
Dear Referee,

Thank you very much for reviewing our manuscript. 
Please see the revised manuscript at the end of this document.

General comments:

We rewrote and restructured the whole manuscript. Only a few sentences remained from the 
original discussion paper. 

Additionally we:
• included research from 2015
• included the effect of clouds and the zenith angle of the sun (see Section 2.5.1 and 2.5.2, 2.6)
• improved the transmissivity parameterization (Section 2.8)
• reduced the number of free parameters from six to five (Section 2.10)
• use updated data of the atmospheric input rates of dust and BC (Section 2.11)
• added a discussion Section dealing with assumptions and uncertainties (Section 4.1)
• added a discussion Section about the role of melt-out of impurities (Section 4.2)
• changed the title to: “Albedo reduction of ice caused by dust and black carbon accumulation 

from melt-out and atmospheric deposition” in order to emphasise the focus on ice and impurity 
accumulation

• prepared completely new supplementary figures
• changed the unit of the specific surface area to cm2/g
• redid the Monte Carlo process

Comments
Referee comments are repeated in red.

1) Bad language. Very many sentences are poorly written or grammatically and logically incorrect, 
showing not only careless in writing, but also lack of clarity of the expressed concepts. 

We completely restructured and rewrote the whole manuscript. It was definitely due to poor writing 
that both reviewers missed the novelty and significance of the manuscript. Therefore, we state 
them here explicitly and it should be clear by reading the revised manuscript.

novelty: We developed the first model of impurity accumulation on the ice surface the snowpack 
and its impact on the albedo of ice and melt. In addition we investigated the amount of melt-out of 
dust and BC versus atmospheric input, which to our knowledge has not been done before.
significance: The presented framework can be used to study the long-term effect of dust and BC 
on future melt and sea level rise. It has already been used in Goelles et al. 2015, which has more 
than 880 views and downloads since its publication on the 22nd of September and got mainstream 
news coverage (checked on 26.01.2016). 

Here are few examples: 
p. 1348, lines 12-15: “Sophisticated snow albedo model like SNICAR (Flanner and Zender, 2006) 
have existed for some time. While these models are computationally to demanding to include in 
large scale models they give important insight to efficient parameterizations (Pirazzini, 2009)”. Do 
the authors mean the model SNICAR efficiently parameterize the quantities that control the snow 
albedo? In fact, SNICAR is currently applied in several climate and numerical weather prediction 
models as its computational cost is very limited. However, SNICAN cannot be implemented into 
those simple models that have a single snow layer. 



This paragraph has been deleted from the new version of the manuscript.

p. 1354, line 1: “The basic method for snow and ice albedo are the same . . .”. Do the authors 
mean that the method to account of the impact of impurities on albedo is the same for snow and 
ice? 

Yes, the methods of Gardner and Sharp are valid for both snow and ice. This sentence has been 
deleted in the revised manuscript and the equations for snow and ice are explicitly mentioned.

p. 1355, lines 19-21: “In this study we focus mainly on ice albedo and therefore left the snow 
albedo is defined by differentiating between wet and dry snow as in Robinson et al. (2010) 
although the model includes also snow albedo reduction due to BC and dust”. This confused 
sentence leaves totally unclear how snow albedo is treated in the study. 

We now state our design goal of the model explicitly in the introduction, and this sentence has 
been deleted. 

The new paragraph from the introduction:
“We present the first SMB model which takes the effect of impurity accumulation on ice albedo into 
account.  The ice albedo is part of the surface albedo scheme which includes  the seasonal 
change between snow and ice surface. The design goal for the model is that it can be used as an 
alternative to positive degree day models, which are widely used in standalone ice sheet and 
glacier models. The model framework is applied and tested on the western margin of the GrIS.
 “

The paper is far from being adequate for scientific publication and needs to be completely rewritten 
by a scientist who is fluent in English. 

As mentioned above, we rewrote and reorganised the manuscript completely with external help.

2) The method applied in the study is not rigorous and cannot be accepted. First of all, all the 
equations introduced in Sections 2.2, 2.3, 2.4 and 3.3 are quite rough and con- sist of simple 
parameterizations of complex physical processes. They can be applied only if their uncertainties 
are properly estimated. As the developed model aims to give quantitative estimations of aerosol 
impact on albedo reduction, an accurate assessment of the model uncertainties is mandatory. In 
fact, the large variability of the fitting parameters among different years tells that the model is 
oversimplified and completely inadequate for quantitative estimations. Secondly, many of the 
equations (6, 7, 8, 11) are given without referring to the source, and without explaining the 
reasoning behind their choice or development.

The reasons why we choose the simplified energy balance are given in the Section 2.1 of the 
revised manuscript. The equations in the SMB Section (originally Section 2.2), melt (originally 
Section 2.3) and surface albedo (originally Section 2.3) are all based on Robinson et al., 2010. The 
uncertainties of those model components are described in detail in the paper Fitzgerald et al.
(2012). Which is now mentioned in the first paragraph in Section 4.1. The uncertainties of the other 
components are also discussed in Section 4.1, including the temperature and precipitation 
parameterization (originally Section 3.3).

Comments concerning missing references of equations:
.) Equation 6 (now 3) is from (Robinson et al., 2010) 
.) The reference of equation 7 has been given before (Bales et al., 2009; Calanca et al., 2000)  
(Line 2 on Page 1352)
.) Equation 8 (now 22) is also from (Robinson et al., 2010)
.) Equation 11 (now 18) is based on Van den Berg et al. (2008) and Robinson et al. (2010), which 
has been mention in the original version of the manuscript (line 19 on page 1353)



Finally, the model is not validated against independent observations, and the fitted parameters vary 
in different years. This makes the model site and time dependent, which means that it is 
completely useless. 

The process of “validation” was not well introduced in the original manuscript. The “validation” is 
now described in the new Section 2.10 “Calibration and evaluation”. In short: the calibration uses 
data of one year and the calibrated model is then used over to simulate the whole period. Then the 
result is compared to the remaining part of the dataset, which were not used in the calibration. This 
process is similar to “cross-validation” of statistical models. Where the model is “trained” on data of 
one year and afterwards the model is tested on the remaining dataset.

In the revised manuscript we wrote:
“The calibration period of one season makes it possible to calibrate and evaluate the model on the 
same dataset. The model is calibrated on data of one year and then applied to the remaining 
period. This makes it possible to investigate the variability of the free parameters.”

In addition the parameter set of KAN_M was applied to Station S5, which demonstrates the spatial 
applicability of the model. The parameter set obtained from the calibration at KAN_M in the year 
2010 performs well at both stations.

3) Some of the utilized quantities are not properly defined: for instance, what is Ms obtained via Eq. 
(9)? At p.1355, line 1 the authors write that “the active fraction Fice,n describes the fact that not all 
impurities are influencing the albedo”. Does it mean that the active fraction is the fraction of aerosol 
that contributes to the reduction of ice albedo? Also, on p. 1355 lines 14-15 the authors describe 
the “effective depth” as “re- lated to the absorption length in ice which is depending on wavelength 
and impurities”. What is then the effective depth, the penetration depth of light into the ice at a 
specific wavelength and impurity content?? 

Ms is the potential melt rate, as mentioned in Line 15 on page 1351 in the first version. It is now 
explicitly mentioned before the equation (Eqn. 19).

