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Abstract. The recent thinning and shrinking of the Arctic sea ice cover has increased the interest

in seasonal sea ice forecasts. Typical tools for such forecasts are numerical models of the coupled

ocean sea ice system such as the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM). The model

uses as input the initial state of the system and the atmospheric boundary condition over the fore-

casting period. This study investigates the potential of remotely sensed ice thickness observations5

in constraining the initial model state. For this purpose it employs a variational assimilation system

around NAOSIM and the Alfred Wegener Institute’s CryoSat-2 ice thickness product in conjunction

with the University of Bremen’s snow depth product and the OSI SAF ice concentration and sea

surface temperature products. We investigate the skill of predictions of the summer ice conditions

starting in March for three different years. combines, for the first time, remotely sensed observa-10

tions of four variables of the ocean sea ice system in a data assimilation system. The four data

streams are the Alfred Wegener Institute’s CryoSat-2 ice thickness product, the University of

Bremen’s snow depth product, and the OSI SAF ice concentration and sea surface temperature

products. The assimilation system, built around NAOSIM, uses a variational approach with a

two-month assimilation window, in which all observations act simultaneously as constraints on15

the initial model state. We investigate the skill of predictions of the summer ice conditions issued

in March May for three different years. Straightforward assimilation of the above combination of

data streams results in slight improvements over some regions (especially in the Beaufort Sea) but

degrades the over-all fit to independent observations. A considerable enhancement of forecast skill
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is demonstrated for a bias correction scheme for the CryoSat-2 ice thickness product that uses a20

spatially varying scaling factor.
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1 Introduction

The state of the Arctic climate system is rapidly changing (Stroeve et al., 2007). This change is

impacting ecosystems, coastal communities, and economic activities. In this context, high-quality

predictions of the ice conditions are of paramount interest (AMAP, 2011). This topic is addressed,25

for example, by the Sea Ice Outlook (http://www.arcus.org/sipn/sea-ice-outlook). In this activity,

various research groups are applying different approaches to predict the Arctic summer minimum

sea ice extent based on the state of the Arctic system at the beginning of the melting season (around

May/June). The range of approaches extends from heuristic techniques, statistical models, coupled

sea ice ocean models to fully coupled models of the atmosphere sea ice ocean system. An analysis30

of Stroeve et al. (2014) shows that none of the approaches outperforms its competitors. In general,

however, due to the rapid transition of the Arctic system, the validity of heuristic and statistical rela-

tionships derived from the past may be limited (Holland and Stroeve, 2011). In contrast, dynamical

models that include all relevant processes should be able to handle such transitions although the val-

ues of their process parameters are based on past observations. While some of the dynamical models35

(fully coupled models) include an atmospheric component (see, e.g. Wang et al. (2013); Chevallier

et al. (2013); Sigmond et al. (2013)), other models are restricted to the ocean sea ice system (ocean

sea ice models, see, e.g. Zhang et al. (2008); Lindsay et al. (2012); Massonnet et al. (2015)). The

latter class of models are driven with prescribed atmospheric fields, provided, e.g., by atmospheric

forecasting/numerical weather prediction centres. These fields are typically constrained by a range40

of atmospheric observations and are thus probably more realistic than those computed by a fully cou-

pled model. On the other hand, fully coupled models allow a consistent simulation of the feedback

loops through all components of the atmosphere-sea ice-ocean system.

The potential for sea-ice predictions has been addressed by a set of studies (e.g. Kauker et al.

(2009); Koenigk and Mikolajewicz (2009); Holland et al. (2010); Day et al. (2014)). Predictions45

by a dynamical model depend on the state of the system at the beginning of the simulation pe-

riod (initial state). Previous studies have highlighted the role of the initial ice thickness distribution

(Kauker et al., 2009; Holland and Stroeve, 2011; Lindsay et al., 2012; Chevallier and Salas-Mélia,

2012) for the forecast quality. Systematic use of observational information in a data assimilation

system can help to derive an improved estimate of the initial state (Lindsay et al., 2012; Chevallier50

et al., 2013; Yang et al., 2014; Massonnet et al., 2015).

The present article describes the construction development of an assimilation and prediction sys-

tem of the Arctic sea ice conditions. Observational data streams for such a prediction system have

to be available near real time. We use four data streams which fulfill this requirement, Ideally, such

a system will combine with a numerical model with observational data of various types, for55

example in terms of variables (e.g. sea ice or ocean), scale of representativeness (e.g. point or

two dimensional area), or observational approach (e.g. in-situ or satellite-derived). We term

each of these types a data stream, and for the use in a combined assimilation/prediction sys-
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tem, an obvious requirement is their availability close to near real time. In this study, we use

four data streams which fulfill this requirement, namely, the OSI SAF sea ice concentration and60

sea surface temperature products, a snow depth product provided by the University of Bremen, and

the CryoSat-2 ice thickness product derived at the Alfred Wegener Institute (AWI). All above data

streams are available from 2012. The availability of the above data streams is limited to the period

from 2012 to 2014. Also there is only one single two month period per year (March and April) for

which the CryoSat-2 product is currently available (and note that the followup version covers Oc-65

tober to April/May). We thus restrict our study to assimilation of the above four data streams in the

spring of each of the three years from 2012 to 2014 and to prediction of the ice conditions in the

following summer.

The assimilation system is built around the regional North Atlantic/Arctic Ocean Sea Ice Model

(NAOSIM, Gerdes et al. (2003), Kauker et al. (2003)). Initial tests indicated that the model was not70

sufficiently calibrated to achieve the required high simulation quality. Hence, in a preliminary step,

some of the process parameters in the formulation of our model were adapted to better match obser-

vations over the 19 year period from 1990-2008. Furthermore, it turned out that the assimilation sys-

tem was not capable of integrating the information in the above-mentioned CryoSat-2 ice thickness

product to a sufficient degree. Through a set of additional assimilation experiments, we were able to75

develop a so-called bias correction scheme that allowed to take full advantage of this data stream. We

apply a variational assimilation approach that determines an initial state (of sea-ice and ocean

fields) on March 1. This means through variation of the model state on March 1 we search

a trajectory that provides the best match to the four data streams over a subsequent two-

month interval (assimilation window). The seasonal forecast is then performed by a simulation80

from that initial state along that trajectory into the future. Moving on a model trajectory

means that we simulate a temporal sequence of states that fulfills the dynamical constraints

imposed by the equations governing the model, including the fundamental conservation laws

of mass, momentum, and energy. In summary, all observational information in the two-month

observation window is used to constrain the initial state on March 1. All subsequent changes85

to model variables (including the forecast) are consequences of the constrained initial state.

