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Abstract13

Sea-ice concentrations derived from satellite microwave brightness temperatures are less14

accurate during summer. In the Arctic Ocean the lack of accuracy is primarily caused by melt15

ponds but also by changes in the properties of snow and the sea-ice surface itself. We16

investigate the sensitivity of eight sea-ice concentration retrieval algorithms to melt ponds by17

comparing sea-ice concentration with melt-pond fraction. We derive gridded daily sea-ice18

concentrations from microwave brightness temperatures of summer 2009. We derive the daily19

fraction of melt-ponds, open water between ice floes and ice-surface fraction from20

contemporary Moderate Resolution Spectroradiometer (MODIS) reflectance data. We only21

use grid cells where the MODIS sea-ice concentration, which is melt-pond fraction plus ice-22

surface fraction, exceeds 90%. For one group of algorithms, e.g., Bristol and Comiso23

Bootstrap frequency mode (Bootstrap_f), sea-ice concentrations are linearly related to the24

MODIS melt-pond fraction quite clearly after June. For other algorithms, e.g., Near90GHz25

and Comiso Bootstrap polarization mode (Bootstrap_p), this relationship is weaker and26

develops later in summer. We attribute the variation of the sensitivity to the melt-pond27

fraction across the algorithms to a different sensitivity of the brightness temperatures to snow-28

property variations. We find an under-estimation of the sea-ice concentration by between29



14% (Bootstrap_f) and 26% (Bootstrap_p) for 100% sea ice with a melt-pond fraction of1

40%. The under-estimation reduces to 0% for a melt-pond fraction of 20%. In presence of2

real open water between ice floes, the sea-ice concentration is over-estimated by between3

26% (Bootstrap_f) and 14% (Bootstrap_p) at 60% sea-ice concentration and by 20% across4

all algorithms at 80% sea-ice concentration. None of the algorithms investigated performs5

best based on our investigation of data from summer 2009. We suggest, that those algorithms6

which are more sensitive to melt ponds, could be optimized easier because the influence of7

unknown snow and sea-ice surface property variations is less pronounced.8

9

1 Introduction10

Sea-ice area and extent are derived from the sea-ice concentration, i.e. the fraction of a given11

area of the ocean covered with sea ice. Observations of the brightness temperature by satellite12

passive microwave sensors have been the backbone for sea-ice concentration retrieval for13

more than 35 years because these are independent of daylight and quite insensitive to the14

cloud cover. These satellite sensors measure the brightness temperature at window15

frequencies between 6 GHz and ~90 GHz at vertical and horizontal polarization, at a constant16

incidence angle of ~53° which we use for the present paper. Numerous sea-ice concentration17

retrieval algorithms have been developed during the past decades (see e.g. Ivanova et al.,18

2015). To retrieve the sea-ice concentration all algorithms exploit in some way the contrast in19

the microwave brightness temperature between open water and sea ice. During cold20

conditions, i.e. as long as freezing conditions prevail, sea-ice concentrations are retrieved with21

these algorithms as accurate as 2% to 5% for the near 100% ice cover (Ivanova et al., 2015,22

2014; Andersen et al., 2007; Meier, 2005). However, during melting conditions the retrieval23

accuracy is reduced substantially and sea-ice concentrations can be biased low compared to24

the actual sea-ice concentration (Ivanova et al., 2013; Rösel et al., 2012b; Comiso and Kwok,25

1996; Cavalieri et al., 1990).26

One potential reason for the reduced accuracy is the change in microphysical properties inside27

the sea ice, for instance, the desalination of the sea ice during the melt process or the flushing28

of air voids in multiyear ice with melt water and other melt processes as for example29

described in Scharien et al. (2010). Another potential reason is the change in surface30

properties of the sea ice. The three key surface features of summer melt on Arctic sea ice are a31

metamorphous, wet snow cover, a porous, wet sea-ice surface, and melt ponds. During32

summer, the snow cover on sea ice is usually wet or even saturated with melt water (Garrity,33



1992). Its density is usually considerably larger during summer than during winter (Warren et1

al., 1999; Maykut and Untersteiner, 1971). Diurnal melt-refreeze cycles, i.e. episodes of2

intermittent melting and refreezing of the snow, which is a common phenomenon during late3

spring, result in an increase of the snow grain size.4

Wet snow is an efficient absorber of microwave radiation and has a microwave emissivity5

close to 1. It can effectively block microwave emission from underneath and thereby masks6

differences in volume scattering between first-year and multiyear ice. Therefore microwave7

brightness temperatures of sea ice covered with wet snow usually are close to its physical8

temperature during melt (e.g. Stiles and Ulaby, 1980; Eppler et al., 1992; Hallikainen and9

Winebrenner, 1992; Garrity, 1992).10

During the meltphase of melt-refreeze cycles, coarse-grained snow can be regarded to behave11

similar to wet snow due to its wetness. During the refreeze phase, however, when it is dry, it12

absorbs less microwave radiation than wet snow and there is more scattering from within the13

snow. Therefore, dry coarse-grained snow does not block or mask microwave emission and14

volume scattering differences of the sea ice and/or snow underneath as efficiently as wet snow15

does. The amount of volume scattering depends on microwave frequency and polarization,16

and on the vertical location of the coarse-grained snow layers relative to the snow surface.17

Because the electromagnetic wavelengths are closer to the snow grain size at higher18

frequencies, i.e. at 37-90 GHz, volume scattering in snow is larger for the higher than the19

lower microwave frequencies (Fuhrhop et al., 1998; Eppler et al., 1992; Hallikainen and20

Winebrenner, 1992; Gogineni et al., 1992). In Tables 1 to 3 we give some sensitivities of21

microwave brightness temperatures with respect to changes in snow wetness, density, and22

grain size. These tables are not meant to be exhaustive. Instead we will use the sensitivities23

for our discussion of the results (section 4).24

Melt ponds are puddles of melt water on top of sea ice. They form during summer from25

melting snow and sea ice. Their areal fraction, size and depth is determined by the onset,26

length and severity of the melting season, the sea-ice type and topography, and the snow-27

depth distribution at the beginning of melt (Landy et al., 2014; Polashenski et al., 2012;28

Petrich et al., 2012; Eicken et al., 2004; Perovich et al., 2002). The melt-pond water salinity is29

close to zero ppt. Typically, the melt-pond fraction on Arctic sea ice varies between 10% and30

40% but can also exceed 50%, for instance, early in the melt season or on land-fast sea ice31

(Webster et al., 2015; Divine et al., 2015; Landy et al., 2014; Polashenski et al., 2012;32



Sankelo et al., 2010; Tschudi et al., 2001; Yackel and Barber, 2000; Fetterer and Untersteiner,1

1998).2

The penetration depth into liquid water of microwave radiation at the frequencies used here,3

i.e. between 6 and 89 GHz, is in the order of one millimeter (Ulaby et al., 1986). We use the4

penetration depth here as the depth from which most of the microwave radiation originates.5

Because of the above-mentioned very low penetration depth, a water layer with a depth of a6

few millimeters is opaque enough to completely block the microwave signal from the sea ice7

underneath. A melt pond on sea ice has the brightness temperature signal of open water and is8

therefore indistinguishable from open water in cracks or leads between the sea-ice floes9

(Gogineni et al., 1992; Grenfell and Lohanick, 1985). At 6 GHz and higher frequencies the10

signature of fresh water and salt water are indistinguishable. Satellite microwave sensors11

which have been used for sea-ice concentration retrieval allow for footprint sizes between ~ 512

km and ~ 70 km. Melt ponds, cracks and leads are therefore sub-footprint size surface features13

and cannot be resolved individually. A satellite brightness temperature measurement of a14

mixed scene is therefore composed of contributions from the open water, i.e. cracks, leads,15

melt ponds, and from the (snow covered) sea ice. This has two main consequences for a sea-16

ice concentration product computed from such coarse resolution satellite measurements. The17

sea-ice concentration in the presence of melt ponds is likely to be underestimated – because18

melt ponds are seen as open water. Whether the footprint contains, for example, A) 100% sea19

ice with 40% melt ponds or B) 60% sea ice with 40% open water from leads and openings, is20

ambiguous. In both cases satellite microwave radiometry retrieves 60% sea-ice concentration21

because the net sea-ice surface fraction of sea ice in the grid cells is 60%. If during summer, a22

sea-ice concentration retrieval algorithm over-estimates the net sea-ice surface fraction in case23

A, for example because of a specific summer-time microwave signature of the sea ice, and24

provides, e.g., ~90% sea-ice concentration, then the same algorithm would most likely also25

overestimate the net sea-ice surface fraction in case B. The algorithm would hence under-26

estimate the actual sea-ice concentration in case A but over-estimate the actual sea-ice27

concentration in case B.28

This has consequences for climate research. For example, the sea-ice area, which is defined as29

the sum of the area of all sea-ice covered grid cells weighted by the sea-ice concentration, will30

be under-estimated from case A) but will be over-estimated from case B). Approaches have31

been developed, which permit to derive the melt-pond fraction on sea ice from satellite32

observations in the visible/near-infrared frequency range (Istomina et al., 2015a, 2015b; Zege33



et al., 2015; Rösel et al., 2012a). Their results could be used to correct the above-mentioned1

ambiguity by quantifying how much of the open water seen (30% in the example above) is2

actually caused by melt ponds. However, the time-series of melt-pond fraction data computed3

so far (2002-2009 and 2002-2011) are too short to apply such a correction for the entire over4

35 years long sea-ice concentration data set from satellite microwave radiometry. In addition,5

such data may have limitations due to cloud cover and the viewing geometry at high latitudes6

(see sub-section 2.1).7

The ambiguity in the actual surface properties related to the sea-ice concentration value of8

60% in the example above is also challenging for the initialization and evaluation of9

numerical models, and the assimilation of sea-ice concentration data into such models. An10

unambiguous sea-ice concentration is required for, e.g., the correct computation of the sea-ice11

volume. In the terminology of the more advanced thermo-dynamic and dynamic sea-ice12

models or model components which treat leads and melt ponds separately (e.g. Holland et al.,13