Yes, the active fraction is the fraction of aerosols which contributes to ice albedo reduction.  This is 
now mention after the equation (Eqn. 12). The new sentence reads:
“… where only the active fraction F contributes to the ice albedo reduction. A value of one means 
that all impurities are dispersed on the ice surface and therefore all impurities reduce the ice 
albedo directly. “

The effective depth is the penetration depth of light into clear ice with an extinction coefficient of 
1.6  m^−1. See the new text:
“…where deff is the effective depth (in meters). This assumes that impurities on the ice surface 
have an equivalent effect as the same amount of impurities uniformly distributed in the ice over the 
effective depth. The effective depth is derived from the extinction coefficient of ice. Less than one 
permille of the original energy remains at a depth of 5 meters clear white ice with an extinction 
coefficient of 1.6 m−1 (Bøggild et al., 1995). “

4) The authors state that their study focuses mainly on the ice albedo (p. 1355, line 19), but for a 
large fraction of their considered period (April-September) the ice surface is covered by snow. 
Thus, from the point of view of surface energy and mass balance, the effect of impurity on snow 
albedo is equally or more important as the effect of impurities on ice albedo. The authors should 
study and eventually apply the research done in this field. Some recent publications are: 

a. Oaida, C. M., Y. Xue, M. G. Flanner, S. M. Skiles, F. De Sales, and T. H. Painter (2015), 
Improving snow albedo processes in WRF/SSi regional climate model to as- sess impact of 
dust and black carbon in snow on surface energy balance and hydrol- ogy over western U.S., 
J. Geophys. Res. Atmos., 120,doi:10.1002/2014JD022444. 



b.  Kokhanovsky, A. (2013), Spectral reflectance of solar light from dirty snow: a simple theoretical 
model and its validation, The Cryosphere, 7, 1325–1331. 

c. Dang, C., R. E. Brandt, and S. G. Warren (2015), Parameterizations for narrowband and 
broadband albedo of pure snow and snow containing mineral dust and black carbon, J. 
Geophys. Res. Atmos., 120, doi:10.1002/2014JD022646. 

We choose to focus on ice albedo, because there are already many studies on the albedo of snow, 
as for example to once in your list. Yes, eventually the snow albedo can and will be included, and is 
of course important for the overall SMB of the Greenland ice sheet. In this study the focus is on ice 
albedo and the ablation zone, which is also reflected in the new title and introduction and 
throughout the revised manuscript.

Here are other reasons why we treaded snow albedo the way we did.

1.) Due to the design goal we wanted to have as little input variables and parameters as possible. 
Therefore, we chose a constant precipitation parameterization and a simplified energy balance. 
This makes it impossible to account for individual snowfall events and therefore grain growth. Grain 
growth is only indirectly included by distinguishing between wet and dry snow. Grain growth of 
snow has by far the biggest effect on the albedo of snow on the Greenland ice sheet and the 
effects of BC and dust are comparably small, as can be seen in the new Figure S2 in the 
supplements. Even for very dense snow and very high concentrations of BC and dust (for 
Greenland), the overall effect of impurities is less than 0.06 (see also Figure S2). Therefore, it is 
necessary to treat the grain growth adequately first, before including the effect of impurities on 
snow. In addition the effect of impurities on snow albedo depends on the specific surface area 
which is also liked to grain sizes.  
We are fully aware that this is a limitation, and it is mentioned throughout the revised manuscript. 
In future versions of the model the snowpack and snow albedo components can be replaced by 
any of your mentions studies or others. 

2.) The major share of meltwater production at the K-transect is caused by ice melt. Because the 
annual mean accumulation is around 0-0.18 meters of water equivalent (Burgess et al. 2010), 
while ice melt is in the order of meters and up to 5 meters water equivalent per year.

3.) Ice is exposed when solar radiation is at its maximum. The radiation is low when the seasonal 
snow cover is intact in spring and autumn.

4.) The effect of impurities on ice is bigger than on snow because of the lower specific surface area 
of ice (see Figure S2 in the supplements). In addition, the amount of impurities on ice are higher 
because of accumulation over several years and the additional large source of impurities from 
melt-out.

5.) The time-span and areal extend of exposed ice will increase under a warmer climate in the 
future (Box et al. 2012, Tedesco et al. 2011) due to a rising equilibrium line and earlier onset of 
melt caused by higher temperatures. Therefore, the influence of ice albedo will increase in the 
future. 

Nevertheless, it is certainly desirable to improve the snow albedo in the future, in order to improve 
the SMB and the timing of ice exposure. 

Extra comments 

p.1353, lines 20-21: “This parameterization allows the snow albedo to be lower than the ice 
albedo”. In which circumstances snow albedo would be lower than ice albedo? It sounds very 



unrealistic, unless you consider the case of extremely dirty snow above a completely pure ice 
(which is also quite unrealistic). 

Yes it might be rare, but the parameterization should not rule it out.
We included the sentence: “This equation allows the snow albedo to be lower than the ice albedo, 
which could be the case, although rare, when debris rich wet snow covers clean ice. 

In Eq. (14) and (15) an “effective aerosol concentration ιeff” is introduced. Why it is called 
“effective”? 

It includes the “active fraction” and the englacial concentration  (see Equation 12 and Section 2.5 in 
the new manuscript).

p.1356, line 17: does “KAN_U” and “S10” mean “stations U and S10”? Please, remove “KAN_” in 
all occurrences in the text, or properly name the stations in Fig.4. 

The stations were named by GEUS and IMAU and we included information of the correct station 
names in the caption of the Figure (now Figure 1).

Sincerely, 
T. Goelles and C. E. Bøggild 
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Abstract. Surface melt in the ablation zone is controlled by atmospheric temperature and surface

albedo. Impurities accumulate on the ice surface and lower the albedo of ice. Non-biological im-

purities, such as mineral dust and black carbon (soot), accumulate by dry or wet deposition and by

melt-out. The darkening effect of accumulating impurities on the ice surface is currently not included

in surface mass balance models and sea level projections. We present a model framework which in-5

cludes impurity melt-out and accumulation, the effect of clouds and the angle of the sun on albedo

and ultimately surface mass balance. The main source of dust on the ice surface is melt-out from dust

deposited during glacial periods, whereas current atmospheric deposition contributes insignificantly.

While for black carbon the atmospheric deposition dominates at melt rates below one meter. Runoff

of impurities is in the range of one permille per day, which leads to a residence time of decades on10

the ice surface in which the albedo is lowered and melt is enhanced.

1 Introduction

The increased mass loss of the Greenland ice sheet (GrIS) since 2009 is mainly caused by an increase

in surface melt and runoff (Enderlin et al., 2014). Surface melt is largely determined by the amount

of absorbed shortwave radiation (Van den Broeke et al., 2008), which is governed by the surface15

albedo. Hence, the broadband albedo (from now on just referred to as albedo) has been identified as

a major component of the surface mass balance (SMB) of the GrIS (Bougamont et al., 2005; Tedesco

et al., 2011; van Angelen et al., 2012).

The broadband albedo of ice varies highly over space and time (e.g. Bøggild et al., 2010; Chandler

et al., 2015), but in most model studies ice albedo is still treated as a uniform constant (e.g. Mernild20

et al., 2010; Rae et al., 2012) or as constant over time (e.g. Noël et al., 2015). Snow albedo, on

the other hand, is often modeled by multi-layer snowpack and radiative transfer models, considering

grain growth and impurities (e.g. Gent et al., 2011; Lipscomb et al., 2013; Oaida et al., 2015). Models

of ice albedo are still at their infancy.
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The highest melt rates of the GrIS are observed in the ablation area, where ice is exposed at25

some point of the year, after the seasonal snow has disappeared. This goes in hand with a drop in

surface albedo because the albedo of ice is significantly lower than that of snow (e.g. Moustafa et al.,

2015). The duration and area of exposed ice will increase under a warmer climate (Brutel-Vuilmet

et al., 2013; Vizcaino et al., 2014) as snow melts earlier and the equilibrium line moves to higher

elevations. Therefore, the role of ice albedo on surface melt of the GrIS, and ultimately sea level rise,30

will increase in the future.

