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This paper presents estimators for errors of point snow measurements relative to the 
true mean along transects and within specified areas. Estimators of how representative point 
measurements are in space are an important topic that so far has received little attention in 
snow research. The authors assume that snow depth is a random field that exhibits spatial 
correlation according to an exponential model. From this assumption they estimate the errors 
by integrating the random variable along transects (1D) and over specified areas (2D). 

As far as I can see the derivations are correct. 
However, I have difficulties with the way the material is presented. The title suggests 

that the paper proposes a framework. I do not think this is the case. Instead the paper uses 
standard geostatistical methods and compares them with snow data. The equations are 
presented as if they were new, as no references are given. This is misleading as they have 
been developed by Matheron and colleagues more than half a century ago and can be found 
in geostatistical textbooks (see eg. Journel and Huijbregts pp. 84 and 117 for the 1D and 2D 
cases, respectively). 

Response: We would like to thank the reviewer for his/her useful comments; they have led to 
a more clarified introduction, overall presentation of methods and results and an improved 
discussion. We thank the reviewer for pointing out the reference and the need to acknowledge 
the previous work in this area, which was not known to us. The references to the works by 
Matheron and subsequent examples are now included. 

I also have difficulties with the notion that the estimators are specific to snow or 
hydrologically-relevant variables (p. 24). They apply to ANY random field that is correlated 
according to an exponential model. 

RE: We agree with the reviewer on this point, which is why we refer to the other hydrologic 
variables as examples in the original manuscript. We have added clarification to this in the 
Introduction more explicitly in the resubmission to be more emphatic about this. 
Also, in response to both of these main comments, we have tried to clarify these points in the 
article from the beginning, as it is not our intention to claim to be the proposers of the first 
principles of geostatistics that our approach is based on. We have tried to make even more 
clear and explicit that the motivations of this study are based on what we see as lacking in 
snow sciences even in the present. Also, we have added references to the researchers and 
authors that have made contributions in such geostatistical approaches to give appropriate 
credit. And let us also point out that the derivations are presented for the understanding of 
the snow community, as so far there have been no examples of these approaches in snow 
sciences to our knowledge. Evidence of this are the comments by the second reviewer, who 
suggested the addition of more details about some of the geostatistical principles behind the 
derivation. 

The following changes are suggested: 
Change title to something like: “Geostatistical estimation of point measurement errors 

- comparisons with snow data” 
RE: We have given thorough consideration to the reviewer’s suggestion regarding the title. 
We have changed the title to “Theoretical Analysis of Errors when Estimating Snow 



Distribution through Point Measurements” in response to the reviewers suggestion. 
Make it clear that the method is known (and has been known for a long time in fact) and is 
applied to snow data in this paper. The new contributions of the paper are the comparisons 
with the snow data but certainly not the equations. Give full credit to the geostatistical 
literature when presenting the equations and the plots where their numerical values are 
shown. 

RE: Although we were not aware of any derivations that are identical to our equations, the 
literature the referee has pointed out to us shows a similar approach and is now 
acknowledged. References to Matheron, Journel and Hiujbregts have been added. 
Also say that the kind of variable does not matter in this approach as the variable is fully 
specified by its variance and correlation scale. 
RE: As indicated above, we have now added explicit clarification to this in the Introduction. 

Discuss in more detail what makes the snow application interesting. The cryospheric aspects 
in the current paper are limited to the shape of the covariance function. For example, it would 
be of interest how the correlation scale is related to the snow physical characteristics. 
RE: In the resubmission, we have added in the Introduction, and Summary and Discussions 
more explicit reference to how this is mainly directed to snow variables, and how the 
methodology can be used for the particular case of snow depth and other snow related 
variables, such as SWE. Discussions of the correlation lengths in snow depth and their 
relashionships to the physical processes have been presented in previous studies, which are 
referenced throughout the article where appropriate (e.g., Trujillo et al., 2007; Deems et al., 
2008; Trujillo et al., 2009). 

With these changes, the paper will be an interesting application of geostatistics to the snow 
sampling case. 
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Abstract 24 

In recent years, marked improvements in our knowledge of the statistical properties of the 25 

spatial distribution of snow properties have been achieved thanks to improvements in measuring 26 

technologies (e.g., LIDAR, TLS, and GPR). Despite of this, objective and quantitative 27 

frameworks for the evaluation of errors and extrapolations in snow measurements have been 28 

lacking. Here, we present a theoretical framework for quantitative evaluations of the uncertainty 29 

of point measurements of snow depth when used to represent the average depth over a profile 30 

section or an area. The error is defined as the expected value of the squared difference between 31 

the real mean of the profile/field and the sample mean from a limited number of measurements. 32 

The model is tested for one and two dimensional survey designs that range from a single 33 

measurement to an increasing number of regularly-spaced measurements. Using high-resolution 34 

(~ 1m) LIDAR snow depths at two locations in Colorado, we show that the sample errors follow 35 

the theoretical behavior. Furthermore, we show how the determination of the spatial location of 36 

the measurements can be reduced to an optimization problem for the case of the predefined 37 

number of measurements, or to the designation of an acceptable uncertainty level to determine 38 

the total number of regularly-spaced measurements required to achieve such error. On this basis, 39 

a series of figures are presented that can be used to aid in the determination of the survey design 40 

under the conditions described, and under the assumption of prior knowledge of the spatial 41 

covariance/correlation properties. With this methodology, better objective survey designs can be 42 

accomplished, tailored to the specific applications for which the measurements are going to be 43 

used. The theoretical framework can be extended to other spatially distributed snow variables 44 

(e.g., SWE) whose statistical properties are comparable to those of snow depth.  45 



1 Introduction 46 

The assessment of uncertainties of snow measurements remains a challenging problem in 47 

snow sciences. Snow cover properties are highly heterogeneous over space and time and the 48 

representativeness of measurements of snow stage variables (e.g., snow depth, snow density, and 49 

snow water equivalent (SWE)) is often overlooked due to difficulties associated with the 50 

assessment of such uncertainties. This has been, at least in part, due to the limited knowledge of 51 

the characteristics of the spatial statistical properties of variables such as snow depth and SWE, 52 

particularly at the small-scales (sub-meter to tens of meters). However, a turning point has been 53 

reached in recent years thanks to improvements in remote sensing of snow (e.g., light detection 54 

and ranging (LiDAR) and Radar technologies), which have allowed significant progress in the 55 

quantitative understanding of the small-scale heterogeneity of snow covers in different 56 

environments, with resolutions and areas of coverage previously unresolved with the standard 57 

methods of measurement (e.g., Trujillo et al., 2007; Trujillo et al., 2009; Mott et al., 2011). 58 

