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Abstract
Measurements of near-ice (<200 meters) hydrography and near-terminus subglacial hydrology
are lacking due in large part to the difficulty in working at the margin of calving glaciers. Here
we pair detailed hydrographic and bathymetric measurements collected with an Autonomous
Underwater Vehicle as close as 150 meters from the ice/ocean interface of the Sarqardliup
sermia/Sarqardleq Fjord system, West Greenland, with modeled and observed subglacial
discharge locations and magnitudes. We find evidence of two main types of subsurface glacially
modified water with distinct properties

with runoff discharged at locations along the grounded margin

with two prominent, subcatchments beneath Sarqardliup sermia. Thus, near-ice

observations and subglacial discharge routing indicate that from this glacier occurs
at two locations and gives rise to two distinct glacially modified waters.
Furthermore, we show that the location with the largest discharge is associated with

the lighter, fresher glacially modified watermass. This is qualitatively consistent with results

from an idealized plume model.

1. Introduction

Greenland Ice Sheet mass loss quadrupled over the last two decades, contributing roughly
7.4 mm to global sea level rise from 1992-2011 (Shepherd et al., 2012), and increasing
freshwater inputs into the North Atlantic (Bamber et al., 2012). Ice sheet mass loss occurs
through of surface melt, ice discharge through iceberg calving, and submarine melt at
marine-terminating outlet glacier margins (van den Broeke et al., 2009; Enderlin et al., 2014).

The synchronous retreat and speedup of marine-terminating glaciers in southeast Greenland in
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the early 2000s was likely initiated by a dynamic change at marine termini (van den Broeke et
al., 2009; Rignot and Kanagaratnam, 2006; Thomas et al., 2009), and points towards common
external forcings from the warming atmosphere (Box et al., 2009) and/or ocean around
Greenland (Straneo and Heimbach, 2013), though the exact forcing mechanisms and relative
magnitudes remain unclear (Joughin et al., 2012; Straneo et al., 2013).

Increased submarine melt rates at outlet glacier marine termini may be a leading cause of
Greenland Ice Sheet outlet glacier speed up and retreat (Holland et al., 2008; Joughin et al.,
2012; Motyka et al., 2013; Post et al., 2011). The heat to drive submarine melting is supplied by
waters the subpolar North Atlantic and Arctic , whose circulation inside the fjords is a
result of processes across a range of spatiotemporal scales (Jackson et al., 2014; Straneo et al.,
2010). Ultimately, melt rates are affected by ocean properties (temperature and stratification) and
circulation in near-ice waters (<200 m) (Jenkins et al., 2010). Submarine melting is thought to be
enhanced in summer as a result of meltwater runoff along the ice sheet bed entering the fjord
across the grounding line as subglacial discharge, which provides an additional buoyancy source
alongside submarine melt for initiating buoyant plumes along the terminus face (Jenkins, 1999,
2011; Sciascia et al., 2013; Xu et al., 2013). Relatively fresh waters rising in the core of these
plumes become denser as they entrain salty ambient fjord waters, and

as a mechanism for transporting ambient fjord waters to the glacier face (Jenkins,
1999, 2011; Sciascia et al., 2013; Xu et al., 2013).

Plume theory and models combined with melt rate parameterizations suggest that higher

subglacial discharge rates entrainment
submarine melt rates (Jenkins, 1999, 2011; Sciascia et al.,

2013; Xu et al., 2013 ), however ocean property and plume measurements
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needed to inform and validate model simulations and theory are lacking due to difficulty in
working at the margin of calving glaciers (Straneo and Cenedese, 2015). As a result, current
modeling-sourced estimates of submarine melt rates at tidewater glaciers and their sensitivity to
external forcings of the near-ice environment are highly uncertain, and based on unconstrained
models of plume dynamics using ice/ocean boundary parameterizations forced by far field (>1
km) ocean property measurements and largely unknown subglacial discharge
(Jenkins, 2011; Kimura et al., 2014; Sciascia et al., 2013; Slater et al., 2015; Xu et
al., 2012, 2013). For example, in a recent numerical study the spatial distribution of subglacial
discharge along the grounding line was found to have a large effect on both the total submarine
melt rate and its distribution along marine termini (Slater et al., 2015). With a lack of
observations of both the near-ice environment and subglacial discharge configurations, we are
unable to define likely subglacial discharge scenarios and their associated influence on ice/ocean
interactions, resulting in an inadequate and untested understanding of how tidewater glaciers
respond to oceanic forcing now and in the future (Straneo and Cenedese, 2015). Specifically,
ocean measurements collected at distances >1 km from the glacier terminus provide limited
information on the near-ice processes because the signals of glacial modification have, by that
time, largely been smeared by lateral mixing processes. Indeed, the picture that emerges from
such far-field measurements is of a horizontally invariant overturning cell(s) (Chauché et al.,
2014; Inall et al., 2014; Johnson et al., 2011; Mortensen et al., 2011; Straneo et al., 2011;
Sutherland et al., 2014).
In this study, we present fjord hydrography and bathymetry measurements from the near-
ice environment of a tidewater glacier in west Greenland (Fig. 1) that allow us to reconstruct the

distribution of subglacial discharge and provide key details on the ice-ocean exchanges. We do
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this by identifying the distribution of Glacially Modified Waters (GMW )—a product of ambient
fjord waters mixing with subglacial discharge and glacial melt

(Jenkins, 2011; Straneo et al., 2011)—within a few 100 m of the glacier face, and by
delineating the subglacial catchments that route subglacial meltwater to discharge locations
along the grounded terminus. These hydrographic measurements were obtained primarily in July
2012, using a REMUS-100 (Remote Environmental Measuring UnitS) Autonomous Underwater
Vehicle (AUV) (Fig. 2 a) to observe the temperature, salinity, and turbidity of waters in
Sarqardleq Fjord (SF) from ~2 km away to within a couple hundred meters of Sarqardliup sermia
(SS), a medium-sized tidewater glacier in West Greenland (68.90° N 50.32° W) (Fig. 1). This
novel, high-risk field campaign was successful in obtaining multiple vertical sections of fjord
water properties as close as 150 £ 25 m from the terminus as well as detailed bathymetry of the

previously unmapped fjord.