2012; Flocco et al., 2010), the fraction of sea ice covering the open ocean is called sea-ice14

concentration and includes melt ponds. The fraction of the latter is given separately as the15

area of the sea-ice surface covered by melt ponds and is called melt-pond fraction. It is16

obvious, that such models would have difficulties using a sea-ice concentration product which17

is biased like described above for cases A and B. Even numerical models, which are not as18

advanced and which do not treat melt ponds separately, would have difficulties to use such a19

product.20

This calls for a better quantification of the uncertainty and/or of potential biases in the sea-ice21

concentration. How sensitive are present-day sea-ice concentrations algorithms to the melt-22

pond fraction? How do these algorithms differ with respect to the expected bias due to melt23

ponds and how can we explain these differences? We hypothesize that microwave brightness24

temperatures and sea-ice concentrations derived from them change linearly with the increase25

in surface-water fraction or the decrease in net sea-ice surface fraction due to melt ponds. To26

the authors’ best knowledge, an inter-comparison of different algorithms which incorporates27

contemporary information of the melt-pond fraction and an independent sea-ice concentration28

estimate, as is the aim of this study, has not previously been carried out.29

In the present paper we illustrate how satellite microwave brightness temperature30

measurements vary with the net sea-ice surface fraction derived from satellite visible/near-31

infrared (VIS/NIR) imagery. We compare the sea-ice concentration obtained with different32

sea-ice concentration retrieval algorithms from these brightness temperatures with the sea-ice33



concentration and with the net sea-ice surface fraction from VIS/NIR imagery. We isolate the1

influence of melt-pond fractions on the net sea-ice surface fraction by limiting our analysis to2

VIS/NIR imagery sea-ice concentrations > 90%. We demonstrate how these brightness3

temperatures change with progression of melt and discuss the implications of this change for4

sea-ice concentration retrieval.5

The paper is organized as follows. The next section (2) describes the data sets and methods6

used for the inter-comparison of brightness temperatures and sea-ice concentrations derived7

with several algorithms and the melt-pond fraction. In section 3 we are going to present the8

results of this inter-comparison which we discuss in section 4. Section 5 concludes our9

findings.10

11

2 Data and Methods12

The paper focuses on the melt season, i.e. months June, July, and August, of the year 2009.13

The spatial domain of our investigations is a region of the Arctic Ocean (see Figure 1). This14

region is determined by the area and data which we chose to compute the sea-ice cover15

parameters from satellite VIS/NIR imagery, described in the following sub-section 2.1.16

2.1Sea-ice parameters from VIS/NIR satellite imagery17

2.1.1 Data sets and methodology18

We derive the open water fraction, melt-pond fraction, and net sea-ice surface fraction from19

reflectance measurements of the Moderate Resolution Imaging Spectroradiometer (MODIS)20

aboard the Earth Observations Satellite TERRA. We use the “MODIS Surface Reflectance21

daily L2G Global 500 m and 1 km” - product (MOD09GA,22

http://reverb.echo.nasa.gov/reverb/). We obtain the L2G data on the sinusoidal tile grid used23

for MODIS L2 data from http://modis-land.gsfc.nasa.gov/MODLAND_grid.html. We project24

the MODIS reflectance data together with land, cloud, and ancillary information onto the25

NSIDC polar stereographic grid with tangential plane at 70°N with a grid resolution of 0.526

km. Subsequently, we use all re-projected tiles to compose an Arctic mosaic of the MODIS27

wavelength bands 1: 459-479 nm, 3: 620-670 nm, and 4: 841-876 nm. We apply a spectral28

un-mixing approach to classify the fractions of open water (between the ice floes), melt29

ponds, and sea ice, which can be barren or snow covered. For this we use typical reflectance30

values of these surface types in the above-mentioned wavelength bands (Tschudi et al., 2008).31

The methodology is explained in more detail together with validation results in Rösel et al.32



(2012a) and yields the distribution of the fractions of open water, melt ponds, and net sea-ice1

surface fraction at 0.5 km grid resolution. We average these distributions onto a NSIDC polar-2

stereographic grid with 12.5 km grid resolution. Together with the above-mentioned fractions3

the standard deviation of the melt-pond fraction per grid cell and the number of clear-sky 0.54

km grid cells contributing to each 12.5 km grid cell are stored in netCDF file format. The5

number of clear-sky grid cells is taken as a measure of the cloud fraction later. The grid6

resolution of 12.5 km is chosen in accordance to the 8-day MPF data set derived with the7

same approach but using 8-day composite MODIS reflectance data for years 2000-20118

(Rösel et al., 2012a). We compute the MODIS sea-ice concentration by subtracting the open-9

water fraction from 100%; note that the MODIS sea-ice concentration includes the sea ice10

covered by melt ponds while the net sea-ice surface fraction does not. Open-water fraction,11

melt-pond fraction, and net sea-ice surface fraction add to 100%. For the comparison with the12

microwave brightness temperatures (sub-section 2.2) and sea-ice concentrations derived from13

these (sub-section 2.3) we average the MODIS sea-ice parameter data set to 100 km x 100 km14

grid resolution. In addition, in order to mitigate the influence by variations in the actual sea-15

ice concentration on our results, we only use grid cells with MODIS sea-ice concentration >16

90% unless stated otherwise. Throughout the paper we use the term “ice-surface fraction” for17

net sea-ice surface fraction.18

19

2.1.2 Quality assessment of the MODIS sea-ice parameters20

The quality of MODIS reflectance measurements carried out at high latitudes may be21

degraded from high sun zenith angles, long pathways through the atmosphere, cloud shadows,22

and, in addition, shadows caused by ridges in the sea-ice cover. We use only reflectance23

values with the highest quality. This ensures that cloudy pixels and pixels with cloud24

shadows, pixels with sun zenith angles > 85° and pixels with sensor viewing angles > 60°,25

data from faulty or poorly corrected L1B pixels, pixels containing the default or the highest26

aerosol level and pixels without any correction for the atmospheric influence are not used.27

Mäkynen et al. (2014) hypothesized that our daily MODIS melt-pond fractions are positively28

biased by about 5-10 % during early melt. In-situ observations carried out north of Greenland29

revealed a melt-pond fraction of 0% and a sea-ice concentration of 100 % during the first two30

weeks of June 2009 (Mäkynen et al., 2014). Melt onset dates given in Perovich et al. (2014)31

support this observation. In order to confirm this notion, we derived histograms of the32



MODIS melt-pond fraction and the MODIS sea-ice concentration using the data with 12.5 km1

grid resolution for latitudes north of 83°N for all days before June 7, 9, 11, and 13,2

respectively (Figure 2). MODIS melt-pond fractions peak at 8%. There are no grid cells with3

a melt-pond fraction below 4 %. The MODIS sea-ice concentration peaks at 98 % without any4

grid cell with values > 98%, suggesting a bias of 2%. We can also confirm the magnitudes of5

the above-mentioned biases from version 01 of the 8-day MODIS melt-pond fraction product6

(Kern et al., 2015) and conclude the presence of a systematic bias. Therefore we apply a bias7

correction and subtract 8% from the melt-pond fractions and add 2% to MODIS sea-ice8

concentrations. A similar correction (minus 8% and plus 3%) was applied to melt-pond9

fraction and sea-ice concentration of version 01 of the 8-day MODIS melt-pond fraction10

product (Rösel et al., 2012a; DOI:10.1594/WDCC/MODIS__Arctic__MPF) yielding version 02:11

DOI:10.1594/WDCC/MODIS__Arctic__MPF_V02). For the daily product used here, we set the few12

negative melt-pond fractions resulting from the bias correction to zero.13

Even though a state-of-the-art cloud masking scheme has been applied to the MODIS14

reflectance data before the MODIS sea-ice parameter retrieval (Rösel et al., 2012a), there is15

still a substantial number of misclassified grid cells. It has been demonstrated that even with a16

multi-channel instrument such as MODIS, cloud classification is a challenge over bright17

surfaces such as sea ice or snow (Chan and Comiso, 2013; Karlsson and Dybbroe, 2010). In18

order to mitigate the influence from misclassifications due to residual clouds, we only use 10019

km grid cells with a cloud cover < 5%. About 15 500 grid cells remain for the analysis. We20

note that for MODIS collection 6 data (we use collection 5) a further improvement of cloud21

cover properties in the high latitudes is not foreseen (King et al., 2013; Baum et al., 2012) We22

find that by changing the cloud-cover threshold to 2% or to 10% (not shown), the number of23

co-located grid cells do change but the results shown in Section 3 do not. We estimate the24

average uncertainty in the melt-pond fraction, net sea-ice surface fraction and MODIS sea-ice25

concentration due to cloud-induced misclassifications to ~ 5%.26

More important is the potential misclassification of one of the surface types. The reflectance27

values used are fixed for the entire summer season and the entire Arctic domain. Therefore28

the MODIS sea-ice parameter retrieval does not account for the spatiotemporal variability in29

the spectral properties of the melt ponds or the non-ponded sea ice. These spectral properties30

change as a function of ice type and melt-season duration. The spectral properties of melt31

ponds on first-year ice are likely to approach those of leads and openings as melt season32



progresses while for melt ponds on multiyear ice these change less due its larger thickness1

and different internal structure. This could result in an over-estimation of the melt-pond2

fraction relative to the open-water fraction for first-year ice or vice versa, because the spectral3

space between sea ice and water is larger than between melt ponds and open water (leads).4

Such a misclassification would have, however, no implications for the net sea-ice surface5

fraction. It would affect only the melt pond or the open-water fraction. Therefore such a6

misclassification is likely not influencing the main results of the present paper but should be7

kept in mind when interpreting MODIS sea-ice concentrations (see sub-section 3.2).8

Rösel et al. (2012a) report RMSD values between MODIS melt-pond fraction and9

independent melt-pond fraction observations of 4% to 11%. We compare the MODIS sea-ice10

concentration with visual ship-based sea-ice concentration observations from seven ship11

expeditions into the Arctic Ocean and obtain an average RMSD of (10.3 ± 3.3)% (range:12

6.0% to 15.2%). A comparison of our daily MODIS melt-pond fraction data set with13

contemporary daily melt-pond fraction estimates based on Envisat MERIS data derived with14

the approach of Istomina et al (2015a) revealed a consistent agreement (Marks, 2015). Based15

on these results we are quite confident, that the average uncertainty of the melt-pond fraction16

is better than 10% and that the MODIS ice-surface fraction is as accurate as ~ 5%.17