Point or local measurements of snow properties will continue to be necessary for purposes 59 

that range from inexpensive evaluation of the amount of snow over a particular area, to 60 

validation of models and remote sensing measurements. Such measurements have a footprint 61 

representative of a very small area surrounding the measurement location (i.e., support, 62 

following the nomenclature proposed by Blöschl (1999)), and the integration of several 63 

measurements is necessary for a better representation of the snow variable in question over a 64 

given area. Because of this, tools for quantitative evaluations of the representativeness and 65 

uncertainty of measurements need to be introduced, and the uncertainty of such measurements 66 

should be more widely discussed in the field of snow sciences. 67 



Currently, efforts to assess the reliability and uncertainty of snow measurements have 68 

focused on statistical analyses using point measurements (e.g., Yang and Woo, 1999; Watson et 69 

al., 2006; Rice and Bales, 2010; Lopez-Moreno et al., 2011; Meromy et al., 2013) or 70 

synthetically generated fields in a Monte Carlo framework (e.g., Kronholm and Birkeland, 2007; 71 

Shea and Jamieson, 2010), and comparisons between remotely sensed and ground data (Chang et 72 

al., 2005; Grünewald and Lehning, 2014). These studies have been useful to empirically quantify 73 

uncertainties associated with point measurements; However, these type of approaches do not 74 

provide a quantitative framework for the assessment of uncertainties associated with a particular 75 

sampling design, they do not allow for an optimal sampling strategy (e.g., selecting the number 76 

of points and locations for a desired accuracy level), and they do not take advantage of the 77 

increased knowledge of the characteristics of the heterogeneity of snow cover properties. 78 

Another possible approach is one in which the expected error in the estimation of a particular 79 

statistical moment of a field over a defined domain (e.g., areal mean or standard deviation from a 80 

finite number of measurements) is determined on the basis of known statistical properties of the 81 

field in question. Such approach uses geostatistical principles that have been proposed by 82 

Matheron (1955; 1970) and others, and that have been applied in mining geostatistics (Journel 83 

and Huijbregts, 1978), the analysis of uncertainties when measuring precipitation (Rodríguez-84 

Iturbe and Mejía, 1974), and for a more general analysis of the effects of sampling of random 85 

fields as examples of environmental variables (e.g., Skøien and Blöschl, 2006), among others. 86 

Despite of these examples, there is to the authors’ knowledge no attempt of implementing such 87 

type of approach in snow sciences, tailoring the methodology to the particular analysis of 88 

uncertainties when measuring snow variables such as snow depth. Such an implementation 89 

appears to be lacking in numerous studies that use point measurements to represent snow 90 
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distribution, addressing the spatial extrapolation of such point measurements as the “true” spatial 93 

distribution of snow depth when evaluating the performance of interpolation methodologies, 94 

regressions trees, and hydrological models. These comparisons ignore the intrinsic error incurred 95 

when extrapolating the original point measurements, leaving a proportion of uncertainty that can 96 

be significant unaccounted for. This is the principal motivation of the present study, with the 97 

intention of spreading the use of more objective and quantitative methodologies for error 98 

evaluation in snow sciences. Also, the approach that is presented below can be used for objective 99 

survey design to estimate snow distribution from point measurements. We do not intend to 100 

present our approach as novel in the general geostatistical sense; instead, we present the 101 

derivation with the specific application for snow sciences in mind. However, because of the 102 

general nature of the random fields’ theory that the development is based on, similar 103 

developments can indeed be applied to other environmental variables that can be described as a 104 

random field. 105 

On this basis, the error in the estimation of spatial means from point measurements over a 106 

particular domain (e.g., a profile, or an area) can be quantified as the expected value of the 107 

squared difference between the real mean and the sample mean obtained from a limited number 108 

of point measurements. Such an approach, as it will be shown here, uses spatial statistical 109 

properties of snow depth fields in a way that allows for an objective evaluation of the estimation 110 

error for snow depth measurements. The sections below illustrate the use of such methodology 111 

for optimal design of sample strategies in the specific context of snow depth. However, the 112 

methodology can also be implemented for other snow variables such as snow water equivalent, 113 

given that similar geostatistics can be used to characterize their spatial organization. 114 
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2 Background 125 

Let  denote a random field function of the coordinates x in the n-dimensional space 126 

. Bold letters represent a location vector from hereon. In our case, the field can represent e.g.: 127 

snow depth or snow water equivalent (SWE) at a given time of the year. The mean of the process 128 

over a domain A (e.g., a profile section or an area) is defined as: 129 

µz A( ) = 1
A

z x( )
A∫ dx

  
(1) 130 

In practice, the mean is often obtained from the arithmetic average of measurements at a 131 

finite number of locations, N, within the domain: 132 

Z = 1
N

z xi( )
i=1

N

∑   (2) 133 

The performance of the estimator  can be evaluated by calculating the expected value of 134 

the square difference between the estimator  and the true mean  135 
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For a 1st order stationary process (i.e., the mean independent of location; e.g., Cressie (1993), 137 

section 2; and Journel and Huijbregts (1978), section 2 ), (3) can be expressed as 138 
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where VAR[ ] and COV[ ] are the variance and the covariance, respectively. If we further 140 

assume that the process is second order stationary (e.g., Cressie (1993), section 2; and Journel 141 

and Huijbregts (1978), section 2), that is, if the mean and the variance are independent of the 142 

location, and the covariance function depends only on the vector difference 
  
x

i
− x

j , 
. (3) can be 143 

expressed as 144 
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(5) 145 

where CORR[ ] is the correlation function, and 
  
σ

p

2  is the variance of the point process. 146 

The first two terms in (5) are the total sum of the covariances (or correlation as 
  
σ

p

2  has been 147 

factored out) between all point locations  (e.g., measurement locations). The first of 148 

the two terms is only a function of the number of points, while the second is a function of the 149 

number of points, N, and the correlations between the locations. Such correlations are themselves 150 

a function of the separation vectors (both in magnitude and direction), and the parameters of the 151 

correlation function. These two terms are independent of the size of the area A, and can be 152 

thought of as the portion of the error caused by the correlation between the point processes at the 153 

locations  (e.g., measurement locations). Term 3 accounts for the correlation between 154 

the measurement locations and the continuous process over the domain A. This term can be seen 155 

as a negative contribution to the total error assuming that the sum of the integrals is positive. The 156 

term is a function of the number of points, N, the domain area, A, the location of the points and 157 
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the correlation structure, characterized using the parameters of the correlation function. Lastly, 158 

term 4 is the contribution to the error caused by the intrinsic correlation structure of the 159 

continuous process over the domain. This term is a function of the domain (e.g., size and shape 160 

of A) and the correlation structure (e.g., parameters of the correlation function). 161 

3 Data 162 

For the analyses and tests of the methodology presented here, Light Detection and Ranging 163 