It is evident that this approach has the potential to reveal inconsistencies between the model

and our four data streams that otherwise would remain undetected. Such an inconsistency

could be, for example, a huge ice thickness in a grid cell with little ice concentration. It could

yield to some combination of a bad match of the observations, an unrealistic initial state, and90

an unrealistic forecast. Exactly this type of inconsistencies were detected in initial preparatory

experiments. Hence, a first part of this study attempts to minimise biases by adapting some of

the process parameters in the formulation of our model to better match observations over the

19 year period from 1990-2008. To evaluate the success of this calibration exercise we compare

the calibrated model with two independent models that are typically used as reference.95
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A second part of the study pursues a series assimilation experiments with our calibrated

model and the four data streams. The first set of experiments still reveals inconsistencies which

becomes evident through a low forecast skill for summer ice concentration. A second set of as-

similation experiments (without the ice thickness data stream), enables us to develop a so-called

bias correction scheme. Integrating this bias correction scheme into the assimilation scheme100

results in a substantially enhanced forecast skill for summer ice concentration as demonstrated

by a final set of experiments.

2 Methods

2.1 Assimilation

NAOSIMDAS is a variational assimilation system that estimates a control vector x through minimi-105

sation of a cost function J(x) that quantifies the fit to all observations plus the deviation from prior

knowledge on x: A coupled ocean sea ice model computes a sequence of states of the ocean sea

ice system (trajectory) from an initial state. By varying the initial state we can control the tra-

jectory along which the model evolves. Thus we denote the vector composed of all initial model

fields as control vector, x. The task of a variational assimilation is to minimise the difference110

of the model simulation to the available set of observations, d. This observation vector is typi-

cally a subset of all variables that can be simulated with the model at any point in time (within

a given assimilation window) and space (within the model domain). To formalise the assim-

ilation methodology it is useful to consider the model as a mathematical mapping (function)

M(x) from the control vector to the observation vector, more precisely to its equivalent simu-115

lated with the model. The assimilation system seeks a control vector, xpost such that M(xpost)

achieves the best possible match to the observation vector d. At the same time we want to use

any extra information we already have on x, the so-called prior information x0. As the infor-

mation on the model, the observations, and the prior is only approximate the theory is most

conveniently formulated in terms of probability density functions (PDFs) (Tarantola, 2005).120

For computational convenience one typically assumes Gaussian distributions of the prior and

the observations and can then show that xpost minimises the following cost function:

J(x) =
1

2

[
(M(x)−d)TC(d)−1(M(x)−d)+ (x−x0)

TC(x0)
−1(x−x0)

]
(1)

where M denotes the model, considered as a mapping from the control vector to observations, d

the observations with data uncertainty covariance matrix C(d), x0 the vector of prior values of the125

control variables with uncertainty covariance matrix C(x0), and the superscript T is the transposed.

The control variables are typically a combination of the initial state, the atmospheric forcing and the

process parameters. In this study the control vector is restricted to the model’s initial state. where
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C(x0) denotes the uncertainty covariance matrix of the prior and the superscript T is the

transposed.130

The data uncertainty C(d) reflects the combined effect of observational C(dobs) and model error

C(dmod) :

C(d)2 =C(dobs)
2 +C(dmod)

2 (2)

C(dmod) captures all uncertainty in the simulation of the observations except for the uncertainty in

the control vector, because this fraction of the uncertainty is explicitly addressed by the assimilation135

procedure through correction of the control vector. In this study we assume that C(dobs) considerably

exceeds C(dmod) and neglect the latter. The non-diagonal elements of C(dobs) are assumed to be zero

(no correlation of the uncertainty of different components of the observation vector). The same is

assumed for the prior uncertainty, C(x0). This means equation (1) reduces to

J(x) =
1

2

∑
j

(
Mj(x)− dj
σ(dobs,j)

)2 +
1

2

∑
i

(
xi−x0,i
σ(x0,i)

)2, (3)140

where i counts the components of x and j the components of d.

The prior information on the initial state is taken from a preceding model run without assim-

ilation (described in section 2.3). The prior term in the cost function achieves a regularisation,

i.e. it determines xpost in a (hypothetical) case of an element of the control vector to which none

of the observations is sensitive.145

Our assimilation approach is specifically tailored to seasonal forecasting of sea ice conditions

with a coupled ocean sea ice model. It is not taken out of the shelf and thus does not fit in the

classification of data assimilation methods used in numerical weather prediction (NWP), the

pioneering domain of data assimilation. It is a variational approach that assures consistency

with the model equations (respecting the fundamental conservation laws) over the entire assim-150

ilation window. This is contrasted by sequential approaches which partition the assimilation

window into sub-intervals, for each of which they perturb the model state (violating conserva-

tion laws) to better match the observations in that sub-interval. As NWP is confronted with a

limit of predictability in the order of days (Lorenz, 1963), the typical NWP assimilation window

(even when using the so-called four dimensional variational assimilation approach) is a day or155

less, i.e. the dynamical consistency is only assured over this short period of time (plus the sub-

sequent forecast period). Consistency with observations over a longer time period is achieved

by a sequence of assimilation runs, each resulting in a perturbation of the state. It is important

to note that, by contrast, our long time window assures dynamical consistency for the entire

two month assimilation window plus the subsequent forecasting period. The closest relative to160

our approach in the classical NWP taxonomy is perhaps "long time window four dimensional

variational assimilation". We note that, for other applications, we operate NAOSIMDAS with
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an extended control vector that also includes boundary conditions (e.g. surface wind or air

temperature) or model process parameters.

