these constructive comments that helped to improve the manuscript further. Please 

find our replies in red font, with quotes from the revised paper in italic font. 

On behalf of all authors, 

Sebastian Bathiany 

 

 

Referee 1 (report no. 2) 

I previously reviewed this paper, and have positively noted that this version is much improved compared 

to the earlier version. However, I do still have strong objections to some aspects of the manuscript, 

which do not allow me to recommend publishing it in this form in the peer reviewed literature. My main 

objections are related to the motivation of this study, which in my opinion overstates the implications of 

this study, as the discussion implies there might be bifurcations on the way to an ice-free Arctic, even 

though it also mentions that comprehensive models do not show that (or only for the opposite state, 

snowball earth, for paleo simulations, which is a completely different state, and not a state the authors 

investigate). Similarly, the last sentence of the conclusions again overstates the implications of the 

study, by suggesting that it can help to provide “early warning for potential extreme events”, which isn’t 

supported by the results. Nevertheless, I can see how this study can become publishable after further 

revisions (and a change of title), limiting its stated implications to what it actually does do. For example, 

the Abstract reads well now and is limited to what the study does deliver, so I hope the authors can 

change the title, introduction, and conclusions to match the scope of the Abstract.  

 

We thank the referee for these constructive comments.  
We have changed the title, the introduction and the end of the conclusions in the way suggested by the 

reviewer. We hope that the revised version makes it even clearer that we do not claim the existence of a 

tipping point in the future. We have also revised the paragraph about the transition to a Snowball Earth 

state in order to explain its relevance for our study. 

 

 Specific comments: 

• I would like to strongly re-iterate that the title should be changed to better reflect the focus of the 

manuscript on the statistics of sea ice variability on the way to an ice-free Arctic. A changed title was 

suggested by all reviewers and in the comment by T. Wagner, but it was not changed and no strong 

reasons were given for why not. I strongly feel that the title is is misleading, and the nature of the paper, 

focusing on statistical indicators, needs to be reflected in the title, rather than only in the Abstract. 



We did not change the title previously because we felt that it captured the recent changes to the paper 

well (more emphasis on natural variability instead of predicting tipping points); reviewer 2 did in fact not 

suggest any change to the title. As this seems to be a more important point to the reviewer than to us, 

we have now nonetheless changed the title completely. 

  

• Line 22: I would suggest rephrasing “To this extent, the prospects to find statistical early warning 

signals before an abrupt sea-ice loss at a “tipping point” seem very limited.” To “Based on these results, 

the prospects to find statistical early warning signals before an abrupt sea-ice loss at a “tipping point” 

seem very limited. “, as “to this extent” makes no sense in English. 

We thank the reviewer for this helpful comment which we have implemented in the revised manuscript. 

 

• Line 35-37: Isn’t one of the main finding that statistical early warning signs are not able to warn about 

tipping points (as stated in the Abstract)? So this sentence “Moreover, natural climate variability can be 

an indicator of climate stability and provide “early warning signals” of an approaching tipping point 

(Scheffer et al., 2009). “ needs to be rephrased, maybe to “Furthermore, previous studies (Scheffer et 

al., 2009) have suggested that natural climate variability can be an indicator of climate stability and 

provide “early warning signals” of an approaching tipping point.  

We agree and have taken up this suggestion in the revised manuscript. 

 

• Page 2, Line 5-9: Tietsche et al. (2012) also clearly showed that sea ice loss is completely reversible, 

and should be cited. And Wagner and Eisenman (2015) showed why simple models show this bifurcation, 

and that it was an artifact of the simple models that did not include seasonal cycle or latitudinal 

differences. So this question has been solved, and should not be presented as a current topic of debate 

just to make the current study seem more relevant. Comprehensive models don’t show bifurcations in 

sea ice loss, physical understanding does not support it, and the reason simple models nevertheless 

simulated it has been found. The examples for bifurcations for paleo simulations (which I am not familiar 

with, but which tend to use models with much reduced resolution compared to present day study) for 

snowball earth is the opposite of the earlier discussed bifurcation of a irreversible sea ice loss, so it is 

misleading to cite these here and to imply that therefore there might be bifurcations in the future climate 

as well. It seems that this only serves to motivate the study presented in this manuscript, but it does not 

do it in a well reasoned way and this motivation needs to be revised again to be publishable, as it 

severely currently overstates the implications. The current study has merit as an analysis of statistical 

indicators of sea ice variability, with some limited implications for the real world, and should be 

presented as such rather than trying to imply it does more than it can. 

We now cite Tietsche et al. (2011) in the introduction, and have again rephrased the paragraph about 

previous research about potential bifurcations in the future: 

“While this “small ice-cap instability” occurred in simplified models (North, 1984; Thorndike, 1992; 

Eisenman and Wettlaufer, 2009; Abbot et al., 2011), more comprehensive models show a more gradual 

and reversible sea-ice loss in scenarios of the future (Armour et al., 2011; Tietsche et al., 2011; Boucher 

et al., 2012; Ridley et al., 2012; Li et al., 2013). Consequently, Wagner and Eisenman (2015a) recently 

showed in detail how resolving the seasonal cycle and latitudinal differences can eliminate bifurcations in 

sea-ice models, explaining why oversimplified models lead to wrong conclusions.” 

We think that this paragraph is in perfect agreement with the reviewer’s comment. We then continue by 

pointing out how complex models differ in the abruptness of sea ice loss:  

“Nonetheless, comprehensive models still differ in how abruptly Arctic sea ice area and volume can 

change (Bathiany et al., 2016). Given the large model uncertainties even in comprehensive models, it is 

worthwhile to investigate whether changes in certain aspects of the variability are specific to the 



existence of abrupt or even irreversible changes in the future. Observations might then provide an 

alternative source of information and indicate which model is most reliable in its prediction.” 

Undoubtedly, there are many uncertainties in the models, and it is worthwhile to investigate how robust 

trends in variability are. We do not think (or argue in the paper) that this stands in conflict to the fact 

that these models all show a reversible sea ice loss. 

Concerning the Snowball Earth instability, this effect has indeed been found in state-of-the-art models 

with a similar resolution than many other studies. We do not argue anywhere that the Snowball Earth 

instability would also imply the existence of a small ice cap instability and agree with the reviewer that 

this would be wrong. Our motivation is to study the changes in variability over a vast range of climates 

from the snowball bifurcation to an ice-free planet, not only future states. Our reference to colder 

climates than the present is motivated by the fact that our results indicate that one can infer something 

about sea-ice variability in cold climates as well as hot climates, including the stability of a state that is 

close to a Snowball bifurcation. To make this clearer, we have rephrased the according paragraph:  

“Interestingly, when cooling the Earth instead of warming it, even comprehensive models show 

bifurcations, in agreement with simple models (Budyko, 1969; Sellers, 1969). For example, in a complex 

general-circulation model with current continental distribution and solar insolation, Marotzke and Botzet 

(2007) identified a globally ice-covered stable state analogous of the ‘Snowball Earth’ conditions in the 

Neoproterozoic (Pierrehumbert et al., 2011). Ferreira et al. (2011) and Rose et al. (2013) even found 

three stable states in a complex model with idealised ocean geometry. Climate variability plays an 

important role for the likelihood of transitions between such states, and for their reversibility (Lee and 

North, 1995), and thus needs to be considered to understand the evolution of climate in the Earth’s deep 

past.” 

We have also moved an important sentence that explains our motivation from a later point in the 

introduction to the first paragraph of the introduction: 

“Moreover, understanding the relation between the mean climate and its variability will allow us to draw 

conclusions about the climate variability in the Earth’s deep past, something that is difficult to 

reconstruct directly (White et al., 2010; Kemp et al., 2015), and that can help to build simple stochastic 

climate models.” 

 

• Page 13, Line 507: The last sentence of the conclusions is, in my opinion, not supported by the results, 

and overstates the implications of this study. If the authors are happy to publish this manuscript under a 

title that clearly reflects that they study “Statistical indicators of sea-ice variability on the way to an ice-

free Arctic” (or similar), and remove this final sentence of the conclusions as well as rephrase the 

introduction, this manuscript should be publishable. But trying to overstate the impactions of the study 

through the title or the conclusions make it so I can not sign off on for publication in the peer reviewed 

literature. The Abstract reads fine and does not make this last statement, so it does not seem to be 

central to the paper. 

From the reviewer’s general comment we understand that we should not claim to find “early warnings of 

extreme events” (the penultimate sentence). What we mean here is that our results suggest that a 

prediction of the variability in general seems possible, not the prediction of specific events and the time 

of their occurrence. We hope that the following revision of this part makes this clearer: 

“In particular, the strict relation between the mean state of sea ice and its variability suggests the 

possibility to infer the system’s total variability from relatively short observational time series, and to 

estimate the typical magnitude and longevity of climate anomalies in the future.” 