(LIDAR) snow depths obtained as part of the NASA’s Cold Land Processes Experiment (CLPX) 164 

will be used (Cline et al., 2009). The dataset consists of spatially distributed snow depths for 1-165 

km x 1-km areas (Intensive Study Areas - ISAs) in the Colorado Rocky Mountains close to 166 

maximum snow accumulation in April, 2003. The data were processed from snow-on (8-9 April, 167 

2013) and snow-off (18-19 September, 2013) LIDAR elevation returns with an average 168 

horizontal spacing of 1.5 m and vertical tolerance of 0.05 m. The final CLPX snow depth 169 

contour product (0.10 m vertical spacing) was generated from these returns. This product was 170 

used to generate gridded snow depth surfaces with 1024x1024 elements over the ISAs, for a grid 171 

resolution of 0.977 m. For this study two areas will be used: the Fraser – St Louis Creek ISA 172 

(FS) and the Rabbit Ears – Walton Creek ISA (RW) (Figure 1). The FS ISA is covered by a 173 

moderate density coniferous (lodgepole pine) forest on a flat aspect with low relief. The RW ISA 174 

is characterized by a broad meadow interspersed with small, dense stands of coniferous forest 175 

and with low rolling topography. The snow depth distributions in these ISAs show differences 176 

that are relevant for the analysis of the methodology introduced here. At the FS ISA, the snow 177 

depth distribution is relatively isotropic (Figure 1b), with short spatial correlation memory and 178 

little variations in the spatial scaling properties (i.e., power-spectral exponents and scaling 179 

breaks) with direction (Trujillo et al., 2007). On the other hand, the spatial distribution of snow 180 
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depth in the RW ISA is more anisotropic (Figure 1c), with longer spatial correlation memory 182 

along a principal direction aligned with the predominant wind direction versus shorter memory 183 

along the perpendicular direction, and with variations in the power-spectral exponents and 184 

scaling breaks according to the predominant wind directions (Trujillo et al., 2007). 185 

4 One-dimensional process 186 

The spatial representation of the snow cover requires a basic assumption on the scale or 187 

resolution at which a field or profile is going to be represented. This relies on the spatial support 188 

of the measurements. For the case of snow depths, point measurements from local surveys using 189 

a snow depth probe are frequently used for this representation. Generally, there are additional 190 

sources of uncertainty associated with these types of measurements, such as the accuracy of the 191 

position of the measurement in space or deviations in the vertical angle of penetration of the 192 

probe through the snow pack. These uncertainties are additional to any of the uncertainties 193 

estimated using the methodology discussed here. 194 

The one-dimensional case provides a good opportunity to illustrate the limitations of point 195 

measurements. Consider the case of a snow depth profile that is measured using a snow depth 196 

probe at a regular spacing “d”. Each of these point measurements is meant to represent the mean 197 

snow depth over a particular distance surrounding the measurement, and the question is: over 198 

what distance is such assumption valid? In this case, the intrinsic assumption is that the 199 

measurement is representative over the distance “d”, but at this point the validity of such 200 

assumption is not proven.  201 

The answer to this question is conditioned to how variable the profile is and over what 202 

distances. To look at this, let us look at two snow depth profiles, one in a forested environment 203 
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(FS) and another in an open environment (RW) in the Colorado Rocky Mountains (Figure 2a and 205 

Figure 3a, respectively). The variability in the profiles is markedly different, with variations over 206 

shorter distances in the forested area, and a smoother profile in the open and wind influenced 207 

environment. This is reflected in the spatial correlation structure of these snow depth profiles, 208 

with stronger correlations over longer distances in open and wind-influenced environments with 209 

respect to that in forested environments (Trujillo et al., 2007; Trujillo et al., 2009). These 210 

differences should be considered when selecting the sampling frequency required to capture the 211 

variability and accurately represent the mean conditions within a particular sampling spacing. 212 

This is illustrated by comparing the mean snow depth for a particular resolution to the point 213 

value at the center of the interval (Figure 2b in a forested environment and Figure 3b in an open 214 

and wind-influenced environment). In the Figures, average versus point values at several 215 

sampling intervals are compared for normalized profiles (µ = 0, σ = 1) separated every 30 m in 216 

both the x (east) and y (north) directions and for an area of 500 m by 500 m. The 30-m separation 217 

between profiles is chosen to reduce the spatial correlation between them. Firstly, the resulting 218 

comparison shows that the point values generally overestimate the variability in mean snow 219 

depths if we replace the mean snow depth distribution by its point sample. To clarify this, let us 220 

consider here two snow depth profiles, one with the snow depths at the nominal scale (~1 m), 221 

and a second one with a moving average (MA) of the first one with an averaging window equal 222 

to the sampling spacing. Ultimately, the variance/standard deviation of the first profile (~1 m) is 223 

larger than that of the MA, with a distribution that reflects these differences. The samples drawn 224 

from the first profile will reflect a larger variance than that of the samples from the MA profile as 225 

they are drawn from these distributions, and this is what is reflected in Figure 2 and Figure 3. 226 

The degree of overestimation can be quantified through the slope of the regression line (in red in 227 



Figure 2b and Figure 3b). In the forested environment (Figure 2b), the slopes range between 0.8 228 

and 0.13, with decreasing slopes with increasing spacing. These slopes indicate that, on average, 229 

the mean values are 0.8 times the point values for the 5 m spacing and 0.1 times the point values 230 

for the 100 m spacing. In the open and wind-dominated environment, the slopes are higher and 231 

range between 0.97 and 0.23 from 5 m spacing and 100 m spacing, respectively. A clear 232 

difference emerges: forested environments require shorter separation between single 233 

measurements if the snow depth profile is to be accurately captured by the measurements. The 234 

variability within the size of the interval determines the degree of uncertainty associated with the 235 

point measurements, as the sub-interval variability is related to the degree of overestimation of 236 

the mean value within the interval. Secondly, the differences between average and point values 237 

for each spacing distance are generally more scattered in the forested environment than in the 238 

open environment, and in both environments the degree of scattering increases with spacing 239 

(Figure 2c and Figure 3c). However, it is important to note here that we are comparing 240 

normalized profiles (µ = 0, σ = 1), allowing us to focus on the rescaled spatial variations. What is 241 

highlighted is the relevance of the spatial structure of the profile rather than the absolute 242 

variance. This spatial structure can be quantified by, for example, the spatial 243 

covariance/correlation function. 244 

Additionally to the differences in the correlation structure, there are also differences in the 245 

absolute variability in snow depth in these environments (Figure 4). As opposed to the 246 

normalized snow depth discussed above, the subinterval standard deviation as a function of 247 

interval size along the profiles is higher in the open and wind-influenced environment at RW 248 

versus the forested environment at FS (Figure 4a). Mean standard deviation values in the open 249 

environment are twice as large as those at the forested environment towards the larger interval 250 
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sizes (~100 m). The standard deviation increases with interval size in both environments, with 253 

the steepest increase at the lower interval sizes. Furthermore, the standard deviation tends to 254 

stabilize more rapidly in the forested environments, with an increase of only 1.8 cm between 30 255 

m and 100 m. On the other hand, the standard deviation continues to increase in the open 256 

environment at RW, with less of an asymptotical behavior for the scales analyzed. 257 