At the time of our analysis and writing this MODIS product was the best we could have,18

despite the above-mentioned limitations due to cloud cover and spatiotemporal variation of19

the ice-type dependent spectral properties of the summer sea-ice cover. The results of our20

quality analysis and the results of Marks (2015) confirm that we can take the MODIS sea-ice21

parameters as kind of the ground truth against which we compare brightness temperatures and22

sea-ice concentrations in Sections 3 and 4.23

24

2.2Satellite microwave brightness temperatures25

We use brightness temperatures measured by the Advanced Microwave Scanning Radiometer26

aboard the Earth Observation Satellite (EOS) TERRA: AMSR-E. The AMSR-E data used are27

from the 6.9 GHz, 10.7 GHz, 18.7 GHz, 36.5 GHz, and 89.0 GHz channels, which we28

abbreviate with 6, 10, 19, 37, and 89 GHz henceforth. We take the AMSR-E swath data from29

the AMSR-E/Aqua L2A Global Swath Spatially-Resampled Brightness Temperatures data30

set, version 2: http://nsidc.org/data/docs/daac/ae_l2a_tbs.gd.html, (Ashcroft and Wentz,31

2013). We resample the brightness temperatures of all channels to the resolution of the 6 GHz32

channel, which has a 3-dB footprint of 43 km x 75 km, and co-locate these to the MODIS sea-33



ice parameters provided at 100 km grid resolution (sub-section 2.1). We include data from all1

AMSR-E passes of the same day as the MODIS data. Only data with footprints which centers2

located within 5 km of the center of a MODIS sea-ice parameter grid cell are used. AMSR-E3

sampling is approximately every 10 kilometers so this gives us approximately 1 data point4

from each AMSR-E pass.5

6

2.3 Sea-ice concentration algorithms7

We compute sea-ice concentrations from this set of co-located AMSR-E brightness8

temperatures (sub-section 2.2) using eight selected sea-ice concentration algorithms9

investigated in the European Space Agency Climate Change Initiative – Sea Ice (SICCI)10

project. The full suite of sea-ice concentration algorithms used in the SICCI project is11

documented in the SICCI project reports: PVASR (Ivanova et al., 2013) and ATBD (Ivanova12

et al., 2014), together with the tie points for open water and sea ice. The tie points represent13

winter conditions. The motivation for this is two-fold. One is our wish to inter-compare the14

eight algorithms independently of individual tie points being specifically selected in the15

original algorithms. We want to use one universal set of tie points (see also Ivanova et al.,16

2015). This implies the second reason why we use winter tie points in the present study. For17

the derivation of the sea-ice tie points Ivanova et al. (2015) used high ice concentration areas18

of convergent ice motion during winter. This ensures that i) the areas from which tie points19

are retrieved are large enough and ii) the areas have indeed 100% sea-ice concentration. Such20

an approach does not work under summer conditions because openings / leads in the ice cover21

do not freeze over. In the present study we focus on a selected number of different22

(representative) types of algorithms (Ivanova et al., 2015) and do not include algorithms23

where a methodology is duplicated. The selected algorithms are summarized in Table 4.24

We categorize the algorithms into four types based on the way brightness temperatures are25

used: 1) algorithms based on one polarization and one frequency (e.g. One_channel 6H); 2)26

algorithms based on different frequencies but the same polarization such as the frequency27

mode of the Comiso Bootstrap algorithm (Bootstrap_f); 3) algorithms based on different28

polarizations but the same frequency such as the polarization mode of the Comiso Bootstrap29

algorithm (Bootstrap_p); 4) algorithms based on at least two frequencies and/or polarizations30

like the NASA-Team algorithm (NASA_Team).31

A fifth type of algorithms is given by the so-called hybrid algorithms. These combine two or32

more of the above-mentioned types of algorithms such like the Eumetsat OSI-SAF algorithm33



(Eastwood et al., 2012) or SICCI (Ivanova et al., 2015), which combine Bristol and1

Bootstrap_f or CalVal which is identical to Bootstrap_f, and the Arctic version of the Comiso2

Bootstrap algorithm (Comiso et al., 1997; Comiso 2009), which combines Bootstrap_f and3

Bootstrap_p. For the high sea-ice concentrations we focus on in this paper, these two hybrid4

algorithms are almost identical to the algorithm, which is employed at high sea-ice5

concentrations, that is Bristol in case of the OSI-SAF (zero weight at < 40%, full weight at ≥6

80%) and SICCI (zero weight at < 70%, full weight at ≥ 90%) algorithms and Bootstrap_p in7

case of the Comiso Bootstrap algorithm. Therefore we do not show the analysis for the hybrid8

algorithms in this paper.9

10

2.4 Sea-ice age data set11

Brightness temperature changes over Arctic sea ice are different for first-year ice (FYI) and12

multiyear ice (MYI) (Eppler et al., 1992). In order to separate these two sea-ice types we use13

the Arctic sea-ice age data set (Tschudi et al., 2016). This data set is available with weekly14

temporal resolution, has a grid resolution of 12.5 km x 12.5 km and is based on sea-ice drift15

trajectory analysis (Tschudi et al., 2010; Fowler et al., 2003). We prefer this data set over16

other approaches being usually limited to the winter period (e.g. Comiso, 2012; Swan and17

Long, 2012). We co-locate the sea-ice age data set with the MODIS sea-ice parameter data set18

as follows. For each MODIS data set grid cell we first find the sea-ice age grid cell which19

center has the smallest distance to the center of the MODIS data set grid cell. Secondly, we20

select a 7 x 7 grid cell array around that first co-located grid cell from the sea-ice age data set.21

Subsequently, we count the numbers with which a certain sea-ice age occurs within the co-22

located 7x7 grid cell array and divide by the total number (for every ice age) of counts. We23

assign the ice type FYI to the respective MODIS data-set grid cell only if more than 90% of24

the counts indicate a sea-ice age of 1 year. We correspondingly assign the ice type MYI only25

if more than 90% of the counts indicate a sea-ice age of 3 years or older. All other grid cells26

are kept without any classification into an ice type. In our co-located data set, FYI is assigned27

to MODIS data set grid cells in the northern Chukchi Seas and parts of the central Arctic28

Ocean as well as north of Franz-Josef Land (Figure 1 a). Multi-year ice is assigned to MODIS29

data set grid cells north of the Canadian Arctic Archipelago (Figure 1 b). The latter region is30

also the area where the largest number of co-locations is found whereas only few co-locations31

are found in the northern Chukchi Sea (Figure 1 c).32

33



3 Results1

3.1MODIS sea-ice parameters2

We show the temporal development of the daily sea-ice parameters obtained with MODIS3

(subsection 2.1) for June to August 2009 in Figure 3. These include MODIS sea-ice4

concentration, the net sea-ice surface fraction, the net surface-water fraction, which is the5

open-water fraction plus the melt-pond fraction, and the melt-pond fraction for each day and6

each co-located grid cell. No further averaging is applied and we show all grid cells regardless7

of ice type. Gaps in the time series and the varying number of data points are caused by daily8

variations in cloud cover and the decrease in sea-ice cover from June to August. Only grid9

cells with MODIS sea-ice concentration > 90% are shown; the number of grid cells fulfilling10

this criterion is decreasing with progressing melt season.11

During the first 2-3 weeks the MODIS melt-pond fraction in our data set remains near zero.12

Then the melt-pond fraction starts to increase, first slowly: days 20-30 (5th and 6th 5-day13

period or pentad of June), then rapidly: days 30-45 (1st to 3rd pentad of July). After a short14

plateau, where the melt-pond fraction remains near 35%, it first declines rapidly to about 20%15

at days 55-60 (last pentad of July) and then more slowly to about 15% until the end of our16

study period (Aug. 31). Throughout June, MODIS sea-ice concentrations are close to 100%17

until day 30, and then there is more variability around 90-95% after day 55. Net total water18

fraction and net sea-ice surface fraction, are linked to the previous two parameters and add up19

to 100%.20

3.2 AMSR-E sea-ice concentration compared to MODIS sea-ice21

concentration22

We first compare sea-ice concentrations derived with the algorithms listed in Table 4 from23

AMSR-E brightness temperatures (sub-sections 2.2 and 2.3) with MODIS sea-ice24

concentrations (sub-section 2.1) with the aim to illustrate how summer-time AMSR-E sea-ice25

concentrations compare to an independent sea-ice concentration estimate. We include all data26

with MODIS sea-ice concentrations > 20%. We find different agreement between AMSR-E27

and MODIS sea-ice concentrations for the different algorithms for June (Table 5), July28

(Figure 4, Table 6) and August (Table 7) of the year 2009. Common for all algorithms is a29

cluster of data, which is more or less centered at an AMSR-E sea-ice concentration of 100%.30

Slopes of a linear regression forced through the point (0,0) range from 0.90 for Bootstrap_p31

(Figure 4 e) to 1.12 for Bootstrap_f (Figure 4 b). Values of the root mean square difference32



(RMSD) between AMSR-E and MODIS sea-ice concentrations vary between 7.4 % for NT21

(Figure 4 f) and 18.1 % for Bootstrap_f. Only few values of MODIS sea-ice concentrations <2

80% exist. For these, AMSR-E sea-ice concentrations are generally biased low by between 103

and 20% - except for the NT2-algorithm (Figure 4 f). The ASI and NT2 algorithms cut off4

sea-ice concentrations once they exceed 103% and 100% ice concentration, respectively. We5

exclude these two algorithms therefore out of the following quality ranking.6

We take the slope (the closer to 1 the better), the correlation (the higher the better) and the7

RMSD (the lower the better) as a quality measure and find the NASA-Team algorithm to8

outperform all other algorithms listed in Table 4 for June (Table 5) – no matter whether we9

use all grid cells or only FYI or MYI grid-cells (see sub-section 2.4). For July (Table 6), the10

NASA-Team algorithm is as good as the Near90_lin algorithm. For August (Table 7), best11

slopes are obtained for the Bootstrap_p algorithm while lowest RMSD values are obtained for12

the NASA-Team algorithm. Note that the number of FYI grid cells is extremely low for13