 

 References: 

 Tietsche, S.,D. Notz, J.H. Jungclaus, and J. Marotzke: Recovery mechanisms of Arctic summer sea 

ice,Geophys. Res. Lett. , 38, L02707, doi:10.1029/2010GL045698, 2011. 



 

 

Referee 2 (report no. 1) 

Following the comments of the reviewers, the authors have significantly improved their manuscript. In 

particular, the revised submission: 

 A) Shifts the focus of the abstract and introduction from 'tipping points', which is of secondary 

importance to the material discussed in the paper, to variance and response timescales 

 B) better articulates what is novel 

 

We thank the reviewer again for helping us to improve the manuscript. 

 

 I recommend publication of this manuscript after the authors have considered the following minor 

comments: 

 1) I found the description and discussion of Fig. 4 too short; it would be helpful if the authors would 

include a more extensive description of the results, including the links to Fig. 2 

We have now moved the description of our approach to obtain Fig. 4 from Appendix B (which has 

disappeared) to the main text. Furthermore, we have added several lines that explain certain features of 

Fig. 4 compared to Fig. 2. The text now reads: 

“In natural systems, the relaxation time usually cannot be measured or calculated as directly as in 

models. However, one can hope to measure the system’s response to natural external perturbations 

indirectly in form of its variance and autocorrelation. We therefore investigate in stochastic versions of 

the two column models whether these indicators reflect the changes in timescale. In each experiment, 

we introduce noise in one of three terms of the equations: To mimic variability in the ocean heat flux 

(σOHF), we added a Gaussian white noise term to Eq. A1 (Appendix A). To introduce noise to the 

radiative fluxes, we added the noise term on the radiative balance A (Eq. A2) to perturb the long-wave 

balance (σLW), or on S (S=1-S_a  cos⁡2πt) in Eq. (A2) to perturb the short-wave balance (σSW). We 

also distinguish small and large noise, as well as white and red noise. In the case of small noise, we 

choose the noise level in a way that the total variance of E is in the order of 10-9, i.e. much smaller that 

the amplitude of an annual cycle. In the case of large noise, we adjust the noise level such that the 

system’s stochastic variability is roughly one order of magnitude smaller than the amplitude of the 

annual cycle, in similarity to the situation in the real world. In case of red noise, we model the external 

perturbations as an autoregressive process of order one (AR(1) process) with a decorrelation time of 180 

days in case of mixed layer energy and 10 days for atmospheric radiation. 

Fig. 4 shows results for large red noise for all three noise sources. Interestingly, the specific choices for 

the noise terms hardly affect the results. When introducing small noise to the equations, the evolution of 

variance and autocorrelation closely follow the results we obtained from the perturbation experiments 

(Fig. 2a), independent of the noise type. Due to the low temperatures and the large growth-rate of thin 

ice, the ice coverage A is always close to 1 in winter, and has very small variance regardless of the 

variability of other variables. In contrast to Fig. 2a, the second peak produced by the ice-albedo feedback 

is not as pronounced in Fig. 4. This partly results from the lower resolution of the figure (associated with 

the much larger computational demand), but mostly due to the fact that the natural variability causes 

the system to cross the tipping point before the deterministic bifurcation point is reached. However, even 

in case of large red noise, the results are qualitatively similar to Fig. 2a as long as the noise is still small 

enough to not destroy the whole bifurcation structure of the system. The reason is that the time scales of 

the variability are still smaller than the typical response time of the ice-mixed layer system. In this 

regard, the model still sees the imposed noise as white, and the autocorrelation we find is determined by 

the system’s time scale and not the time scale of the red noise. This explains the invariance of the 

results to the noise type.” 



 

 2) While the reviewers have done a much better job at articulating which aspects of the study are new 

in the main text, this aspect is still lacking in the abstract. Where appropriate, I would have liked to see 

phrases like 'consistent with previous studies', and 'we here show'. 

We have taken up this suggestion. The abstract now reads: 

“We examine the relationship between the mean and the variability of Arctic sea-ice coverage and 

volume in a large range of climates from globally ice-covered to globally ice-free conditions. Using a 

hierarchy of two column models and several comprehensive Earth System Models, we consolidate the 

results of earlier studies and show that mechanisms found in simple models also dominate the 

interannual variability of Arctic sea-ice in complex models. In contrast to predictions based on very 

idealised dynamical systems, we find a consistent and robust decrease of variance and autocorrelation of 

sea-ice volume before summer sea ice is lost. We attribute this to the fact that thinner ice can adjust 

more quickly to perturbations. Thereafter, the autocorrelation increases, mainly because it becomes 

dominated by the ocean water’s large heat capacity when the ice-free season becomes longer. We show 

that these changes are robust to the nature and origin of climate variability in the models and do not 

depend on whether Arctic sea-ice loss occurs abruptly or irreversibly. We also show that our climate is 

changing too rapidly to detect reliable changes in autocorrelation of annual time series. Based on these 

results, the prospects of detecting statistical early warning signals before an abrupt sea-ice loss at a 

“tipping point” seem very limited. However, the robust relation between state and variability can be 

useful to build simple stochastic climate models, and to make inferences about past and future sea-ice 

variability from only short observations or reconstructions.” 

 

 3) I particularly liked the results presented in Fig. 7, suggesting that at the current rate our climate is 

changing too rapidly to detect significant changes in variance. I would recommend including a sentence 

on that result in the abstract. 

We have taken up this suggestion (see above). 
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Abstract. We examine the relationship between the mean and the variability of Arctic sea-ice coverage and 15 

volume during the transitionin a large range of climates from pre-industrial conditionsglobally ice-covered to a 

year-roundglobally ice-free Arctic Ocean. To do so, we useconditions. Using a hierarchy of two column models 

and several comprehensive Earth System Models which allows us to , we consolidate the results of earlier studies 

and to make inferences about past and future sea-ice show that mechanisms found in simple models also 

dominate the interannual variability. of Arctic sea-ice in complex models. In contrast to idealised theoretical 20 

predictions of simple stochasticbased on very idealised dynamical systems, we find a consistent and robust 

decrease of variance and autocorrelation of sea-ice volume before summer sea ice is lost. We attribute this to the 

fact that thinner ice can adjust more quickly to perturbations. Thereafter, the autocorrelation increases, mainly 

because it becomes dominated by the ocean water’s large heat capacity when the ice-free season becomes longer. 

TheseWe show that these changes are robust to the nature and origin of climate variability in the models and do 25 

not depend on whether Arctic sea-ice loss occurs abruptly or irreversibly. To this extent, the prospects to findWe 

also show that our climate is changing too rapidly to detect reliable changes in autocorrelation of annual time 

series. Based on these results, the prospects of detecting statistical early warning signals before an abrupt sea-ice 

loss at a “tipping point” seem very limited. However, the robust relation between state and variability can be 

useful to build simple stochastic climate models and would allow an estimate of, and to make inferences about 30 

past and future sea-ice variability from only short observations or reconstructions. 

 

1 Introduction 

The temporal evolution of Arctic sea ice in recent decades can be described by the superposition of a 

monotonous response to greenhouse gas forcing and internal climate variability (Notz and Marotzke, 2012). 35 

WhileThe latter determines the responseoccurrence of extreme events, is key for the local perception of climate 

change (Hansen et al., 2012; Huntingford et al., 2013), and is closely linked to external the stability of the mean 

state (Scheffer et al., 2009) and its sensitivity to forcing allows projections of large-scale sea-ice evolution 
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on long time scales, short-term (Leith, 1975). In this contribution, we examine how the mean state and the 

variability sets limits to e.g. seasonal predictions of sea-ice evolution (Stroeve et al., 2014).of Arctic sea 

ice interact across a wide range of climate states. Our focus on Arctic sea ice is motivated by the fact that mean 

climate and variability are projected to show particularly large changes in the Arctic (Manabe and Wetherald, 

1975; Huntingford et al., 2013), and processes linked to sea ice were put forward as major causes of these trends 5 

(Hall, 2004; Stouffer and Wetherald, 2007). However, the role of thermodynamic processes within Arctic sea ice 

itself, and its influence on the spectrum of the variability has not been discussed in this context. Understanding 

the temporal evolution of variability in sea-ice area and volume is thus not only scientifically interesting, but 

also has practical consequences for example regarding the economic use of the Arctic. A mechanistic link 

between state and variability of sea ice could provide constraints for the interpretation of past 10 

climate change and would help us to quantify the climate variability we can expect in the future. 

