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0 General Response

We thank the editor and the reviewers for their careful inspection of the manuscript
and their valuable comments. Their main point is that the complex material
is quite condensed and its presentation needs to be improved to be attractive
for the wide audience of TC. Indeed we find this very challenging and made
an effort in the revised version to meet: “The primary recommendation of this
review is that the authors put themselves in the position of someone trying to
replicate their experiments and edit their paper accordingly.”

In particular we have now

• extended the introduction to better motivate our objective and approach
with the steps required, including the crucial role of the calibration (model
tuning);

• extended the conclusions section and also added a number of general rec-
ommendations/take home messages derived from the results;

• extended the description of the data assimilation approach (section 2.1),
including definitions of the jargon;

• extended the description of the numerical model (section 2.3), in particular
the processes affecting the sea ice simulation.

In the following we address comments by the anonymous referees (quoted in
italics) point-by-point. Where we quote from the revised manuscript changes
are marked in bold faced letters.

1 Comments by Anonymous Referee #1
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General: This paper describes a tuning exercise and a set of sea ice data as-
similation experiments using the NAOSIM model, designed to improve the per-
formance of this system in producing seasonal sea ice forecasts for the Arctic.
General comments: This studys merit lies in the fact that it has performed a
multivariate sea ice assimilation (concentration, snow and thickness), which is a
new area. However, the authors should make more effort to describe the papers
unique contribution and importance in the preamble. The study is quite technical
and the authors make little effort to make the material accessible to a wide au-
dience and it is not clear to me what the studies key findings/recommendations
to other forecasting centres are. For example, lots of DA jargon is used, which
is not explained. I found that the Conclusions section was more a summary of
what has been done than a digested message to take away from the paper. Due
to the technical nature of the study, I think it is particularly important that the
conclusions are clear, since many readers will be interested in the papers mes-
sage, but not full details. I suggest that in the authors add a paragraph to the
conclusions section discuss recommendations about the usefulness of this method
for other forecasting centres.

We have modified the abstract such as to better stress our unique contribu-
tion:

“The recent thinning and shrinking of the Arctic sea ice cover has increased
the interest in seasonal sea ice forecasts. Typical tools for such forecasts are
numerical models of the coupled ocean sea ice system such as the North At-
lantic/Arctic Ocean Sea Ice Model (NAOSIM). The model uses as input the
initial state of the system and the atmospheric boundary condition over the
forecasting period. This study combines, for the first time, remotely
sensed observations of four variables of the ocean sea ice system in
a data assimilation system. The four data streams are the Alfred
Wegener Institute’s CryoSat-2 ice thickness product, the University
of Bremen’s snow depth product, and the OSI SAF ice concentra-
tion and sea surface temperature products. The assimilation system,
built around NAOSIM, uses a variational approach with a two-month
assimilation window, in which all observations act simultaneously as
constraints on the initial model state. We investigate the skill of pre-
dictions of the summer ice conditions issued in May for three different years.
Straightforward assimilation of the above combination of data streams results in
slight improvements over some regions (especially in the Beaufort Sea) but de-
grades the over-all fit to independent observations. A considerable enhancement
of forecast skill is demonstrated for a bias correction scheme for the CryoSat-2
ice thickness product that uses a spatially varying scaling factor.”

My understanding is that this is more a model development paper, rather
than a scientific one. I therefore suggest the authors change the title to: ”De-
velopments to a seasonal sea ice prediction system using remotely sensed obser-
vations”, or similar and frame the rest of the paper like this. Then it is clearer
that it is mainly a development paper.

A lot of information is presented in the paper, but it is not always clear
why certain aspects of the analysis are important, or why certain graphs have
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been included. It is therefore quite impenetrable. I suggest the authors carefully
edit the paper to stitch the different parts of the analysis together as part of a
coherent story.

We have addressed most of the general comments through the substantial
revisions as explained in section 0 of this response.

We also have changed the title to: Towards seasonal sea ice predictions for
the Arctic based on assimilation of remotely sensed observations.

Specific suggestions:

1. The paper uses a lot of technical jargon, such as Data stream and Opera-
tional Products. I suggest these are changed, or at least defined, to make
the paper more accessible to a wider audience.