August and that the numbers given in Table 7 for FYI should not be over-interpreted.14

The average correlation, computed from six algorithms, decreases from June: 0.72 ± 0.07 over15

0.53 ± 0.18 in July to 0.42 ± 0.10 in August. We believe this can be attributed to the known16

limitations of AMSR-E and other passive microwave sea-ice concentration retrieval17

algorithms during melting conditions due to varying snow properties and due to melt ponds. It18

is difficult to quantify the sensitivity of such algorithms to snow-property variations, because19

their magnitude and spatiotemporal distribution is unknown. In contrast, it should be possible20

to quantify the sensitivity of such algorithms to melt ponds, because these should theoretically21

be detected as open water. Consequently, such algorithms should provide an open-water22

fraction which is the sum of the fractions of leads and openings between the ice floes and of23

the melt ponds on the sea ice. In order to isolate the influence of the melt ponds one needs to24

investigate only the high ice concentration areas. The MODIS sea-ice parameter data set (sub-25

section 2.1), which we use, is ideal for this purpose, because it provides the open-water26

fraction (in leads and openings), the melt-pond fraction (on sea ice) and the net sea-ice surface27

fraction. By limiting our investigation to MODIS sea-ice concentrations > 90% we can take28

the MODIS ice-surface fraction as an inverse measure of the melt-pond fraction.29

3.3AMSR-E sea-ice concentration compared to MODIS ice-surface fraction30

We compare AMSR-E sea-ice concentration (sub-section 3.2) with the MODIS ice-surface31

fraction (sub-section 2.1) for grid cells with MODIS sea-ice concentration > 90%. For the32

range of observed MODIS ice-surface fractions between about 50 and 100%, we find quite33



different ranges of AMSR-E sea-ice concentrations (Figure 5). For the Bootstrap_f and 6H1

algorithm, AMSR-E sea-ice concentrations range between 80 and 150% and 75 and 125%,2

respectively, and suggest a relatively well-defined linear relationship (Figure 5 a,b). For July,3

we find a slope between AMSR-E sea-ice concentration and MODIS ice-surface fraction of4

1.44 and 1.34, respectively. The respective correlation coefficients are 0.855 and 0.820. For5

the Bootstrap_p and NASA_Team algorithm, AMSR-E sea-ice concentrations tend to cluster6

in a point cloud with a shallower slope and a less well defined linear relationship (Figure 57

c,e). For July, the corresponding slopes are 1.14 and 1.23, respectively, and the respective8

correlation coefficients are 0.428 and 0.666. AMSR-E sea-ice concentrations derived with the9

ASI and the NT2 algorithm stay within 75 and 100% and within 85 and 100%, respectively10

(Figure 5 d,f); the small range in AMSR-E sea-ice concentrations of these two algorithms can11

clearly be attributed to the cut off mentioned in sub-section 3.2.12

We obtain slope, correlation coefficient, and RMSD values of all eight algorithms (see Table13

4) separately for i) all grid cells,ii) only the FYI grid cells, and iii) only the MYI grid cells14

(see sub-section 2.4) and summarize these in Tables 8 to 10 for June, July, and August. For15

August we exclude all values obtained for FYI grid cells because of their low count of 4416

(Table 10). We find an increase in the slopes from June to July for all algorithms, which is17

followed by a decrease for 6H, Bootstrap_f and Bristol algorithms but a further increase for18

Bootstrap_p and Near90_lin algorithms from July to August. Correlations between AMSR-E19

sea-ice concentrations and MODIS ice-surface fractions are below 0.4 in June (Table 8). In20

contrast, for July (Table 9) we obtain correlations > 0.8 for 6H, Bootstrap_f, and Bristol21

algorithms – together with the largest slopes. These suggest a considerable sensitivity of these22

algorithms to the melt-pond fraction. This does also apply to MYI grid cells. For July, the23

lowest correlation of 0.43 is obtained for the Bootstrap_p algorithm – together with the24

smallest slope (Table 9). This suggests the weakest sensitivity to the melt-pond fraction25

among the investigated algorithms.26

We carried out the same inter-comparison using a MODIS sea-ice concentration threshold of27

98% (not shown) instead of 90%. By using 98%, no results can be obtained for August28

because of too few valid data. For June and July slopes remain similar to those in Tables 829

and 9. For June, correlations are considerably smaller compared to using 90%. Correlations30

are a bit higher for July. Despite this better correlation in July, the peak melting period (see31

Figure 3), we decided to keep the 90% threshold to ensure a large enough number of data32



points. The results of the previous paragraph remain the same for 90% and 98% MODIS sea-1

ice concentration threshold.2

We conclude: For one type of algorithms, AMSR-E sea-ice concentration is linearly related to3

the MODIS ice-surface fraction, as we hypothesized in the introduction, i.e., AMSR-E sea-ice4

concentrations are sensitive to the melt-pond fraction. These are the 6H, Bootstrap_f, and5

Bristol algorithms. For the other algorithms investigated, such a linear relationship is6

increasingly less pronounced in the following, descending order: NASA-Team, Near90_lin,7

Bootstrap_p.8

9

4 Discussion10

4.1Sea-ice concentration algorithm parameter space11

To explain the different sensitivities to the melt pond fraction (sub-section 3.2), we start with12

an illustration of the distribution of AMSR-E brightness temperatures and contemporary13

MODIS ice-surface fractions of July 2009 in the parameter spaces of four of the algorithms14

(Figure 6). These algorithms are: NASA-Team, ASI or Near90_lin, as both rely on brightness15

temperatures near 90 GHz, and the two Bootstrap algorithms. Bootstrap_f and Bootstrap_p16

are the two algorithms with the highest and the lowest sensitivity of AMSR-E sea-ice17

concentrations to melt-pond fraction, respectively (Figure 5, Tables 8 to 10). The NASA-18

Team algorithm is among the most used ones and the ASI and Near90_lin algorithm have the19

advantage of a substantially finer grid resolution thanks to using the near 90 GHz channels. In20

every parameter space we show the following items:21

I. A winter-time AMSR-E brightness temperature distribution for open water (black22

dots) and AMSR-E NT2 sea-ice concentration > 90% (white dots). The spread of the23

black dots results from the weather influence over open water. We refer to these as24

winter data points or winter brightness temperatures in the following text.25

II. Winter-time open water (white cross) and sea ice (black crosses) tie points obtained26

from Ivanova et al. (2015) and used to compute the AMSR-E sea-ice concentration27

(see sub-section 2.3 for an explanation of why we use winter tie points).28

III. Red arrows denote the direction of increasing sea-ice concentration.29

IV. AMSR-E brightness temperatures of our data set, i.e. only for MODIS sea-ice30

concentration > 90% for the month of July, color coded with the contemporary31

MODIS ice-surface fraction. We refer to these as summer data points or summer32

brightness temperatures in the following text.33



V. A red line connecting FYI and MYI tie points denotes the ice line.1

2

4.1.1 NASA-Team algorithm3

For NASA-Team algorithm (Figure 6 a) summer data points from July 2009 are located well4

within the cloud of winter data points (see I.). The NASA-Team tie-point triangle (Cavalieri5

et al., 1990) is approximated by the dashed white lines and the red (ice) line (see V.). Many6

summer data points are located to the left of the ice line. For these data points, NASA-Team7

sea-ice concentrations exceed 100% and MODIS ice-surface fractions are between 80 and8

100% (see the color scale). To the right of the ice line, summer data points coincide with9

MODIS ice-surface fractions of ~70% and are supposed to provide NASA-Team sea-ice10

concentrations between 80 and 100% (compare Figure 5 c).11

12

4.1.2 ASI or Near90_lin algorithm13

For the ASI or Near90_lin algorithm (Figure 6 b) summer data points from July 2009 are also14

located well within the cloud of winter data points. A considerable number of the summer15

data points are located above the ice line. For these data points, ASI or Near90_lin sea-ice16

concentrations exceed 100%. Most of the summer data points located below the ice line are17

corresponding to ASI or Near90_lin sea-ice concentrations between 80 and 100%. The18

associated MODIS ice-surface fractions decrease from ~100% close to the MYI tie point to19

~70% when following the summer data points towards the FYI tie point and beyond (compare20

Figure 5 d).21

22

4.1.3 Bootstrap_f algorithm23

For the Bootstrap_f algorithm (Figure 6 c), a substantial number of summer data points from24

July 2009 fall outside the winter data-point cloud. The majority of the summer data points are25

located above the winter ice line (red: our tie points, black: Comiso et al. (1997)). The26

locations of these data points relative to the open-water tie point, the winter ice lines and the27

tie points for MYI and FYI suggests, that Bootstrap_f sea-ice concentrations exceed 100% by28

up to a few ten percent (compare Figure 5 b). The distance between the open-water tie point29

and the winter ice lines increases from left (MYI tie point) to right (FYI tie point). Similar30

MODIS ice-surface fractions tend to intersect the winter ice lines. Therefore, the over-31



estimation of Bootstrap_f sea-ice concentration decreases with decreasing MODIS ice-surface1

fraction (see also Figure 5 b).2

4.1.4 Bootstrap_p algorithm3

For the Bootstrap_p algorithm (Figure 6 d), only few summer data points from July 2009 are4

located closely above the winter ice lines (see also sub-section 4.1.3). Consequently,5

Bootstrap_p sea-ice concentrations do not exceed 110% (compare Figure 5 e). Similar to the6

Bootstrap_f algorithm (Figure 6 c) only very few summer data points are located close to the7

MYI tie point. The majority of those data points which are associated with MODIS ice-8

surface fractions ~70% are located in a relatively broad band parallel to the winter ice lines9

close to the FYI tie point. The distance between the open-water tie point and the winter ice10

lines increases upward along these lines. We therefore observe a wide range of Bootstrap_p11

sea-ice concentrations between 70 and ~100% at MODIS ice-surface fractions of ~70%12

(compare Figure 5 e).13

4.2Summer sea-ice tie points for the Bootstrap algorithm14

We used open-water and sea-ice tie points representative of winter conditions (sub-section15

2.3). We are not aware of summer sea-ice tie points for the ASI or Near90_lin and the NASA-16