Moreover, naturalunderstanding the relation between the mean climate and its variability will allow us to draw 

conclusions about the climate variability in the Earth’s deep past, something that is difficult to reconstruct 

directly (White et al., 2010; Kemp et al., 2015), and that can help to build simple stochastic climate models.can 

be an indicator of climate stability and provide “early warning signals” of an approaching tipping 15 

point (Scheffer et al., 2009). It has been speculated whether 

Our focus is also driven by earlier speculations that Arctic sea-ice loss could reach such a tipping point, i.e. a 

certain forcing where it would accelerate substantially (Lindsay and Zhang, 2005; Winton, 2006). Such a change 

is loosely referred to as ‘abrupt’ if the acceleration is due to mechanisms internal to the climate system (such as 

the positive ice-albedo feedback) whereas the forcing changes linearly over time (Rahmstorf, 2001; National 20 

Research Council, 2002). In the extreme case, the tipping point would correspond to a bifurcation point, a point 

of no return where sea ice is suddenly and irreversibly lost. Simplified models have shown such 

bifurcationsWhile this “small ice-cap instability” occurred in simplified models (North, 1984; Thorndike, 1992; 

Eisenman and Wettlaufer, 2009; Abbot et al., 2011), whereas more comprehensive models tend to show a 

more gradual and reversible sea-ice loss in scenarios of the future (Armour et al., 2011; Tietsche et al., 2011; 25 

Boucher et al., 2012; Ridley et al., 2012; Li et al., 2013). Consequently, Wagner and Eisenman (2015a) recently 

showed in detail how resolving the seasonal cycle and latitudinal differences can eliminate bifurcations in sea-ice 

models. Nonetheless, bifurcations also occur in comprehensive climate models: In, explaining why 

oversimplified models lead to wrong conclusions. Nonetheless, comprehensive models still differ in how 

abruptly Arctic sea ice area and volume can change (Bathiany et al., 2016). Given the large model uncertainties 30 

even in comprehensive models, it is worthwhile to investigate whether changes in certain aspects of the 

variability are specific to the existence of abrupt or even irreversible changes in the future. Observations might 

then provide an alternative source of information and indicate which model is most reliable in its prediction. 

Interestingly, when cooling the Earth instead of warming it, even comprehensive models show bifurcations, in 

agreement with simple models (Budyko, 1969; Sellers, 1969). For example, in a complex general-circulation 35 

model with current continental distribution and solar insolation, Marotzke and Botzet (2007) identified a globally 
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ice-covered stable state analogous of the ‘Snowball Earth’ conditions in the Neoproterozoic (Pierrehumbert et 

al., 2011). Ferreira et al. (2011) and Rose et al. (2013) even found three stable states in a complex model with 

idealised ocean geometry. Such alternative stable states imply the possibility of large-scale abrupt 

climate changes when external conditions are varied. Moreover, Ferreira et al. (2011) and Rose et al. 

(2013) show that the existence of multiple stable sea-ice states depends on the structure of the 5 

ocean circulation, a nonlinear system that can even show tipping point behaviour on its own. Such 

nonlinear interactions are not captured by the model of Wagner and Eisenman (2015a) because heat 

transport is formulated as a simple diffusion term in their model which has only one spatial 

dimension. Given these model uncertainties, it is worthwhile to investigate the changes in variability 

that are associated with sea-ice loss, mainly for two practical reasons. First, if these changes depend 10 

on the abruptness of future sea-ice loss, observations might provide an alternative source of 

information and indicate which model is most reliable in its prediction. Second, one might draw 

conclusions about the climate variability and the rates of change in the Earth’s deep past, something 

that is difficult to reconstruct directly (White et al., Climate variability plays an important role for the 

likelihood of transitions between such states, and for their reversibility (Lee and North, 1995), and thus needs to 15 

be considered to understand the evolution of climate in the Earth’s deep past. 2010; Kemp et al., 2015), and that 

can help to build simple stochastic climate models. 

Furthermore, previous studies suggested that natural climate variability can be an indicator of climate stability 

and provide “early warning signals” of an approaching tipping point (Scheffer et al., 2009). The phenomenon of 

statistical stability indicators has long been known in mathematics (Wiesenfeld, 1985) and has later been applied 20 

to the problem of climate tipping points (Kleinen et al., 2003; Held and Kleinen, 2003). The theory applies to 

dynamical systems close to a stable fixed point that slowly destabilises over time. As the forces that restore a 

disturbed system towards equilibrium become weaker, the return rate to equilibrium becomes smaller, leading to 

an increasing relaxation time scale. Interestingly, this effect has been found in the simple deterministic climate 

model of Budyko (1969) when approaching the Snowball Earth bifurcation (Held and Suarez, 1974). In the 25 

presence of small perturbations in the form of a stochastic term added on the dynamic equation, thisit is often 

argued that ‘slowing down’ must cause an increase in autocorrelation and variance when approaching the tipping 

point. (Scheffer et al., 2009; Ditlevsen and Johnsen, 2010). In principle, this concept also applies to systems 

whose solution is not constant but periodic in time (Wiesenfeld and McNamara, 1986): By recording the state of 

a system at the same point in time during every period, a periodic solution can be transformed to a fixed point. 30 

However, the occurrence of statistical stability indicators relies on several assumptions such as the 

approximation of the system as one-dimensional (Held and Kleinen, 2004; Bathiany et al., 2013a), the 

assumption that the variability of the system results from small white noise external to the system (Dakos et al., 

2012b), and that the system is close to its equilibrium solution. None of these assumptions is truly justified in the 

context of anthropogenic climate change. Even very simple stochastic models can deviate from the theory of 35 

statistical stability indicators due to the interactions of deterministic nonlinearities and noise (Dakos et al., 
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2012b, Bathiany et al., 2013a). Therefore, it is necessary to investigate if the approach can potentially yield 

meaningful results in the case of Arctic sea ice, and how the results depend on the model formulation.  Moreover, 

even in cases when all assumptions hold, it is often not clear in practice how close a system needs to be to a 

bifurcation point for the theory to apply, and how slowly the destabilisation needs to occur to allow a significant 

detection of trends in variance or autocorrelation. In this study, we therefore also assess the practical 5 

applicability of statistical stability indicators to the problem of Arctic sea-ice loss by analysing simulations from 

models of very different complexity. 

It follows already from previous studies that the total hemispheric ice area is not a suitable property to infer sea-

ice stability. First, the distribution of continents determines where sea ice can occur and thus determines the 

variability of total sea-ice area (Goosse et al., 2009; Eisenman, 2010): While sea-ice area in the Arctic ocean is 10 

free to fluctuate, further south it is limited to the North Atlantic and North Pacific. The rest of the area is covered 

by continents which therefore ‘mute’ the variability of total sea-ice area (Eisenman, 2010). Second, when the 

latitude of the sea ice edge approaches the pole, there is less and less total area available in the (idealised) ice-

covered circle (Goosse et al., 2009). Third, it has been noted that when sea ice becomes very thin, its open-water 

formation efficiency increases, meaning that small fluctuations in volume can lead to large fluctuations in area 15 

coverage (Holland et al., 2006; Goose et al., 2009; Notz, 2009). As all these effects result from geometrical 

constraints, they do not reflect the stability of the system in terms of its dynamical response to perturbations. We 

therefore focus on sea-ice thickness (or volume in a given area) in most of this study. 

Regarding sea-ice volume as well as the analysis of autocorrelation orand its relaxation time, previous studies 

rely on a small number of very idealised sea-ice models. For example, Merrifield et al. (2008) find increasing 20 

variance and an increasing relaxation time before an abrupt loss of summer sea ice in a simple model, apparently 

corroborating the classical concept of early warnings. However, the seasonal cycle is only parameterised crudely 

in their model, lumping processes of melting and freezing together in one equation. In a version of the simple 

column model by Eisenman and Wettlaufer (2009), Moon and Wettlaufer (2011, 2013) and Eisenman (2012) 

showed a relatively complex evolution of the system’s timescale over a range of long-wave forcing with 25 

decreasing and increasing regimes due to a continuously changing balance of feedbacks. The most important 

positive feedback in this context is the ice-albedo feedback: Due to the ocean’s low albedo compared to sea ice, 

ice loss and decreased surface albedo enhance each other. The most important negative feedback is the growth-

thickness feedback: The thinner the ice becomes, the faster it can regrow due to an increased heat flux through 

the ice (Thorndike et al., 1975). Moreover, the relatively large timescale of warming or cooling of the ocean’s 30 

mixed layer becomes important once sea ice is not present during a substantial part of the year. Using a 

latitudinally explicit version of the model by Eisenman and Wettlaufer (2009), Wagner and Eisenman (2015b) 

therefore argue that the mixed-layer effect can raise false alarms of abrupt ice loss.  