Complementary, the shaded areas (25% to 75% quantiles) give an idea of the variability of 258 

standard deviation values, with a much wider range in RW versus FS, and an increase in the 259 

range between quantiles with interval size in RW. 260 

Consistent with the standard deviation, the sub-interval mean range (range defined as the 261 

difference between the maximum and minimum snow depths within an interval) increases with 262 

interval size in both FS and RW (Figure 4b). However, the mean range is larger in the open 263 

environment at RW and the rate of increase with interval size is also steeper. Similarly, the 264 

shaded areas indicate wider distribution of range values in the open environment at RW, while 265 

relatively uniformly distributed around the mean across interval sizes in the forested environment 266 

at FS. The results in Figure 2-Figure 4 illustrate this contrasting behavior between the snow 267 

covers in these environments and their influence on measurement strategies: that is, the forested 268 

environments requires shorter separation between measurements for accurate representation of 269 

the snow cover, however, in the wind-influence and open environment, the subinterval 270 

variability is higher indicating wider variations around any sampled measurement within the 271 

interval. 272 

Ultimately, the number and distance between measurements and the specific arrangement of 273 

the measurements are all conditioned to what the measurements are needed for. Hydrologic 274 

applications may not require a highly detail representation of a snow depth profile (or a field), 275 
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and representing the average conditions over a given distance (or area) is sufficient, but small-281 

scale process-based studies may require a more detailed characterization over shorter distances 282 

(or smaller areas). This implies that the decision depends on the particular use that the 283 

measurements will support. In the following sections, the equations presented in the Background 284 

(section 2) will be applied to evaluate the uncertainty associated with multiple measurement 285 

designs for profiles and fields of snow depth. 286 

4.1 Case 1: Single measurement along a profile section 287 

Equation (2) can be used to evaluate the uncertainty of a single measurement along a profile 288 

section of length L. For this case, as well as for the following cases in this article, an exponential 289 

covariance with a decay exponent ν (ν > 0) will be assumed: 290 

COV h,σ ,ν( ) =σ 2 exp −ν h( )   for σ2 > 0, and ν > 0 (6) 291 

were σ2 is the variance, and h  is the length of the vector h . For this one-dimensional case 292 

and combining (6) and (5), the following expression is obtained: 293 

σ
Z

2 x,L,ν( ) σ
p

2 = 1− 2
Lν

2 − exp −νx( ) − exp −ν ⋅ L − x⎡⎣ ⎤⎦( )⎡
⎣

⎤
⎦ +

1
L2ν

2L + 2
ν
exp −νL( ) − 2ν

⎡

⎣
⎢

⎤

⎦
⎥  294 

 (7) 295 

where x is the distance from one extreme of the section to the location of the measurement 296 

(Figure 5a). The normalized squared error σ
Z

2 x,L,ν( ) σ
p

2  is minimized at x equal to half of the 297 

section length, L/2, regardless of ν. The existence of a correlation in the profile leads to this 298 

solution, as the middle location contains more information about its surroundings. Also, this 299 

solution is different from the solution for an uncorrelated profile (e.g., white noise), for which 300 

Unknown
Field Code Changed

Unknown
Field Code Changed

Ernesto Trujillo 2/4/2015 11:34
Deleted: the  
Ernesto Trujillo 2/4/2015 11:34
Deleted:  because of the correlation to the  
surrounding snow depths 



the squared error would be equal to the variance, independent of the location of the 304 

measurement. 305 

The results here are confirmed with an analysis of LIDAR snow depths profiles in FS and 306 

RW (Figure 6). The analysis consists of calculating the difference between the mean and the 307 

point value for sections of a given length (varied between 10 m – 50 m) and for x (Figure 5a) 308 

between 0 and L along the profile sections. Each sample section of length L will provide a single 309 

difference for each of the x values. These sample differences are then used to calculate the mean 310 

normalized squared error for each x, and the same is repeated for each section length L. The 311 

results indicate that the real snow depth profiles behave as predicted by the model of the error, 312 

with a minimum error at x equal to half of the section length. Another difference highlighted by 313 

these results is the difference between the sample errors in the forested environment (FS) versus 314 

the open environment (RW) for the larger interval sizes (e.g., 50 m). The sampled normalized 315 

squared error in the forested environment shows only a mild decrease in the square error to 316 

around 0.7-0.8 towards the inside of the section length. However, this decrease is achieved for 317 

the measurement along most of the interval length with the exception of the extremes. This can 318 

be explained by the relationship between the spatial memory of snow depth (e.g., the correlation 319 

function) and the section length. Densely forested environments exhibit correlation lengths that 320 

are shorter than those in open and wind influenced environments (e.g., Trujillo et al., 2007; 321 

Trujillo et al., 2009). As the section length increases beyond such correlation lengths, a 322 

measurement location towards the middle of the interval contains less information of the 323 

surrounding snow depths in a forested environment (e.g., FS) versus an open and wind 324 

influenced environment (e.g., RW). This is observed in Figure 6c versus Figure 6f, with the 325 

results in RW showing a more clear minimum towards the center of the profile section. The 326 
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results also show a poorer performance of the model in RW versus FS, as the exponential 330 

correlation model has a poorer fit in RW at the shorter-lag range; However, model performance 331 

is improved for longer section lengths (e.g., Figure 6c and f) 332 

Model and sampled results thus support that the measurement location can be fixed in the 333 

middle of the interval, and the normalized squared error can then be described as a function of 334 

both, the exponential decay exponent, ν, and the length of the section, L (Figure 7a). The 335 

normalized squared error increases with interval length, with a steeper increase for larger 336 

exponential decay exponents, for which the squared error approaches that of an uncorrelated 337 

field more rapidly. The theoretical model is tested on the snow depth fields at FS and RW. The 338 

test consists of calculating the sampled normalized squared error as the average of all squared-339 

differences between the mid-section snow depth and the mean from all LIDAR grid-points 340 

within each interval of length L. This is done for profiles separated every 30 m, similar to the 341 

analysis above, and for profiles along the x and y directions. The theoretical normalized squared 342 

error is estimated from (7) using the exponential decay exponent from the model fitted to the 343 

sampled correlation function. The results show that the theoretical model reproduces the sampled 344 

squared error remarkably well, even reproducing the anisotropic properties of the correlograms, 345 

represented by the different exponents of the exponential model along x and y directions (Figure 346 