Team algorithms, but they do exist for the Bootstrap algorithm. The solid cyan line in Figure17

6 c) denotes the summer sea-ice tie point for the Bootstrap_f algorithm taken from Comiso et18

al. (1997). For the Bootstrap_p algorithm (Figure 6 d), the solid and dashed cyan lines denote19

the summer sea-ice tie points for the periods July 1-18 and July 19 to August 4, respectively.20

For the period after August 4, the summer ice line coincides with the winter ice line (black21

line in Figure 6 d).22

We use MODIS ice-surface fractions of the period June 20 to July 5 to derive summer tie23

points from our summer brightness temperatures. We select only data of MODIS ice-surface24

fractions > 97.8% and of vertically polarized 37 GHz brightness temperatures > 250 K. We do25

not discriminate between different ice types. We compute summer sea-ice tie points (Table26

11) at 19, 37 and 89 GHz and from these also derive values of the normalized brightness-27

temperature polarization difference (PR). These summer sea-ice tie points are added to Figure28

6 c) and d) as cyan crosses.29

The potential impact of using summer instead of winter sea-ice tie points will be discussed in30

the following sub-section.31



4.3Temporal evolution1

During the melting season, changes in the snow and sea-ice microphysical properties, the2

associated variations in AMSR-E brightness temperatures, and the retrieved AMSR-E sea-ice3

concentrations can occur within a few days. It is likely that Figures 4 to 6 do blur such4

temporal variations which, we think, need to be discussed to understand the observed5

differences in the sensitivity of the AMSR-E sea-ice concentration algorithms to the melt-6

pond fraction. Therefore we sub-divide the MODIS and AMSR-E data sets used into pentads7

and discuss the temporal evolution for the four algorithms shown in Figure 6.8

4.3.1 NASA-Team algorithm9

For the NASA-Team algorithm, 1st pentad (June 1-5, Figure 7 a), most summer data points10

are located at PR19 = ~0.03 (compare Table 11) and a GR3719 value between -0.05 and -11

0.01. MODIS ice-surface fractions are ~100%. About 20% of the data points belong to the12

MYI class while only 7 data points belong to the FYI class (see subsection 2.4). NASA-Team13

sea-ice concentration and MODIS ice-surface fraction agree well with each other by means of14

slope and correlation coefficient. Later, summer data points cover a larger PR19 range: 0.0215

to 0.08, and a larger GR3719 range: 0.0 to -0.09 (June 16-20, Figure 7 b) and: 0.0 to -0.1216

(July 1-5, 6-10, Figure 7 c,d). We explain the larger PR19 range by an increase in snow17

density (Table 2) and snow wetness (Table 1). We explain the expansion of GR3719 towards18

more negative values with an increase in the surface layer snow grain size (Table 3). Figures 719

c, d) coincide with the onset of widespread melt-pond formation (see Figure 3, days 30 to 40).20

MODIS ice-surface fractions are still mostly > 85% in Figure 7 b), range between ~100% and21

~70% in Figure 7 c) and decrease to between ~90% and 60% in Figure 7 d). With further melt22

progress, the PR19-GR3719 cloud shrinks to GR3719 values between +0.01 and -0.06 on July23

21-25 (Figure 6 f). At this stage MODIS ice-surface fractions are between 60% and 80%.24

NASA-Team sea-ice concentrations exceed 100% on June 16-20 and especially July 1-525

(Figures 7 b,c) with values up to 120%. We find only few values > 100% for July 21-25,26

shortly after peak melt (Figure 7 f). After the good agreement between NASA-Team sea-ice27

concentration and MODIS ice-surface fraction for June 1-5 (Figure 7 a) it breaks down.28

During July the correlation between NASA-Team sea-ice concentration and MODIS ice-29

surface fraction increases again, together with the slope, which reaches 1.31 for pentad July30

21-25 (Figure 7 f, compare Table 9). Correlations are ~0.5 for most of July which corresponds31

to an explained variance of about 25%. Therefore, after the onset of wide-spread melt-pond32



formation beginning of July 2009, NASA-Team sea-ice concentrations and MODIS ice-1

surface fractions are linearly related to some degree, i.e. the NASA-Team algorithm is2

sensitive to melt ponds. The relatively low correlation highlights the importance of other3

processes such as changes in those snow and sea-ice properties, which influence GR3719.4

These can be snow grain size and wetness (Tables 1 and 3) and, after snow melt, sea-ice5

salinity, roughness, and density [Eppler et al., 1992; Hallikainen and Winebrenner, 1992].6

4.3.2 Bootstrap_f algorithm7

For the Bootstrap_f algorithm, 1st pentad (June 1-5, Figure 8 a), most summer data points are8

associated with MODIS ice-surface fractions ~100%, are located beyond the upper border of9

the winter data points and above the winter ice line (see Figure 6 c). Most Bootstrap_f sea-ice10

concentrations exceed 100% and over-estimate the MODIS ice-surface fraction. We can11

attribute these elevated brightness temperatures to elevated snow wetness (and density) which12

causes a larger increase in the vertically polarized brightness temperatures at 37 GHz than at13

19 GHz (Table 1). On June 16-20 (Figure 8 b), almost all summer data points are located14

above the winter ice line and almost all Bootstrap_f sea-ice concentrations are > 100%;15

maxima exceed 140%. A cluster of MODIS ice-surface fractions can be identified at ~95%16

which coincides with a cluster of Bootstrap_f sea-ice concentrations centred at 130%. Until17

July 1-5 (Figure 8 c), the summer data points cloud gradually expands towards lower values.18

Associated MODIS ice-surface fractions are lowest (~70%) along the bottom of the cloud and19

highest (~95%) at its left end. We attribute the latter to melt-refreeze cycles causing an20

increase in snow grain size associated with a smaller brightness-temperature decrease at 1921

GHz than at 37 GHz (Table 3). These grid cells at the left end of the cloud are responsible for22

the Bootstrap_f sea ice concentrations of ~140% (compare Figure 8 c) and 6 c). Throughout23

the remaining three pentads (Figure 8 d) to f), summer data points are shifting towards lower24

19 GHz brightness temperatures and are covering a smaller brightness temperature range at25

both frequencies. We attribute this to complete snow melt. Snow wetness and grain size26

variations do not influence the brightness temperatures anymore. MODIS ice-surface27

fractions are between 60 and 80% now (Figure 8 f), compare Figure 7 f). Maximum28

Bootstrap_f sea-ice concentrations have decreased to ~120% until July 21-25.29

The good agreement between Bootstrap_f sea-ice concentration and MODIS ice-surface30

fraction in the 1st June pentad breaks down during June and re-emerges during July. Between31

the 3rd pentad of July and the 2nd pentad of August average correlations are ~0.65 explaining >32



40% of the variance. The average slope is 1.45 for these six pentads. Therefore, with the onset1

of wide-spread melt-pond formation Bootstrap_f sea-ice concentrations and MODIS ice-2

surface fractions are linearly related to each other, i.e., the Bootstrap_f algorithm is sensitive3

to melt ponds. This sensitivity is stronger than for the NASA-Team algorithm (sub-section4

4.3.1) which could be explained by a smaller influence of the other surface properties5

mentioned in the previous sub-section.6

It is difficult to quantify how this result would change by using summer sea-ice tie points,7

which we did not use to compute AMSR-E sea-ice concentrations with the two Bootstrap8

algorithms for the reasons given in sub-section 2.3, but did include in Figure 6 c,d) as cyan9

lines. The distance between the cyan line and the winter ice lines in proximity to the FYI tie10

point, measured along the dashed white line (Figure 6 c), suggests that we would reduce11

Bootstrap_f sea-ice concentrations by 10% to 15%. Therefore, at the FYI side of the12

parameter space, Bootstrap_f sea-ice concentrations would be ~100%. However, to the left of13

the FYI tie point the location of the summer data points (Figure 6c), Figure 8 c,d) suggests,14

that Bootstrap_f sea-ice concentrations would still be > 120%. Therefore, using summer sea-15

ice tie points would reduce the slope between Bootstrap_f sea-ice concentrations and MODIS16

ice-surface fractions but whether the correlations would be similarly high and whether we can17

exclude unknown non-linear effects cannot be answered in the present paper.18

4.3.3 The other algorithms19

The temporal evolution of Bootstrap_p sea-ice concentrations in relation to the MODIS ice-20

surface fraction during June is similar to the Bootstrap_f algorithm (Supplementary Figure S121

a,b). One principal difference is the smaller slope we obtain with Bootstrap_p sea-ice22

concentrations compared to the Bootstrap_f algorithm: ~0.9 vs. ~1.1 for June 1-5 and ~1.1 vs.23

1.3 for July 1-5; also correlations are smaller. Secondly, we find larger variations of24

Bootstrap_p sea-ice concentrations around MODIS ice-surface fractions, for example do25

Bootstrap_p sea-ice concentrations range from 50% to 110% at 90% MODIS ice-surface26

fraction. We attribute this to the large and polarization dependent sensitivity of 37 GHz27

brightness temperatures to variations in snow properties (Tables 1 to 3). In June, any linear28

relationship to the emerging melt-pond coverage is obscured by this sensitivity. During the29

first two July pentads, scatter is as high as during most of June. Brightness temperatures30

associated with MODIS ice-surface fractions of ~90% and ~60% are often located right next31

to each other in the algorithms’ parameter space (Supplementary Figure S1 c,d) which is32



different to the Bootstrap_f algorithm (Figure 8 c,d). After mid-July, a linear relationship1

between Bootstrap_p sea-ice concentration and MODIS ice-surface fraction emerges. The2

average slope is 1.25 and correlations increase from 0.34 (July 16-20) to 0.76 (August 6-10).3

In summary, also the Bootstrap_p algorithm is sensitive to melt-ponds. The sensitivity is4

smaller than for the Bootstrap_f algorithm and snow property variations seem to be of larger5

influence.6

How does this result change if we use summer sea-ice tie points (Figure 6 d), cyan lines) and7

sub-section 4.3.2)? The early summer ice line (Figure 6 d), solid cyan line) is steeper than the8

winter ice lines and intersects these close to the FYI tie point. Therefore, close to the FYI tie9

point and to the right, all summer data points are below the summer ice line causing10