We present the first SMB model which takes the effect of impurity accumulation on ice albedo

into account. The ice albedo is part of the surface albedo scheme which includes the seasonal change

between snow and ice surface. The design goal for the model is that it can be used as an alternative

to positive degree day models, which are widely used in standalone ice sheet and glacier models.35

The model framework is applied and tested on the western margin of the GrIS.

First we begin with an outline of impurities on snow and ice, and the description of the model test

site. In Section 2 we present the model equations and parameters, and the calibration procedure, fol-

lowed by model results. We conclude by discussing the result of model simulations at two locations

and the role of impurity melt-out.40

1.1 Albedo and impurities

Absorption of ice at visible wavelengths is very weak, therefore small amounts of highly absorbent

impurities have a big effect on snow and ice albedo (Wiscombe and Warren, 1980; Warren and

Wiscombe, 1980; Warren and Brandt, 2008). The most absorbent impurity is black carbon (BC),

which is about 200 times more absorbent than mineral dust (Dang et al., 2015). BC particles are45

highly absorptive in the visual range, where the solar radiation is greatest. In addition to the aerosols

dust and BC, microbes may influence the albedo by aggregating material (Takeuchi et al., 2001) and

by production of dark materials (Takeuchi, 2002; Remias et al., 2012). Brown-black ice algae can

potentially decrease the albedo of ice by up to 40 percent relative to clean ice (Yallop et al., 2012).

Despite the potentially high influence of microbes, their dynamics and exact effect on albedo are not50

well understood (Stibal et al., 2012; Yallop et al., 2012).

Non-biological impurities on the ice surface accumulate by dry or wet deposition, by release of

impurities in the snowpack or by melt-out of englacial impurities. The ice itself acts as a reservoir of

mineral dust and BC (Reeh et al., 1991; Bøggild et al., 1996). These englacial impurities travel with

the ice towards the ablation zone where they melt-out and contribute to the impurity mass on the ice55

surface (e.g. Oerlemans, 1991; Bøggild et al., 1996; Klok and Oerlemans, 2002; Oerlemans et al.,

2009). The accumulated impurities on the ice surface lower the albedo for several years, because

they are preserved under the winter snow cover, and re-emerge in spring.

The effect of impurities on snow, on the other hand, is short. A substantial snowfall in winter

resets the snow albedo to the high values of fresh dry snow (Dumont et al., 2014). In spring, when60
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snow melts, the impurities tend to concentrate at the snow surface which amplifies the impact of

impurities on snow albedo (Doherty et al., 2010, 2013). However, the impact at the ablation zone is

still rather short because the snow cover is thin and therefore the period of snow melt is short. After

all snow has melted the impurities of the snowpack are released onto the ice surface.

Typical values of BC in snowpack are around 3 ng g

�1 with peaks of 20 ng g

�1 (Dumont et al.,65

2014). Values of dust concentration in snow can reach up to 500 ng g

�1 (Dumont et al., 2014), which

has about the same effect on albedo as 2.5 ng g

�1 BC. Dust concentration in ice cores are up to 9000

ng g

�1 Ruth et al. (2003) and of BC up to 16 ng g

�1 McConnell et al. (2007). While the surface

concentration of Impurities on ice range from 16 g m

�2 up to 1.4 kg m

�2 (Bøggild et al., 2010).

1.2 The K-transect in western Greenland70

The so-called "K-transect" (also known as Søndre Strømfjord transect) is located on the western

margin of the GrIS at 67� N (Fig. 1) and has been the target of numerous field campaigns. We

chose this location as the test site for the model because of available SMB measurements as well as

continuous automatic weather station observations.

Accumulation in the K-transect is low compared to other parts of the GrIS (Burgess et al., 2010).75

At low elevation near station S5 snow is redistributed by wind into gullies and crevasses (Van den

Broeke et al., 2008), causing ice exposure throughout the melting season. While at higher stations up

to Station S9, near the equilibrium line, ice is covered by snow in the beginning of the melt season

and exposed later on.

It is also an interesting area because a "dark region" persists below the equilibrium line each80

melt season. The region is about 30 km wide and starts at approximately 30 km away from the

margin (Wientjes and Oerlemans, 2010). Previously the cause of this dark region was believed to

be meltwater (Zuo and Oerlemans, 1996), but now is attributed to dust (Wientjes and Oerlemans,

2010) and carbonaceous particles (Wientjes et al., 2012). This dark area, the available data and the

ice exposure makes the K-transect an ideal test location for our model.85

2 Model description

2.1 Model framework and setup

A full surface energy balance model is not feasible because it requires information about winds,

cloud cover, relative humidity, etc. which are not available in standalone ice sheet models. Therefore,

the centerpiece of the SMB model is a simplified energy balance which takes albedo into account.90

Our model framework consists of seven components shown in Figure 2 and the common parameters

are listed in Table 1. The temperature and precipitation parameterization and impurity accumulation

components are our own developments, the snow and ice albedo component are largely based on

Gardner and Sharp (2010), and the other components are based on Robinson et al. (2010).
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The model simulates surface albedo, impurity loadings, snow thickness and SMB for one square95

meter on an ice sheet or glacier. It is realized in Mathematica (version 10, Wolfram Research,

Inc., 2014) using self-coded solvers for the differential equations, with a time-step of one day. The

following sections describe each component in the order of the flow chart.

2.2 Temperature and precipitation parameterization

The near-surface temperatures at the ablation zone of GrIS are stable during the summer months100

due to the cooling effect of melting ice. Therefore, temperatures are stable during the summer and

fluctuate during the winter months. Hence, we did not use a sinusoidal parameterization, which is

normally used (e.g. Reeh, 1991), but a trapezoid shape:

T =

8
>>>><

>>>>:

T� t�,start  t  t�,end

t · & � t�,start · & +T� t < t�,start

�t · & + t�,end · & +T� t > t�,end

(1)

where T� is the mean of all temperatures above 0 �
C. The first day of the summer t�,start is105

set to May 1 and the last day with positive temperatures t�,end is set to September 1. The non-

summer temperatures are defined by the slope & in �
C per day when the time t is in days. This

parameterization of the negative temperatures is sufficient because melt is unaffected by them.

The precipitation rate is parameterized by the annual mean precipitation rate P = P . This is jus-

tifiable because the snow depth is unaffected by high frequency fluctuations of precipitation. The110

disadvantage of this simple parameterization is that it makes it impossible to resolve individual

snowfall events. Therefore, it is also impossible to account for snow grain growth as well as summer

snowfall.

2.3 Snowpack

Snow depth (d) is required for the final SMB, and in order to distinguish between snow and ice sur-115

face. It is calculated by a balance between solid precipitation rate Psolid and melt rate Ms (Robinson

et al., 2010):

d

dt
d = Psolid � Ms,d 2 (0,dmax) (2)

If the snow depth exceeds dmax = 5mw.e. (Robinson et al., 2010; Fitzgerald et al., 2012) the snow

depth is reset to 5 meters and the surplus amount is added to the ice thickness. This accounts for the120

snow to ice metamorphism in the accumulation zone. The solid precipitation rate Psolid in Eq. (2)

depends on a temperature-dependent fraction f(T ) and the total precipitation rate P (Robinson et al.,

2010):
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Psolid = P · f(T ) (3)

where the surface temperature-depending fraction f(T ) is empirically based on data of Green-125

land (Bales et al., 2009; Calanca et al., 2000) and states that below a minimum temperature

(Tmin = �7

�
C) all precipitation is snow and above a maximum temperature ( Tmax = +7

�
C) rain:

f(T ) =

8
>>>><

>>>>:

1 T < Tmin

0 T > Tmax

cos

⇣
T�Tmin

Tmax�Tmin

⌘�
⇡
2

�
Tmin < T < Tmax

(4)

2.4 Impurity accumulation

Particulate impurities such as BC and mineral dust as well as microbes have four different sources130

(Fig. 3):

– atmosphere – distant sources: (kI) by dry or wet deposition,

– atmosphere – local sources: (kII) by regionally transported material from the surrounding

tundra,

– flow: (kIII) by transport from the accumulation zone to the ablation zone where impurities135

melt-out,

– biological: (kIV) by local biological production of dark material on the ice or snow surface.