The introduction of the data assimilation method is now much more de-
tailed. We also added a definition of data stream where the term is first
mentioned.

“The present article describes the development of an assimilation and
prediction system of the Arctic sea ice conditions. Ideally, such a sys-
tem will combine with a numerical model with observational
data of various types, for example in terms of variables (e.g.
sea ice or ocean), scale of representativeness (e.g. point or two
dimensional area), or observational approach (e.g. in-situ or
satellite-derived). We term each of these types a data stream,
and for the use in a combined assimilation/prediction system,
an obvious requirement is their availability close to near real
time. In this study, we use four data streams which fulfill this
requirement, namely, the OSI SAF sea ice concentration and sea surface
temperature products, a snow depth product provided by the University
of Bremen, and the CryoSat-2 ice thickness product derived at the Alfred
Wegener Institute (AWI). All above data streams are available from
2012. Also there is only one single two month period per year (March and
April) for which the CryoSat-2 product is currently available (and note
that the followup version covers October to April/May). We thus restrict
our study to assimilation of the above four data streams in the spring of
each of the three years from 2012 to 2014 and to prediction of the ice
conditions in the following summer.”

And also for “operational products”:

“For this purpose, the data streams have to be available operationally or
have to become operational in the near future, i.e. the product time
series need to be continuously extended until the recent past
(near real time).”

2. P5523:L21-22: See also Day et al. (2014) I think the introduction would
benefit from some discussion of why we think sea ice should be predictable
on seasonal and longer timescales. I suggest at least mentioning pre-
dictability studies such as Koenigk and Mikolajewicz (2009) or Holland
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et al. (2010), which provide this justification. A review of the state of the
art in sea ice prediction is also presented by Guemas et al. (2014).

We added an introductory sentence on predictability to the relevant para-
graph of the introduction:

“The potential for sea-ice predictions has been addressed by a set
of studies (e.g. Kauker et al. [2009], Koenigk and Mikolajewicz
[2009], Holland et al. [2010], Day et al. [2014]). Predictions by a
dynamical model depend on the state of the system at the beginning of
the simulation period (initial state). Previous studies have highlighted the
role of the initial ice thickness distribution Kauker et al. [2009], Holland
and Stroeve [2011], Lindsay et al. [2012], Chevallier and Salas-Mlia [2012]
for the forecast quality. Systematic use of observational information in a
data assimilation system can help to derive an improved estimate of the
initial state [Lindsay et al., 2012, Chevallier et al., 2013, Yang et al., 2014,
Massonnet et al., 2015].”

3. P5531: It is not clear what the purpose of the comparison with PIOMAS
and TOPAZ is. I dont really think it adds too much to the paper. I suggest
this is deleted.

As now elaborated in the introduction, the experimental section and the
conclusions we think this preparatory calibration step is essential to cor-
rect biases. The comparison with PIOMAS and TOPAZ is used to evaluate
the result of the calibration effort.

4. P5532:L1-5: Why is NCEP reanalysis chosen as the driving data? There
is evidence that ERAInterim performs much better in the Arctic (Lindsay
et al., 2014).

We are using NCEP-CFSR and not NCEP for the most recent time period.
The statement that Lindsay et al. (2014) have shown that ERAInterim
performs much better is a bit too general: ERAInterim performs certainly
better with respect to precipitation but performs worse with respect to
the surface temperature where ERA-interim shows a strong warm bias
over sea ice in summer (see Jacobsen et al. 2012, grl, VOL. 39, L10802,
doi:10.1029/2012GL05159.) which prevents us from using ERAInterim.

5. P5532;L6-11: I suggest the authors reiterate what they expect to learn from
the different experiments here.

We have extended this introductory paragraph to section 3 and also added
a table:

“In this section three different sets of experiments are described (see Ta-
ble 1): The first set performs a straightforward initialisation through
simultaneous assimilation of all four data streams described in section
2.2.2. This set of experiments will exhibit a low forecast skill for
summer ice concentration, pointing at remaining inconsistencies
(despite our thorough calibration of the model). A second set
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of experiments is used to investigate the mechanisms for such
inconsistencies: We do this by inferring the evolution of the ice
thickness distribution when it is constrained only by the other
three data steams but not by the CryoSat-2 observations. Based
on these “reconstructed” ice thickness fields we will derive a bias
correction scheme for CryoSat-2 ice thickness, which is then ap-
plied in the final set of experiments.”

assimilation constraints
experiment prior daily monthly daily daily

information ice concentration ice thickness SST snow depth
straightforward yes Mar-Apr Mar-Apr Mar-Apr Mar-Apr
reconstruction yes Jul-Sep - Mar-Sep Mar-Sep
bias-corrected yes Mar-Apr Mar-Apr Mar-Apr Mar-Apr

Table 1: List of sets of experiments performed and the constraints
used. Each set of experiments consists of three experiments, one
each for the years 2012-2014.