The above studies provide several scattered indications how the variability of sea ice may be linked to the mean 

climate. However, they are restricted to a small number of very simple sea-ice models that do not distinguish 35 

between ice area and volume and that are usually deterministic. As many nonlinear processes are disregarded 

that can affect the variability in non-intuitive ways, these studies allow only limited conclusions about the real 

world. In this study we aim for a systematic consolidating and systematic assessment by applying a hierarchy of 
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sea-ice models that includes not only simple column models with one state variable but also comprehensive 

Earth system models. Besides their different complexity, these models represent different scenarios of future sea-

ice loss, namely a bifurcation-induced abrupt loss, an abrupt but reversible loss, and a gradual sea-ice loss. This 

allows us to demonstrate and explain a robust link between the mean, and the autocorrelation and variance of 

Arctic sea-ice volume that is not model-specific. In Section 2, we introduce the models we apply, explain their 5 

most important differences, and outline the setup of the simulations. In Sect. 3 we analyse the results of these 

simulations, and we provide our conclusions in Sect. 4. Moreover, AppendicesAppendix A and B 

provideprovides additional information on the structure and experiment setupsimplest of the two column models, 

and the changes we make to it in order to demonstrate different mechanisms. 

 10 

2 Models and Methodology 

2.1 Models 

We apply different models in our study that all include a continuous annual cycle, the ice-albedo feedback and 

the growth-thickness feedback, and that are of very different complexity: 

1. the box model by Eisenman (2012) with default parameters, here referred to as E12. The model is a slightly 15 

simplified version of the model by Eisenman and Wettlaufer (2009). It consists of a simple energy balance of the 

ocean’s mixed layer and describes the evolution of only one state variable, the enthalpy E. In the presence of sea 

ice, E is negative and proportional to the ice thickness, while during ice-free conditions, E is positive and 

proportional to the mixed-layer temperature. Hence, the model does not distinguish between ice-area coverage 

and ice volume because its ice-thickness distribution is a slab of ice with uniform thickness. The model equations 20 

are taken from Eisenman (2012) and reproduced in Appendix A. The effect of CO2 is represented implicitly in 

the surface net longwave balance Lm, which is our control parameter for this model. The model yields one stable 

solution with a perennial ice cover for present-day conditions, Lm=1.25 (as the model is non-dimensional, E and 

Lm have no units). With decreasing Lm, the ice becomes thinner and the transition to a seasonal ice cover is 

gradual (Fig. 1a). In contrast, at Lm≈0.925, the remaining winter ice disappears abruptly due to a bifurcation in 25 

the system. Beyond this bifurcation point the only remaining stable cycle is ice-free during the whole year. 

2. the box model by Eisenman (2007), referred to as E07 (see Appendix B).. Like E12, it solves the energy 

balance of the mixed layer, taking solar radiation and atmospheric composition as boundary conditions. Its main 

difference to E12 is that For the model includes more dynamicequations including their derivation see Eisenman 

(2007). In contrast to the model by Eisenman (2012), several variables, most importantly an  are explicitly 30 

modelled by ordinary differential equations: the ice- area fraction which is calculated with the parameterization 

by coverage A, the ice volume V, the surface temperature of the ice Ti, and the temperature of the mixed layer, 

Tml. The ice has only a single thickness determined from h=V/A. The evolution of ice area is described by a 

parameterisation based on Hibler (1979). This allows one to explicitly distinguish sea-ice area from sea-ice 

volume, in contrast to the previous model.. Atmospheric CO2 is prescribed and given as a factor multiplied to the 35 

present-day concentration. Due to the fact that many processes have been intentionally neglected, the original 
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model is rather insensitive to CO2. To obtain a similar sensitivity than with the comprehensive model MPI-ESM 

we have added an additional flux of 16 Wm
-2

 per CO2 doubling to the downwelling long-wave radiation at the 

surface (eq. 30 in Eisenman (2007)). In similarity to E12, the model shows a gradual loss of summer sea ice, but 

an abrupt loss of winter sea ice under warming (Fig. 1b, c). The abrupt winter ice loss mainly results from the 

fact that the large ice area that forms each winter does not form anymore when the ocean no longer cools to the 5 

freezing temperature (Bathiany et al., 2016). In contrast to a bifurcation that results from a positive feedback, this 

abrupt change at a threshold is reversible. As the ice-albedo feedback is active also in E07, it produces a regime 

with multiple solutions around the critical CO2 value. However, this regime is extremely small and thus not 

practically relevant. 

3. the comprehensive Earth system model of the Max-Planck-Institute for Meteorology (MPI-ESM) (Giorghetta 10 

et al., 2013). In comparison to the two box models, the Earth system model MPI-ESM is much more complex. 

As a spatially explicit, comprehensive model, it describes a large number of processes considered relevant for the 

evolution of sea ice, including mechanical thickness redistribution and horizontal transport. Despite this huge 

process complexity, the description of the ice-thickness distribution is relatively simple (Notz et al., 2013): 

Similarly to E07, only one thickness class is used and the sea-ice area is calculated using the parameterisation by 15 

Hibler (1979). A further similarity with E07 is that an abrupt loss of winter sea-ice area occurs due to the simple 

representation of the model’s ice-thickness distribution and the homogeneity of the Arctic Ocean (Bathiany et al., 

2016). The abrupt ice loss is reversible (Li et al., 2013) and is caused by the same threshold effect as in E07 

(Bathiany et al., 2016). 

4. We also analyse eight additional comprehensive models from the Coupled Model Intercomparison Project 5 20 

(CMIP5), using simulations of the historical period, the RCP8.5 scenario and its extension until the year 2300. 

The models are all the available models that lose their Arctic winter sea ice in these simulations. The level of 

complexity in these models is comparable to MPI-ESM, but some of them explicitly resolve several ice-

thickness classes on the subgrid scale. AlthoughWhile one of the models (CSIRO-Mk3-6-0) also produces an 

abrupt loss of winter sea-ice area like MPI-ESM, most models show a retreat of winter sea ice that is gradual 25 

(Hezel et al., 2014), though faster than the preceding summer sea-ice loss (Bathiany et al., 2016). 

 

2.2 Methods 

To investigate how the relaxation time, variance and autocorrelation in the models vary with CO2, we perform 

three types of experiments that are reported in Sect. 3.1, 3.2 and 3.3 respectively, and whose technical details we 30 

address in Appendix A and B:these sections. 

1. For the two column models E12 and E07 we perform numerical perturbation experiments where we run each 

model to its equilibrium annual cycle, then suddenly perturb it away from this reference solution by some small 

amount x0, and measure the rate of return towards the reference solution. It follows from a linearisation of the 

system that the anomaly x decays exponentially over time t: 35 
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𝑥 =  𝑥0𝑒−(𝑡
𝜏⁄ )                                                                 (Eq. 1) 

In systems with a time-independent solution, the relaxation time scale τ can essentially be obtained from only 

one specific state x at a time t by rearranging Eq. (1): 

 

𝜏 = −
𝑡

𝑙𝑜𝑔(|
𝑥

𝑥0
|)

                                                                  (Eq. 2) 5 

Due to the permanent change in the balance of feedbacks during the annual cycle, the return rate in the models 

we use depends on the time of year. To obtain a good estimate of the anomaly decay from year to year, we store t 

and x on December 21st in each year (the result is not sensitive to the choice of the date). We obtain the 

relaxation time τ from a linear regression of these annually resolved time series by regressing the numerator 

versus the denominator of Eq. (2). For details of this approach when applied to the two column models, see 10 

Appendix A and B. 

2. For both column models, we perform stationary simulations and calculate the state variables’ statistics. For 

each of 50 different CO2 levels we simulate 100,000 years under constant conditions. We then compute seasonal 

means for winter sea ice (averages over March to May), summer sea ice (averages over September to 

November), March and September. The definition of winter and summer sea ice captures the months of 15 

minimum and maximum sea ice volume in the models which lags the annual cycle of insolation. The time series 

of seasonal or monthly averages have annual resolution and are then used to calculate the autocorrelation (with a 

lag of one year) and variance. With this approach we again focus on the effective relaxation time from year to 

year, and not the transient development of a perturbation within a year. In contrast to approach 1, the simulations 

involve stochastic terms that we add to the deterministic model equations. This involves choices on the place 20 

these terms are introduced in the equations (noise source), the magnitude of the noise (noise level) and its 

spectrum (color). 