The contribution of each of these sources is different for each impurity species. Where the biolog-

ical source kIV is only relevant for microbes. Organic matter was found to contribute only about 5

percent to the impurity mass on the ablation zone of the GrIS (Bøggild et al., 2010; Wientjes et al.,140

2011; Takeuchi et al., 2014). Because of the comparably low concentrations of organic matter and

its unknown absorption we omit microbes for now, but prepare the impurity accumulation in a way

that it can be included in the future.

The atmospheric sources (kI and kII ) contribute to BC and dust accumulation both in the ice sheet

interior and at the margin. While the melt-out of englacial impurities, source kIII, only contributes in145

the ablation zone when ice melts. The following equations are valid for both BC (n=BC) and dust

(n=dust).

Both atmospheric sources contribute directly to the impurity mass inside the snowpack ◆snow,n

(ngm�2) as well as the local biological production. We assume that impurities stay within the snow-

pack once they are inside. Therefore, the impurity concentration inside the snowpack is described150

by:
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d◆snow,n

dt
=

8
><

>:

kI,n(t)+ kII,n(t)+ kIV,n(t) d > 0

0 d = 0

(5)

As ice is exposed (snow depth d = 0) englacial impurities as well as the atmospheric sources and

local production all contribute to the impurity mass on the ice surface ◆ice,n (ngm�2). The impurity

accumulation is counteracted by a reduction term (rice(t) ◆ice,n), which describes removal by melt-155

water and is assumed to be the same for dust and BC. We assume no resuspension of impurities,

because the surface on which they reside is either wet or frozen. Further, we assume that once the

snow cover disappears all the impurities in the snowpack get instantly added to the impurity content

of the ice surface and no impurity flux from the ice towards the snowpack:

d◆ice,n

dt
=

8
>>>><

>>>>:

0 d > 0

kI,n(t)+ kII,n(t)+ kIII,n(t)+

+kIV,n(t)� rice(t)◆ice,n d = 0

(6)160

The contribution of melt-out of englacial impurities kIII,n(t), which are transported by ice flow,

depends on the melt rate of ice and the englacial impurity concentration [◆englacial,n] (in ng g

�1 or

ppb). We assume that the impurity content in superimposed ice (hs.ice) is 0, since observations indi-

cate a very small impurity concentration in superimposed ice (Chandler et al., 2015) and impurities

accumulate on the snow surface as it melts:165

kIII,n(t) =

8
><

>:

[◆englacial,n]1000
dhice
dt ⇢ice hs.ice = 0

0 hs.ice > 0

(7)

in ngm

�2 and where hice is the thickness of ice (see 2.9) and ⇢ice is the density of ice in kg m

�3.

2.5 Ice albedo

The ice albedo depends on its specific surface area ˆS, the effect of impurities (d↵c), the zenith

angle of the sun (d↵✓z ) and the effect of clouds (d↵clouds). Gardner and Sharp (2010) developed a170

parameterization based on experiments with a radiative transfer model of snow and ice coupled to a

similar model of the atmosphere:

↵ice = ↵Ŝ +d↵c +d↵✓z +d↵clouds (8)

Where ↵Ŝ is the albedo of clean ice with a zenith angle of 0 and no clouds. It is is determined by

the specific surface area ˆS in cm

2
g

�1, which depends on the size and distribution of air bubbles and175

cracks (Gardner and Sharp, 2010):
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↵Ŝ = 1.48� ˆS�0.07 (9)

The albedo reduction due to BC is modeled by the equation (Gardner and Sharp, 2010):

d↵c =max

✓
0.04� ↵Ŝ ,

�c0.55

0.16+0.6 ˆS0.5
+1.8c0.6

ˆS�0.25

◆
(10)

which is designed for concentrations of BC (c in ppmw) and the effect of dust can be included by180

adding an BC equivalent term. We use a scaling factor of 1/200 to account for the lower absorption

of dust (Gardner and Sharp, 2010; Dang et al., 2015). We define an effective concentration of BC

and dust, which accounts for both englacial impurities and impurities located on the ice surface:

c = [◆eff,BC] + [◆eff,dust] · 1/200 (11)

where [◆eff,n] is the effective aerosol concentration in ppmw, which depends on the englacial con-185

centration as well as the active component of the impurities located on the ice surface. A certain

fraction of impurities can be inside cryoconite holes, and therefore shielded from the low-standing

sun (Bøggild et al., 2010). This is expressed by the active fraction F , which is assumed to be the

same for BC and dust, in the equation:

[◆eff,n] = [◆englacial,n] + [◆ice,n] · F (12)190

where only the active fraction F contributes to the ice albedo reduction. A value of one means that all

impurities are dispersed on the ice surface and therefore all impurities reduce the ice albedo directly.

The impurity accumulation on ice (Eqn. 6) is calculated in ng per square meter, while Equation 10

requires the fractions of weight (ppmw). We therefore use the following equation to convert between

the two quantities:195

[◆ice,n] =
◆ice,n

⇢ice deff
10

6 (13)

where deff is the effective depth (in meters). This assumes that impurities on the ice surface have an

equivalent effect as the same amount of impurities uniformly distributed in the ice over the effective

depth. The effective depth is derived from the extinction coefficient of ice. Less than one permille of

the original energy remains at a depth of 5 meters of clear white ice with an extinction coefficient of200

1.6 m

�1 (Bøggild et al., 1995).
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2.5.1 Clouds

Clouds cause a spectral shift in incident radiation which increases the broadband albedo with in-

creasing cloud optical thickness ⌧ . The change of albedo caused by clouds is obtained by (Gardner

and Sharp, 2010):205

d↵clouds =
0.1⌧(↵Ŝ + d↵c)

1.3

(1+ 1.5⌧)↵Ŝ
(14)

which depends, besides the cloud optical thickness ⌧ , on the specific surface area and the impurity

content.

The effective cloud optical thickness at the K-transect varies between 4 and 14 with an annual

mean of 9.0 at S5, of 8.4 at S6 and of 8.0 at S9 (Van den Broeke et al., 2008). Hence, the cloud optical210

thickness decreases with elevation h (in m) and is expressed by (see Figure S1a in the supplements):

⌧ = 9.45� 0.001 · h (15)

and is constant over the year.

2.5.2 Zenith angle of the sun

Albedo increases with increasing zenith angle because light is less likely to penetrate deep into ice or215

snow. Hence, the path length is shorter and the albedo is higher. This is parameterized by (Gardner

and Sharp, 2010):

d↵✓z = 0.53↵Ŝ(1� (↵Ŝ +d↵c))(1� cos✓z)
1.2 (16)

where ✓z is the zenith angle. The influence of the zenith angle is highest in spring and autumn

when the zenith angle is high, and is around 0.13. At the same time solar radiation is low and220

therefore the impact of albedo on melt is also low. In mid-summer the effect at the K-transect is

around 0.05 for clean ice and 0.08 for ice with 0.1 ppm BC (see Figure S1b in the supplements).