Technically, the cost function is minimised by a gradient algorithm. The algorithm iteratively uses165

the gradient of the cost function with respect to the control vector, which is efficiently provided by

so-called adjoint code of NAOSIM (Kauker et al., 2009) generated by the automatic differentiation

tool TAF (Giering and Kaminski, 1998).

2.2 Observations

This study assesses the potential of remotely sensed observations of the sea ice and ocean system170

to increase the skill of seasonal predictions of that system through initialisation of NAOSIM. For

this purpose, the data streams have to be available operationally or have to become operational in

the near future, i.e. the product time series need to be continuously extended until the recent

past (near real time). EUMETSAT’s Ocean and Sea Ice Satellite Application Facility (OSI SAF)

operationally provides sea ice concentration and sea surface temperature. Currently available sea ice175

thickness products are derived from SMOS (Kaleschke et al., 2012) and CryoSat-2 (Wingham et al.,

2006). While the SMOS product copes better with thin ice, CryoSat-2 copes better with thick ice.

As thinner ice tends to be completely melted in summer, we expect the information on thicker ice

to be more important in our context and select a CryoSat-2 product, namely the one provided by the

Alfred Wegener Institute (Ricker et al., 2014). A snow depth product is provided by the University180

of Bremen. The above data sets allow to perform data assimilation experiments starting in March for

each of the years 2012 to 2014 and will be described in more detail below.

As mentioned above, a preliminary step consists in the calibration of the model against observa-

tions (labeled historical) over the period from 1990-2008 (calibration period). Operational availabil-

ity of the data products was obviously not required. We use remotely sensed sea ice concentration185

provided by OSI SAF, sea ice thickness from ICESat provided by JPL, and two drift products. A

detailed description of the products is provided below.

2.2.1 Historical Data Sets

The only data stream available all year for the entire calibration period is the re-processed OSI SAF

ice concentration product (Eastwood et al., 2015). It is available in daily temporal and 10 km spatial190

resolution and includes spatially and temporally varying uncertainty estimates σ(dobs) as required

by equation (1).

The ICESat-JPL ice thickness (available in Feb/March and Oct/Nov from 2003 to 2008) is avail-

able at about monthly temporal and 25 km spatial resolution and does not include an uncertainty

estimate. Kwok and Cunningham (2008) estimate a mean error of about 50 cm, corresponding to195

a relative error of about 40%. For the present study we thus use 40% relative uncertainty but com-

pletely exclude observations below 1m (as the uncertainty increases for thin ice). ICESat-JPL thick-
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ness data are omitted where the difference to the ICESat thickness product provided by the Goddard

Space Flight Center (ICESat-GSFC, Zwally et al. (2008)) exceeds 40 cm.

The OSI SAF winter ice drift product (Lavergne et al., 2010) is available at bi-daily temporal and200

62.5 km spatial resolution but does not include uncertainty estimates. In the present study we use the

monthly mean value and corresponding uncertainty estimates of Sumata et al. (2014). This data set

covers the winter season (October to April) for the period from October 2003 to December 2006.

The KIMURA summer ice drift product (Kimura et al., 2013) is available at daily temporal and

75 km spatial resolution and does not include uncertainty estimates either. As for the winter ice drift205

we use monthly mean values and uncertainty estimates derived by Sumata et al. (2015). The data set

covers the summer months May to July for the years 2003 to 2007.

2.2.2 Operational Products

The operational OSI SAF ice concentration product is available at daily temporal and 10 km spatial

resolution and based on the combination of the Comiso frequency mode (CF) algorithm and the210

Bristol (BR) algorithm. Both products use the 19 and 37 GHz channels, with respective native res-

olutions (footprints) of about 60 and 30 km. The product does include discrete quality flags (while

the followup product will provide an uncertainty estimate). For this study an uncertainty estimate

is derived by a procedure that was developed within the Sea Ice project (http://esa-cci.nersc.no/) of

ESA’s Climate Change Initiative (SICCI). The procedure considers the algorithmic uncertainty and215

a so-called ’smearing uncertainty’. The algorithmic uncertainty σa, i.e. the uncertainty derived by

propagating radiometric noise through the algorithm, is only available in the re-processed OSI SAF

concentration product. As it hardly exceeds 6 percentage points in the re-processed product, this

value is used for all grid cells and all days as a conservative estimate of the algorithmic uncertainty.

The (spatially and temporally variable) smearing uncertainty reflects the combination of two sources220

of error: first, the error caused by providing a 10 km product from coarser native resolutions, and,

second, the error caused by combining channels with different footprints. An estimate of this un-

certainty is calculated by comparing high resolution SIC aggregated to 10 km resolution (reference)

and that computed at the SSMI footprints using both, the CF and the BR algorithm. The empirical

formula σs =
√
sd/2.2 (see Figure 1) provides an approximation of the root mean squared differ-225

ence as a function of the 3x3 standard deviation sd (grid point and eight surrounding grid points).

Assuming the independence of both uncertainties the total observational uncertainty is given by

σ(dobs) =
√
σ2
a +σ2

s .

The OSI SAF high latitude SST product (Eastwood, 2011a) has a resolution of 5 km and is pro-

duced twice daily at 00 UTC and 12 UTC. It covers the Atlantic Ocean from 50N to 90N, with the230

exception of areas covered by ice or clouds. A constant uncertainty of 0.5K is applied (Eastwood,

2011b).
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Figure 1: The empirical fit of the smearing uncertainty. Root mean squared difference between high

resolution SIC aggregated to 10 km resolution (reference) and that computed at the SSMI footprints

using the Comiso Frequency mode (CF, green crosses) or the BRistol (BR, red crosses) algorithms

(which are applied in the OSISAF algorithm).