3. We analyse the trends of variance and autocorrelation in transient simulations of all models except E12 using a 

sliding window approach. As in the case of stationary simulations, all time series here are seasonal means, hence 

the time series have annual resolution. In particular, we analyse a simulation from MPI-ESM where CO2 25 

increases linearly until it has quadrupled after 2,000 years. This simulation has been performed and reported by 

Li et al. (2013). We perform similar simulations with E07, using different experiment lengths and 1,000 

realisations per experiment. We also apply this method to the combined historical and RCP8.5 scenario 

simulations from CMIP5. Such transient simulations with continuously increasing CO2 concentration more 

closely describe the ongoing change of the real climate system than the idealised, stationary experiments 30 

described before.  
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3 Results 

3.1 Deterministic perturbation experiments  

We begin by analysing how the response time τ of the model by Eisenman (2012) depends on the surface long-

wave balance Lm (Fig. 2a). To this end, we perturb the state variable E by +0.005 and measure the decay rate 

over two years. The decay rate is thus determined from three points (start time, end of year one, and end of year 5 

two). Using more years leads to the same results but fails in cases when the system is very stable because the 

anomaly then becomes too small to be measured after only a few years. In agreement with Eisenman (2012) and 

Moon and Wettlaufer (2011), this curvethe response time shows a characteristic double-peak withwhen 

increasing CO2 (decreasing Lm). The first peak occurs at Lm≈1 where the summer ice is lost and the ice-albedo 

feedback is substantially strengthened due to the exposed open water during a growing period during the year. 10 

The second peak occurs at the bifurcation point Lm≈0.93 where the winter sea ice vanishes. To this extent, the 

system is in agreement with dynamical-systems theory that predicts a slowing down as a result of increasing 

positive feedbacks.  

To show that both peaks are indeed caused by the ice-albedo feedback, we perform additional experiments where 

this feedback is switched off. Following Eisenman (2012), we do this by setting the albedo difference between 15 

ice and water to 0. Appendix A explains the changes we make to the model equations in order to switch off 

certain mechanisms. Fig. 2b shows the relaxation time τ for the model without ice-albedo feedback but no other 

changes. Obviously, the range of Lm over which a complete ice loss occurs is much larger due to the removal of a 

positive feedback. The most striking change in the evolution of τ is that the bifurcation as well as the double peak 

in the relaxation time have disappeared. The role of the ice-albedo feedback in E12 has also been analysed 20 

analytically by Moon and Wettlaufer (2011) who obtained the same result. 

Another striking feature in Fig. 2a and Fig. 2b is the large regime of decreasing τ from preindustrial conditions 

up to shortly before the loss of summer sea ice. This decline results from the fact that the heat conduction 

through the ice becomes more efficient with decreasing thickness. This is important during freezing conditions 

when the heat from the ocean has to diffuse through the ice before it can be radiated away from the ice’s surface. 25 

Therefore, thin ice grows faster than thick ice, and the thinner the sea ice becomes, the more rapidly it can adjust 

to perturbations. Fig. 2c documents the validity of this interpretation: In addition to switching off the ice-albedo 

feedback, we also remove the growth-thickness feedback from the equations. To still obtain a stable system, the 

removed stabilising feedback is replaced by the negative Planck feedback that is also active in the ice-free season 

in the default model (see Appendix A). As a result, the relaxation time is constant in the regimes of perennial ice 30 

cover or open ocean. The fact that the response time decreases with ice thickness has implications for the 

transition to a Snowball Earth state: Cooling the climate towards such a state will result in an increasing 

autocorrelation and variance, as a spatially explicit version of E12 now also shows (Wagner and Eisenman, 

2015b). However, we stress that this effect is not necessarily ana good example of successful “early warning 

signals“.“: As the growth-thickness relationship is independent of the ice-albedo feedback and the existence of a 35 

bifurcation, variance and autocorrelation would also increase in absence of a catastrophic transition to a 
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Snowball Earth state. HoweverOf course, knowing the variance of a system is of coursestill useful to estimate the 

probability of a transition to an alternative state if it is already known to exist. 

A third alteration to the model reveals the reason for the increase of τ in the regime of seasonal sea ice (Fig. 2d). 

The difference to the version in Fig. 2b is that we halve the effective heat capacity of the ocean’s mixed layer 

(e.g. representing a more shallow mixed layer). Obviously, this reduces the relaxation time for the ice-free 5 

system, because the model then simply consists of a well-mixed box of water whose heating or cooling rate is 

proportional to its mass. The warmer the climate becomes, the longer is the ice-free season, and the more does 

the system’s effective timescale approach the timescale of an ice-free ocean. As this timescale is longer than the 

one of the thin sea ice, a “slowing down” occurs. Therefore, this increase in relaxation time is not related to any 

bifurcation approaching (there is none in Fig. 2b-d), or in fact to any positive feedback. This specific result has 10 

also been obtained in the latitudinally resolved version of E12 by Wagner and Eisenman (2015b). 

In the following, we go a step further and show that the above results also hold in more complex models. We 

begin with the second column model, E07. Due to the four state variables in this model, it has to be decided how 

to perturb the system in the numerical perturbation experiments. In principle, a system responds differently 

depending on which state variable is perturbed. While the water’s large specific heat capacity and latent heat of 15 

fusion determine the long-term slow response of the system, perturbations of the radiative fluxes decay very 

quickly. Our numerical perturbation experiment for E07 consists in a perturbation of Tml by +0.2 K. For the 

determination of the relaxation time via regression, we use years 2 and 3 after the perturbation is applied, 

ensuring that anomalies of the fast modes have already decayed after the first year. 

Interestingly, for the loss of summer sea ice this modelE07 displays an evolution of τ that matches the results 20 

from E12 with fixed albedo (Fig. 2b): A regime of decreasing τ during the loss of summer sea ice is followed by 

a regime of slightly increasing τ after the complete summer sea-ice loss (Fig. 3a). For winter sea ice, in contrast, 

results with E07 match the evolution of E12 with interactive albedo, with a narrow peak in relaxation just before 

the loss of winter sea ice. This peak disappears when the albedo feedback is disabled in E07, while the response 

time for the loss of summer sea ice remeins largely unchanged (Fig. 3b). This demonstrates that the ice-albedo 25 

feedback is of secondary importance for the evolution and stability of summer sea ice in E07 (except at the very 

point of abrupt winter ice loss). It is important to note that both models roughly show the same evolution of the 

relaxation time (decreasing during summer ice loss, increasing thereafter), regardless of whether there is a 

bifurcation or any abrupt change approaching or not. 

 30 

3.2 Stationary stochastic simulations 

In natural systems, the relaxation time usually cannot be measured or calculated as directly as in models. 

However, one can hope to measure the system’s response to natural external perturbations indirectly in form of 

its variance and autocorrelation. We therefore investigate in stochastic versions of the two column models 

whether these indicators reflect the changes in timescale. In each experiment, we introduce noise in one of three 35 

terms of the equations: To mimic variability in the ocean heat flux (σOHF), we added a Gaussian white noise term 
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to Eq. A1 (Appendix A). To introduce noise to the radiative fluxes, we added the noise term on the radiative 

balance A (Eq. A2) to perturb the long-wave balance (σLW), or on S (S = 1 − Sa cos 2πt) in Eq. (A2) to perturb 

the short-wave balance (σSW). into the mixed-layer (OHF), the long-wave energy balance (LW) and the short-

wave insolation (SW). WeWe also distinguish small and large noise, as well as white and red noise. The way we 

introduce the stochastic terms to the equations andIn the detailscase of small noise, we choose the noise level in a 5 

way that the total variance of E is in the order of 10
-9

, i.e. much smaller that the amplitude of an annual cycle. In 

the case of large noise, we adjust the noise level such that the system’s stochastic variability is roughly one order 

of magnitude smaller than the amplitude of the annual cycle, in similarity to the situation in the real world. In 

case of red noise, we model the external perturbations as an autoregressive process of order one (AR(1) process) 

with a decorrelation time of 180 days in case of mixed layer energy and 10 days for atmospheric radiation. 10 

the stochastic process are explained in Appendix A. It turns out thatFig. 4 shows results for large red noise for all 

three noise sources. Interestingly, the specific choices offor the noise terms hardly affect the results. When 

introducing small noise to the equations, the evolution of variance and autocorrelation closely follow the results 

we obtained from the perturbation experiments (Fig. 2), independent of the noise type. Even in case of large 

noise, the results are qualitatively similar2a), independent of the noise type. Due to the low temperatures and the 15 

large growth-rate of thin ice, the ice coverage A is always close to 1 in winter, and has very small variance 

regardless of the variability of other variables. In contrast to Fig. 2a, the second peak produced by the ice-albedo 

feedback is not as pronounced in Fig. 4. This partly results from the lower resolution of the figure (associated 

with the much larger computational demand), but mostly due to the fact that the natural variability causes the 

system to cross the tipping point before the deterministic bifurcation point is reached. However, even in case of 20 

large red noise, the results are qualitatively similar to Fig. 2a as long as the noise is still small enough to not 

destroy the whole bifurcation structure of the system. Fig. 4 shows results for large red noise for all three noise 

sources as an example. The chosen decorrelation times of the red noise terms are of the same order of magnitude 

as in the real climate system (several days for atmospheric radiation and months for the ocean mixed layer). 