Hence, d↵✓z is higher with higher impurity loading. Due to the shorter path length it is less likely

that solar radiation encounters impurities and therefore the albedo is higher with high zenith angles.

Nevertheless, the overall effect of impurities on albedo is still negative, but weakened when the225

zenith angle is high.

2.6 Snow albedo

We keep snow albedo unaffected by impurities in this study, since the concentrations are low and the

effect on surface albedo in the ablation zone is short (see also Figure S2 in the supplements). Other

than that, the same equations as for ice are used and the effect of clouds and the zenith angle (Eqn.230

14 and 16) are still captured:
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↵snow = ↵Ŝ +d↵✓z +d↵clouds (17)

The precipitation rate is constant due to the limitations of our design goal. Therefore, individual

snowfall events can not be captured. Thus, the effect of grain growth is approximated by two distinct

values of ↵Ŝ in Equation 17: one for dry snow (↵Ŝ = ↵Ŝ,ds) and one for wet snow (↵Ŝ = ↵Ŝ,ws).235

Wet snow appears if there was melt at the previous time-step.

2.7 Surface albedo

The albedo at a geographical point on a glacier or ice sheet is determined by the surface type, clouds,

the solar zenith angle and impurities. If the snow depth is below a critical mark dcrit the surface albedo

is still influenced by the darker underlaying ice (see Figure 4). Above the critical snow depth dcrit240

the surface albedo is equivalent to the the albedo of ↵snow (based on Van den Berg et al. (2008);

Robinson et al. (2010)):

↵s =

8
>>>><

>>>>:

↵ice d = 0

↵ice +
d

dcrit
(↵snow � ↵ice) 0 < d < dcrit

↵snow d � dcrit

(18)

This equation allows the snow albedo to be lower than the ice albedo, which could be the case,

although rare, when debris rich wet snow covers clean ice.245

2.8 Potential melt

Many parameterizations of surface melt with different levels of complexity exist, but only a few

directly account for albedo. We use a simplified energy-balance model based on Oerlemans (2001)

to derive the potential melt rate Ms:

Ms =
1

⇢wLm
[⌧a(1� ↵s)STOA + c+�T ] (19)250

where ⇢w is the density of water, Lm is the latent heat of melting, ⌧a is the transmissivity, STOA

the insolation on top of the atmosphere, c and � are empirical parameters, and T is the surface air

temperature. The term c+�T is a parameterization of the longwave radiation and turbulent heat flux

optimized for Greenland (Robinson et al., 2010, 2011; Fitzgerald et al., 2012).

The term ⌧a(1� ↵s)STOA describes the net shortwave radiation and requires only the insolation255

on top of the atmosphere, which can be calculated for any time and location (Liou, 2002). The

transmissivity ⌧a is based on net shortwave radiation data and is a linear fit with elevation h in

meters:
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⌧a = 0.56+0.00012h (20)

This equation was derived by comparison of the model net shortwave term (⌧a(1�↵s)STOA) with260

the albedo derived from the AWS data to radiation data (see Figure S3 in the supplements). The

resulting transmissivity is higher than the one used by Robinson et al. (2010), which was based on

ERA-40 while Eqn. 20 is based on AWS data for the period (2005-2012) for years with complete

shortwave radiation data.

2.9 Surface mass balance265

The change of ice thickness hice in mw.e. together with the snow depth forms the SMB component

of the model. The equation accounting for refreezing reads (Robinson et al., 2010):

d

dt
hice =

8
><

>:

Msrf d > 0

min(Psolid � Ms,0) d = 0

(21)

where rf is the refreezing fraction within a snowpack as a function of the snow depth and the

surface temperature T (Robinson et al., 2010):270

rf =

8
>>>>>>><

>>>>>>>:

0 d = 0

rmaxf(T ) 0 < d  1

rmax + [(1� rmax)(d � 1)] 1 < d  2

1 d > 2

(22)

When the snow depth is below one meter the refreezing fraction is determined by the maximum

fraction of refreezing rmax and the fraction of snow of total precipitation (Eqn. 4). Above one meter,

but below two meters, the refreezing fraction increases linearly and reaches its maximum at two

meters. The thickness of superimposed ice hs.ice is derived form the first part of Equation 21.275

2.10 Calibration and evaluation

The response of the model to parameters is complex because, for example, a change of the melt

component indirectly also alters the surface albedo due to feedbacks to impurity accumulation and

the surface type. Due to these feedbacks we use a Monte Carlo approach to calibrate the model.

As the criteria of the performance of the model we want to minimize the sum of the differences of280

albedo simulation and observation during the period of April 1 to September 30:

30.09X

01.04

|↵s � ↵AWS| (23)
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where ↵s is the simulated surface albedo (Eqn. 18) and ↵AWS is the albedo derived from data of

the automatic weather stations. Reference surface albedo is calculated from daily mean data from

the GEUS stations and hourly data for IMAU stations, where only data with a solar zenith angle285

below 75� is used. The calibration covers one full ablation season after a spin-up of 100 years. The

long spin-up is required to reach equilibrium with all possible parameter combinations.

We chose the free parameters based on available data. The free parameters are: the critical snow

depth dcrit, the active fraction of BC and dust on ice F , the reduction fraction on ice rice, the specific

surface area of ice ˆS and the albedo of clean wet snow ↵Ŝ,ws without the effect of clouds, and the290

solar zenith angle.

The range of parameters is shown in Figure 5. The critical snow depth determines the rate of

change from the summer to the winter surface albedo as well as the change from wet snow to bare

ice. It cannot be measured and is therefore a free parameter. The active fraction bundles all surface

processes together and is a free parameter which accounts for impurity dynamics on the ice surface295

and cryoconite hole formation. The runoff fraction on ice is also a free parameter, as it is currently

not observed and the range of the runoff fraction is derived from observed impurity masses on the

GrIS ablation zone. The specific surface area of ice needs to be calibrated because data is sparse

and the parameter range is based on Dadic et al. (2013). The albedo of wet snow accounts for grain

growth and is not directly measured, and therefore also calibrated.300

The calibration period of one season makes it possible to calibrate and evaluate the model on the

same dataset. The model is calibrated on data of one year and then applied to the remaining period.

This makes it possible to investigate the variability of the free parameters.

2.11 Forcing data

Station KAN_M (1270 m a.s.l.) and S5 (460 m a.s.l.) are chosen as the test sites. S5 is situated in the305

lower ablation zone with high melt rates and little accumulation, and KAN_M is located in the dark

area. A simulation of the impurity accumulation, the surface albedo and the SMB requires – besides

the common parameters listed in Table 1 and the free parameters – the following inputs: temperature

and precipitation, the atmospheric input rates (kI,kII), and the concentrations of dust and BC in ice.

The temperature parameters T� and & are fitted for each year to the observations for the calibration310

and over the whole period of measurements (2005-2012) for the model runs marked with "mean".

Since the precipitation is not recorded by the AWS we used output of a regional climate model

(MAR; Tedesco et al. (2014)) to derive P .

The atmospheric input rate from distant sources (kI) of BC is 0.001gm�2
a

�1 obtained from

ice cores (Lee et al., 2013). For dust the atmospheric deposition is 0.01 gm�2
a

�1, based on model315

simulation (Mahowald et al., 2011) and ice core analysis (Albani et al., 2015). The local atmospheric

input (kII) for both dust and BC is set to zero, since we do not distinguish between those two sources

at the moment.
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The englacial concentration ([◆englacial,n]) of dust and BC can be provided by a tracer transport

module (Goelles et al., 2015), but in this study we will use data from ice cores Wientjes et al. (2012).320

The englacial concentration of BC at KAN_M is 4 ng g�1, based on the core at S8 (7.25 km south-

west). At S5 the BC concentration is 1 ng g�1, based on the nearby S1 core.