6. P5533:L20-30: It is really not very clear to me how the lines in figure
7 were calculated, or how to interpret them. Was the DA scheme used
to update the state vector all through the simulations, or was a control
simulation run without data assimilation? This needs to be much more
explicit. It is very important that this explanation is improved as it is
impossible to assess the validity of the paper, when the method is not clear.

The caption of the Figure is extended to read:

“Prior (black) and posterior (red) misfit (as defined in Eq.̃(3)) per
data stream and month for a) the CryoSat-2 ice thickness (data are cur-
rently only available for March, April and November; not scaled, see text),
b) the OSI SAF ice concentration, c) the snow depth (UB), and d) the
OSI SAF SST. The three black (red) lines are representing re-
spectively the three years 2012-2014 and are marked by different
symbols (circle: 2012, triangle: 2013, square: 2014).”

The extended description of the DA system (section 2.1) should also help
readers to understand the Figure.

7. Figs 6, 8 and 10. Suggest adding dates to the plots to make it easier for
the reader.

Dates are added to the plots.

8. Fig 11: I suggest the more information is included in the caption of this
figure.

The caption gives more information now and reads:

“The three-year mean (2012-2014) of the ratio of the recon-
structed and the CryoSat-2 ice thickness for a) March and b) April.”
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2 Comments by Anonymous Referee #2

Review overview: The paper needs substantial editing and better communication.
There may be some useful work here, but it is difficult to tell. If readers do not
understand the work, it will go to waste.

This paper investigates the utility of data assimilation strategies within the
NOASIM ice/ocean model via experimental procedures.

Several model parameters are calibrated using observations form the period
1990- 2008. Experiments are then performed for 2012-2014 where data is assim-
ilated during March-April and the model is evaluated in September. CryoSat-2
ice thickness, ice concentration (OSI SAF), SSTs (OSI SAF) and snow depth
(Uni. Bremen) are assimilated at times. Using a ”straightforward” assimilation
strategy in March-April still produces biased results in September.

”Reconstruction” runs are then performed, which aim to find March-April
ice thicknesses that give good results in September. The ratio of CryoSat-2 ice
thicknesses and those found in the ”reconstruction” runs is then used as a form
of ”bias correction” in a final set of assimilation experiments. The final runs
give better September results than the original (”straightforward”) case, however,
the March ice thickness used in this case seems to be unrealistically thick, with
vast areas being +3.5m thick.

The overall concept of calibration, then assimilation and analysis is quite
good. Unfortunately, it is difficult to learn much from this paper. The descrip-
tion does not effectively communicate exactly what was done, nor is there an
analysis of why the assimilation failed to make expected improvements. The pri-
mary recommendation of this review is that the authors put themselves in the
position of someone trying to replicate their experiments and edit their paper
accordingly.

As mentioned above in section 0 of our response, we made an effort to
put ourselves “in the position of someone trying to replicate our experiments”
and worked on the communication through substantial extension of several sec-
tions. We think that this better communication already answers many of the
issues/questions raised in the reviewers specific comments below and will partly
give only brief response to those.

My impression after reading the paper is as follows: since the ”straightfor-
ward assimilation” of realistic data did not produce a good result and the ”bias
correction” assimilation uses ice that is too thick, the NAOSIM model suffers
from structural, parameter or input errors. Data assimilation can be used to
highlight these issues (which is perhaps the most useful contribution made by
this paper), but it should not be used as a crutch for trying to correct such sys-
tematic problems - that goes against the theory and underlying assumptions of
optimal data assimilation.