These reason is that the time scales of the variability are still smaller than the typical response time of the ice-25 

oceanmixed layer system in the model (several years).. In this regard, the model still sees the imposed noise as 

white, and the autocorrelation we find is determined by the system’s time scale and not the time scale of the red 

noise. This explains the invariance of the results to the noise type. 

WeIn the stochastic experiments with E07, we introduce the stochastic terms in the same way as in the case of 

E12, and we find the same robustness to noise source, level and colour in E07 (Fig. 5). Naturally, the variance of 30 

the summer sea-ice area shows a distinct peak before the thickness approaches 0 because A becomes very 

sensitive to small perturbations in V (first row in Fig. 5). The peak occurs when fluctuations in A are least 

affected by the lower and upper limits, A=0 and A=1, and variance decreases thereafter because a larger fraction 

of the summer is already ice free, thus reducing the possible total variability. As sea ice disappears first in 

September, the variability peak occurs first in this month. The increased open-water formation efficiency before 35 

total ice loss has been reported in previous studies (Holland et al., 2006; Goosse et al., 2009) and is most evident 

during the gradual process of summer ice loss (around CO2≈1.9). The phenomenon is confined to a very narrow 

Formatted: Not Superscript/ Subscript

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto

Formatted: Font color: Auto, English
(U.K.)



 

11 

 

parameter regime for the abrupt winter ice loss around CO2≈3.4 because the rapid growth of new ice each winter 

tends to keep A close to 1 until shortly before total ice loss (Bathiany et al., 2016). 

The evolution of the volume’s autocorrelation (last row in Fig. 5) closely follows the timescale obtained from the 

perturbation experiment. In principle, this is also true for the variance of ice volume fluctuations although it does 

not show a clear increase after summer ice loss (third row in Fig. 5). Interestingly, the autocorrelation of ice area 5 

(second row in Fig. 5) does not show the same evolution as the autocorrelation of ice volume in the regime of 

perennial ice. Such non-intuitive behaviour can occur as a result of the noise propagation through the nonlinear 

system and due to the permanent changes of feedbacks in different times of the year (Moon and Wettlaufer, 

2013). Ice-area anomalies tend to have a shorter time scale than volume adjustments, especially due to the rapid 

growth of new ice that can quickly produce a large area increase with only small volume changes. Therefore, the 10 

autocorrelation of ice area is usually smaller than that of ice volume (it should be noted that the autocorrelation 

of the area fraction of winter sea ice has little practical relevance for most CO2 levels because A is always very 

close to 1, as is reflected by its very small variance). As it is the slowest mode that dominates the relaxation time 

of the full system, the autocorrelation of ice volume corresponds well to the time scales we measured in the 

perturbation experiments (Fig. 2). 15 

 

3.3 Transient stochastic simulations 

We now analyse transient simulations with E07 and compare them to the most comprehensive model, MPI-ESM. 

We focus on the evolution of ice volume and its statistics. Each experiment starts from pre-industrial CO2, which 

is then quadrupled over 2000 years. After approx. 1550 years, an abrupt loss of Arctic winter sea ice occurs in 20 

both models. We have tuned the sensitivity of E07 such that this event occurs at the same time in the models 

(Appendix B). As the description of the ice-thickness distribution is similar in E07 and MPI-ESM, the abrupt 

winter sea-ice loss probably results from the same threshold mechanism. (Bathiany et al., 2016). This is 

corroborated by the fact that the abrupt loss is reversible in MPI-ESM (Li et al., 2013).  

We use red noise that is added to the ocean heat transport and that has a noise level which produces a similar 25 

variability in ice volume as MPI-ESM at individual grid cells. To obtain the evolution of variance and 

autocorrelation of the ice volume in both models we apply the ‘early warnings’ R package described in Dakos et 

al. (2012a), which performs an analysis often applied to transient time series (Lenton, 2011). The method 

consists in a running window of 300 years that slides from the beginning of the time series to the point just 

before the ice loss. In the case of summer sea ice, this final point is reached after 800 years, in the case of winter 30 

ice loss after 1550 years. As in the case of the stationary simulations, each time series consists of annually spaced 

seasonal means. Within the running window, fluctuations on long timescales are removed by smoothing the time 

series with a Gaussian kernel of interactive bandwidth and subtracting this smoothed version from the original 

time series. For the residuals, variance and autocorrelation are calculated within the window. As the window 

moves along the time series, we obtain an evolution of variance and autocorrelation (being shorter than the 35 

original time series by the window length).  
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The results with E07 are similar to the stationary experiments in the previous section (Fig. 6). As the simulations 

are much shorter than the stationary experiments, the results are much noisier. However, the decrease in variance 

(Fig. 6 d-f) and the decline and subsequent increase in autocorrelation of V (Fig. 6 g-i) are still clearly visible. As 

MPI-ESM is a spatially explicit model, one has to choose a specific region. We analysed six different single grid 

cells in the Arctic ocean and obtain a qualitatively similar evolution of statistics; Fig. 6 b, e, and h show results 5 

for a grid cell located at approx. 102 W and 86.5 N. Fig. 6 c, f, and i show results for the total ice volume north 

of 75 N. Thus, the behaviour at individual grid cells carries over to the regional scale. The results from MPI-

ESM are also in good agreement with the results from E07 – the inclusion of spatial differences and processes 

like advection and mechanical redistribution of sea ice apparently has not changed the behaviour of sea ice 

variability. We therefore argue that E07 is an appropriate model to explain the behaviour in MPI-ESM and it is 10 

probable that the same processes are behind the evolution of the statistics. This finding is corroborated by the 

fact that the abrupt loss of winter sea ice is also due to the same reason in both models (Bathiany et al., 2016). 

As Fig. 6 only presents a single realisation from both models the question arises how long a time series needs to 

be in order to observe significant trends. We therefore conducted four different experiments with E07 where the 

quadrupling of CO2 occurs over 100, 200, 500 and 2000 years, respectively. For each experiment we perform 15 

1,000 realisations and calculate the trends in variance and autocorrelation in each realisation. These trends are 

given as Kendall Tau values that express how monotonically a property changes. A time series with only positive 

(negative) changes from one point to the next has a Kendall Tau of 1 (-1), a time series with an equal number of 

increases and decreases has a Kendall Tau of 0. Fig. 7 shows the distribution of Kendall Tau values for the trends 

in variance and autocorrelation of winter sea ice. Sea ice loss occurs at slightly different times in the different 20 

realisations. Winter sea-ice loss typically occurs after 4/5 of the experiment length. In each realisation, the 

sliding window in which variance and autocorrelation are measured therefore stops 5 years before zero ice 

volume occurs for the first time in September (Fig. 7a,b) or March (Fig. 7c). Increasing the window length 

improves the results, but the window length is of course limited by the length of the time series. We therefore 

chose a constant relative window length of 3/20 of the experiment length. The results somewhat depend on the 25 

details of this analysis and the system under consideration. However, Fig. 7 illustrates that several hundred to 

thousand years are required to obtain robust trends. While these results support our interpretation that the 2,000-

year experiments in Fig. 6 are meaningful, simulations with more plausible scenarios cannot be expected to yield 

robust results. In general, variance is better constrained than autocorrelation (Ditlevsen and JohnsonJohnsen, 

2010). Therefore, one can expect to see a decrease in variance of sea-ice volume but no consistent changes in 30 

autocorrelation in simulations where sea-ice loss occurs within less than 200 years, a typical experiment length 

for projections of anthropogenic climate change.  

To test this prediction, we finally analyse CMIP5 simulations from MPI-ESM and eight other comprehensive 

climate models. For this analysis we combine the historical simulation, the RCP8.5 simulation, and the extended 

RCP8.5 simulation that ends in the year 2300. In this scenario, atmospheric CO2 shows an accelerated increase 35 

until the year 2100, when a radiative forcing of approx. 8.5 W/m
2
 is reached. Thereafter, the CO2 concentration 

stabilises at almost 2000 ppm (Meinshausen et al., 2011), yielding the largest warming of all CMIP5 simulations. 