Dust concentration measurements were not included in the shallow cores above, therefore the dust

concentrations are based on the NGRIP core (Ruth, 2007). Since KAN_M is located in the dark area

we assume a higher dust concentration of 2000 ng g�1 and a lower one of 100 ng g�1 at S5.325

3 Modeling results

3.1 Calibration

Figure 5 presents an overview of simulated and measured surface albedos with the ranges and values

of the free parameters listed in the lower section of the graph (surface height change can be seen

Figure S5). The measured albedo in the summer of 2009 is about 0.20 higher than in the following330

years. If the model is calibrated on data of 2009 (orange) the match to observed data in 2010 and

later is poor. Similarly, if the model is calibrated with data of 2010, 2011 or 2012 it underestimates

the ice albedo in 2009.

The reduction fraction on ice rice and the wet snow albedo ↵Ŝ,ws are similar for all four calibra-

tions. In contrast, the active fraction F and critical snow depth dcrit vary over the whole range. The335

model realization "2010:Mean" uses the parameters from the 2010 calibration, the mean precipita-

tion rate at the location P (2.24 10�8
mw.e s�1), and the mean temperature parameters T� (1.39

�
C with a SD of 0.04) and & (0.23 �

C day

�1). The resulting albedo of "2010:Mean" matches the

2010 simulation closely.

3.2 Station KAN_M in 2010340

Figure 6 displays the simulations of the KAN_M station in the year 2010. The amount of dust and

BC inside the snowpack (panel c) builds up until all the snow has melted in June (panel e). At the

same time, superimposed ice has formed (panel f, and Figure S5) which was assumed to hold no

impurities. This causes a drop in dust concentration immediately after the ice is exposed since the

amount of released dust by snow melt is insignificant and the constant runoff kicks in. In contrast,345

the BC contribution from snow melt causes a sudden increase of the BC amount as ice is exposed,

which soon afterward is reduced due to the same effect.

The lowering of the albedo from March to May is solely due the effect of the zenith angle. Sim-

ilarly, the albedo variation during summer (panel g) is also due to the solar zenith angle since the

variation of dust and BC (panel d) are too low to visibly alter the albedo.350

The model realization "2010:Mean" uses the free parameters of the 2010 calibration, but the tem-

perature and precipitation parameterization is derived from the mean values over the whole period
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(2005-2012). The resulting albedo (magenta) is almost indistinguishable from the model with the

parameterizations of temperature and precipitation derived from the 2010 data (green).

The simulated maximum amount of BC on the ice surface is 0.068 gm�2 and of dust is355

29.55 gm�2. Hence, the mass of dust on the ice surface is 434 times larger than BC. The maxi-

mum amount in the snowpack is 0.75 mgm

�2 BC and 7.45 mgm

�2 dust.

3.3 Stations S5 in 2011

Figure 7 displays the simulation of station S5 in 2011 with the parameters shown in Figure 5. The

duration of the snow cover is more than a month shorter (panel e) when the temperature and pre-360

cipitation parameterization is used. This is caused by the overestimated temperature in May (panel

a).

The simulated impurity concentrations are lower than at KAN_M due to the lower concentrations

of englacial BC and dust. Where the maximum amount of BC on the ice surface is 0.06 gm�2 and

of dust is 4.04 gm�2, which is about 67 times more than BC. Therefore, the albedo lowering at365

S5 is mostly caused by BC due to the 200 times higher absorption. The maximum amount in the

snowpack is also lower than at KAN_M, due to the shorter duration of snow cover (0.638 mgm

�2

BC and 6.383 mgm

�2 dust).

The measured SMB at S5 in 2011 was -4.06 meters, while the simulation yielded -2.98 meters.

This is mainly due to the overestimated albedo combined with a too-low transmissivity until May,370

causing a too-low net shortwave radiation (see Figure S6 in the supplements). A graph similar to

Figure 5 for station S5 can be found in the supplements (Figure S7).

4 Discussion

4.1 Assumptions and uncertainties

Due to the design goal, we chose a simplified energy balance, a single-layer snowpack model and375

a parameterization of near-surface temperature and precipitation. Therefore, it has to be clear that

the model can not compete with full energy balance studies performed in the same area. The goal

was that the model takes impurity accumulation into account and that it can be used as an alternative

to positive degree day models, with only a few required inputs. The simplified energy balance is

largely based on Robinson et al. (2010) (sections 2.3, 2.7, 2.8, 2.9) where the associated uncertainties380

have been studied in detail in Fitzgerald et al. (2012). We now briefly discuss the assumptions and

uncertainties of each model component, again in the order of the flow chart (Fig. 2).

The temperature parameterization follows the observation reasonably well during the melt period.

Also the low standard deviations of T� at both stations is an indicator of the quality of the temper-

ature parameterization. At station S5 the start of the positive temperatures was set too early in the385

presented year and others, causing a too-early melt initiation of the seasonal snow. Further analysis

13



of AWS data is needed in order to derive a parameterization of the start and end dates of positive

temperatures which is valid for the whole GrIS.

The precipitation parameterization via the annual mean yields similar snow-depth evolution as

when the daily precipitation data from the MAR model is used. Our parameterization neglects sum-390

mer snowfall and makes it impossible to account for snow grain growth, which has a big influence

on the albedo of snow. Nevertheless, for its simplicity, the precipitation parameterization performs

sufficiently well.

The next component to discuss is the impurity accumulation inside the snowpack and on the ice

surface. The impurity accumulation inside the snowpack depends solely on the atmospheric inputs395

and biological production. Since the atmospheric fallout rates of both BC and dust are low, the impact

on the albedo of snow is also low (see Fig. S2). The constant influx of dust and BC is a simplification

– in nature the influx of impurities is very erratic – as can be seen in ice core records (Ruth, 2007;

McConnell et al., 2007). Therefore, the increase of impurity concentration inside the snowpack also

follows this erratic behavior in nature. A time-depended influx of dust and BC could be obtained400

from atmospheric models in the future which would allow a more detailed study of the accumulation

zone. Along with a multilayer snowpack model and a more sophisticated snow albedo model which

takes aging and impurities into account.

In addition to the atmospheric input, the impurity accumulation on the ice surface depends on

ice melt and the englacial concentration via the source kIII and the reduction term. The englacial405

value of BC was obtained from nearby located shallow ice cores. Englacial values of impurities can

differ substantially over a short distance due the erratic nature of impurity deposition. Short ice cores

located at the AWS sites as well as measurements of surface impurities would be needed to further

study the effect of the impurity melt-out. In addition, time-lapse cameras on the weather masts and

frequent measurements of surface concentrations could be used to derive the reduction term.410

Model snow albedo was unaffected by impurities and only indirectly affected by grain growth.