AWI’s CryoSat-2 ice thickness product is provided on a monthly temporal and 25 km spatial

grid, including an ice type classification into first-year and multi-year ice, which is adopted by the

OSI SAF ice type product (Eastwood et al., 2015). The main source of systematic uncertainty in235

the CryoSat-2 ice thickness retrieval is due to the selection of the return-power threshold value in

the retracker algorithm (Ricker et al., 2014). This algorithm is essential to derive the actual range

measurement from the radar-return signal. Therefore, a return-power threshold is used at the first

maximum of the echo power distribution to retrieve the range estimate, which is then used to cal-

culate sea ice thickness. In order to estimate this algorithm uncertainty, we use a small ensemble240

of ice thickness values retrieved by Ricker et al. (2014) for three different thresholds with 40, 50,

and 80% (range of value in the literature) of the first maximum of the radar echo power. For the

present study we use the ice thickness retrieved with the 50% threshold as it provides the best match

to the ice thickness, simulated by (the recalibrated version of) NAOSIM. The standard deviation of

this ensemble over first-year ice is about 20% and over multi-year ice about 50%. We use these two245

values as relative uncertainties of the ice thickness for the respective ice types.

A snow depth product on the NAOSIM grid is provided by the University of Bremen on the

model’s grid. It has a daily temporal resolution and includes uncertainty estimates. The basis is an

algorithm following Markus and Cavalieri (1998), which is applicable to level ice under non-melting

conditions. To mask out areas where these conditions are not met, the radar backscatter at 5.3 GHz (C250

band) is used as it is increased in melting conditions and for rough ice. Here, a threshold of −13dB
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for the normalised radar backscattering cross section is used. On first-year ice the maximum of the

following three uncertainty estimates is used: (1) a value of 6 cm as estimated from a comparison

with the NASA ice bridge mission (Kurtz et al., 2013a, b), (2) a value derived by Gaussian error

propagation from the radiometric error of the input data (satellite brightness temperatures) and the255

uncertainty of the retrieval parameters, (3) the standard deviation of the most recent five days of

retrieved snow depths. On multi-year ice and under melting-conditions a very large uncertainty of

5m is applied.

2.3 NAOSIM

NAOSIMDAS is constructed around the North Atlantic/Arctic Ocean Sea Ice Model (NAOSIM)260

(Kauker et al., 2003). The ocean model is derived from version 2 of the Modular Ocean Model

(MOM-2) of the Geophysical Fluid Dynamics Laboratory (GFDL). The version of NAOSIM used

here has a horizontal grid spacing of 0.5◦ on a rotated spherical grid. The rotation maps the 30◦W

meridian onto the equator and the North Pole onto 0◦E. In the vertical it resolves 20 levels, their

spacing increasing with depth. The ocean model is coupled to a sea ice model with viscous-plastic265

rheology (Hibler, 1979). The thermodynamics are formulated as a zero-layer model following

Semtner (1976), and its parameters (e.g. albedos) are set in accordance to the AOMIP pro-

tocol (Nguyen et al., 2011). Freezing and melting are calculated by solving the energy bud-

get equation for a single ice layer with a snow layer and an ocean mixed layer according to

Parkinson et al. (1979). In contrast to the original formulation the energy flux through the ice270

is calculated by a PDF for the distribution of ice thickness based on EM-bird measurements

(Castro-Morales et al., 2014). The sea ice model’s prognostic variables are ice thickness, ice

concentration, and snow depth. Ice drift is calculated diagnostically from the momentum bal-

ance. All quantities are mean quantities over a grid box. When atmospheric temperatures are

below the freezing point, precipitation is added to the snow mass. The snow layer is advected275

jointly with the ice layer. The surface heat flux is calculated using prescribed atmospheric data

and sea surface temperature predicted by the ocean model. The sea ice model is formulated

on the ocean model grid and uses the same time step. The models are coupled following the

procedure devised by Hibler and Bryan (1987). At the open boundary near 50◦ N the barotropic

oceanic transport is prescribed from a coarser resolution version of the model that covers the whole280

Atlantic north of 20◦ S (Köberle and Gerdes, 2003).

The state of the model comprises five fields, namely ocean temperature and salinity (velocities are

diagnostic), ice thickness and concentration (drift is diagnostic) as well as snow depth. These five

fields form the control vector x in our assimilation system described in section 2.1.

In contrast to the version described by Kauker et al. (2003), the present version uses a modified285

atmospheric forcing data set consisting of 10m-wind velocity, 2m-air temperature, 2m-specific hu-

midity, total precipitation, and downward solar and thermal radiation. For the period from 1979 to
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2010 the forcing is taken from the National Center for Environmental Prediction (NCEP) Climate

Forecast System Reanalysis (NCEP-CFSR) (Saha et al., 2010) and for the period from 2011 to the

end of 2014 from the NCEP Climate Forecast System version 2 (CFSv2) (Saha et al., 2014).290

The initial state of January 1 1980 is taken from a hindcast from January 1 1948 to December

31 1979. As in Kauker et al. (2003) this hindcast run was forced by the NCEP/NCAR reanalyses

(Kalnay et al., 1996) and, in turn, initialized from PHC (Steele et al., 2001) (ocean temperature and

salinity), zero snow depth, and a constant ice thickness of 2m with 100% ice concentration where

the air temperature is below the freezing temperature of the ocean’s top layer.295

The above-described historical data sets were used to estimate a sub-set of the ocean sea ice

model’s process parameters, with focus on parameters that influence the ice dynamics. These are the

atmospheric drag coefficient (cdair), the oceanic drag coefficient (cdwat), the ice strength parameter

(p?), the parameter that determines the dependence of the ice pressure on the ice concentration (c?)

and the parameter that determines the ellipsoid of the rheology (eccen) that represents the ratio of the300

normal stress and the shear stress. Additionally the vertical ocean tracer mixing parameter kappah

is adjusted.

In our model we observe a memory of the Arctic sea ice system in the range of 7 to 10 years. We

thus performed model runs over the 29 year period from January 1980 until end of December 2008,

skipped the first 10 years, and evaluated the (quasi) equilibrium response for the remaining 19 years305

(calibration period).