It seems that a final conclusion could be that either: 1) the CryoSat-2 ice
thickness data is incorrect thus adds no useful information or 2) the NAOSIM
model has issues that need to be rectified before it can make a reliable forecast...
Case (2) seems more likely, but one cannot say based on the information in this
paper and it is up to the authors to demonstrate either case.
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We now state clearly (for example in the conclusions) that the use of a bias-
correction scheme is only the second-best choice (after tracing back the origin
of inconsistencies and removing them):

“We took the bad forecast skill as an indication of remaining bi-
ases in the system. Guided by biases in the autumn ice thickness
simulated by our and the two above-mentioned sequential assimila-
tion systems we suspected inconsistencies between the CryoSat-2 data
streams and the rest of our assimilation/forecasting system. Until we
fully understand and will be able to remove the origin(s) of this bias,
we need to devise a strategy for enhancing the forecast skill through
correction of this bias. Our procedure is based on a second set of ex-
periments with a longer assimilation window (March to September).
We deliberately omitted the CryoSat-2 data stream in the system and
constructed an initial state on March 1 that is consistent with the rest
of the system. From this initial state we simulated the ice thickness
distribution in March and April. Since this set of experiments made
use of the summer ice conditions, we called these simulated ice thick-
ness fields ’reconstructed’. As the ratio of this ’reconstructed’ and
the CryoSat-2 ice thickness fields for March and April is very similar
for all three years, our bias correction scheme uses the three-year
mean of this ratio field as a point-wise multiplier for the CryoSat-2
product.”

In the forecasting business one is, however, always confronted with a situa-
tion in which imperfect models and data are to be combined, and (until a bias
can really be eliminated) the standard procedure is to correct for it. The justifi-
cation is always an increase in the forecast skill. There are numerous examples
of empirical bias correction schemes, in particular from NWP. Some of them are
even adaptive, in the sense that parameters of the bias correction scheme are
estimated within the analysis system.

We also state now that the variational assimilation system is an ideal tool
to detect inconsistencies. In fact these inconsistencies are typically combina-
tions of imperfections in the data streams, the prior, the model (formulation
and parameters), and the boundary conditions, and it is a substantial effort to
pinpoint their origin.

“The main recommendation from this study to the ice forecast-
ing community is to try and eliminate potential biases between the
model (including the boundary conditions) and the observational data
streams by a thorough calibration of the model and examination of
the calibration results with independent information. Such a proce-
dure can only be a first step, as it cannot eliminate all sources of
bias. Careful inspection of assimilation results for inconsistencies is
thus essential but requires a tedious analysis. The variational data
assimilation approach in the form used here is a powerful basis for
detection of inconsistencies and ultimately their removal. As an inter-
mediate step bias correction schemes such as the one we constructed
for assimilation of the CryoSat-2 ice thickness product are helpful
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for enhancing the forecast skill through compensation of model-data
inconsistencies. This appears to apply as well to two established
sequential assimilation systems (PIOMAS2.1 and TOPAZ4) as they
underestimate the autumn ice thickness in a similar manner as our
system.”

Specific:

1. Section 2.1 - How does the variational code deal with potential data incon-
sistencies? What is the error assigned to the model in the C(Xo) matrix?
Results in Figure 5 would suggest that the model error is set to be very
high as very little of the total cost function is from this term (Figure 7).

We extended various parts of the manuscript to highlight how the varia-
tional system handles inconsistencies, for example in the introduction:

“The assimilation system is built around the regional North Atlantic/Arctic
Ocean Sea Ice Model (NAOSIM, Gerdes et al. [2003], Kauker et al. [2003]).
We apply a variational assimilation approach that determines an
initial state (of sea-ice and ocean fields) on March 1. This means
through variation of the model state on March 1 we search a tra-
jectory that provides the best match to the four data streams
over a subsequent two-month interval (assimilation window).
The seasonal forecast is then performed by a simulation from
that initial state along that trajectory into the future. Moving
on a model trajectory means that we simulate a temporal se-
quence of states that fulfills the dynamical constraints imposed
by the equations governing the model, including the fundamental
conservation laws of mass, momentum, and energy. In summary,
all observational information in the two-month observation win-
dow is used to constrain the initial state on March 1. All sub-
sequent changes to model variables (including the forecast) are
consequences of the changes in the initial state.