The effect of impurities in snow at the ablation zone is short and low (see also Fig. S2), but the grain

growth could cause a difference in surface albedo of more than 0.20. In general, the fixed dry snow

albedo matches the observations well until the onset of melt. During snow melt the match becomes

weaker due to the neglected grain growth. A time-dependent parameterization which gradually low-415

ers the albedo of snow after the onset of melt might improve the albedo match in spring. Although

the period of snow cover can be long, the effects of the snow albedo on melt in the ablation zone is

limited due to the low incoming radiation when the seasonal snow cover is still intact. Nevertheless,

in the accumulation zone the snow albedo has a big impact on the overall SMB of the GrIS due to

the huge area.420

The biggest uncertainties connected with the ice albedo are the active fraction and the parame-

terization of the albedo reduction due to impurities. The parameterization of ice albedo (Eqn. 10)

assumes externally mixture of carbon particles (located outside of ice grains) (Gardner and Sharp,
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2010). We assumed that particles located on the ice surface have a similar effect on impurities as

this external mixture. This might be an oversimplification which most likely will not hold at very425

high concentrations when the radiation is fully absorbed at the surface by the particles. A study of

impurities located on the ice surface is required in order to further test this assumption or replace the

parameterization by one which takes surface concentrations into account.

The active fraction varies over the whole range, in Figure 5. This is partly due to model ambiguity:

many parameter combinations can lead to the same result. So could a high specific surface area430

combined with a high active fraction lead to the same result as a low specific surface area and a

lower active fraction. Therefore, better constrains on the specific surface area are required in order to

lower the uncertainty of the active fraction. Similarly, a high impurity concentration and a low active

fraction can have the same effect as a low concentration and a high active fraction. Therefore, direct

measurements on the englacial concentration as well as observations of dust and BC deposition can435

further constrain the active fraction. The active fraction itself could possibly be obtained by time-

lapse cameras and further studies on the dynamics of cryoconite holes.

The lower albedos at KAN_M after 2009 could have been caused by an increase in the active

fraction – for example, by the releases of impurities from cryoconite holes. Since dynamics of the

active fraction, i.e. the surface processes, are not captured at the moment, no model setup is able440

to capture 2009 and 2010. For now, the active fraction bundles all surface processes together, but it

could be a model component on its own in the future.

Both the albedo of snow and ice are altered by clouds. We developed a linear parameterization

of clouds by elevation which introduces a mean error of about ± 0.02 (see Figure S1a). Since this

linear parameterization gives a constant albedo alteration due to clouds, the albedo is overestimated445

by up to 0.10 on days with a clear sky.

The zenith angle of the sun has a high impact on the albedo of ice due to its low specific surface

area. Since the angle of the sun is easy to derive accurately the associated uncertainties are low and

solely determined by the parameterization. Also, the slope of the GrIS is small and therefore plays

no role in the effective zenith angle, while this might not be the case for steep valley glaciers.450

The free parameter of the surface albedo component (Eqn. 18) is the critical snow depth which

ranges from 0.01 to 0.20 mw.e.. The change of the measured albedo in the autumn of the years

2010, 2011 and 2012 at KAN_M is abrupt after the first snowfall, which is reflected in a low critical

snow depth at those years. The highest critical snow depth was calibrated at S5, where ice might be

exposed the whole time due to low accumulation rate and wind drift. Therefore, S5 is not suited to455

calibrate the critical snow-depth. Hence, the critical snow depth is in the region of 0.02 mw.e..

The potential melt rate influences the surface albedo indirectly via feedbacks to impurity melt-out

and via the snow depth. Most significantly it determines the SMB which could be used as a boundary

condition for glacier and ice sheet models. Potential melt was calculated with a simplified energy

balance which depends on, in addition to the surface albedo, two empirical parameters: the inso-460
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lation on top of the atmosphere and the transmissivity. The transmissivity used in previous studies

(Robinson et al., 2010, 2011) was found to be too low. In this study we derived it by comparison

of modeled and observed net shortwave radiation. Therefore, the overall effect of transmissivity is

captured well (see Figure S4 in the supplements). Nevertheless, similar to the effect of clouds on

albedo, the melt rate is underestimated on clear sky days because the transmissivity was assumed to465

be constant.

Overall, the performance of the model is satisfying, especially of the net radiation (see Fig. S4 and

S6), even though the parameterization of temperature and precipitation is very simple. The model

calibration of 2010 at KAN_M with mean temperature and precipitation parameters performs well

both at KAN_M and S5, an therefore represents the best parameter set.470

4.2 Melt-out and runoff of impurities

Dust is the main contributor to impurity mass at both stations, which was also found in observations

at different places of the GrIS (Bøggild et al., 2010; Takeuchi et al., 2014). The question is which

is the main source of dust and BC on ice: melt-out or the atmospheric sources? The accumulated

impurity mass at KAN_M is about ten times larger than at S5. This indicates that melt-out is the475

main contributor to impurity mass since the atmospheric input rates are the same for both station and

the similar impurity runoff (rice see Figure 5).

One meter of ice melt releases englacial impurities, which have been deposited over years or

decades in the accumulation zone several thousand years ago. Dust concentrations during the last

glacial are 10-100 times higher than during the Holocene (Steffensen, 1997). Therefore, currently480

dust melt-out dominates over atmospheric deposition. For example, one meter melt of ice with a

dust concentration of 1,000 ng g

�1 releases 0.91 gm

�2 of dust. At the current rate of atmospheric

deposition from large-scale transport it would take about 100 years to deposit the same amount of

dust (see also Figure S8).

Atmospheric deposition of dust could play a significant role close to the margin if the transport by485

wind from the surrounding tundra is effective. The local dust source is likely restricted to the outer-

most ablation zone because of the prevailing katabatic winds. Therefore, there might be a “threshold

elevation” up to which local dust from the tundra contributes significantly. Above this threshold,

large-scale transport from other continents dominates.

For BC the answer is less clear. Ice formed during 1851 to 1951 has a mean concentration of490

BC of 4 ng g

�1, while the pre-industrial concentration is 1.7 ng g

�1 (McConnell et al., 2007).

Atmospheric deposition is the dominant source of BC, up to annual melt rates of one meter and

a BC concentrations of 1.0 ng g

�1 (see Figure S8). At higher melt rates melt-out dominates, but the

atmospheric deposition still contributes significantly to the amount of BC on the ice surface.

The reduction fraction rice of 0.001 per day causes a residence time of the impurities on the ice495

surface of several decades. This is linked to the slow movement of cryoconite on an exposed ice
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surface, as has been measured on Longyearbreen, Svalbard (Irvine-Fynn et al., 2011). It takes more

than 56 years in order to reduce from 30 g m

�2 to below one g m

�2 by assuming 60 days with

exposed ice and exponential decay with one permille per day. Therefore, the impurities enhance ice

melt over decades after deposition by melt-out or via the atmosphere.500

5 Conclusions

We developed a surface mass balance model which includes the effect of accumulation of dust and

black carbon on the albedo of ice, besides the effects of clouds and the zenith angle of the sun. The

model requires only a small number of inputs and is therefore suitable as the surface mass balance

component of standalone ice sheet or glacier models.505

The inferred runoff of impurities is in the order of one permille per day, which corresponds to a

residence time of decades on the ice surface during which the albedo is lowered and melt is enhanced.

Dust is the main contributor to impurity mass, of which melt-out is the main source. Melt-out of BC

is the dominant source at annual melt rates above one meter. Current atmospheric deposition of BC

contributes considerably to the total amount of BC on the ice surface. Therefore, mitigation of BC510

emissions has an immediate effect on the albedo of the ice surface.

The system has a positive feedback between impurity melt-out and ice melt due to the decadal

residence time and the dominant source of melt-out. A high melt event releases large amounts of

englacial impurities from within the ice, which lower the albedo and in turn enhances melt. Which

then feeds back and causes more impurities to melt-out.515

The presented model can be used to study the long-term effect of dust and BC on the future melt

of the GrIS and smaller glaciers. Goelles et al. (2015) applied the model to a simplified geometry

mimicking the GrIS. They found that, without considering all feedback processes, an additional mass

loss of up to 7 percent in the year 3000 can be expected if impurity melt-out and accumulation is

considered.520

The Supplement related to this article is available online at

doi:10.5194/tc-0-1-2016-supplement.
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Table 1. Standard physical parameters.