2. Field Campaign

2.1. REMUS-100 AUV

The REMUS-100 AUV is a small (1.8-m long) and light (45 kilograms) vehicle, rated to
100-m-depth that has been modified for under-ice exploration (Plueddemann et al., 2012) (Fig. 2
a). REMUS environmental sensors included a Neil Brown Ocean Systems conductivity-depth-
temperature (CTD) sensor, a WetLabs Environmental Characterization Optics (ECO) Triplet
sensor, and a Teledyne/RDI dual looking) 1200 kHz Acoustic Doppler
Current Profiler (ADCP). The ECO Triplet provides measurements of turbidity from backscatter

at 660 nm. At the surface, REMUS communications include Iridium satellite telemetry,
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FreeWave 900 MHz radio acoustic data telemetry, WiFi for local area network for wireless
testing and configuration, and a Global Positioning System (GPS) receiver for location fixes at
the start and end of missions. At depth, REMUS navigates by acoustically ranging to a network
of moored Long BaseLine (LBL) transponders (Fig. 3). The
vehicle continuously updates its position while underway through a combination of dead
reckoning algorithms (which incorporate compass data, as well as propeller turns, water velocity
and bottom track data from the ADCP), LBL fixes, and surface GPS fixes when available (see
Plueddemann et al. 2012).

Field operations from the shore and in small boats took place from 17-27 July 2012
(DOY 199-209). SF is largely free of icebergs after spring sea ice break up, though frequent
calving along the SS terminus prevents boat travel within ~200 m of the terminus. REMUS
experienced navigational challenges in fjord environment due to a confluence of factors
including a strong surface pycnocline, loud and variable noise from calving and overturning of
icebergs, and heavy ice conditions preventing some GPS fixes. Transects presented here include
occasional deviations on the order of 5 to 50 m perpendicular to mission tracks. Data collected
during mission track deviations are accepted and collapsed back onto the transect line.

Deployed over the side of a small fishing boat, and eventually from the shore, 11

REMUS missions were completed over 9 days for both engineering and science objectives.

Combinations of yo-yo, fixed-depth, and fixed-altitude above bottom sampling

paths along transects parallel to the glacier face were used to acquire vertical sections of SF
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water properties. In total, 5 transects of temperature, salinity, and turbidity along 5 terminus-
parallel sections (R1-R5 (Fig. 3)) at distances 150 to 1500 = 25 m from the terminus selected
based on REMUS navigation quality and best across- and along-fjord coverage are presented in

this paper (Table 1).

2.2. Hydrographic and turbidity data

Profiles and sections presented here are made from along-track edited and smoothed
REMUS CTD and ECO data. REMUS temperature and salinity data were edited with the
removal of occasional erroneous points identified by an along-track first difference filter of
density calculated from the temperature and salinity measurements. First differences of >0.1
sigma were removed, affecting 0.2% of the data. Turbidity values were capped at 10
Nephelometric Turbidity Units (NTU). Raw temperature and salinity data were obtained at 0.22
s intervals, while turbidity measurements were taken at 1.15 s intervals. Temperature, salinity,
and turbidity measurements were interpolated to 0.5 s and then averaged over 2 s to obtain
smoothed, along-track data for all sensors on a common timebase with along-track resolution of
3 m typical vehicle speeds 1.6-1.8 m s Contour maps of
observed variables versus depth and distance were created from the REMUS mission tracks by
optimal interpolation (kriging) of measurements collapsed along glacier face-parallel transect
lines (Fig. 4). Simple, linear fits to computed autocorrelation were used for temperature, salinity,
and turbidity. Kriging was completed over a depth and along-track distance range slightly larger
than the data range, with a vertical resolution of 2 m and a horizontal resolution of 100 m, based

on the along-track resolution of 3 m and the horizontal distance between REMUS mid-depth
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sample lines of 100 m, respectively. Sensitivity tests of different kriging models and linear slopes
yielded little impact on resulting sections, demonstrating a robust kriging methodology.
Several shipboard CTD casts, collected using RBR XR 620 CTD, during the field
are presented to supplement the REMUS observations (Fig. 6). CTD
casts were taken along the R1 transect (Fig. 3), 8 casts were taken along cross-fjord sections in
the outer SF (>10 km from the SS terminus) (triangles in Fig. 7 a), and 3, casts were taken
roughly at the RS midpoint, northeastern end, and southwestern end (Fig. 3). REMUS and CTD
measurements were cross-calibrated by comparing REMUS R1 measurements with the 8 CTD
casts taken along the R1 transect immediately following the completion of the REMUS RI
mission. 0, S, and depth offsets were found to be 0.0015 °C, -0.05 PSU, and -2.5 m respectively,
between the CTD and REMUS measurements. The RBR XR 620 CTD was calibrated before and

after the fieldwork

2.3. Bathymetric Data
Detailed bathymetry of the previously unmapped SF was obtained through depth
measurements from a shipboard single-beam depth sounder, a shipboard ADCP, and (hc REMUS
ADCP (Fig. 3). After removing occasional spikes in
the REMUS ADCP depth soundings (outliers on order 15 m deeper than background), depth
measurements across the sampling platforms at crossover points were consistent within <4 m.
Coastline positions obtained from digitizing a June 19,