Bootstrap_p sea-ice concentrations < 100%. However, to the left of the FYI tie point, summer11

data points are located above the summer ice line causing Bootstrap_p sea-ice concentrations12

of up to ~130% close to the MYI tie point (Figure 6 d). Therefore, for data from 2009, using13

the early summer sea-ice tie points would not generally provide sea-ice concentrations, which14

improve the relationship between Bootstrap_p sea-ice concentrations and MODIS ice-surface15

fractions. The mid-summer ice line (Figure 6 d), dashed cyan line) is located parallel below16

the winter ice lines. A large fraction of the summer data points is located above the summer17

ice line causing Bootstrap_p sea-ice concentrations > 100%. For instance, for July 21-2518

(Supplementary Figure S1 f), about 1/3 of the data points would have a Bootstrap_p sea-ice19

concentration > 100%; currently: 3 data points. Therefore, for data from 2009, using the mid-20

summer sea-ice tie points would increase Bootstrap_p sea-ice concentrations and increase the21

slope between these and MODIS ice-surface fractions, but would not necessarily improve the22

correlation. Compared to the winter sea-ice tie points, using the early-summer (mid-summer)23

sea-ice tie points would result in a decreased (enhanced) sensitivity of the Bootstrap_p24

algorithm to melt ponds.25

The temporal development of brightness temperatures, sea-ice concentrations and ice-surface26

fractions obtained with the Near90_lin algorithm (Supplementary Figure S2, Figure 6 b) is27

comparable to that obtained with the Bootstrap_p algorithm (Supplementary Figure S1). The28

scatter in summer data points and the scatter between Near90_lin sea-ice concentrations and29

MODIS ice-surface fractions is a little less pronounced and peaks earlier. We attribute the30

scatter again to snow property variations (Table 1-3). For the smaller electromagnetic31

wavelength at 89 GHz compared to 37 GHz, scattering by coarse-grained snow is more32

effective than the impact of snow wetness which is evident in the migration of summer data33



points towards lower values (compare Supplementary Figures S1 b) and S2 b). Maximum1

Near90_lin sea-ice concentrations of ~ 120% (Supplementary Figure S2 b) are larger than we2

expect from comparison with Figure 6 b) and can possibly be attributed to an unaccounted3

weather influence in the open-water tie point (Figure 6b), white line). After mid-July,4

correlations increase to their maximum in August 6-10 of 0.81. Slopes are considerably larger5

than for the Bootstrap_p sea-ice concentration and vary around 1.33. Slopes and correlations6

vary considerably between pentads which we attribute mainly to the larger weather influence7

at 89GHz. Enhanced sensitivity of the smaller electromagnetic wavelength at 89GHz to8

surface property variations, be it remaining or new snow (Grenfell, 1986) or sea-ice surface9

wetness changes might also contribute. We conclude that the Near90_lin algorithm or other10

algorithms employing near-90 GHz data such as the ASI algorithm, is sensitive to melt ponds11

only to some degree. Snow and sea-ice property variations but also the weather influence12

impact sea-ice concentration retrieval with this type of algorithm as much as or even more13

than we observe for the Bootstrap_p algorithm.14

With respect to the 6H algorithm and the Bristol algorithm we state, that both algorithms15

reveal a temporal development of slopes and correlations between AMSR-E sea-ice16

concentrations and MODIS ice-surface fractions (Supplementary Figures S3 and S4, Tables17

8-10), which are similar to the Bootstrap_f algorithm. Both algorithms, 6H more than Bristol,18

are sensitive to melt ponds.19

4.3.4 Implications for summer sea-ice concentrations20

A MODIS ice-surface fraction value of 60% can in reality be anything between A) 100% sea21

ice with 40% melt-pond fraction and B) 60% sea ice with 0% melt-pond fraction. Slopes22

between the AMSR-E sea-ice concentration and the MODIS ice-surface fraction obtained, for23

example, for the NASA-Team algorithm, of 1.31 (Figure 7 f) would convert 60% MODIS ice-24

surface fraction into 78% NASA-Team sea-ice concentration. In case B) this would be an25

over-estimation by 18%, while in case A) this would be an under-estimation by 22%.26

We compute the average slope and correlation values of all algorithms, except ASI and NT2,27

for the 6 pentads July 11-15 to August 6-10 together with resulting over- or under-estimation28

of case A and case B actual sea-ice concentrations for which we chose ice-surface fractions of29

60% and 80%. The Bootstrap_f algorithm is most sensitive to melt ponds (highest slope),30

followed by the Bristol and 6H algorithms (Table 12). The Bootstrap_p algorithm is least31



sensitive to melt ponds (lowest slope), followed by the NASA-Team algorithm. This1

sensitivity is most pronounced for the Bristol algorithm (largest correlation), followed by the2

Bootstrap_f algorithm. The sensitivity is least pronounced for the Near90_lin algorithm3

(smallest correlation), followed by the Bootstrap_p algorithm. Most pronounced means that4

snow and sea-ice property variations as well as the weather influence have a comparably5

small influence. These variations have a larger influence on AMSR-E sea-ice concentrations6

retrieved with an algorithm with a less pronounced sensitivity to melt ponds. The algorithms7

with the largest sensitivity to melt-ponds interestingly provide the smallest under-estimation8

of the concentration of melt-pond covered sea ice and the largest over-estimation of the9

concentration of non-ponded sea ice (e.g. the Bootstrap_f and Bristol algorithms, Table 12).10

The algorithms with the smallest sensitivity to melt ponds provide the largest under-11

estimation of the concentration of melt-pond covered sea ice and the smallest over-estimation12

of the concentration of non-ponded sea ice (e.g. Bootstrap_p, Table 12).13

Using summer sea-ice tie points for the Bootstrap_f algorithm would presumably reduce the14

mean slope as discussed in sub-section 4.3.2, leading to smaller under- and over-estimation of15

case A and case B sea-ice concentrations compared to Table 12. Using the mid-summer tie16

point for the Bootstrap_p algorithm would, in the contrary, presumably increase the mean17

slope as discussed in section 4.3.3, leading to a larger under- and over-estimation of case A18

and B sea-ice concentrations, respectively, compared to Table 12.19

5 Conclusions20

We investigate the sensitivity to melt ponds of eight sea-ice concentration retrieval algorithms21

based on satellite microwave brightness temperatures by comparing contemporary daily22

estimates of sea-ice concentration and melt-pond fraction. We derive gridded daily sea-ice23

concentrations from Advanced Microwave Scanning Radiometer aboard Earth Observation24

Satellite (AMSR-E) brightness temperatures of June to August 2009. We use a consistent set25

of tie points to aid inter-comparison of the algorithms. We derive the gridded daily fraction of26

melt-ponds, open water between ice floes and ice-surface fraction from contemporary27

Moderate Resolution Spectroradiometer (MODIS) reflectance measurements with a neural28

network based classification approach. We discuss potential uncertainty sources of this data29

and conclude that MODIS ice-surface fractions are as accurate as 5-10%. We carry out the30

comparison of AMSR-E and MODIS data sets at 100 km grid resolution.31



AMSR-E sea-ice concentrations agree fairly well with MODIS sea-ice concentrations, the1

sum of the ice-surface fraction and the melt-pond fraction, with slopes of a linear regression2

between 0.90 and 1.16. However, for some algorithms AMSR-E sea-ice concentrations scatter3

widely for MODIS sea-ice concentrations larger than 80%. We note that the eventual4

overestimation of the concentration of the sea ice in between the melt ponds, to produce5

seemingly ‘correct’ sea-ice concentrations that include the melt ponds, will result in6

incorrectly overestimating the concentration of sea ice in areas with real open water.7

We isolate the influence of melt ponds by comparing AMSR-E sea-ice concentrations with8

MODIS ice-surface fractions only for grid cells with MODIS sea-ice concentrations above9

90%. By doing so we can use the ice-surface fraction instead of the melt-pond fraction as a10

measure of the impact of melt ponds and can keep the effect of potential misclassification11

between the two spectrally close surface types, open water and melt ponds, as small as12

possible. For most of June, we find a non-linear relation between both data sets. We attribute13

this to the influence of snow-property variations impacting the microwave brightness14

temperatures and a still small melt-pond fraction. After June, for one group of algorithms,15

e.g., the Bristol and Comiso Bootstrap frequency mode (Bootstrap_f) algorithms, sea-ice16

concentrations are linearly related to MODIS ice-surface fractions. For other algorithms, e.g.,17

Near90GHz and Comiso Bootstrap polarization mode (Bootstrap_p), the linear relationship is18

weaker and develops later in summer.19

We take the degree of correlation between AMSR-E sea-ice concentration and MODIS ice-20

surface fraction as a measure of an algorithms’ sensitivity to the melt ponds and use the21

obtained linear regression slope to estimate differences between actual and retrieved sea-ice22

concentration. All algorithms under-estimate the sea-ice concentration of 100% sea ice with23

an open-water fraction of 40% due to melt ponds (case A) by between 14% (Bootstrap_f) and24

26% (Bootstrap_p). The under-estimation reduces to 0% for a melt-pond fraction of ~20%.25

The concentration of sea ice with a similarly large open-water fraction due to leads and26

openings between the ice floes (case B) is over-estimated by between 26% (Bootstrap_f) and27

14% (Bootstrap_p) for 60% sea-ice concentration and by 20% for all algorithms for 80% sea-28

ice concentration.29

One next step would be to extend the analysis to more years to confirm the results of our case30

study with a larger number of data. Currently, at pentad scale, the number of data is too small31

to use – as an important next step – a higher MODIS sea-ice concentration threshold of 98%32

instead of 90% to isolate the influence of melt ponds. Using such a higher threshold at33



monthly scale, e.g. for July, results in an increase of the correlation between AMSR-E sea-ice1

concentrations and MODIS ice-surface fraction from 0.86 to 0.92 (Bootstrap_f), from 0.85 to2

0.91 (Bristol), and from 0.67 to 0.76 (NASA-Team) while the slopes of the linear regression3

remain similar.4

For reasons outlined in the description of the algorithms, we use a consistent set of sea-ice tie5

points derived for winter conditions. By applying published summer sea-ice tie points for the6