It is evident that this approach has the potential to reveal incon-
sistencies between the model and our four data streams that oth-
erwise would remain undetected. Such an inconsistency could
be, for example, a huge ice thickness in a grid cell with little
ice concentration. It could yield to some combination of a bad
match of the observations, an unrealistic initial state, and an
unrealistic forecast. Exactly this type of inconsistencies were
detected in initial preparatory experiments. Hence, a first part
of this study attempts to minimise biases by adapting some of
the process parameters in the formulation of our model to better
match observations over the 19 year period from 1990-2008. To
evaluate the success of this calibration exercise we compare the
calibrated model with two independent models that are typically
used as reference.”
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C(Xo) is the inverse weight for the prior term (Eq. 1). The inverse weight
for the model term is C(dmod) (Eq. 2). We stress again that we do not
use a sequential approach here. The prior term has indeed little weight
(Fig 5), which gives the observations the freedom to act on the control
vector, i.e. the initial state. We think this is o.k.

2. One suggestion would be to make a table with four columns: Assimilated
data, State/control variables impacted by the data, Observational error,
Model error. This would give the reader a better picture of what was
used. Maybe even consider schematic diagrams to explain the assimilation
experiments.

We hope that the substantial revision explained in section 0 clarified that
in our approach all assimilated data streams impact all components of the
control vector. The (space and time variant) observational uncertainty is
described with each data stream (section 2.2.2), and the uncertainty from
model error is set to zero (see section 2.1) as we assume it is dominated
by the observational uncertainty (Eq. 2).

But in general a table is a good idea to give an overview (see Table 1 in
this response, i.e. Table 2 in the manuscript).

3. The M operator needs to be described. Does M treat all control variables
independently or are there other matrix elements which allow information
from one variable to propagate to others? In either case, how does the M
operator impact the final result? For example, when ice thickness is NOT
assimilated, but concentration is assimilated, what happens to thickness
when concentration is increased or decreased? If new ice is added, what is
its thickness? If concentration goes down does thickness stay the same?

Here we also hope that the substantial extension described in the above
general response (section 0) clarified this question, in particular the more
detailed description of the method:

“A coupled ocean sea ice model computes a sequence of states
of the ocean sea ice system (trajectory) from an initial state.
By varying the initial state we can control the trajectory along
which the model evolves. Thus we denote the vector composed
of all initial model fields as control vector, x. The task of a vari-
ational assimilation is to minimise the difference of the model
simulation to the available set of observations, d. This obser-
vation vector is typically a subset of all variables that can be
simulated with the model at any point in time (within a given
assimilation window) and space (within the model domain). To
formalise the assimilation methodology it is useful to consider
the model as a mathematical mapping (function) M(x) from the
control vector to the observation vector, more precisely to its
equivalent simulated with the model. The assimilation system
seeks a control vector, xpost such that M(xpost) achieves the best
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possible match to the observation vector d. At the same time
we want to use any extra information we already have on x, the
so-called prior information x0. As the information on the model,
the observations, and the prior is only approximate the theory
is most conveniently formulated in terms of probability density
functions (PDFs) [Tarantola, 2005]. For computational conve-
nience one typically assumes Gaussian distributions of the prior
and the observations and can then show that xpost minimises the
following cost function:

J(x) =
1

2

[
(M(x) − d)TC(d)−1(M(x) − d) + (x − x0)TC(x0)−1(x − x0)

]
(1)

where C(x0) denotes the uncertainty covariance matrix of the
prior and the superscript T is the transposed.”

So, in brief: M maps the state on March 1 onto all observations in the
two-month assimilation window.

4. Section 2.3 - The sea ice portion of the model is the part receiving assim-
ilation so it would be good to give some information about it. How many
ice layers are there? Are there any thickness categories per grid box? Is
snow a bulk layer? How does the M(x) function map the model states to
the observed quantities?

We have also elaborated on the model description, which should clarify
this set of questions (on the role of M see the response to the previous
comment).

5. Only parameters related to dynamics are changed in the calibration; what
was the reason for excluding the thermodynamic parameters? For example,
albedo? The result of the calibration is that thickness is better, but extent
is not - are you not just pushing the ice around at this point rather than
removing it via a thermodynamic process?