2012 Landsat image Depth measurements were combined across
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platforms by calculating a binned average depth measurement over a 25 x 25-m grid across the
fjord. The Barnes Objective Analysis (Barnes, 1994) was used to interpolate the binned depth
measurements with a 175 x 175-m search radius to create the bathymetry shown in Figure 3. The
bathymetry product aligns well with the binned depth measurements (less than 1 m offsets)
except in the location of the northern side of the seamount (68.92° N 50.34° W), which contains
the maximum offset from the gridded depth measurements at = 5 m. Due to low data coverage,
the Barnes Objective Analysis was not extended to the outer regions of SF. However, with depth
measurements from the shipboard echosounder we have mapped the fjord centerline depth to the

confluence of SF and Tasiussaq Fjord, 15-km from the SS terminus (Figs. 1, 7 a).

3. Physical Setting: The Sarqardleq Fjord/Sarqardliup sermia outlet glacier system

The Sarqardliup sermia/Sarqardleq Fjord (SS/SF) outlet glacier/fjord system is located in
West Greenland roughly 30 km south of Jakobshavn Isbra (Fig. 1). SS is a marine terminating
outlet glacier with a 6-km wide terminus and an upstream subglacial catchment area of 400 + 50
km® (Fig. 7a, Table 3; methods described in section 3.2). estimate annual runoff out of

this catchment to be on the order of 1 km’ yr'

A bedrock trough 100-150 m below sea level extends 15 km inland from the
terminus, and continues further inland as a bedrock trough above sea level (Morlighem et al.,
2014) (Fig. 7 a). The SS centerline ice thickness is ~200 m at the terminus and increases inland

(Morlighem et al., 2014) (Fig. 7 a). The Sarqgardliup sermia terminus position has been relatively
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stable in comparison to the large terminus retreats observed at other Greenland tidewater glaciers
(Moon and Joughin, 2008) based on our analyses of LANDSAT imagery from 1979 to present
(Fig. 2 b). Modest advance and retreat phases on the order of = 500 m are observed over recent
decades, with a net retreat of ~1 km within the center third of the glacier terminus observed from
1992 to present (Fig. 2 b). Average flow velocities within the SS outlet glacier during the 2007—
2009 winters were on order 125-175 m yr", with the center third of the SS terminus reaching
speeds of 200 m yr' (Joughin et al., 2013).

The Sarqardleq-Tasiussaq fjord system is the southern side fjord off the larger, deeper
Jakobshavn Isbree (JI) fjord, which connects the largest and fastest Greenland ice stream (JI) to
Disko Bugt (Fig. 1a). From the SS terminus, the shallower Sarqardleq-Tasiussaq Fjord system
extends roughly 30 km to the northwest before reaching JI fjord. SF meets Tasiussaq Fjord over
a previously unknown 70-m-deep sill, 15 km from the SS terminus (Figs. 1 & 7 a). Tasiussaq
Fjord meets JI fjord over an at most 125-m-deep sill (Gladish et al., 2015a) 30 km from the SS
terminus (Fig. 1). Waters along the SS terminus range from 20—150-m-depth, and are deepest in
two troughs near the center of the glacier (Fig. 2, Table 3). Both SS lateral terminus regions are
grounded in relatively shallow lagoons (<20 m) (Fig. 3). A 40-m-deep seamount is located 2.5

km from the vertical SS calving face (Fig. 3).

3.2.  Subglacial catchment and runoff

To first order, subglacial catchments are by ice sheet surface and bed topography,
which governs subglacial hydraulic potential at the bed (Cuffey and Patterson, 2010).
in subglacial hydraulic potential at the ice-sheet bed do not completely dictate subglacial

meltwater pathways due to the constantly evolving subglacial hydraulic system over the summer
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melt season (Andrews et al., 2014; Chandler et al., 2013; Hewitt et al., 2012; Schoof, 2010

recent modeling studies find topographic channelized subglacial

Greenland Ice Sheet outlet (Banwell et al., 2013; Palmer et al.,
2011).

The SS catchment area was determined based on streamline analysis through subglacial
hydraulic potential gradient fields to estimate which path water parcels located at the bed under

inland ice will follow out to the coast. The downslope subglacial hydraulic potential gradient, —

V@, was calculated following:

V@, =—pig[ £ VS +[pu/pi— £ 1VB] eq. 1
where p;is the density of ice, p, is the density of freshwater, g is the gravitational acceleration,
fw 1s the flotation fraction, and VS and VB are the surface and bed gradients, respectively (Cuffey
and Patterson, 2010; Shreve, 1972). We assume water at the bed flows along the steepest
subglacial hydraulic potential gradient (Shreve, 1972).