Symbol Constant Value Unit

⇢ice Density of ice 910 kgm�3

⇢w Density of water 1000 kgm�3

t�,start Start of summer 121 day of the year

t�,end End of summer 244 day of the year

� Long-wave radiation coefficient 10 Wm�2 K�1

c Melt model coefficient �55 Wm�2

rmax Maximum fraction of refreezing 0.6 –

Lm Latent heat for melting of ice 334 000 J kg

deff Effective depth on ice 5 m

↵Ŝ,ds Dry snow albedo, zenith angle 0, no clouds 0.65

Figure 1. Weather stations and sampling sites at the K-transect in western Greenland, near the Kangerlussuaq

airport. Blue circles mark the PROMICE weather stations operated by GEUS (without their prefix "KAN_")

and the green circles mark the ones operated by IMAU (without their prefix "S"). The squares mark additional

mass balance sites where ice samples have been taken (Wientjes et al., 2012). Station S9 is located near the

equilibrium line and sites S6, S7, S8 and KAN_M are located in the "dark region" with lower albedos.
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Figure 2. Flow chart of the surface albedo and surface mass balance model for one time-step of one day.
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Figure 3. Cross section through an ice sheet and four different sources of impurities in the ablation zone. ELA

stands for equilibrium line altitude.
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Figure 4. The relationship between ice albedo, snow albedo and impurity concentration to surface albedo ↵s.

The surface albedo is still influenced by the underlaying ice surface if the snow depth (d) is lower than the

critical snow depth dcrit.
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Figure 5. Albedo evolution of the KAN_M station from 2009 to 2012. The lower section of the graph presents

the free parameter realizations. Each year has its own color code in the albedo chart and the parameter overview.

In addition, the parameter set of S5 in 2011 is shown in brown below the scale. The albedo data of the AWS (in

blue) and of the regional climate model MAR (in dashed black) are shown for comparison and are smoothed

with a moving average over a seven-day window. Grey areas indicate periods when the sun zenith angle is

higher than 90�(i.e. the sun is below the horizon at mid-day).
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Figure 6. Detailed result of station KAN_M in 2010. (a) near-surface temperature parameterization in green,

observation in dashed black and the mean (2005-2012) in magenta. (b) daily precipitation from regional climate

model MAR (dashed black), the parameterization in green, and the mean parameterization in magenta. (c, d)

shows the evolution of dust (red) and BC (black) inside the snowpack and on the ice surface. (e) snow depth

evolution with the parameterized temperature and precipitation in green, the "2010:Mean" model in magenta

and the model with temperature from the AWS station and precipitation from the MAR model in black. (f)

surface type; s.i. ice stands for superimposed ice. (g) surface albedo evolution of the smoothed (over 7 days,

in blue) and the original AWS data (thin black line). The simulation "2010:AWS data" uses the actual AWS

temperature and MAR precipitation, and simulation "2010:Mean" the temperature and precipitation means.
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Figure 7. Details of station S5 in the year 2011 with the same plot arrangement as in Fig. 6. The model

realization "KAN_M 2010: S5 Mean" uses the same parameters as the KAN_M 2010 configuration, but with

the S5 mean values of temperature and precipitation or P (1.24 10�8 mw.e s�1) , T� (3.70�C with a SD of

0.02) and & (0.19 �C day�1)
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Figure S1. Albedo e↵ect of clouds (a) and the zenith angle of the sun (b)
at the K-transect. Calculated by Equations 14 and 16, based on a specific
surface area of ice of 2 cm2g�1. The dots in panel (a) represent the mean of
measurements by van den Broeke et al., 2004 for the Stations S5, S6 and S9
during 2003-2007. The cloud e↵ect depends on the cloud optical thickness
with is parameterized by a function of elevation (full lines). The cloud e↵ect
is lower on dirty ice (dashed lines). The e↵ect of the zenith angle of the
sun (b) is zero when the sun is below the horizon and highest in spring and
autumn when the zenith angles are high. The overall negative e↵ect of high
BC remains it is only weakened by the low-standing sun. For example, the
darkening e↵ect of BC (d↵c) with 1 ppm BC is -0.40 which is reduced by
the zenith angle to -0.15 in early spring and about -0.30 in mid summer.
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Figure S2. Ranges of albedo changes at the ablation zone of Greenland
derived from the parameterization of Gardner and Sharp, 2010. The ranges
of albedo lowering due to dust and BC in snow are low, even with high
impurity loadings and very dense snow. Snow aging has the potentially
biggest influence on albedo of snow. Impurities on ice have a range of about
0.35 in total, due to the low specific surface area of ice and the high impurity
concentrations caused by accumulation over several years and melt-out from
highly contaminated ice. In addition the zenith angle has a high, positive
e↵ect on the albedo of ice.
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Figure S3. Transmissivity versus elevation with the linear fit of Robinson
et al., 2010 (dashed line) and a linear fit obtained by comparing the modeled
net shortwave radiation with observations for the years 2005-2012. The blue
dots are calculated transmissivity values for each station with standard
deviations. These values were obtained be minimizing the di↵erence of
observed net shortwave radiation and the modeled one (⌧a(1 � ↵s)STOA)
with the observed albedo, see also Figure S4 below.
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Figure S4. Comparison of net short wave radiation of the station KAN M
of the years 2009-2012. The grey areas indicate periods when the sun is
below the horizon. The black line is the modeled net shortwave radiation
⌧a(1 � ↵s)STOA with the albedo derived from AWS measurements. The
similarity between the AWS net shortwave radiation (in blue) and the black
line is an indicator of the quality of the transmissivity ⌧a (see Figure S3
above). The green line is the modeled net shortwave radiation with the free
parameters calibrated to each year (see Figure 5 in the main text).
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Figure S5. Surface height change of KAN M with the calibrated model
runs compared to data in blue fromMachguth et al, submitted. The increase
in surface height during spring each year is caused by superimposed ice
formation.
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Figure S6. Same as Figure S4, but for station S5.
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Figure S7. Albedo data and simulation for station S5 with parameters op-
timized for 2011 (in brown) and the mean model configuration of KAN M
in 2010 (green) with the mean temperature and precipitation of S5 (P
(1.24 10�8 m w.e s�1) , T� (3.70�C) and & (0.19 �C day�1). The albedo
data of the AWS (in blue) and of the regional climate model MAR (in
dashed black) are shown for comparison and are smoothed with a moving
average over a seven-day window. Grey areas indicate periods when the sun
zenith angle is higher than 90�(i.e. the sun is below the horizon at mid-day).
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Figure S8. Comparison of annual melt-out and atmospheric deposition of
BC (black) and dust (brown). The values of dust are converted in BC by
assuming a 200 times weaker absorption. The atmospheric rate of deposi-
tion of dust is too low to be visible, therefore melt-out of dust is always
the dominant source. The atmospheric deposition of BC is the dominant
source when the englacial concentration is 1.0 ng g�1 and the annual melt
below one meters. Otherwise, BC deposition is dominated by melt-out but
atmospheric deposition still plays a significant role. This graph can also
be used to guess which impurity is mostly responsible for lowering the ice
albedo. If the concentrations of BC and dust are known then the steepest
line belongs to the main contributor. For example, at S5 the BC concen-
tration is 1.0 ng g�1 and the dust concentration 100 ng g�1. The line of the
BC concentration is steeper and therefore S5 is dominated by BC, which
was also the result from the detailed simulation.
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