7b and c). The model also reproduces the different behavior of the squared error between both 347 

fields (i.e., FS and RW), showing that the normalized squared error increases more rapidly and is 348 

larger in the forested environment (Figure 7b) versus the open environment (Figure 7c). 349 

However, it should be noted here that as the error is normalized and as the variance of the field in 350 

the open environment is larger (Figure 4a), the absolute squared error could reach higher values 351 

in the open environment (RW). In this regard, one feature to discuss here is the assumption that 352 
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the point variance of snow depth in these environments has been estimated as the spatial variance 359 

over the entire study area, as it is generally practiced in time series analysis and geostatistics. In 360 

practice, this is the only possible approach because there is limited information to estimate the 361 

point variance from multiple realizations of the process at each spatial location, as inter- and 362 

intra- annual snow depth fields are not available, not only for these areas, but for almost any area 363 

where this methodology may be applied. 364 

4.2 Case 2: Three measurements along a profile section 365 

From (5) it is also evident that increasing the number of measurements will reduce the 366 

squared error. In the case of three measurements separated by a distance ‘a’, with the middle 367 

measurement centered in the section of length L (Figure 5b), and for an exponential covariance 368 

function with parameter ν, (5) leads to the following expression for this particular case: 369 

 

σ
Z

2 a,L,ν( ) σ
p

2 = 1
3
+ 2
9
2exp −νa( ) − exp −2νa( )⎡⎣ ⎤⎦

− 4
3Lν

3− exp −νL
2

⎛
⎝⎜

⎞
⎠⎟
1+ exp −νa( ) + exp νa( )( )⎡

⎣
⎢

⎤

⎦
⎥

+ 1
L2ν

2L + 2
ν
exp −νL( ) − 2ν

⎡

⎣
⎢

⎤

⎦
⎥

  (8) 370 

Equation (8) can be minimized to determine the optimal separation distance between points, 371 

a, as a function of L and ν: 372 

aoptimal = − 1
ν
ln t( )   (9) 373 

where 374 

t = B + B2 − 4AB
2A

 375 
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A = 4ν
9

 377 

and B = − 4
3L
exp −νL

2
⎛
⎝⎜

⎞
⎠⎟  378 

The combination of (8) and (9) can be used to determine the normalized squared error, 379 

σ
Z

2 σ
p

2 , and the optimal distance, aoptimal, for the measurement pattern in Figure 5b. The model 380 

predicts that the normalized squared error is minimized at an intermediate location between 0 381 

and L/2 (black lines in Figure 8a and b). The results show an increase in the error with interval 382 

size, L, as well as little sensitivity of aoptimal to ν. This latter feature can be seen as an advantage 383 

since small biases in the estimation of ν will not result in significant biases in the estimation of 384 

aoptimal. One could almost assume a value of aoptimal without prior knowledge of the exponential 385 

decay exponent, selecting aoptimal within the range of values indicated by the model for a rage of 386 

possible exponential decay exponents. Note that aoptimal is located close to the 60% distance from 387 

the center towards the outer boundary of the profile section for all section lengths (Figure 8a and 388 

b). On the other hand, the measurement error displays a higher sensitivity to ν around aoptimal, 389 

indicating that biases in the estimation of ν would have a more noticeable effect on the 390 

estimation of the measurement error. This is further clarified in Figure 8c, in which the 391 

normalized error (not squared) and aoptimal can be obtained for corresponding profile section 392 

lengths (L) and exponential decay exponents (ν) based on the isolines shown. For example, for a 393 

profile section of 30 m, and an exponential decay exponent of 0.2 m-1, the normalized error is 394 

0.32 and aoptimal is 9.63 m (see intersect of the two isolines in Figure 8c). The normalized error in 395 

Figure 8c is not squared, highlighting the sensitivity of the measurement error to ν, which 396 
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represents the degree of spatial correlation of the profile in this case (e.g., lower values indicate 400 

stronger spatial memory/correlation, hence lower measurement errors). 401 

The performance of the model is tested against the normalized squared error obtained from 402 

the same snow depth profiles in FS and RW. The test consists of estimating the normalized 403 

squared error for profiles sections of length between 10 m and 80 m, with a being varied between 404 

0 and L/2 (Figure 9). For each value of a, the normalized squared error is estimated based on the 405 

means obtained using the three snow depth samples for each section. All squared differences are 406 

then averaged to obtain the values presented in the Figure. Sampled and modeled errors follow 407 

the same trend across all a values and for the different L values in Figure 9. The minimum error 408 

is also reproduced by the model proving the applicability of the model for estimating the optimal 409 

separation between measurements. The model does perform better in the forested environment of 410 

FS versus RW, particularly for lower a values. This can be justified as the exponential 411 

covariance model displays a better fit in FS over RW, particularly over the lower range of lag 412 

values. Also, note that both the modeled and sampled normalized squared errors are lower for the 413 

snow depth profiles at RW because of the longer spatial memory of the snow depth distribution 414 

in this environment (higher spatial correlations) when compared to that in FS. 415 

4.3 Case 3: N measurements along a profile section 416 

As stated above, the measurement error can be reduced by increasing the number of 417 

measurements taken over a given section of length L. Let us focus on the case of stratified 418 

sampling where N regularly spaced measurements are taken over the interval (Figure 5c), and to 419 

quantify this reduction we can use (5) and the exponential covariance model. Equation (5) can 420 

then be reduced to: 421 



σ Z
2 N ,L,ν( ) σ p

2 = 1
N

+ 2
N 2 k exp −ν L − kL N⎡⎣ ⎤⎦( )

k=1

N−1

∑

− 4
Lν

1− 1
N

exp −ν L
N

N − k + 12⎡⎣ ⎤⎦
⎛
⎝⎜

⎞
⎠⎟k=1

N

∑⎡
⎣⎢

⎤
⎦⎥

− 2
L2ν 2 1− Lν − exp −νL( )⎡⎣ ⎤⎦

 (10) 422 

The normalized squared error (σ
Z

2 σ
p

2 ) obtained with (10) for profiles sections of lengths 423 

between 10 and 80 shows a steep decrease with N (Figure 10), with a steeper decrease for higher 424 

exponential decay exponents. For the longer profile sections (e.g., 80, Figure 10d), little 425 

reductions are achieved in the squared error beyond only a few measurements (e.g., N = 16). 426 