Bamber et al. (2013) and Morlighem et al. (2014) (hereafter BBM2013 and
MBM2014), to calculate —\V®y, across a 1-km by 1-km grid (Bamber et al. 2013) and 150-m by
150-m grid (Morlighem et al. 2014) equivalent to the resolution of each
MBM2014 beneath SS was updated from the published map, SF
bathymetry measurements as a boundary constraint along the SS terminus in this otherwise data-
sparse region. The MBM2014 used in this study is available online as IceBridge BedMachine
Greenland, Version 2 from the National Snow and Ice Data Center

(http://nsidc.org/data/docs/daac/icebridge/idbmg4/index.html). Surface ice gradients (VS) are

calculated from the Greenland Ice Mapping Project (GIMP) Digital Elevation Model (Howat et

11
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al., 2014). The flotation fraction was set to f,, = 1 (basal water pressures are equal to ice
overburden pressure the maximum catchment area possible based on basal
hydraulic gradients
Surface runoff in the SS catchment for 2012 was determined from bilinear interpolation
of the 11-km grid resolution RACMO2.3 runoff values
to the 1-km grid from BMB2013 and the 150-m grid from MBM2014
(Fig. 7 a). Portions of the catchment lower than 400 m.a.s.l. were prescribed the same runoff
values as the RACMO2.3 grid point within the catchment at 432 m a.s.l. (68.82° N 50.19° W)
(Fig. 7 a), as there are no RACMO2.3 grid points at lower elevations within the catchment. We
assume that the ice-sheet bed is impermeable (does not store water) over the timescales
considered here, and that all surface runoff is transferred immediately to the bed directly beneath

the location of runoff formation at the ice sheet surface.

4. Results

4.1 Glacially Modified Water (GMW) temperature, salinity, and turbidity properties in
Sarqardleq Fjord

summer fjord waters are characterized by a ~10-20-m fresh and
relatively warm surface layer overlying a thick layer of weakly stratified, relatively salty
(S=30.5-32.5) and cold (0 = 1 °C) waters (Table 2, Fig. 5 a, b). The summer fjord waters are the
same as the Surface Waters (SW) and Ilulissat Icefjord Waters (ITW) observed by recent
hydrographic surveys throughout Ilulissat Icefjord (Gladish et al., 2015a, 2015b). SW are a

mixture of IIW and fresher, warmer waters originating from local freshwater sources and
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warmed by summer atmospheric forcing. ITW originates from Arctic Waters observed in Disko
and Baffin Bays (Gladish et al., 2015b) that enter SF after crossing sills at the mouth of JI fjord
(Schumann et al., 2012), the confluence of JI fjord and Tasiussaq fjord (Gladish et al., 2015a),
and the mouth of SF (Fig. 1). These summer fjord waters are observed in the outer SF by a set of
far-field CTD profiles taken near the fjord mouth more than 10 km from the SS terminus
(triangles in Fig. 7 a). We define ambient fjord waters as the average of these far-field CTD
profiles (red profile in Figs. 5 & 6).

Near the glacier we observe a range of water masses not found in the outer fjord. These
waters are generally colder, fresher, and more turbid than waters near the mouth of the fjord (Fig.
5 a, b). The REMUS sections reveal two distinct GMW ), which we
refer to as GMW1 and GMW2 (Fig. 4, Table 2). GMW1 and GMW?2 are cold anomalies with a
high turbidity signal that are most evident at two distinct locations (Fig. 4). GMW1 is observed
in the southwestern ends of R1-R5 at ~40-m depth, while GMW?2 is observed in the northeastern
ends of R1-R5 at ~60 m depth (Fig. 4). Both GMW1’s and GMW?2’s temperature and turbidity
anomalies are most pronounced close to the glacier (Fig. 4 a—), and decrease as these waters
spread away from the glacier (Fig. 4 g—i). For example, the high turbidity associated with
GMW!1 spreads laterally beneath the pycnocline at R1 (Fig. 4 i). Turbidity does not consistently
map onto regions of local temperature minima; there are regions in the REMUS sections with
high turbidity but with temperatures above 0.9 °C (northeastern R1 below 80 m depth (Fig. 4 1)).
High turbidity in these regions may be due to other sources including suspended sediment
sourced from proglacial streams that enter SF as surface runoff near the northeastern end of R1

(Fig. 3) or iceberg discharge.
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CTD casts 1-3 were taken closer to the SS face than the R5 transect during the same July
2012 field campaign (Fig. 3), and provide additional 6/S characteristics below the 100-m
REMUS depth limit (Fig. 6 a—c). These casts record deeper cold anomalies at the bottom of SF,
as well as cold excursions from ~40 to 80 m depth, similar to REMUS measurements (Fig. 6 a—
c). Overall the CTD profiles align well with REMUS measurements where coincident (above
100-m).

Further insight into the origins of GMW1 and GMW?2 is found in /S space, where
GMW1 and GMW?2 stand out as cold anomalies as compared to waters near the mouth of the
fjord (Figs. 5 d, 6 a, b). GMW1 and GMW?2 are clustered at two distinct densities (Fig. 6 a, b).
At a density of 69~ 24.8 kg m™, where oy is potential density less 1000 kg m~, GMWT1 is lighter
than GMW2 (o6~ 25.5 kg m™) (Table 2, Fig. 6 a, b). In general, GMW is fresher and more turbid
compared to ambient waters, consistent with fjord waters mixing with submarine melt and
subglacial discharge. If we assume that both GMW1 and GMW?2 are driven by subglacial
discharge plumes that emerged at the grounding line, we can assume that the bulk of the
entrainment was of deeper waters at densities of ce="5.5-26.5 kg m? (Fig. 6 a, b). In 6/S space,
GMW is further identified with the use of meltwater and runoff mixing lines (Figs. 5 ¢, d & 6 a—
c), which represent conservative mixing between ambient water and submarine melt or
subglacial discharge, respectively (Jenkins, 1999). Endpoints for the melt and runoff mixing
lines are set to properties observed by CTD cast 2 at grounding line depth (Figs. 3, 6 b). GMW1
and GMW?2 are consistent with the transformation of ambient waters by mixing with submarine
melt and subglacial discharge, as they fall between the meltwater and runoff mixing lines in 6/S