The extended simulations until 2300 were performed with nine models (Hezel et al., 2014). Here we analyse all 
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models where Arctic sea-ice area falls below one million square kilometres in the full RCP8.5 scenario, no 

matter when this event occurs. Two of the models analysed in Hezel et al. (2014) do not lose their winter sea ice 

by 2300, while two other models not analysed by Hezel et al. (2014) have lost their winter sea ice already by 

2100 (the nine models we analyse are therefore not identical to the nine models in Hezel et al., 2014). For the 

analysis of the CMIP5 simulations we use the same sliding window approach as explained above, using a 5 

window length of 30 years. The results confirm our findings from above: Sea ice variance decreases in most 

models (especially those with a large pre-industrial variability). The decrease in variance occurs not only in the 

whole Arctic but also at individual grid cells and is thus likely to result from the increasing growth-thickness 

feedback discussed in Sect. 3.1. Autocorrelation shows no convincing signal compared to Fig. 6 which is not 

surprising given the short time series (Fig. 8), though a hint of a decrease in autocorrelation seems to be visible. 10 

As we have shown in the previous sections, the trends in variance and autocorrelation that occur in sufficiently 

long simulations are not specific to the mechanism of ice loss. Fig. 7-8 illustrate yet another limitation to the 

applicability of early warning signals: Even if there was any information in these trends, it would be impossible 

to detect it in a single realisation with the current rate of global warming. As we analyse seasonal means with a 

time step of one year from one data point to the next, a higher temporal resolution may provide an improvement 15 

(e.g. Williamson et al., 2016). This would require one to remove the annual cycle from the time series before the 

statistical analysis of the anomalies. However, as the annual cycle changes considerably when sea ice is lost, and 

as other relevant mechanisms might come into play on short time scales, we leave this challenge to future 

studies. 

 20 

4 Conclusions 

Using a hierarchy of models, we have demonstrated a robust link between the mean state and the variability of 

sea ice. This link concerns all climate states between a perennial ice cover and a perennial open Arctic Ocean. 

While the relaxation time of Arctic sea ice tends to decrease before summer ice loss, it increases before winter 

ice loss in all models. In time series of sea-ice volume these trends carry over to autocorrelation and, to some 25 

extent, variance. The decreasing response time during summer sea-ice loss is caused by the increasedmore 

efficient heat fluxconduction through the thinning ice. The increasing response time during winter sea-ice loss is 

mainly caused by the long response time of the ocean which becomes more influential as the ice retreats. We 

found that these results do not depend on whether Arctic sea-ice loss occurs abruptly or even irreversibly in a 

model. At first sight, this may appear to be in conflict with the generic concept of slowing down. In principle, 30 

however, the concept does apply to the case of sea-ice loss: Just before the bifurcation at the point of winter sea-

ice loss occurs in E12 or E07, a sharp peak emerges (Fig. 2a, Fig. 3a). The peaks are more pronounced when the 

ice-albedo feedback is important like in E12, where τ even peaks during summer ice loss, and less pronounced 

before the winter ice loss in E07 which is mainly due to a threshold mechanism.  

The practical problem is that these bifurcation-induced peaks occur in such a narrow parameter regime that it 35 

will be impossible to detect them before an abrupt change in transient time series. The general trends in transient 

time series will therefore be independent of the mechanism or even the existence of an abrupt change. In order to 
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infer information on the system from its variability, these trends would need to be more specific to certain 

mechanisms. In models of low or intermediate complexity however, it may well be possible to investigate the 

mechanism of an abrupt change diagnostically by creating long stationary time series for carefully selected 

forcing conditions (Bathiany et al., 2013a,b). It is therefore useful to see that our results are robust to the source 

of the noise, its spectrum and its magnitude. We have also shown that long simulations are necessary to obtain 5 

robust results, typically more than 1000 years (also see Ditlevsen and JohnsonJohnsen, 2010). This is also the 

reason why it will be difficult to see consistent trends in observations. Livina and Lenton (2013) found a recent 

increase in autocorrelation for summer sea-ice area from satellite observations when corrected for the continental 

distribution, but no other clear signals due to the rather short record. Similarly, Williamson et al. (2016) found no 

change in the phase lag of Arctic sea-ice area relative to the annual cycle of insolation, indicating no change in 10 

relaxation time. The column models we applied suggest that ice volume (or thickness in the column models), 

captures the system’s relaxation time better than area fraction. Unfortunately, ice thickness and volume are much 

more difficult to observe than sea-ice area. We conclude that if sea ice was approaching a tipping point, 

observations of sea-ice variability would not help to predict it. 

The comprehensive model we analysed in most detail, MPI-ESM, likely exaggerates how rapidly the final bit of 15 

winter sea-ice volume disappears (e.g. as seen in the top right panel of Fig. 8). This abrupt volume loss is 

probably related to the ice-growth parameterisation, which attributes a single thickness to all newly formed ice in 

a grid cell (Bathiany et al., 2016). Although the abrupt event itself is not part of our time series analysis above, it 

points to potential limitations of the applied model and one may ask how models with several ice-thickness 

classes would behave. It is reassuring in this regard that eight other models agree with MPI-ESM in their 20 

decrease of the sea-ice volume’s variance, although time series were too short to show clear trends in 

autocorrelation. Moreover, the mechanistic insight obtained with the simpler models suggests that these model 

agreements are no coincidence because they can be explained from fundamental physical processes. Both the fast 

adjustment of thin ice and the slow response of the mixed-layer ocean are represented in all the models and 

would also not change in even more complex models. For example, in models with many ice-thickness classes, 25 

the variability of the total ice volume in a grid cell is the result of the variability of all thickness classes. The 

trends in variance and autocorrelation would have the same sign for each thickness class because the thickness-

growth relationship is monotonous (Thorndike et al., 1975). Even the precise realisation of the weather-induced 

variability would be identical because all thickness classes within a grid cell are coupled to the same ocean and 

atmosphere grid cell. Hence, the level of sophistication in the representation of the subgrid-scale ice-thickness 30 

distribution is not relevant for our results. Furthermore, it has been shown in Bathiany et al. (2016) that radiative 

feedbacks and mechanical redistribution mechanisms are unimportant for the abruptness of sea-ice loss in MPI-

ESM, which is instead determined by thermodynamic processes. It is therefore plausible that the same processes 

also determine the variability of sea ice before the final ice loss occurs. 

Interestingly, our result that the relaxation time is unrelated to the existence of a tipping point has analogies in 35 

many other systems whose effective ‘mass’ changes over time. For instance, the effective heat capacity of the 

ocean increases with the mixed layer depth, which can cause an increase in autocorrelation although the system 

does not destabilise (Boulton and Lenton, 2015). Moreover, the relaxation time scale may depend on the 



 

15 

 

direction of perturbations, just like sea-ice melting and freezing is determined by different processes. An 

example for such asymmetry is vegetation dynamics (Bathiany et al., 2012): While vegetation can die back or 

burn within days or months, its regrowth can take many decades. Such restrictions and the fact that the statistics 

of sea ice in the models are closely linked to its mean state may make the prospect of ‘early warnings’ for 

accelerated sea ice loss appear rather limited. However, this also provides opportunities. First, the physical 5 

mechanisms behind the phenomena we have described make our resultsare relevant not only for the future but 

also for paleoclimate problems such as the role of sea-ice variability in the Eocene (White et al., 2010), or the 

transitions into and out of a “Snowball Earth” state (Pierrehumbert et al., 2011). For example, our results would 

allow one to formulate a stochastic parameterisation of sea-ice variability for simple climate models that is valid 

in all climates. Second, adue to the crucial role of sea ice in the Arctic climate, an improved understanding of 10 

sea-ice variability will contribute to understand the future evolution of Arctic climate variability in general 

(Stouffer and Wetherald, 2007; Huntingford et al., 2013). In particular, the strict relation between the mean state 

of sea ice and its variability would allow an estimate ofsuggests the possibility to infer the system’s total 

variability from relatively short observational time series. In this regard, the state of the system and its trend can 

provide an early warning for potential extreme events as their, and to estimate the typical magnitude and 15 

longevity depends onof climate anomalies in the mean statefuture. This knowledge couldwill be important for 

ecosystems and economical activities in the high latitude oceans. 

 

Appendix A:. Description of Eisenman (2012) model and feedback suppression method 

Here, we describe the model by Eisenman (2012), denoted E12 in the main text, and the changes made to 20 

separate different effects. 