The performance of the model is evaluated in terms of its weighted fit (as defined by the first

term of equation (3)) to observed sea ice concentration, ICESat-JPL ice thickness, winter ice drift

from OSI SAF, and summer ice drift from KIMURA as described above (Table 1). For the compu-

tation of the total misfit, each term data stream is normalised to yield a value of 1 for the standard310

configuration, in order to achieve an equal weighting of the terms despite their varying number of

observations. By this procedure we find a configuration that reduces the misfit of ice thickness and

ice drift strongly but increases the misfit of ice concentration, especially in winter. The misfit of ice

concentration is slightly decreased in summer but strongly increased in winter where the ice

margin is located too far south. Because here we are interested in the seasonal predictions of sum-315

mer ice conditions, the deficit in winter can be tolerated. In the following we call this configuration

newNAOSIM.

PIOMAS 2.1 (Zhang and Rothrock, 2003), an Arctic ocean sea ice model which uses Optimal

Interpolation to assimilate ice concentration and sea surface temperature, is often used as a reference,

because it is well validated (see e.g. Schweiger et al. (2011)). Its misfit to ice thickness and ice drift320

is added to Table 1. NewNAOSIM performs slightly worse than PIOMAS2.1 with respect to ice

thickness and better with respect to ice drift.

Another reference is TOPAZ4 (Sakov et al., 2012) which uses an Ensemble Kalman filter to

assimilate satellite observed sea level anomaly, sea surface temperature, sea ice concentrations from
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Model concn. concn. ICESAT ICESAT drift drift total weighted

Nov-Apr May-Oct Feb/Mar Oct/Nov Oct-Apr May-Jul

NAOSIM 234429 430621 3550 3753 120959 126750 920063 3.00

newNAOSIM 405000 405221 1793 1664 22689 38131 963117 1.94

PIOMAS2.1 - - 1383 1125 46231 67254 - .

TOPAZ4 - - 2949 2276 159021 109079 - -

Table 1: The cost function for the three data streams separated by winter and summer (columns 2

to 7), the sum of the terms (column 8), and the normalized sum (column 9) for standard NAOSIM

(NAOSIM) and the recalibrated NAOSIM (newNAOSIM). Additionally, the cost function with re-

spect to the ICESAT thickness and ice drift is given for PIOMAS2.1 and TOPAZ4.

AMSR-E (NSIDC), sea ice drift products from CERSAT and Coriolis in-situ temperature and salinity325

profiles. NewNAOSIM outperforms TOPAZ4 with respect to ice thickness and ice drift (Table 1).

The deviations of the climatologies of newNAOSIM, PIOMAS2.1, and TOPAZ4 from the IceSat-

JPL climatology (Figure 2) (from 2003 to 2008) reveal similarities between newNAOSIM and PI-

OMAS2.1 (compare Schweiger et al. (2011) figure 6). Both show too thick ice in the Beaufort Sea

in February/March and too thin ice north of the Canadian Archipelago and north of Greenland and330

north of Fram Strait in February/March and October/November when compared to ICESat-JPL. This

is very remarkable because both simulations differ in terms of model formulation and parameterisa-

tions and atmospheric forcing (NCEP-CFSR in case of NAOSIM and NCEP in case of PIOMAS2.1

which differ considerably for some variables, see e.g. Lindsay et al. (2014)). In contrast to new-

NAOSIM and PIOMAS2.1 in February/March TOPAZ4 exhibits a large negative bias in the Eurasian335

Basin, especially north of Fram Strait. In October/November TOPAZ4 is closer to newNAOSIM and

PIOMAS2.1. The ice thickness of newNAOSIM, PIOMAS2.1, and TOPAZ4 for September 2007 is

shown in Figure 3. Although newNAOSIM uses no assimilation of sea ice or ocean observations the

pattern of the sea ice cover deviates not stronger from PIOMAS2.1 and TOPAZ4 than PIOMAS2.1

deviates from TOPAZ4 (although both models use assimilation of ice concentration from NSIDC).340

The sea ice area in September for newNAOSIM is in good agreement with three different observa-

tional data streams (Figure 4). The minima in 2007 and 2013 and the long-term trend are captured by

the model. The largest deviations occur between 1999 and 2003 where the model overestimates the

sea ice area. As this strong deviation is absent when forced with the NCEP reanalysis (not shown)

this can be attributed to deficits in the NCEP-CFSR surface forcing.345
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(a) newNAOSIM Feb/Mar (b) newNAOSIM Oct/Nov

(c) PIOMAS2.1 Feb/Mar (d) PIOMAS2.1 Oct/Nov

(e) TOPAZ4 Feb/Mar (f) TOPAZ4 Oct/Nov

Figure 2: The difference of the modelled and observed (ICESat-JPL) ice thickness climatology [m]

for February/March (left) and October/November for newNAOSIM (a) and b)), PIOMAS2.1 (c) and

d)), and TOPAZ4 (e) and f)) for the mean from 2003-2008). Only points where the deviation of

ICESat-JPL from ICESAT-GSFC (Zwally et al., 2008)) is below 40cm are used.
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(a) newNAOSIM (b) PIOMAS2.1

(c) TOPAZ4

Figure 3: The sea ice thickness [m] September 2007 as simulated by a) newNAOSIM, b) PI-

OMAS2.1, and c) TOPAZ4.