Equation (10) and the results in Figure 10 can be used to determine the number of measurements 427 

necessary to achieve a desired accuracy level. One could, for example, design a survey to sample 428 

a snow depth profile with a mean value every 10 m. The number of measurements required to 429 

achieve a desired level of accuracy can be obtained from Figure 10a, based on previous 430 

knowledge of the sample estimate of the exponential decay exponent. This can be achieved 431 

thanks to the intra-annual and inter-annual persistence of the spatial patterns, and hence, the 432 

spatial statistical properties of snow depth fields in mountain environments, as shown in previous 433 

studies using both manual surveys and LIDAR measurements (e.g., Deems et al., 2008; Sturm 434 

and Wagner, 2010; Schirmer et al., 2011; Melvold and Skaugen, 2013; Helfrich et al., 2014). A 435 

detailed spatial survey (e.g., dense manual measurements or TLS), sampling different portions of 436 

an area can be used to determine the covariance/correlation characteristics of the snow depth 437 

distribution, with which the model for the error can be applied. An a priori estimate of the 438 

exponential decay exponent may also be possible and will be tested in future applications of the 439 

framework, given the relative insensitivity of the error with respect to ν. 440 
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Following the method described in the previous section, we test the performance of the 443 

model against the normalized squared error obtained from the same snow depth profiles in FS 444 

and RW. In this case, the sampled squared error is estimated based on the N regularly-spaced 445 

measurements distributed along the profile sections of length L. As the snow depth fields are 446 

gridded at ~1-m resolution, the location of the measurements is approximated to the closest 447 

coordinate in the profile section following the pattern in Figure 5c. Once again, sampled and 448 

modeled errors follow closely the same trend for the different L values in both FS and RW 449 

(Figure 11). The error decreases with N, with a rapid decay at the lower N values, illustrating that 450 

the error can be drastically reduced by simply increasing the number of measurements by a small 451 

amount. The normalized squared error across all N values is lower for RW than for FS, 452 

consistent with the higher spatial correlations observed in the snow depth fields of RW versus 453 

FS. Once again, there are some differences between the sampled and modeled normalized 454 

squared error in RW for the shorter profile lengths and for small N values: a consequence of the 455 

poorer fit of the exponential model for the shorter lag range in RW. However, the model is still 456 

able to reproduce the error in both fields, and the applicability of the model is illustrated even 457 

when the fit of the correlation model can be improved. 458 

5 Two-dimensional process 459 

Similar to the one-dimensional process, equation (5) can be formulated to calculate the 460 

squared error in the two-dimensional space. To exemplify this, we apply the methodology to an 461 

isotropic process over the x-y plane for three cases in a square area: (a) one single measurement 462 

in the center of the area, (b) five measurements radiating out from the center (Figure 12a), and 463 

(c) N by N measurements regularly spaced in the x and y directions (Figure 12b). 464 



For the isotropic case, the covariance/correlation function is only dependent on the 465 

magnitude of the lag vector, 466 

   
h

i, j
= x

i
− x

j
 (11) 467 

 468 

and, consequently, the error is represented by, 469 
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 471 

The exponential correlation function for the isotropic case takes the following form: 472 

CORR h,ν( ) = exp −νh( )  (13) 473 

where h is the magnitude of the lag vector. Replacing into the expression for σ Z
2 , we obtain, 474 

σ Z
2 =σ p

2

1
N + 2 N 2 exp −ν xi − x j( )

j=i+1

N

∑
i=1

N−1

∑

−2 NA exp −ν xi − x j( )dx jA∫
i=1

N

∑
+ 1A2 exp −ν xi − x j( )dx j dxiA∫A∫

⎡
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⎢
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⎢
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⎥
⎥
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 (14) 475 

For the case of a rectangular area of side dimension Lx and Ly in the corresponding x and y 476 

directions, the equation becomes, 477 
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 (15) 478 

The limits of the integrals can be changed depending on the desired location of the origin. In 479 

this case, the origin is located at the lower-left corner. 480 

As discussed earlier, the first term is only a function of N, such that the base error is the 481 

variance of the point process divided by the number of points. The second term is a function of 482 

N, the location of the points, and the decay rate ν. The third term is a function of N, A, the 483 

location of the points, and the decay rate ν. The fourth term is a function of A and ν, but is 484 

independent of the location of the points and N (i.e., independent of the survey design, and only a 485 

function of the correlation structure of the continuous process). 486 

5.1 Case 1: Single measurement in the center of the area 487 

In this case, we focus on a single measurement in the middle of a square area of side 488 

dimension L. Numerical solution of (15) shows that the normalized squared error increases 489 

rapidly with L, with a steeper increase for higher exponential decay exponents (Figure 13a), 490 

which approach a normalized squared error of 1 for L values less than 10 (e.g., 1 ≤ ν ≤ 5). The 491 

theoretical results in Figure 13a can be used to determine the discrepancy between a single 492 

measurement in the middle of an area and the areal mean for a second order stationary and 493 

anisotropic process with an exponential covariance/correlation function. Comparison of the 494 

modeled and sampled normalized square errors for the FS snow depth field indicate very good 495 

agreement between modeled and sample errors (Figure 13b). The sample error is estimated 496 
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following the same procedure explained for the one-dimensional cases, although in the two-498 

dimensional space. Both sampled and modeled errors show the same behavior across L values 499 

between 1 m and 100 m, although the scatter in the sampled error increases for larger L values. 500 

This can be explained by the smaller number of samples to estimate the mean normalized 501 

squared error and the fact that the correlation structure decays rapidly and a single sample 502 

becomes less correlated to the surrounding area for these larger areas. The model introduced here 503 

can then be used to assess the representativeness of a single measurement over an area 504 

objectively and accurately, and it can be extended for other covariance/correlation functions as 505 

needed. 506 

5.2 Case 2: Five measurements radiating out from the center of the area 507 

The case five measurements radiating out from the center (Figure 12a), with a point in the 508 

middle of the area and four points separated by a distance a from the center leads to a similar 509 

optimization problem as illustrated in case 2 of the one-dimensional examples (section 4.2). In 510 

the two-dimensional case, (15) does not have an explicit solution for a, and numerical 511 

implementation is required. The equation can be solved by simply replacing the point 512 

coordinates and the correlation function parameters. Following this approach, the normalized 513 

squared error can be obtained for areas of varying sizes (Figure 14). Similar to the one-514 

dimensional example (case 2, section 4.2), σ
Z

2 σ
p

2  decreases with a, reaching a minimum at an 515 

intermediate distance from the middle point outwards. The decay in σ
Z

2 σ
p

2  is more rapid for the 516 

least correlated processes (i.e., higher decay exponents) reaching a value close to the base 517 

normalized square error that is a function of the number of points (i.e., 1/N = 1/5 in this case). An 518 

extended analysis of the effect of each of the terms in the equation is included in the 519 
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Supplementary Information. The error, as shown in Figure 14, is minimized as a consequence of 522 

two balancing terms that lead to this intermediate solution. The optimal solution is a balance 523 

between reducing the correlation between the individual measurements (e.g., increasing the 524 

separation between the location of the measurements) but increasing the correlation between the 525 

measurements and the surrounding area (e.g., locating the measurements closer to the middle of 526 

the area). These two competing effects lead to an optimization problem based on the location of 527 

the point measurements. For the least correlated processes, the error behaves closer to the 528 

behavior of an uncorrelated field once the measurements become effectively decorrelated (e.g., a 529 