We don’t look at the extent but the concentration. The misfit in win-
ter gets worse but in summer (where our focus lies) gets slightly better
(see Table 1 in the manuscript). We also elaborated on the effect of the
calibration, for example, in the conclusions:

“To limit the computational effort, we restricted the calibration
to a sub-set of parameters that, in initial sensitivity studies,
showed high impact on the ice conditions. The calibrated model
showed a horizontal ice thickness distribution much closer to the
ICESat-JPL observations. A positive bias in the Beaufort Sea ...”

6. ”As this strong deviation is absent when forced with NCEP reanalysis this
can be attributed to deficits in the CFSR surface forcing” - this goes against
the vast majority of investigations which indicate that the NCEP forcing
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is rather poor. As one recent example, see Lindsay et al., 2014 which
show that CFSR is superior to NCEP. My guess would be that the authors
interpretation is not correct. Was the model was tuned for NCEP and
only limited correction could be made for the CFSR forcing? In any case
better justification or explanation needs to be given for such a statement.

OK. Sentence removed.

7. Section 3: ”the price we have to pay for more reliable ice margin is misfit
to the CryoSat-2 ice thickness” - this statement suggests to me that there
are some fundamental problems with either the model, the CryoSat-2 data
or the assimilation scheme. Ideally the rest of the paper would go on to
investigate where the problem lies rather than trying to find a factor to
compensate for this problem. It seems that the authors have side-stepped
the real problem.

Partly this is correct but we have included the comparison with PIOMAS2.1
and TOPAZ to illustrate that not only NAOSIM has problems but most
likely PIOMAS2.1 and TOPAZ4 as well, as both model do not outperform
NAOSIM with respect to independent observations (i.e. not assimilated
by PIOMAS 2.1 and TOPAZ4).

We added a paragraph on the reviewer’s suggestion to the conclusions:

“The main recommendation from this study to the ice forecast-
ing community is to try and eliminate potential biases between
the model (including the boundary conditions) and the observa-
tional data streams by a thorough calibration of the model and
examination of the calibration results with independent infor-
mation. Such a procedure can only be a first step, as it cannot
eliminate all sources of bias. Careful inspection of assimilation
results for inconsistencies is thus essential but requires a tedious
analysis. The variational data assimilation approach in the form
used here is a powerful basis for detection of inconsistencies and
ultimately their removal. As an intermediate step bias correc-
tion schemes such as the one we constructed for assimilation of
the CryoSat-2 ice thickness product are helpful for enhancing
the forecast skill through compensation of model-data inconsis-
tencies.”

8. ”prize” should be ”price”

Corrected.

9. For the ”straightforward” case, how often is an assimilation step per-
formed? You are using daily and monthly average data - how are these
items assimilated in the same system? My guess at the moment is that it
is once a day for March 1 - April 30, but with a special step once a month
where thickness is assimilated (and somehow the monthly averaging pro-
cess is accounted for)? - but I could not tell from the paper. Where does
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the extra weight of 180 get applied? From the text, I cannot tell how this
experiment is performed. It might be a good experiment for other model
groups to try, but we cant tell.

We hope our elaborated description of the method has answered most of
the questions. In brief: We use a single two month assimilation window
and compute equivalents (including temporal averaging) to all observa-
tions.

10. For the Reconstruction runs: If ice concentration and thickness are not as-
similated in March, how/why are the concentrations in these simulations
so different from the control experiment? Where did these new concen-
trations and thicknesses (as suggested in Figure 9) come from? Are these
initial thicknesses simply guesses? A better explanation is required.

We hope our elaborated description of the method has made clear that we
are not operating in sequential mode but are shifting model trajectories
through variation of the initial state on March 1.

11. If the model was well calibrated (as described in Section 2), why does it
need further bias correction? The purpose of calibration is to remove bi-
ases (low frequency error) so that data assimilation can account the more
random and higher frequency error (e.g. initial conditions error). This
point should be reconciled either with reference to the model or the obser-
vations. A situation requiring double bias correction often points to a case
of overfitting.

We are not risking overfitting because the observations for the calibration
and for assimilation are different.