space (Fig. 5¢,d & 6 a—c).
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Thus, near the glacier we observe water masses not found in the outer fjord that we
attribute to glacier/ocean interactions (Jenkins et al., 2010; Straneo et al., 2011). We observe two
distinct GMW that are both colder, fresher, and more turbid compared to ambient waters at
similar depths (Figs. 5 a—c, 6 a, b) but are located in different regions of the fjord (Fig. 3).

in the southwestern ends of R1-RS5, is considerably fresher and lighter than the
colder GMW?2 observed in the northeastern ends of R1I-R5 (Figs. 3, 6 a, b, Table 2). The lighter
GMW1 (op~ 24.8) is observed at an equilibrium depth of 35-60 m, while the denser GMW?2 (oy
~ 25.5) has a deeper equilibrium depth of 50-70 m (Table 2), suggesting that GMW1 contains a
higher of subglacial runoff than GMW2 We further elucidate GMW1
and GMW?2 origins in the following section on the SS catchment and subglacial discharge across

the SS terminus.

4.2. SS catchment and subglacial discharge across SS terminus

The 400 + 50 km® area SS catchment extends 15-km up the basal valley beneath the 6-km
wide SS outlet glacier snout and widens under inland ice, reaching a maximum inland extent of
35-km just above the 900 m a.s.l. ice-sheet surface elevation contour (Fig. 7 a, Table 3). Bedrock
basins that steer subglacial water to the southwest delineate the southern boundary of the
catchment (Fig. 7 a). The northern extent of the catchment is bounded by the Alangordliup
sermia outlet glacier catchment parallel to SS (Fig. 7 a). Three sub-catchments—C1, C2, and
C3—are delineated within the SS catchment from binning —V®y, streamline endpoints along the
SS face in both the MBM2014 and BBM2013 analyses (Fig. 7 a). The main difference between

the MBM2014 and BBM2013 analyses is the size of the C1 subcatchment (BBM2013 33%
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larger), with the BBM2013 analysis delineating the northern inland extent of C1 into a region the
MBM2014 analysis places in the Alangordliup sermia catchment (Figs. 1 & 7 a, Table 3).

The three sub-catchments delineate three sections along the terminus (Fig. 7 a), with each
section mapping onto a directly observed or inferred subglacial meltwater discharge channel
(D1, D2, and D3 in Fig. 3). Subcatchment C1, the largest sub-catchment at 269 km?® area
(MBM2014) discharges along the middle of the terminus at discharge location D1, while
subcatchment C2 and C3 discharge along the northeastern and southwestern extents of the
terminus at D2 and D3, respectively (Fig. 3). D1 and D2 align with two distinct bathymetric
troughs of 150 and 132—m depth, respectively (Table 3), bounded by bathymetry highs of 60 to
40 meters depth in SF (Fig. 3). D1 and D2 also coincide with depressed glacier margin heights
along the terminus, enhanced ice sheet velocities (Joughin et al., 2013), and high calving flux
relative to the rest of the terminus. D1 is a particularly frequent calving region in comparison to
the rest of the terminus, as observed during our two field campaigns. At times, a turbulent,
sediment-rich plume reaches the fjord surface at D1, as observed in satellite images and during
subsequent fieldwork in July 2013 (Mankoff et al., ). While exhibiting similarly
frequent calving, terminus height, and velocity characteristics as D1, surface plumes have not
been observed at D2. Subcatchment C3 discharges beneath the slow-moving, southwestern
margin of the terminus at D3 (Fig. 3), through a visible, broad channel mouth at the fjord
surface, entering into a shallow region of SF (Table 3, Fig. 3).

Variability in calculated subglacial discharge for each subcatchment is controlled
primarily by temperature variability, with daily runoff rates a summation of melt and
precipitation across the catchment (van den Broeke et al., 2009) (Fig. 7 b, Table 3). During our

2012 field expedition, catchment runoff rates were slightly below the monthly July average, with
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no above average temperature days falling within the sampling period (Fig. 7 b). Disregarding
the possibility for periods of subglacial water storage during the en- and subglacial transport of
runoff to the SS terminus, daily discharge rates across the terminus during the field expedition
are 146 m® s (MBM2014 estimate) (Table 3). An additional though likely minor amount of
surface meltwater runoff enters the fjord through proglacial streams, which discharge at land-
terminating margins abutting SS (Fig. 2). Daily runoff discharges for C1 and C2 scale primarily
with area differences and are 115.78 and 20.62 m’ s, respectively (MBM2014) (Table 3).

error estimates for the RACMO2.3 runoff rates are not , we take the standard deviation
of July 2012 daily discharge rates as a measure of the potential variation observed during the

field expedition (Table 3).