> 1 in Figure 14b for ν = 5). Figure 14 exemplifies how (15) can be used to determine the 530 

optimal measurement location for areas of different sizes, and to determine the associated error 531 

with configurations other than the optimal. 532 

The performance of the model is tested against the normalized squared error obtained from 533 

the snow depth field in FS. The test consists of estimating the normalized squared error for 534 

square areas of side dimension (L) between 10 m and 79 m, with a being varied between 0 and 535 

L/2 (Figure 15). For each value of a, the normalized squared error is estimated based on the 536 

means obtained using the five snow depth samples for each section. All squared differences are 537 

then averaged to obtain the values presented in the figure. Once again, the sampled and modeled 538 

errors follow the same trend across all a values and for the different L values. The minimum 539 

error and aoptimal are also reproduced closely by the model, and as the area size increases, the 540 

sampled and modeled error approach the error for an uncorrelated field at larger separations (i.e., 541 

0.2). These results illustrate that the performance of the model in the two-dimensional space is 542 

remarkable, similar to what was observed in the one-dimensional case. 543 
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5.3 Case 3: N by N measurements regularly spaced in the x and y directions 546 

Similarly to the one-dimensional case, the two-dimensional case of N by N regularly spaced 547 

measurements (Figure 12b) leads to a decreasing normalized squared error with N (Figure 16). 548 

There is a sharp decrease in the error with just increasing the number of measurements in the 549 

lower range of N. The analysis illustrates that stratified sampling, as the one shown here, is an 550 

excellent approach to minimizing the error. For example, for the area of 10 by 10, increasing N 551 

to 4 (N2 = 16) reduces the normalized squared error to less than 0.05. It is also worth noting here 552 

that for this two-dimensional case, the error is less sensitive to the value of the exponential decay 553 

exponent (ν) for the higher N values as the mean is accurately captured regardless of the 554 

correlation of the field. Beyond a certain number of measurements regularly distributed in the 555 

area, the measurements gather enough information such that there are only very minor 556 

improvements with the addition of new measurements, regardless of the exponent value. Figure 557 

16 serves as an example of how the methodology can be used for objective selection of the 558 

number of measurements necessary to achieve a desired accuracy level using prior knowledge of 559 

the spatial covariance function. 560 

The performance of the model is tested again for square areas of side dimension (L) between 561 

10 m and 79 m using the snow depth field in FS, and for an increasing number of rows/columns 562 

of measurements leading to a total number of measurements of N2 (Figure 17). The results 563 

illustrate again the accurate performance of the theoretical model, with sampled and model errors 564 

following closely the same squared errors. Both sampled and modeled errors increase as the size 565 

of the area increases, as expected. These results complete the model performance tests for the 566 

two-dimensional isotropic case. 567 



6 Summary and Conclusions 568 

A methodology for an objective evaluation of the error in capturing mean snow depths from 569 

point measurements is presented based on the expected value of the squared difference between 570 

the real average snow depth and the mean of a finite number of snow depth samples within a 571 

defined domain (e.g., a profile section or an area). The model can be used for assisting the design 572 

of survey strategies such that the error is minimized in the case of a limited and predetermined 573 

number of measurements, or such that the desired number of measurements is determined based 574 

on a predefined acceptable uncertainty level. The model is applied to one- and two-dimensional 575 

survey examples using LIDAR snow depths collected in the Colorado Rockies. The results 576 

confirm that the model is capable of reproducing the estimation error of the mean from a finite 577 

number of samples for real snow depth fields. 578 

Here, we should highlight some of the implications of the assumptions made in the model. In 579 

simplified terms, the second-order stationarity assumption implies that the mean and the variance 580 

of the process/variable (e.g., snow depth) are independent of the spatial location, and that the 581 

covariance is dependent only on the separation vector (i.e., lag). Although these assumptions 582 

may not be as adequate over larger scales (e.g., greater than 100 m), at smaller scales the 583 

assumption in the context of the model application to snow depth should be valid. We present 584 

these examples to show how the error can be quantified with good accuracy around such smaller 585 

scales. Application of such types of approaches at larger scales will require additional 586 

evaluations with particular attention as to what the specific demands of the application are. Also, 587 

the methodology as presented here is not suitable for discontinuous snow covers if both snow-588 

covered and snow-free areas are considered in the error estimation. This case has not been 589 

considered in the development here. 590 



Implementation of the model in practice requires prior assumption of a 591 

correlation/covariance model and estimates of the parameters of this model (e.g., the decay 592 

exponent for the exponential case). In the examples here we use LIDAR data for the parameter 593 

estimation, which we have done to illustrate the applicability of the model and its ability to 594 

estimate the error using real snow depth data. Snow distribution in mountain environments has 595 

been shown to be consistent intra- and inter-annually because the controlling processes are 596 

relatively consistent during the season and from season to season. Such consistency suggests that 597 

the correlation/covariance model should also be consistent, as well as the parameters of the 598 

model. These parameters can be estimated via a dense survey either manually or with TLS of one 599 

or more small plots of a size similar to the size that is aimed to be represented. These surveys 600 

would not necessarily have to be repeated as the parameters and covariance models should be 601 

preserved. Detailed surveys can be conducted under different conditions to characterize the range 602 

of the correlation models and parameters (e.g., after a snow storm, or close to peak 603 

accumulation). Also here, we should point out that although we show results for a wide range of 604 

the exponential decay exponent values, we are finding that most of the values that we have 605 

observed are in the lower range of those presented (e.g., 0.1-0.2 m-1). Hence, the biases in the 606 

estimated error and the survey design remain small. 607 

Currently, remote sensing technologies (e.g., TLS, Airborne LiDAR, and ground penetrating 608 

radar) are allowing for the characterization of snow cover properties at increasing resolutions in 609 

both space and time. Such improvements can be utilized in the context presented here providing 610 

information about the range of best fitting covariance/correlation models and parameters for 611 

different conditions, supporting the application of methodologies such as the one presented here. 612 

With such improvements, survey designs can be optimized such that estimation errors can be 613 
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explicitly addressed and accounted for, particularly when extrapolating a limited number of 626 

measurements to estimate the spatial distribution of snow. Such applications will continue to be 627 

relevant despite of the aforementioned improvements, as access to these technologies is limited 628 

by their cost and the expertise that is required for their application. 629 
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 636 

Figures 637 

Figure 1. (a) Location of the Fraser and Rabbit Ears study areas in the state of Colorado (in 638 
grey). (b) LIDAR Snow depth distributions on April 8, 2003, at the Saint Louis Creek Intensive 639 
Study Area (ISA) and (c) on April 9 at the Rabbit Ears ISA. 640 