3 Experiments

In this section three different sets of experiments are described (see Table 2): The first set performs

a straightforward initialisation through simultaneous assimilation of all four data streams described

in section 2.2.2. The second set uses all data streams but the ice thickness, and aims at reconstructing

ice thickness fields that are consistent with those three data streams and the model. Based on these350

reconstructed fields a bias correction scheme for CryoSat-2 ice thickness is derived and applied in

the final set of experiments. This set of experiments will exhibit a low forecast skill for summer

ice concentration, pointing at remaining inconsistencies (despite our thorough calibration of

the model). A second set of experiments is used to investigate the mechanism for such incon-

sistencies: We do this by inferring the evolution of the ice thickness distribution when it is con-355
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Figure 4: The September sea ice area of newNAOSIM (black) and three estimates based on remotely

sensed ice concentration (dashed). OSI SAF (re-processed) and SICCI based on two different sensors

(SMMR/SSMI and AMSR, available from http://icdc.zmaw.de/esa-cci_sea-ice-ecv0.html).

assimilation constraints

experiment prior daily monthly daily daily

information ice concentration ice thickness SST snow depth

straightforward yes Mar-Apr Mar-Apr Mar-Apr Mar-Apr

reconstruction yes Jul-Sep - Mar-Sep Mar-Sep

bias-corrected yes Mar-Apr Mar-Apr Mar-Apr Mar-Apr

Table 2: List of sets of experiments performed and the constraints used. Each set of experiments

consists of three experiments, one each for the years 2012-2014.

strained only by the other three data steams but not by the CryoSat-2 observations. Based on

these “reconstructed” ice thickness fields we will derive a bias correction scheme for CryoSat-2

ice thickness, which is then applied in the final set of experiments.

3.1 Straightforward Initialisation

We assimilate CryoSat-2 ice thickness (50% retracker threshold), ice concentration, snow depth and360

SST with uncertainties as described in section 2.2.2. We perform three experiments, one for each

of the years for 2012 to 2014, and in each year use a two-month assimilation window from March

1 until April 30. The cost function contribution from CryoSat-2 ice thickness, the data stream in

the focus of this study, is based on monthly-mean values, while the contributions from the other

data streams are based on daily values. This would result in a substantially lower weight of the365
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(a) 2012 (b) 2013

(c) 2014

Figure 5: The terms of the cost function before and after the optimization for a) 2012 b) 2013 c)

2014.

ice thickness contribution. We artificially increase its weight by a factor of 180 to ensure that this

contribution has the same order of magnitude as the other terms.

In all three experiments, the iterative minimisation procedure of our assimilation system achieves

a substantial reduction of the cost function gradient in 50 to 70 iterations. For each experiment,

Figure 5 shows the total cost function and the contributions of all four data streams and the prior370

information separately before (a priori) and after the last iteration (a posteriori). The contributions

from ice thickness and snow depth are strongly decreased, and for ice concentration and SST the

decrease is slightly weaker.

In the following we use the terms prior simulation, prior run, or simply prior to denote the

variables simulated from the a priori control vector and likewise posterior for those simulated375

from the a posteriori control vector.

For each experiment, the March ice thickness of CryoSat-2 of the prior run (with a priori control

vector) and the posterior run (with a posteriori control vector) are shown in Figure 6. The Beaufort

Sea, the East Siberian Sea and in the Kara and Laptev Seas exhibit the largest change from prior

to posterior. In March 2014, both prior and posterior simulations show (consistent with CryoSat-2)380

thicker ice north of the Canadian Archipelago and north of Greenland than in 2012 and 2013. With

the exception of the area east of Greenland which is of less interest for this study, strong differences

between the posterior run and CryoSat-2 are restricted to the area north of Fram Strait towards the
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pole and the 2012 experiment. This residual misfit can be traced back to an inconsistency between

observed ice concentration and thickness (and the model): As the simulated ice concentration in385

winter and spring in the Greenland Sea is too high (and, thus, the ice margin too far south) the

assimilation responds by a reduction of ice thickness north of Fram Strait towards the pole, reflecting

the pathway of the Transpolar Drift in the model. In other words: the price we have to pay for a more

reliable ice margin is a misfit to the CryoSat-2 ice thickness. Especially in March 2012 CryoSat-2 is

showing very thick ice next to and along the described pathway (Figure 6 a)) which is obviously not390

consistent with the model’s ice margin (and ice dynamics).

As we assimilate only data in March and April, the observations for the subsequent months (when

available) provide independent information that we can use to assess the forecast skill prior and

posterior to the assimilation. Our skill score is the squared misfit weighted by the reciprocal of

the squared uncertainty (as in the definition of the cost function equation (3), but without the extra395

scaling factor for the ice thickness contribution). For each experiment Figure 7 shows the prior and

posterior contributions to the misfit per data stream and month from March to December. In all

experiments, for March and April (i.e. in the assimilation window) the contribution of CryoSat-2 is

strongly reduced in the posterior run. In November, however, the skill of the posterior run is reduced

for the 2012 and 2013 experiments, and only slightly increased for 2014. The skill for snow depth400

simulation is strongly increased from March to June in 2012 and 2013, for 2014 is was already good

in the prior. The period from July to September is less relevant, because there is little snow left. The

skill for SST improves somewhat in March and April.

The posterior ice concentration has an increased skill in March and April. In the subsequent

months the situation is mixed, at least Arctic-wide. We can, however, identify regions of increased405

and reduced skill as is illustrated by Figure 8, which shows the September concentration misfit for

the prior (row 1) and the posterior (row 2) simulations. For example, the skill in the Beaufort Sea

and north of the Chukchi plateau is increased, while the skill over the Eurasian basin is decreased.

3.2 Reconstruction

Our next set of (three) experiments explores the feasibility of inferring an initial ice thickness distri-410

bution on March 1 that is consistent with the summer ice concentration for each of the years 2012

to 2014. We, hence, use an extended assimilation window from March 1 to September 30 and as-

similate ice concentration from July to September 30 together with snow depth and SST which we

assimilate from March to September. We do not use any ice thickness observations. We use the same

control vector as in the straightforward assimilation.415

In each experiment the posterior March ice thickness exceeds the CryoSat-2 observations in large

parts of the Arctic (see Figure 6, rows 3 and 1). Areas with similar values as CryoSat-2 are the

southern parts of the Beaufort Sea, the Chukchi Plateau, and the Kara and Laptev Seas. Over the

Eurasian Basin slope except for areas north of the Laptev Sea the posterior ice thickness falls below
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(a) CS-2 2012 (b) CS-2 2013 (c) CS-2 2014

(d) prior 2012 (e) prior 2013 (f) prior 2014

(g) strait 2012 (h) strait 2013 (i) strait 2014

(j) recon 2012 (k) recon 2013 (l) recon 2014

Figure 6: The ice thickness [m] of the CryoSat-2 product (top row); ice thickness of newNAOSIM

prior to the assimilation (second row), after the straightforward assimilation (third row), and after

the reconstruction (fourth row) for March 2012 (a), d), g), and j)), March 2013 (b), e), h), and k)),

and March 2014 (c), f), i), and l)).
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(a) (b)

(c) (d)

Figure 7: Prior (black) and posterior (red) misfit (as defined in equation (3)) per data stream and

month for a) the CryoSat-2 ice thickness (data are currently only available for March, April and

November; not scaled, see text), b) the OSI SAF ice concentration, c) the snow depth (UB), and

d) the OSI SAF SST. The three black (red) lines are representing respectively the three years

2012-2014 and are marked by different symbols (circle: 2012, triangle: 2013, square: 2014).