4.3. Buoyant plume model for the SS/SF system

As described above, we have found evidence for three main subglacial catchments
discharging runoff into SF at three locations along the terminus. The two prominent discharge
locations, D1 and D2, coincide with GMW1 and GMW?2 observations. The picture that emerges
is that different properties of GMW1 and GMW?2 are attributable to differences in subglacial
discharge magnitude at that location. Here, we use a buoyant plume model to investigate the
extent to which the two plumes’ predicted characteristics compare with the GMW1 and GMW2
observations. Buoyant plume theory states that the growth of a plume is dictated by the plume’s
buoyancy forcing, which can be due to subglacial discharge at the grounding line and/or
submarine melting along the terminus (Morton et al., 1956; Turner, 1979). The buoyancy forcing
of the plume determines the plume’s vertical velocity and entrainment of ambient fjord waters

(Morton et al., 1956; Turner, 1979). A class of simple, one-dimensional buoyant plume models
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has been used to investigate plume dynamics and terminus melt rates near glaciers (Hellmer and
Olbers, 1989; Jenkins, 1991, 2011). Solutions to these models estimate plume temperature,
salinity, vertical velocity , and intrusion depth, the depth at which the plume becomes
neutrally buoyant and changes from flowing vertically up the terminus to flowing horizontally
away from the terminus. Here we the Jenkins
(2011) buoyant plume model to plume

The plume model uses conservation of the fluxes of mass, momentum, heat, and salt, to
calculate plume characteristics that are uniform in time and across-flow direction (Jenkins,
2011). Key initial conditions that we prescribe include an ice temperature of -10 °C (Liithi et al.,
2002); fjord ambient temperature and stratification (Table 4); a vertical glacier face; and a
modeled subglacial discharge across the terminus, (Table 4). Entrainment of ambient fjord
waters into the buoyant plume is modeled as a product of plume velocity, the sine of the ice
terminus slope (vertical for SS), and a theoretically defined entrainment coefficient (Eg) of 0.08
following Sciascia et al. (2013).

The buoyant plume model is calculated for D1 and D2 scenarios and evaluated based on
end plume temperature, salinity, and intrusion depth (Table 4). Ambient water properties are
defined by two CTD measurements of full water column temperature and salinity from nearby
D1 and D2 (CTD1 and CTD2, respectively, in Fig. 3). Temperature, salinity, and intrusion depth
at the end of the plume are found to be largely insensitive to varying ambient fjord water
properties if the ambient waters show strong summer stratification. We use the RACMO2.3-
derived estimates of subglacial across the terminus at D1 and D2 (1 s™) (using

MBM2014 of average daily runoff during the field expedition (m® s™")) (Table 3

18

Deleted: will use

Deleted: investigate D1 and D2

Deleted: scenarios

Deleted: depth-integrated

Deleted: flux of

Deleted: ¢,

Formatted: Font color: Yellow

Deleted: flux

Deleted: m”

Deleted: ) flowing through a 1-m vertical
slice of a theoretically calculated steady-state
Réthlisberger channel (Nye, 1976;
Rothlisberger, 1972; Schoof, 2010).



492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Given the observed ocean stratification and the modeled subglacial discharge, the plume
model confirms that GMW1 should be notably fresher and lighter GMW?2 (Fig. 5 c, Table

4). This supports the conclusion that GMW1 and GMW?2 are the result of two distinct discharge

locations with different subglacial discharge magnitudes. , the plume model
predicts plume properties that are

lighter and fresher than the observed (Fig. 5 ¢, Tables 2 &
4). The predicted D1 would reach the pycnocline at neutral buoyancy

of ~14 m, (Table 4). With a minimum amount of overshoot, we might expect the
to reach the surface or depths close enough to the surface to be visible during field observations.
In reality, the not observed to reach the surface, and was only observed
beneath the pycnocline (Fig. 4). There are several possible reasons for this discrepancy. First, the
plume model may have an incorrect entrainment parameterization. Second, the estimated
subglacial discharge could be incorrect. In addition, after detaching from the terminus at the
plume’s intrusion depth, GMW spreads an additional 150 m away from the SS face before being
observed at RS. Over this time, we would expect lateral mixing to further dilute the GMW
properties. The plume model does not describe lateral mixing, as the model ends when the plume

reaches intrusion depth.

5. Discussion

5.1.  Subglacial catchments, discharge, and GMW observations
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Our analysis of the ocean data and subglacial catchments both suggest that there are two
primary subglacial discharge locations along the ice/ocean interface. On the outlet glacier
catchment side of the interface, the primary subcatchments, C1 and C2 (Fig. 7a), route
substantial (>90%) of the total SS meltwater runoff (Table 3) into the fjord across the grounding
line at discharge locations D1 and D2, respectively (Fig. 3). On the ocean side of the interface,
GMW1 and GMW?2 are located near D1 and D2, respectively, and show fresher, colder waters
with high turbidity as compared to ambient fjord waters (Fig. 5 a, b). The properties of these
waters, in particular, are consistent with glacial modification due to significant injection of
runoff at depth as is expected from a localized discharge of meltwater at D1 and D2. Finally,
between D1 and D2, there is a 2-km stretch of the terminus where GMW show cold excursions
with low to high turbidity along R4 and R5 (Fig. 6 c¢). The formation of this GMW is less clear,
though in this region between subglacial discharge locations, GMW properties are more
indicative of submarine melt and limited subglacial discharge and/or lateral mixing of GMW 1
and GMW?2.