Figure 2. (a) Sample normalized snow depth profile (mean = 0, standard deviation = 1) in a 641 
forested environment from LIDAR (1-m resolution) at the Fraser – St. Louis Creek (FS) 642 
intensive study area (ISA) of the Cold Land Processes eXperiment (CLPX) (Trujillo et al., 2007; 643 
Cline et al., 2009). The profile is sampled with regular separations (spacing) of 5 m, 10 m, 25 m, 644 
50 m, and 100 m (from top to bottom, respectively). (b) Average values within sampling 645 
intervals (same as in (a)) versus point samples for normalized snow depth profiles in the FS ISA. 646 
The red line is a linear regression fit, with slope β and r2 as indicated in each plot. (c) Histograms 647 
of the difference between the point and average values for each of the sampling intervals. The 648 
vertical red line marks the mean difference. 649 

Figure 3. (a) As Figure 2 but for an open and wind influenced environment at the Rabbit Ears 650 
– Walton Creek (RW) ISA of the CLPX (Trujillo et al., 2007; Cline et al., 2009). (b) Average 651 
values within sampling intervals (same as in (a)) versus point samples for normalized snow depth 652 
profiles in the RW ISA. The red line is a linear regression fit, with slope β and r2 as indicated in 653 
each plot. (c) Histograms of the difference between the point and average values for each of the 654 
sampling intervals. The vertical red line marks the mean difference. 655 

Figure 4. Sub-interval standard deviation (a) and range (b) for varying interval lengths for 656 
profiles of snow depth in a forested environment (FS) and an open and wind-influenced 657 
environment (RW) in the Colorado Rocky Mountains (same regions as those in Figure 2 and 658 
Figure 3). The mean standard deviation and mean range for the study areas are shown by the 659 
solid lines, while the shaded areas cover the quantiles between 25% and 75% of the values for all 660 
the intervals in these areas.  661 

Figure 5. Survey designs for the sampling of a snow profile. 662 

Figure 6. Comparison of the theoretical and sampled normalized squared error ( ) for 663 
the case of a single measurement along a profile section of length L, as in Figure 5a. The survey 664 
case applied to profiles in FS and RW along the x and y directions. Solid lines are the theoretical 665 
error using exponential decay exponents derived from the functions fitted to the sampled 666 
correlation functions of the two surfaces in the x and y directions. 667 

Figure 7. (a) Theoretical normalized squared error for a single measurement in the middle of a 668 
section of length, L, and for an exponential correlation function with a decay exponent, ν. (b) and 669 
(c) Comparison of the theoretical and sampled normalized squared error for the same survey case 670 
applied to profiles in FS and RW along the x and y directions. Dashed lines are the theoretical 671 
error from (7) using exponential decay exponents derived from the functions fitted to the 672 
sampled correlation functions of the two surfaces in the x and y directions. 673 

Figure 8. (a) and (b) Theoretical normalized squared error for the three-point pattern along a 674 
profile section in Figure 5b, and for profile section lengths (L) of 1 (a) and 25 (b). Each of the 675 
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colored lines corresponds to a specific decay exponent, ν, and the black line marks the 677 
theoretical solution for aoptimal. (c) Theoretical normalized error and aoptimal for isolines of profile 678 
section lengths (L) and exponential decay exponents (ν) for the three-point pattern along a profile 679 
section of length L in Figure 5b. 680 

Figure 9. Theoretical and sampled normalized squared error ( ) for the three-point 681 
pattern along a profile section in Figure 5b, and for profile section lengths (L) between 10 m and 682 
80 m in FS and RW. The solid lines are the theoretical error from (8) using exponential decay 683 
exponents derived from the functions fitted to the sampled correlation functions of the two 684 
surfaces in the x and y directions, while the dots correspond to the sampled error for profiles in 685 
FS (a-d) and RW (e-h). 686 

Figure 10. Theoretical normalized squared error ( ) for the N-point pattern along a 687 
profile section in Figure 5c, and for profile section lengths (L) between 10 and 80 obtained from 688 
(10). 689 

Figure 11. Theoretical and sampled normalized squared error ( ) for the N-point pattern 690 
along a profile section in Figure 5c, and for profile section lengths (L) between 10 m and 80 m in 691 
FS and RW. The solid point markers are the theoretical error from (10) using exponential decay 692 
exponents derived from the functions fitted to the sampled correlograms of the two surfaces in 693 
the x and y directions, while the circle markers with the dotted lines correspond to the sampled 694 
error for profiles in FS (a-d) and RW (e-h). 695 

Figure 12. Sample survey designs with (a) a 5-point pattern centered in the area, and (b) a 696 
regularly spaced pattern. For the 5-point pattern, a can vary between 0 and L/2, while for the N x 697 
N points pattern, the separation between the measurements is determined by the number of 698 
points. 699 

Figure 13. (a) Theoretical normalized squared error ( ) for the two-dimensional case 700 
with a single measurement in the middle of a square area with side dimension L. (b) Theoretical 701 
and sampled normalized squared error for the same two-dimensional survey applied to the snow 702 
depth field in FS. The dashed line is the theoretical error derived for an exponential decay 703 
exponent of 0.17 derived from the sampled correlation function of snow depth in FS, while the 704 
solid line is the sampled normalized squared error for the snow cover in FS. 705 

Figure 14. Theoretical normalized squared error ( ) as a function of the distance a from 706 
the center of the area for square areas of side dimensions (L) between 10 and 80. Each curve 707 
corresponds to an exponential decay (ν) between 0.1 and 5. 708 

Figure 15. Theoretical and sampled normalized squared error ( ) for the 5-point pattern 709 
in Figure 12a over square areas of side dimensions (L) between 10.7 m and 79.1 m. The 710 
separation distance (a) is varied from the center outwards. The solid line is the theoretical error 711 
derived for an exponential decay exponent of 0.17 derived from the sampled correlation function 712 
of snow depth in FS, while the solid red point markers are the sampled normalized squared error 713 
for the snow cover in FS. 714 
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Figure 16. Theoretical  normalized squared error ( )  for the N by N point pattern in 715 
Figure 12b, and for areas of side dimension (L) between 10 and 80. The exponential exponent is 716 
varied between 0.1 and 5. 717 

Figure 17. Theoretical and sampled normalized squared error ( ) for the N by N point 718 
pattern in Figure 12b, and over square areas of side dimensions (L) between 10.7 m and 79.1 m. 719 
The solid black point markers are the theoretical error for an exponential decay exponent of 0.17 720 
derived from the sampled correlogram of snow depth in FS. The dotted red lines with circle 721 
markers are the sampled normalized squared error for the snow cover in FS. 722 
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