Bootstrap algorithms we find that the slopes of the linear regression would be reduced for7

Bootstrap_f but not for Bootstrap_p. As a result Bootstrap_f would under-estimate sea-ice8

concentrations for case A less but over-estimate sea-ice concentrations for case B more.9

We suggest, that algorithms being more sensitive to melt ponds, could be easier optimized10

further, because the influence of snow and sea-ice surface property variations, which11

distribution is unknown, seems to be less pronounced while methods to derive melt-pond12

fraction, which would be needed for the optimization, have been developed. According to our13

results, this applies to the Bootstrap_f, Bristol, and Near90_lin algorithms, and the CalVal14

algorithm which is similar to the Bootstrap_f mode and is used in the SICCI algorithm. The15

Bootstrap_p and NASA-Team algorithms seem to be less suitable for further optimization.16

While these seem to have the lowest sensitivity to melt ponds and therefore lowest under-17

estimation for case A, they seem to over-estimate the sea-ice concentration for case B most,18

among the algorithms investigated.19
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Table 1: Typical values of changes in brightness temperature due to changes in snow wetness.1

Abbreviations TB, PR, GR, V, and H denote brightness temperature, normalized brightness2

temperature polarization difference (“polarization ratio”), normalized brightness temperature3

frequency difference (“gradient ratio”), vertical, and horizontal (polarization), respectively.4

Abbreviations E92, W14, and G92 refer to Eppler et al. (1992), Willmes et al. (2014), and5

Garrity (1992), respectively.6

Snow wetness E92 W14 W14 G92

Change by Typical May to June increase

(~ 2%)

Average May to June

increase

Melt after refreeze + 2%

TB19H +25 K +16 K +5 K

TB19V +20 K +14 K +7 K

TB37H +40 K +32 K +25 K +34K

TB37V +30 K +32 K +10 K +15K

TB89H +50 K

TB89V +60 K

PR19 +0.02

GR3719 +0.05

7

8

9

10

11

12

13

14

15

16



Table 2: Typical values of changes in brightness temperature due to changes in snow density.1

For abbreviations TB, PR, GR, V, and H see Table 1. Abbreviations F98 and B15 refer to2

Fuhrhop et al. (1998) and Beitsch (2014), respectively.3

Snow density F98 B15

Change by +200 kg/m³ +50 kg/m³

PR19 +0.04

GR3719 0.00

TB89V-TB89H +2.5 K

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19



Table 3: Typical values of changes in brightness temperature due to changes in snow grain1

size. For abbreviations TB, PR, GR, V, and H see Table 1. Abbreviations F98, W14, and G922

refer to Fuhrhop et al. (1998), Willmes et al. (2014), and Garrity (1992), respectively.3

Snow grain size F98 F98 W14 G92

Upper snow

layer

Bottom snow

layer

Upper snow layer

Change by +0.5mm +0.5mm Increase due to

surface refreezing

Increase due to surface

crust formation

GR3719 -0.025 +0.05 -0.04

PR19 +0.01 +0.02 0.0

TB37V -20K -10K

TB37H -35K -20K

TB19V -10K

TB19H -15K

4

5

6

7

8

9

10

11

12

13

14

15

16



Table 4. The sea ice concentration algorithms. *Analysis not shown in this study.1

Algorithm Acronym Reference Frequencies/Combination

Bootstrap_p BP Comiso, 1986 37V, 37H

Bootstrap_f/ CalVal BF Comiso, 1986 19V, 37V

Bristol BR Smith, 1996 19V, 37V, 37H

NASA Team NT Cavalieri et al., 1984 19V, 19H, 37V

ASI ASI Kaleschke et al.
2001

85V, 85H

Near 90GHz linear N90 Ivanova et al., 2014 85V, 85H

One_channel (6H) 6H Pedersen, 1994 6H

NASA Team 2 NT2 Markus and
Cavalieri, 2000

19V, 19H, 37V, 85V, 85H

Eumetsat OSI-SAF* ? Eastwood et al.,
2012

Bristol, Bootstrap_f

SICCI* ? Ivanova et al., 2015 Bristol, Bootstrap_f

Arctic Bootstrap* ? Comiso et al., 1997;
Comiso, 2009

Bootstrap_f, Bootstrap_p
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Table 5. Statistical parameters of the comparison AMSR-E sea-ice concentration versus1

MODIS sea-ice concentration (see Figure 4) for June 2009. Each column gives the value for2

all grid cells with MODIS sea-ice concentration > 20%, the multiyear (MYI) ice grid cells and3

the first-year ice (FYI) grid cells (see sub-section 2,4). Slopes closest to 1, highest4

correlations and lowest RMSD values are noted in bold font.5

June Slope Correlation RMSD N
Algorithm All;   FYI ; MYI All;   FYI;  MYI All; FYI  ;MYI All; FYI   ;MYI
6H 1.16; 1.16; 1.19 0.86; 0.89; -0.28 17.1; 16.6; 18.8 6272; 1127; 649
ASI 1.03; 1.05; 1.04 0.81; 0.86; -0.10 7.7; 10.3; 4.4
Bootstrap_f 1.27; 1.28; 1.28 0.72; 0.86; -0.50 27.9; 27.7; 30.2
Bootstrap_p 0.92; 0.92; 0.97 0.62; 0.71; -0.01 13.9; 15.3;   9.0
Bristol 1.14; 1.15; 1.16 0.75; 0.86; -0.42 16.3; 16.6; 18.6
NASA-Team 1.00; 1.01; 1.01 0.71; 0.73; 0.32 8.9; 11.7;   6.3
Near90_lin 1.02; 1.03; 1.07 0.68; 0.81; -0.37 12.2; 13.0; 11.1
NT2 1.02; 1.04; 1.01 0.69; 0.79; 0.07 5.3; 8.5;   2.1
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Table 6. Statistical parameters of the comparison AMSR-E sea-ice concentration versus1

MODIS sea-ice concentration (see Figure 4) for July 2009. Each column gives the value for2

all grid cells with MODIS sea-ice concentration > 20%, the multiyear (MYI) ice grid cells and3

the first-year ice (FYI) grid cells (see sub-section 2,4). Slopes closest to 1, highest4

correlations and lowest RMSD values are noted in bold font.5

July Slope Correlation RMSD N
Algorithm All;  FYI  ;MYI All;   FYI ;  MYI All;  FYI  ; MYI All ; FYI  ;MYI
6H 1.05; 1.08; 1.05 0.62; 0.81; -0.03 11.8; 12.4; 11.9 9612; 967; 634
ASI 1.04; 1.09; 1.04 0.72; 0.83; -0.05 8.4; 11.8; 6.6
Bootstrap_f 1.12; 1.16; 1.13 0.55; 0.78; 0.14 18.1; 17.7; 20.1
Bootstrap_p 0.90; 0.94; 0.90 0.62; 0.85; -0.22 13.9;   9.9; 14.4
Bristol 1.04; 1.08; 1.05 0.62; 0.85; 0.05 11.7; 10.8; 12.0
NASA-Team 0.97; 1.00; 0.97 0.13; 0.80; -0.16 10.3; 8.9; 10.4
Near90_lin 0.98; 1.03; 1.00 0.63; 0.82;  0.04 10.7; 10.9; 7.3
NT2 1.04; 1.10; 1.02 0.66; 0.74;-0.03 7.4; 12.1; 5.7
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Table 7. Statistical parameters of the comparison AMSR-E sea-ice concentration versus1

MODIS sea-ice concentration (see Figure 4) for August 2009. Each column gives the value2

for all grid cells with MODIS sea-ice concentration > 20%, the multiyear (MYI) ice grid cells3

and the first-year ice (FYI) grid cells (see sub-section 2,4). Slopes closest to 1, highest4

correlations and lowest RMSD values are noted in bold font.5

August Slope Correlation RMSD N
Algorithm All;  FYI ; MYI All; FYI ; MYI All;  FYI ; MYI All ; FYI  ;MYI
6H 1.08; 1.03; 1.11 0.48; 0.62; 0.22 10.0;   8.1; 11.0 5158; 162; 505
ASI 1.13; 1.15; 1.14 0.55; 0.37; 0.25 12.5; 14.2; 13.0
Bootstrap_f 1.16; 1.15; 1.19 0.30; 0.49; 0.18 17.7; 15.4; 19.1
Bootstrap_p 1.00; 0.95; 1.03 0.27; 0.54; 0.44 17.0;   8.8; 6.2
Bristol 1.10; 1.07; 1.13 0.46; 0.57; 0.35 12.0;   9.5; 12.8
NASA-Team 1.03; 0.95; 1.06 0.48; 0.53; 0.31 7.9; 8.5;   8.1
Near90_lin 1.10; 1.07; 1.11 0.54; 0.35; 0.37 11.2; 11.2; 11.4
NT2 1.10; 1.14; 1.11 0.19; 0.15; 0.08 10.6; 13.8; 10.5
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Table 8. Statistical parameters of the comparison AMSR-E sea-ice concentration versus1

MODIS ice-surface fraction for MODIS sea-ice concentration > 90% (see Figure 5) for June2

2009. Each column gives the value for all grid cells with MODIS sea-ice concentration >3

90%, and the respective multiyear (MYI) and first-year ice (FYI) grid cells.4

June Slope Correlation RMSD N
Algorithm All;  FYI  ; MYI All;  FYI  ; MYI All;   FYI; MYI All ;  FYI ; MYI
6H 1.23; 1.28; 1.22 0.40; 0.33;-0.14 22.6; 25.9; 21.9 5821; 916; 649
ASI 1.09; 1.16; 1.07 0.09;-0.02;-0.01 10.8; 16.2;   7.6
Bootstrap_f 1.34; 1.43; 1.32 0.10; 0.36;-0.38 33.8; 38.3; 33.4
Bootstrap_p 0.97; 1.02; 1.00 0.09;-0.10; 0.02 11.8; 13.9;   8.8
Bristol 1.20; 1.28; 1.20 0.12; 0.22;-0.31 21.5; 25.8; 21.7
NASA-Team 1.06; 1.11; 1.04 0.15;-0.15; 0.31 10.8; 16.0;   7.3
Near90_lin 1.08; 1.15; 1.10 0.09; 0.05;-0.28 13.8; 17.1; 13.8
NT2 1.07; 1.14; 1.04 0.07;-0.08; 0.06 8.9; 14.2; 5.1
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Table 9. Statistical parameters of the comparison AMSR-E sea-ice concentration versus1