We elaborated on the need for bias correction for example in the conclu-
sions:

“In essence the calibrated model matched the observational data
within their (partly large) uncertainty ranges. Still it was dif-
ficult to assess whether the result of the calibration exercise is
sufficient for our objective (bias elimination). What we could
do, however, was to compare with output of two established (se-
quential) assimilation systems, which also confirmed the success
of the calibration. We note that this calibration is, however,
limited by the reliability of the available data streams. For ex-
ample, given the difference in measurement approach (laser vs.
radar altimetry), it is not clear, how consistent the ICESat-JPL
ice thickness product (used for calibration) and the CryoSat-2
product (to be used for the assimilation/forecasting) are. As
both products don’t overlap in time a direct comparison is not
possible.”

12. As noted before, ice thickness and concentration are related variables - it
seems unlikely to have a concentration of 20% and 3m thick for a grid box.
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Updating one of these variables without consideration of the other can lead
to physical conflicts and/or unlikely situations that would not happen in
an ”open loop” simulation. How is this accounted for?

The fact that we are moving on model trajectories saves us from this type
of problem that can occur in sequential assimilation schemes.

13. Figures 7 & 9: To many readers the CostFunction might be an abstract
quantity, particularly when it is not scaled for ice thickness, thus the Y-
axis has no real meaning. These values might be better understood as
percentage changes from the control? However, what readers would be most
interested in (and comprehend the easiest) is if you were to transform the
cost function back to quantities such as mean increment in ice thickness
and snow depth etc.

We think the misfit (i.e. the cost function) is a good metric to quantify
the model-data difference in a single number per data stream and month,
because it accounts for uncertainty in the data and the model (as defined
by the data term in Eq. 1 and the newly introduced Eq. 3). We assume
by increment the reviewer means the difference between posterior and
prior runs for each quantity and month. We could plot this, of course, but
think it would be a bad measure of the change. For example when shifting
ice around the mean difference could be zero but the misfit could change
significantly. Note also that for the ice thickness the spatial structures of
posterior and prior fields are already shown in Figure 6.

3 Comments by Anonymous Referee #3

General Comments: The assimilation of ice thickness data and its potential
impact on the predictability of seasonal sea ice is an interesting topic and one
that deserves publication in The Cryosphere.

I was excited to read about this work when first I saw this study but sadly
after finishing the paper I was left feeling disappointed.

Unfortunately, in its current guise, this article does not advance the scientific
understanding of this topic because the paper is not easy to follow and not well
motivated. In particular I find that the article has nowhere near enough detail to
allow the reader to understand what was done and why but at the same time feels
a bit dry and technical to read! This article will therefore require considerable
revision before it can be accepted for publication.

One of the reasons I find this difficult to read is that this work appears to
be documenting two different pieces of work: a) an Arctic model tuning exercise
and b) implementation of ice thickness data assimilation. The result is that
neither of these pieces of work are described in adequate detail.

There is also not very much discussion of the results and the Conclusions
section is more a summary of the tasks performed rather than anything else.
Therefore it is not obvious what this study is trying to tell the scientific com-
munity about such an interesting and high profile issue.
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I also find that the figure captions are not descriptive enough. They should
include more details about the plot (i.e. what the individual coloured lines etc.
mean).

As mentioned in section 0 we extended the introduction, the description
of the assimilation approach and the conclusions significantly. In particular
we better motivated the need for the model calibration. In the response to
this reviewer’s specific comments we try to avoid repeating quotations from the
manuscript made in the response to the previous two reviewer’s comments. All
figure captions have been thoroughly inspected and extended where necessary.

Specific Comments:

1. There is little or no mention about the underlying sea ice model being
used in these studies. I would like to know what processes are included
(or not) and what the performance of the model is. In particular there
is no discussion of model biases which really need to be understood before
assimilating data. The data assimilation system used is simply referred to
as multi-variate or variational but there is little discussion of the mechan-
ics involved. Questions that are left unanswered include (but are certainly
not limited to): 1. is 3D-Var or 4D-Var being used? 2. how are the ice
concentration, ice thickness and snow thickness contributions balanced? 3.
what length-scales are used? 4. what ice/snow thickness is used when ice
is added? 5. is the sea ice model single or multi-category (and if the latter
then how does the DA deal with this)?