Although we lack observations within the plumes themselves in 2012, the ocean
observations of GMW suggest that these waters are produced by ambient fjord waters interacting
with a limited number of discrete plumes along the terminus. Our observations of GMW beneath
the pycnocline at a distance of ~150 m from the terminus suggest that the two plumes reach
neutral buoyancy beneath the fjord surface. Visual observations during the 2012 field campaign
confirm that the plumes did not reach the fjord surface during this time. In contrast, during the
July 2013 field campaign at SF, a vigorous, turbulent plume was observed to break through at the

fjord surface at D1 (Mankoff et al., ).
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Differences in subglacial discharge magnitude entering the fjord at D1 and D2 is both
observed and predicted to result in water mass differences between GMW1 and GMW?2. Fed by
subglacial discharge from the largest subglacial subcatchment, GMW1 is fresher and lighter than
GMW2 (Table 3, Figs. 5 a—d, 6 a, b). D2 receives roughly 20% of the subglacial discharge
magnitude at D1 (Table 3). This smaller subglacial discharge results in a relatively saltier and
heavier GMW2 in comparison to GMWI1 (Figs. 5 a—d, 6 a, b). While a greater volume of
subglacial discharge leads to a fresher water mass, the strength of the resultant buoyant plume
also plays a role in near-ice water mass transformation. Plume theory predicts that a plume fed
by a greater amount of subglacial discharge will have a stronger buoyancy forcing, leading to

faster entrainment of ambient waters and in the fraction of subglacial discharge
in the plume (Jenkins, 2011 ). In this fjord, the entrainment of
ambient waters into a plume results in GMW with temperatures and salinities that are warmer

and saltier than the subglacial discharge entering the fjord (6 = 0 °C, S = 0 PSU). The

and
temperature are
ambient subglacial discharge at D1 drives a
more vigorous plume with , which results in GMW that is closer in
6 and S to W ( Fig. 6 a). subglacial discharge at D2 drives
a less vigorous plume , resulting in GMW that retains

the cold signature of subglacial discharge and submarine melting
Consistent with the ocean data, the plume model predicts end plume conditions at D1 are
fresher and lighter than those at D2 as they contain a greater amount of subglacial discharge (Fig.

5 d, Table 4). However, the end plume conditions from the Jenkins (2011) model for DI
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scenarios are lighter than the we observe (Fig. 5 c, 4). In addition to errors in the
plume model and subglacial estimates, lateral mixing within ~150 m of the terminus is

consideration for comparing the plume model results and observed GMW. Large amounts of
mixing with ambient waters likely occur once the plume detaches from the terminus and GMW
is exported away from the ice/ocean interface. This lateral mixing has been observed in other
marine terminating outlet glacier systems in Greenland, where GMW from an inferred localized
subglacial discharge location was found uniformly across the fjord in profiles taken ~200 m from

the terminus (Chauché et al., 2014).

5.2.  Observing the heterogeneous near-ice environment

The coupling of near-ice observations and subglacial discharge routing is necessary for
understanding ice-ocean interactions at marine terminating outlet glaciers. While multiple recent
studies have observed GMW in fjords (Chauché et al., 2014; Inall et al., 2014; Johnson et al.,
2011; Mortensen et al., 2011; Straneo et al., 2011; Sutherland et al., 2014) and others have
measured and modeled runoff based on surface catchment area (Mernild et al., 2015), no studies
have directly linked the two sides of this interface or considered the role of basal routing on
catchment area. For this study, we pair near-ice observations and subglacial discharge routing to
show for the first time that the observed GMW characteristics align with the subglacial discharge
magnitudes from outlet glacier subcatchments.

Our results highlight the necessity of subsurface observations within the near-ice zone for
accurately characterizing the heterogeneous processes at the ice/ocean interface. We observe
heterogeneous, subsurface GMW as high turbidity, cold excursions in across-fjord sections as far

as 1.5 km from the SS terminus (Fig. 4). Further away from the terminus, only the cold excursion
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at the density of GMW|1 remains in the far-field profiles (Fig. 5 d). Thus, while in the near-ice
zone there are multiple subglacial discharge locations across the SS grounding line and different
types of GMW observed, only a modified GMW1 is identifiable in far-field profiles. Noble gas
observations of GMW in neighboring Greenland fjords observe a dilution of GMW as you move
away from the terminus, suggesting that GMW is highly diluted outside of the near-ice zone
(Beaird et al., 2015). Thus, the fact that only a modified GMW1 is detectable in the far-field
profiles is likely due to the larger volume flux of entering the fjord as
compared to (Table 4). Sill depth may be an additional factor impeding the
export of GMW2; GMW?2 is observed at or barely above the 70-m sill depth, while GMW1 is
observed at shallower depths (Figs. 1 & 3, Table 2). The implication is that far-field
measurements only provide a partial representation of processes along the ice/ocean interface.

Similar to the single cold excursion observed in the ambient SF waters, many studies
have observed evidence of subsurface GMW uniformly distributed across fjord width outside of
the near-ice zone (Johnson et al., 2011; Mortensen et al., 2011; Straneo et al., 2011; Chauché et
al., 2014; Inall et al., 2014; Sutherland et al., 2014). Observations at Store and Rink glaciers as
close as ~200 m to termini identify one to a couple o! surface and subsurface plumes along each
glacier termini (Chauché et al., 2014). However, the GMW observed 200 m from the termini is
uniform across the fjord (Chauché et al., 2014). While our observations of subglacial discharge
locations in SF are consistent with the low number of subglacial discharge locations found at
Store and Rink glaciers (Chauché et al., 2014), we are able to further differentiate and map types
of GMW to outlet glacier subcatchments.