The dynamic equation of the model is  

dE

dt
= A − BT + FB                                           (A1) 

with t for time and E for enthalpy. In the presence of sea ice, E is negative and proportional to the ice’s thickness, 

while during ice-free conditions, E is positive and proportional to the mixed-layer temperature. 25 

Term A in Eq. A1 describes the temperature-independent terms of the radiative balance  

A = (1 + Δαtanh (
E

hα
)) (1 − Sa cos 2πt) − Lm − La cos 2π(t − Φ)                          (A2) 

with Lm is the annual mean long-wave radiation balance at the surface, the control parameter we vary in our 

experiments to represent a change in atmospheric CO2. 

T represents the surface temperature of the ice-ocean system and is calculated from 30 

 

T = {

E, E ≥ 0              [open ocean]

0, E < 0, A > 0 [melting surface]

 
A

B
(1 −

ζ

E
)−1, E < 0, A < 0 [frozen surface]

                                         (A3) 
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These equations correspond to Eq. 9-11 in Eisenman (2012) with the exception that we have omitted the tilde 

above all variables that denotes them as non-dimensional variables. All parameter values are listed in his Tab. 1. 

For a derivation of these equations and an explanation of all parameters see Eisenman (2012) and Eisenman and 

Wettlaufer (2009). 5 

To switch off the ice-albedo feedback, we set Δα to zero. To switch off the growth-thickness feedback in 

addition, the temperature equation is replaced by 

 

T = {
E, E ≥ 0 [open ocean]

3E, E < 0 [sea ice]
                                          (A4) 

 10 

This way, the stabilising growth-thickness feedback is replaced by the stabilising Planck feedback, the same that 

also operates under ice-free conditions. The factor 3 in the presence of sea ice is arbitrary and was introduced 

merely to distinguish the regime with and without sea ice in Fig. 2c. 

Alternatively, to reduce the heat capacity of the mixed layer by a factor 2 we exchange the temperature equation 

by 15 

   

T = {

2E, E ≥ 0              [open ocean]

0, E < 0, A > 0 [melting surface]

 
A

B
(1 −

ζ

E
)−1, E < 0, A < 0 [frozen surface]

                                           (A5) 

 

As the equations are dimensionless, the mixed-layer heat capacity C does not explicitly appear in the model 

equations. In case of open water, E incorporates the inverse of C, which is why halving C corresponds to 20 

doubling E in the open water case of the above equation (see Eisenman (2012) for details on the model 

derivation).  

In the deterministic numerical perturbation experiments, we perturb E by 0.005 and measure the decay rate over 

two years. The decay rate is thus determined from three points (start time, end of year one, and end of year two). 

Using more years leads to the same results but fails in cases when the system is very stable because the anomaly 25 

then becomes too small to be measured after only a few years. For the stationary simulations with noise in the 

ocean heat flux (σOHF), we added a Gaussian white noise term to Eq. A1. To introduce noise to the radiative 

fluxes, we added the noise term on the radiative balance A (Eq. A2) to perturb the long-wave balance (σLW), or 

on S (S = 1 − Sa cos 2πt) in Eq. (A2) to perturb the short-wave balance (σSW). In the case of small noise, we 

chose the noise level in a way that the total variance of E is in the order of 10
-9

, i.e. much smaller that the 30 

amplitude of an annual cycle. In the case of large noise, we adjust the noise level such that the system’s 

stochastic variability is roughly one order of magnitude smaller than the amplitude of the annual cycle, in 
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similarity to the situation in the real world. In case of red noise, we model the external perturbations as an 

autoregressive process of order one (AR(1) process) with a decorrelation time of 180 days in case of mixed layer 

energy and 10 days for atmospheric radiation. 

 

Appendix B: Description of Eisenman (2007) model 5 

In contrast to the model by Eisenman (2012), which consists of only one dynamic equation, four variables are 

explicitly modelled by ordinary differential equations: the ice area coverage A, the ice volume V, the surface 

temperature of the ice Ti, and the temperature of the mixed layer, Tml. Therefore, the ice has only a single 

thickness h=V/A. The evolution of ice area is described by a parameterisation based on Hibler (1979). As in E12, 

the temperature profile within the ice is assumed to be linear. For the model equations including their derivation 10 

see Eisenman (2007). Due to the fact that many processes have been intentionally neglected, the original model 

is rather insensitive to CO2. To obtain a similar sensitivity than with the comprehensive model MPI-ESM we 

have added an additional flux of 16 Wm
-2

 per CO2 doubling to the downwelling long-wave radiation at the 

surface (eq. 30 in Eisenman (2007)). 

Due to the model’s four state variables, it had to be decided how to perturb the system in the numerical 15 

perturbation experiments. In principle, a system responds differently depending on which state variable is 

perturbed. While the water’s large specific heat capacity and latent heat of fusion determine the long-term slow 

response of the system, perturbations of the radiative fluxes decay very quickly. Our numerical perturbation 

experiment for E07 consists in a perturbation of Tml by +0.2 K. For the determination of the relaxation time via 

regression, we use years 2 and 3 after the perturbation is applied, ensuring that anomalies of the fast modes have 20 

already decayed after the first year. In the stochastic experiments, we introduce the stochastic terms in the same 

way as in the case of E12 (see Appendix A).  
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Figure 1. Response of the two column models to warming. a) Enthalpy versus surface longwave balance Lm in 

E12. The horizontal line demarcates between positive E (open water) and negative E (ice covered ocean). b) Ice-

area fraction and c) ice volume (given as an equivalent thickness) versus CO2 (given as multiples of the pre-

industrial value) in E07. Each dot represents a time mean over the season indicated in the legend of subfigure (a). 10 
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Figure 2. Relaxation time scale in Eisenman’s (2012) box model for different combinations of mechanisms. a) 

Original model, b) original model but with disabled ice-albedo feedback; c) like (b) but without growth-thickness 

feedback; d) like (b) but with only half the default ocean heat capacity. The vertical shaded lines indicate the 

values of Lm where the annual minimum (red) and maximum (blue) ice volume reaches zero. 5 
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Figure 3. Relaxation time scale in Eisenman’s (2007) box model for a) the original model, b) with disabled ice-

albedo feedback. The vertical shaded lines indicate the values of CO2 where the annual minimum (red) and 

maximum (blue) ice volume reaches zero. 

 5 

 

 

Figure 4. Variance (var) and autocorrelation (AC) of state E as a function of long-wave balance Lm in the model 

E12 with large red noise. In each column, the noise term has been introduced to one of three different terms, 

namely the ocean heat flux (OHF), long-wave radiative balance (LW) and short-wave radiative balance (SW). 10 

Winter sea ice is shown in blue, summer sea ice in red. (seasons as in Fig. 1). The vertical shaded lines indicate 

the values of Lm where the annual minimum (red lines) and maximum (blue lines) ice volume reaches zero. 
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Figure 5. Variance (var) and autocorrelation (AC) of ice area fraction A and ice volume V as a function of CO2 

in the model E07 with large red noise. In each column, the noise term has been introduced to one of three 

different terms, namely the ocean heat flux (OHF), long-wave radiative balance (LW) and short-wave radiative 5 

balance (SW). Winter sea ice is shown in blue, summer sea ice in red. (seasons as in Fig. 1). The vertical shaded 

lines indicate the values of CO2 where the annual minimum (red lines) and maximum (blue lines) ice volume 

reaches zero. 
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Figure 6. Time series from transient simulations with the box model by Eisenman (2007) (left column) and MPI-

ESM (middle and right column). (a)-(c) evolution of ice volume; (d)-(f) variance, and (g)-(i) autocorrelation of 

this volume as obtained from a sliding window approach. Winter sea ice is shown in blue, summer sea ice in red. 

The single grid cell in MPI-ESM (second column) is located at 86.5 N and 102 W.  5 
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Figure 7. Statistics of Kendall‘s Tau for standard deviation (SD) and autocorrelation (AC) changes in ensemble 

simulations with the E07 model. Each figure shows results for MAM timeseries of sea-ice volume. The number 

of years refer to the total length of an experiment until CO2 has quadrupled. a) standard deviation trends before 

summer sea-ice loss b) autocorrelation trends before summer sea-ice loss (perennial ice regime), c) 5 

autocorrelation trends in the period between summer sea-ice loss and winter sea-ice loss (seasonal ice regime). 

On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers 

extend to the most extreme data points not considered outliers, and outliers are plotted individually.  
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Figure 8. Evolution of MAM-averaged sea-ice volume (V) and its variance (var) and autocorrelation (AC) in 

nine comprehensive climate models. The time series are the combined historical and RCP8.5 simulation, the 5 

window length for the calculation of var and AC is 30 years. Grid cell 1 is located at approx. 102 W / 86.5 N, 

grid cell 2 at 180 W / 74.5 N, the right column shows all volume north of 75 N. 
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