The expression ’multi-variate’ is not mentioned at all in the manuscript.
In the revised manuscript, points 1 to 4 have been taken care of in the
introduction and the description of the assimilation system (section 2.1).
We have elaborated on the model description, in particular for the sea ice
model (point 5: section 2.3):

“NAOSIMDAS is constructed around the North Atlantic/Arctic Ocean
Sea Ice Model (NAOSIM) [Kauker et al., 2003]. The ocean model is
derived from version 2 of the Modular Ocean Model (MOM-2) of the Geo-
physical Fluid Dynamics Laboratory (GFDL). The version of NAOSIM
used here has a horizontal grid spacing of 0.5◦ on a rotated spherical grid.
The rotation maps the 30◦W meridian onto the equator and the North
Pole onto 0◦E. In the vertical it resolves 20 levels, their spacing increasing
with depth. The ocean model is coupled to a sea ice model with viscous-
plastic rheology [Hibler, 1979]. The thermodynamics are formulated
as a zero-layer model following Semtner [1976], and its parame-
ters (e.g. albedos) are set in accordance to the AOMIP protocol
[Nguyen et al., 2011]. Freezing and melting are calculated by
solving the energy budget equation for a single ice layer with
a snow layer and an ocean mixed layer according to Parkinson
et al. [1979]. In contrast to the original formulation the energy
flux through the ice is calculated by a PDF for the distribution of
ice thickness based on EM-bird measurements [Castro-Morales
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et al., 2014]. The sea ice model’s prognostic variables are ice
thickness, ice concentration, and snow depth. Ice drift is calcu-
lated diagnostically from the momentum balance. All quantities
are mean quantities over a grid box. When atmospheric tem-
peratures are below the freezing point, precipitation is added to
the snow mass. The snow layer is advected jointly with the ice
layer. The surface heat flux is calculated using prescribed atmo-
spheric data and sea surface temperature predicted by the ocean
model. The sea ice model is formulated on the ocean model grid
and uses the same time step. The models are coupled following
the procedure devised by Hibler and Bryan [1987]. At the open
boundary ...”

2. I am confused as to what the motivation is behind the PIOMAS Topaz
comparisons. This section should be better explained or removed. I find
it odd that there is a lot of motivation for near-real-time, operational ob-
servations when there is no mention anywhere that this system is used
for operational forecasting or that it produces any products. Perhaps more
information could be included about this?

We elaborated on the necessity for the comparison with the other two
models. The data assimilation system is used, among other applications,
for the Sea Ice Outlook, and we included a reference to Kauker et al.
[2010]. Future forecasts will also be published on meereisportal.de run by
AWI.

3. The reconstruction and bias correction techniques need to be better moti-
vated and described. I find myself wondering what their purpose is here
save for to account for biases in the underlying model (which are not dis-
cussed). The fact that the reconstruction shows that unrealistically high
March ice thickness is required to get a good September forecasts suggests
to me that the model is melting too much ice.

The model is melting too much ice but this holds as well for the two
assimilation systems used as a reference. It is not clear, however, which
component of the prediction system is responsible for the excess melting:
Is it the model (model formulation or process parameter values) or the
surface forcing. Unfortunately this is almost impossible to answer, because
we do not have in-situ observations of the surface forcing in the region were
the largest March and April thickness is needed by the system. Indeed,
the other two models show similar biases (in October/November in the ice
thickness) although the model formulations are different.

4. Furthermore it seems to me that the bias correction is derived using infor-
mation about the future ice concentration. How would this work in a real
forecasting situation?

There are two points to mention in this context. First, the necessity of at-
mospheric boundary conditions, on which we comment in the conclusions:
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“To focus on the effect of constraining the initial state of the ocean sea
ice system, we assumed to have perfect seasonal atmospheric forecasts
providing perfect surface boundary conditions (for a use of this system in
operational mode, uncertainty in boundary conditions is handled through
an ensemble approach, see e.g. Kauker et al. [2010]).”

Second, the availability of the bias correction scheme, on which we also
commented in the conclusions:

“We note that this does not provide a completely independent
assessment, because our prediction target, namely the summer
ice conditions of 2012 to 2014, was used in the construction
of the bias correction scheme. Future assimilation/forecast ex-
periments for years beyond the period from 2012 to 2014, will,
however, be completely independent.”
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