CryoSat-2. Apparently high ice thickness values are required to match the ice concentration in sum-420

mer which is shown in row 3 of Figure 8. Note that, compared to the straightforward initialisation

experiments here the ice margins are matching. Animations of ice thickness and concentration show

that the improved match over the Eurasian Basin slope is caused by increased initial ice thickness

north of the Laptev Sea (see row four in Figure 6).

We can now compare our skill metrics, i.e. the cost function contributions contributions to the425

total misfit (defined in equation (3)) per data stream and month from March to December (Fig-

ure 9) with that for the straightforward initialisation (Figure 7) The skill for ice concentration (panel

b) is considerably increased from July to September (assimilated) but also from March to June (not

assimilated). The skill is, however, already lost in October, probably because of the freezing of sea

ice, which is not constrained by any satellite observations of the sea ice. Compared to our run from430
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(a) prior 2012 (b) prior 2013 (c) prior 2014

(d) strait 2012 (e) strait 2013 (f) strait 2014

(g) recon 2012 (h) recon 2013 (i) recon 2014

(j) bias-cor 2012 (k) bias-cor 2013 (l) bias-cor 2014

Figure 8: The misfit between simulated and OSI SAF ice concentration prior to (top row), after the

straightforward assimilation (second row), after the reconstruction (third row), and after the bias-

corrected assimilation (fourth row) and the OSI SAF ice concentration for September 2012 (a), d),

g), and j)), September 2013 (b), e), h), and k)), and September 2014 (c), f), i) and l)).
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(a) (b)

(c) (d)

Figure 9: As Figure 7 but for the reconstruction experiment.

the prior initial state, the skill for CryoSat-2 data (panel a) is strongly reduced for March and April

but only weakly reduced for November. The skill of snow depth is very similar to that of the straight-

forward initialisation. The fit to SST shows some improvement from May to August, compared to the

prior and to the straightforward assimilation. This is probably an effect of the extended assimilation

window, and maybe rather driven by observations of ice concentration than of SST.435

3.3 Initialisation with Bias Correction

The ratio of the reconstructed and the CryoSat-2 ice thickness shows remarkable similarities of

the three years (shown in Figure 10 for March). We use this finding to derive a bias correction

procedure: First, we average the ratio fields over the three years from 2012 to 2014 separately for

March and April (shown in Figure 11 for March in April). Second, we multiply the CryoSat-2 ice440

thickness for March and April by the corresponding ratio fields yielding bias-corrected CryoSat-2

ice thickness fields. Then we repeat the straightforward initialisation (described in section 3.1) with

the bias corrected CryoSat-2 fields.
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(a) 2012 (b) 2013

(c) 2014

Figure 10: The ratio of the reconstructed and the CryoSat-2 ice thickness a) March 2012, b) March

2013, and c) March 2014.

We note the higher reconstructed ice thickness northeast of Severnaya Zemlya of about a

factor of two as compared to CryoSat-2 (Figure 11). The model’s transpolar drift propagates445

this increased spring ice thickness towards Fram Strait shifting the summer ice margin further

south improving agreement with the observed September ice concentration over the western

Nansen basin (compare top and third rows of Figure 8). We also note that this bias correction

would also have increased the simulated autumn ice thickness north of Franz Josef’s Land

and thus would have improved the fit to IceSat-JPL data (see Figure 2 panel b). As the two450

sequential assimilation systems we compared the calibrated model with exhibit the same misfit

to IceSat-JPL the bias correction method might have a similar effect for these systems (see

Figure 2 panels d and f).
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(a) March (b) April

Figure 11: The three-year mean (2012-2014) of the ratio of the reconstructed and the CryoSat-2

ice thickness for a) March and b) April.

(a) (b)

Figure 12: As Figure 7 but for the bias-corrected assimilation experiment. Only the misfit of the ice

concentration and SST are shown.

The convergence of the minimisation is similar to that of the straightforward initialisation. The

skill of the posterior concentration does, however, show a remarkable improvement until September455

(Figure 12). The skill for SST is increased from March until July, and for snow depth it is very close

to the straightforward initialisation (not shown). The misfit of the ice concentration in September is

now strongly reduced for all years (row 4 of Figure 8).

4 Conclusions

AWI’s ocean sea ice model NAOSIM has been recalibrated using observations from 1990 to 2008.460

We restricted the calibration to parameters which control the sea ice dynamics (but also the ocean

23



dynamics) resulting in a horizontal ice thickness distribution much closer to the ICESat-JPL obser-

vations. We described the development of a variational data assimilation system around AWI’s

ocean sea ice model NAOSIM for seasonal prediction. In its present setup, the scheme uses

several observational data streams over a single two-month assimilation window (March and465

April) to constrain the initial conditions of the model on March 1. By construction the system

enforces consistency between prior information on the initial state (from a preceding model

run), all observational data streams and the model equations, which are employed as a hard

constraint. Hard constraint means that the evolution of all variables strictly respects the model

equations, for example co-existence of very thick ice and very low ice concentration in the same470

grid cell and time step will not occur. Our system will inevitably try to correct for errors in the

model or the observations by introducing compensating errors in the inferred initial state. It is

thus a necessary pre-requisite to eliminate any known biases. In a preparatory step, we, hence,

calibrated the model using independent observations over a long time period (1990 to 2008),

namely remotely sensed observations of ice thickness (ICESat-JPL), ice concentration (OSI475

SAF), and ice drift (OSI SAF and KIMURA).