MODIS ice-surface fraction for MODIS sea-ice concentration > 90% (see Figure 5) for July2

2009. Each column gives the value for all grid cells with MODIS sea-ice concentration >3

90%, and the respective multiyear (MYI) and first-year ice (FYI) grid cells.4

July Slope Correlation RMSD N
Algorithm All;  FYI  ; MYI All;  FYI  ; MYI All;   FYI; MYI All ;  FYI ; MYI
6H 1.34; 1.33; 1.33 0.82; 0.56; 0.84 26.8; 26.9; 26.5 7572; 491; 539
ASI 1.30; 1.30; 1.29 0.43; 0.24; 0.36 25.8; 25.1; 26.5
Bootstrap_f 1.44; 1.42; 1.45 0.86; 0.65; 0.91 34.1; 33.7; 35.1
Bootstrap_p 1.14; 1.15; 1.11 0.43; 0.15; 0.02 15.9; 15.9; 17.8
Bristol 1.33; 1.32; 1.32 0.85; 0.65; 0.85 25.9; 25.8; 26.1
NASA-Team 1.23; 1.21; 1.21 0.67; 0.26; 0.57 19.9; 19.4; 19.8
Near90_lin 1.24; 1.26; 1.24 0.54; 0.33; 0.41 21.4; 22.6; 22.3
NT2 1.29; 1.28; 1.26 0.38; 0.36; 0.38 25.3; 23.7; 24.3
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Table 10. Statistical parameters of the comparison AMSR-E sea-ice concentration versus1

MODIS ice-surface fraction for MODIS sea-ice concentration > 90% (see Figure 5) for2

August 2009. Each column gives the value for all grid cells with MODIS sea-ice3

concentration > 90%, and the respective multiyear (MYI) and first-year ice (FYI) grid cells.4

August Slope Correlation RMSD N
Algorithm All;  FYI  ; MYI All;  FYI  ; MYI All;   FYI; MYI All ;  FYI ; MYI
6H 1.28; -- ; 1.30 0.39; -- ; 0.28 23.1; -- ; 24.2 2091;   44; 207
ASI 1.33; -- ; 1.33 0.50; -- ; 0.65 26.8; -- ; 26.5
Bootstrap_f 1.36; -- ; 1.39 0.19; -- ; 0.19 30.3; -- ; 31.8
Bootstrap_p 1.21; -- ; 1.25 0.14; -- ; 0.79 29.8; -- ; 19.4
Bristol 1.31; -- ; 1.34 0.41; -- ; 0.51 25.3; -- ; 26.9
NASA-Team 1.23; -- ; 1.26 0.49; -- ; 0.70 19.0; -- ; 21.0
Near90_lin 1.32; -- ; 1.33 0.54; -- ; 0.68 25.4; -- ; 25.8
NT2 1.29; -- ; 1.29 0.18; -- ;-0.14 23.7; -- ; 23.6
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Table 11. Top row: winter tie points for first-year ice (FYI) and multiyear ice (MYI)1

expressed as normalized brightness temperature polarization difference PR; other rows:2

summer tie points derived as outlined in the text expressed as PR and brightness temperature3

(TB) at vertical (TBV) and horizontal (TBH) polarization. Brightness temperatures are given4

together with one standard deviation.5

Frequency 19 GHz 37 GHz 89 GHz
PR (winter, FYI;MYI) 0.030; 0.043 0.025; 0.031 0.021; 0.024
PR (summer) 0.034 0.033 0.021
TBH (summer) [K] 247.6 ± 6.5 239.0 ± 4.9 226.3 ± 10.0
TBV (summer) [K] 265.2 ± 2.5 255.5 ± 4.5 235.0 ± 11.8
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Table 12. Slope of the linear relationship and correlation between AMSR-E sea-ice1

concentrations and MODIS ice-surface fractions for the six algorithms, which do not cut-off2

sea-ice concentrations, averaged over the six pentads July 11-15 to August 6-10. For each3

algorithm, the average value ± 1 standard deviation (stddev), the range in the slope values and4

the range in the correlations are given. (EV) denotes the explained variance. Case A60 and5

A80 denote 100 % sea-ice concentration with 40% and 20% (apparent) open-water fraction6

due to melt ponds, i.e. 60% and 80% ice-surface fraction, respectively. Case B60 and B807

denote 60% and 80% sea-ice concentration in case of 40% and 20% real open-water fraction,8

i.e. ice-surface fraction = sea-ice concentration. A “*” indicates saturation, i.e. the retrieved9

AMSR-E sea-ice concentration exceeds 100%. Bold numbers denote the maximum values for10

mean slope and mean correlation.11

Algorithm 6H Bootstrap_f Bootstrap_p Bristol NASA-Team Near90_lin
Mean slope ±
1 stddev

1.36 ± 0.04 1.44 ± 0.02 1.24 ± 0.03 1.36 ± 0.02 1.29 ± 0.03 1.33 ± 0.03

Mean
correlation ±
1 stddev (EV)

0.55 ± 0.16
(30%)

0.62 ± 0.10
(38%)

0.49 ± 0.14
(24%)

0.68 ± 0.09
(46%)

0.51 ± 0.10
(26%)

0.46 ± 0.20
(21%)

Slope range 1.29 to 1.41 1.41 to 1.47 1.21 to 1.29 1.34 to 1.39 1.26 to 1.32 1.29 to 1.38
Correlation 0.33 to 0.78 0.48 to 0.79 0.34 to 0.76 0.58 to 0.82 0.38 to 0.69 0.21 to 0.81

Under-estimation of Case A / over-estimation of Case B sea-ice concentrations by the
respective algorithm

Case A60 -18.4% -13.6% -25.6% -18.4% -22.6% -20.2%
Case A80 0.0% * 0.0% * -0.8% 0.0% * 0.0% * 0.0% *
Case B60 +21.6% +26.4% +14.4% +21.6% +17.4% +19.8%
Case B80 +20.0% * +20.0% * +19.2% +20.0% * +20.0% * +20.0% *
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1

Figure 1. Spatial distribution of the MODIS sea-ice parameter data set super-posed with the2

fraction of first-year ice (a), multiyear ice (b), and the number of co-located daily MODIS3

sea-ice parameter data for the entire period June to August (c).4

5
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Figure 2. Histograms of MODIS melt-pond fraction (a) and MODIS sea-ice concentration (b)2

derived when sea-ice cover was near 100% and melt ponds were not yet present (see text for3

details) for the first 7, 9, 11, and 13 days of June 2009.4
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Figure 3. Time series of open water and sea-ice fractions for all MODIS grid cells used in the2

present study for June 1, 2009 to August 31, 2009.3

4
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Figure 4. AMSR-E sea-ice concentration computed with 6 of the 8 algorithms listed in Table2

2 versus MODIS sea-ice concentration for all grid cells with MODIS sea-ice concentration >3

20%, and cloud fraction < 5%. Grey and black symbols denote data of the entire period and4

July only, respectively. The black line denotes a linear regression of the sea-ice concentrations5

of July forced through (0,0) with the slope as given in the each image. The linear correlation6

coefficient and root mean squared difference for sea-ice concentrations of July are denoted by7

“Corr.” and “RMSD”. Slope, Corr, and RMSD for June, July (this figure), and August are8

summarized in Tables 5 to 7.9
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Figure 5. AMSR-E sea-ice concentration computed with 6 of the 8 algorithms listed in Table2

2 versus MODIS ice-surface fraction for all grid cells with MODIS sea-ice concentration >3

90%, and cloud fraction < 5%. Grey and black symbols denote data of the entire period and4

July only, respectively. The black line denotes a linear regression of the sea-ice concentrations5

of July forced through (0,0) with the slope as given in the each image. The linear correlation6

coefficient and root mean squared difference for sea-ice concentrations of July are denoted by7

“Corr.” and “RMSD”. Slope, Corr, and RMSD for June, July (this figure), and August are8

summarized in Tables 8 to 10.9
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Figure 6. Parameter spaces for NASA-Team (a), ASI / Near90_lin (b), Bootstrap_f (c), and2

Bootstrap_p (d) algorithms. Each image contains AMSR-E brightness-temperature data for3

the respective space for July 2009, color coded with the contemporary MODIS ice-surface4

fraction for cloud cover < 5% and MODIS sea-ice concentration > 90%. Black and white dots5

denote winter (February 10, 2007) Arctic brightness temperatures for 0% and > 90 % NT26

sea-ice concentration, respectively. White and black crosses denote open water and sea-ice tie7

points for winter, respectively (Ivanova et al., 2015). Red arrows direct into sea-ice8

concentration increase. Red lines connect first-year ice (FYI) and multiyear ice (MYI) tie9

points and are referred to as ice lines in the text. For white, black, and cyan lines and crosses10

see text in sub-section 4.2.11
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Figure 7. Background: AMSR-E brightness temperature frequency difference (gradient ratio,2

GR) at 37 GHz and 19GHz, vertical polarization, versus AMSR-E brightness temperature3

polarization difference (polarization ratio, PR) at 19 GHz, color-coded with the co-located4

MODIS ice-surface fraction for 6 selected pentads denoted in the upper left corner of each5

image together with the number N of data pairs. For white and black dots see Figure 6.6

Foreground: NASA-Team sea-ice concentration versus MODIS ice-surface fraction for the7

same pentads together with the linear regression line forced through (0,0). The slope of this8

line is given together with the correlation between and the root mean squared difference9

(RMSD) of the two data sets in each image.10
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Figure 8. Background: Vertically polarized AMSR-E brightness temperature at 19 GHz and2

versus at 37 GHz, color-coded with the co-located MODIS ice-surface fraction for the same 63

selected pentads as in Figure 7 denoted in the upper left corner of each image together with4

the number N of data pairs. For white and black dots see Figure 6. Foreground: Same as in5

Figure 7 but for the Bootstrap_f algorithm.6
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