To limit the computational effort, we restricted the calibration to a sub-set of parameters

that, in initial sensitivity studies, showed high impact on the ice conditions. The calibrated

model showed a horizontal ice thickness distribution much closer to the ICESat-JPL observa-

tions. A positive bias in the Beaufort Sea and a negative bias over the Eurasian Basin slope were480

strongly reduced. This is connected to a reduction of the ice drift speeds which are now much closer

to the ice drift provided by OSI SAF and KIMURA. The horizontal ice thickness distribution for

single events like the September 2007 sea ice minimum is also improved strongly. The time series

of September sea ice extent and area are now much closer to the observations. While the standard

uncalibrated model version produces a minimum in extent and area in 1990 which almost reaches485

the 2007 values, the calibrated model’s 1990 simulation is much more realistic. This underlines the

importance of a realistic horizontal ice thickness distribution to simulate extreme events correctly.

The model is now able to reproduce the minima in 2007 and 2012 although the extent is somewhat

overestimated. Also the long-term trend from 1980 to 2014 in extent and area is captured much

better.490

In essence the calibrated model matched the observational data within their (partly large)

uncertainty ranges. Still it was difficult to assess whether the result of the calibration exercise is

sufficient for our objective (bias elimination). What we could do, however, was to compare with

output of two established (sequential) assimilation systems, which also confirmed the success

of the calibration. We note that this calibration is, however, limited by the reliability of the495

available data streams. For example, given the difference in measurement approach (laser vs.

radar altimetry), it is not clear, how consistent the ICESat-JPL ice thickness product (used
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for calibration) and the CryoSat-2 product (to be used for the assimilation/forecasting) are. As

both products don’t overlap in time a direct comparison is not possible.

A subsequent set of data assimilation experiments uses the following four data streams: CryoSat-500

2 sea ice thickness from AWI, sea ice concentration from OSI SAF, snow depth from University

Bremen, and sea surface temperature (SST) from OSI SAF. Three assimilation experiments with

these four data sets over an assimilation window covering March and April, for each of the years

2012 to 2014, were carried out and a forecast of the summer ice conditions was performed. To

focus on the effect of constraining the initial state of the ocean sea ice system, we assumed to have505

perfect seasonal atmospheric forecasts providing perfect surface boundary conditions (for a use of

this system in operational mode, uncertainty in boundary conditions is handled through an ensemble

approach, see e.g. Kauker et al. (2010)). It turned out that the assimilation could only improve the

summer conditions for some regions. Arctic-wide the forecast skill in summer could not be improved

through the use of the sea ice and ocean urface observations in March and April.510

A second set of experiments was used to construct an initial state that is consistent with the ob-

servational data sets except CryoSat-2 over a longer assimilation window from March to September.

From this initial state we simulated the posterior ice thickness distribution in March and April. Since

this set of experiments made use of the summer ice conditions, we called the inferred posterior ice

thickness fields ’reconstructed’. The ratio of this ’reconstructed’ and the CryoSat-2 ice thickness515

fields for March and April is very similar for all three years. This allowed us to develop a bias cor-

rection scheme, which scales the CryoSat-2 ice thickness fields by the monthly three-year mean of

the above ratio. Then we performed We took the bad forecast skill as an indication of remaining

biases in the system. Guided by biases in the autumn ice thickness simulated by our and the

two above mentioned sequential assimilation systems we suspected inconsistencies between520

the CryoSat-2 data streams and the rest of our assimilation/forecasting system. Until we fully

understand and are able to remove the origin(s) of this bias, we needed to devise a strategy

for enhancing the forecast skill through correction of this bias. Our procedure is based on

a second set of experiments with a longer assimilation window (March to September). We

deliberately omitted the CryoSat-2 data stream in the system and constructed an initial state525

on March 1 that is consistent with the rest of the system. From this initial state we simulated

the ice thickness distribution in March and April. Since this set of experiments made use of the

summer ice conditions, we called these simulated ice thickness fields ’reconstructed’. As the

ratio of this ’reconstructed’ and the CryoSat-2 ice thickness fields for March and April is very

similar for all three years, our bias correction scheme uses the three-year mean of this ratio530

field as a point-wise multiplier for the CryoSat-2 product.

To investigate the effect of this bias correction procedure we then performed a third set of

assimilation experiments for March and April similar to the first set of experiments but with the

bias correction scheme applied to the CryoSat-2 ice thickness. This procedure yields a considerable
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improvement in forecast skill for sea ice from July to September for all three years. We note that535

our prediction target, namely the summer ice conditions of 2012 to 2014, have entered the assim-

ilation procedure, because they were used to derive the ice thickness ratio in our bias correction

scheme. However, the bias correction scheme can now also be applied to years beyond the period

from 2012 to 2014. One of these applications is the Sea Ice Outlook 2015. this does not provide

a completely independent assessment, because our prediction target, namely the summer ice540

conditions of 2012 to 2014, was used in the construction of the bias correction scheme. Future

assimilation/forecast experiments for years beyond the period from 2012 to 2014, will, however,

be completely independent.

The main recommendation from this study to the ice forecasting community is to try and

eliminate potential biases between the model (including the boundary conditions) and the ob-545

servational data streams by a thorough calibration of the model and examination of the cali-

bration results with independent information. Such a procedure can only be a first step, as it

cannot eliminate all sources of bias. Careful inspection of assimilation results for inconsisten-

cies is thus essential but requires a tedious analysis. The variational data assimilation approach

in the form used here is a powerful basis for detection of inconsistencies and ultimately their550

removal. As an intermediate step bias correction schemes such as the one we constructed for

assimilation of the CryoSat-2 ice thickness product are helpful for enhancing the forecast skill

through compensation of model-data inconsistencies. This appears to apply as well to two es-

tablished sequential assimilation systems (PIOMAS2.1 and TOPAZ4) as they underestimate

the autumn ice thickness in a similar manner as our system.555
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