The subsurface nature of the plumes and resultant GMW we observed is consistent with

multiple studies that have also observed subsurface GMW (Chauché et al., 2014; Inall et al.,

23

Deleted: GMW1

Deleted: GMW2



691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

2014; Johnson et al., 2011; Mortensen et al., 2011; Straneo et al., 2011; Sutherland et al., 2014).
Together these findings drive home the point that plumes and other processes at the ice/ocean
interface actively driving submarine melt can and often do operate without creating an
expression on the fjord surface. Surface expressions of plumes have been detected at many
Greenland tidewater glaciers and invoked as evidence for runoff release from the ice sheet into
fjords and proglacial streams (Chu et al., 2009; Tedstone and Arnold, 2012), and have even been
proposed as a potentially useful remote measure of runoff (Chu et al., 2012).
However, our observations of plumes and GMW that reach neutral buoyancy beneath the
pycnocline suggest in many cases this relationship does not hold true. The magnitude of
subglacial discharge entering a fjord, fjord stratification, and fjord depth have all been shown to
affect whether a plume reaches the surface (Sciascia et al., 2013). The absence of plume surface
expression does not negate the presence of subglacial discharge plumes that may be driving
significant submarine melt and circulation along a tidewater terminus. Thus, across-fjord
subsurface observations within the near-ice zone provide the most comprehensive

characterization of ice/ocean interactions in Greenland fjords.

5.3.  Observational constraints for modeling the heterogeneous near-ice environment
While spatial distribution of subglacial discharge is a critical component for estimating
submarine melt rates at marine terminating outlet glaciers in numerical models (Slater et al.,
2015), we have few observations to constrain subglacial discharge scenarios. Model
configurations of subglacial discharge for major Greenland outlet glaciers range from a
distributed subglacial system where equal of subglacial discharge emerge across the

entire grounding line width (Jenkins, 2011; Sciascia et al., 2013), to subglacial
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discharge between a number of equally-spaced plumes along the terminus (Kimura et al., 2014;
Slater et al., 2015), to routing all subglacial discharge through
one, central plume (Slater et al., 2015; Xu et al., 2013). these models,
which share the same melt parameterization, agree that submarine melt rates increase with
increasing subglacial discharge (Jenkins, 2011; Kimura et al., 2014; Sciascia et al., 2013; Slater
etal., 2015; Xu et al., 2012, 2013), the amount and distribution of the increased melting depends
on the largely unknown pattern of subglacial discharge (Straneo and Cenedese, 2015). Most
recently, Slater et al. (2015) concluded that a distributed system yields as much as 5 times more
submarine melting than a channelized system consisting of a few plumes along the terminus
Thus, spatial distribution of subglacial melt is critically important for estimating
submarine melt rates in a numerical model (Slater et al., 2015; Straneo and Cenedese, 2015).
For this system, we observe two, localized areas of subglacial discharge separated

by wide areas of the terminus with little to no subglacial discharge.

A simple subglacial meltwater
routing model using MBM2014, the GIMP ice sheet surface digital elevation model, and
RACMO2.3 runoff estimates was able to predict the number, approximate location, and relative
magnitude of subglacial discharge locations. And while this subglacial catchment
delineation method should be supplemented with ocean measurements and field observations

where possible, in many cases it may prove a useful first order approximation of the spatial
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distribution of subglacial discharge at marine terminating outlet glaciers where fjord

observations are lacking or difficult to obtain.

6. Conclusions

Hydrographic surveys completed by an AUV in Sarqardleq Fjord provide several new
observational insights to the characteristics and distribution of near-ice GMW in a shallow-silled,
moderate-sized west Greenland fjord. Overcoming navigation difficulties in the acoustically
noisy, iceberg-filled fjord, the AUV covered a large portion of the near-ice waters along the
terminus. AUV observations provide the most comprehensive and spatiotemporally detailed
snapshots of across-fjord hydrography in the near-ice zone to date. From these measurements we
identified two types of GMW that map onto two plumes based on 6/S/turbidity near-ice
properties and subcatchment runoff estimates. The two plumes are, notably, not observed to
reach the surface in the fjords, but attain neutral buoyancy beneath the pycnocline of the strongly
stratified summer fjord conditions.

Our observations detail how mixing processes at the ice/ocean interface driven by either
submarine melting and/or plumes fed by subglacial discharge can produce GMW that is colder,
fresher, and at times more turbid than ambient fjord waters. An idealized plume model for
plumes fed by a range of RACMO2.3-derived subglacial appropriate for the two
plumes observed in this fjord is qualitatively consistent with the largest discharge
being associated with the lighter, fresher glacially modified watermass. The characterization of
GMW and subglacial catchments for this outlet glacier system provides critical observational
constraints on the widely varying subglacial discharge scenarios employed by the current set of

submarine melt modeling studies. Results supply near-ice observations abutting one Greenland
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767  Ice Sheet outlet glacier, though the continued investigation of other Greenland outlet glaciers is
768  much needed to ultimately move towards an accurate representation of oceanic forcing at outlet

769  glacier termini and an improved understanding of the ice sheet’s outlet glacier dynamics.
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Table 1: REMUS Missions in Sarqardleq Fjord

Mission Date Local Time Duration  Transect Sampling Path (m- Distance
at Mission  (h:mm) depth) Traveled
Start (km)
R1 7/18  21:10 1:28 Yo-Yo=5-90 9.00
R2 7721 15:37 3:41 Yo-Yo = 5-50; 23.11
Fixed Depth=50, 70;
Altitude = 10 m off bottom
R3 7/22 14:58 6:25 Yo-Yo = 5-55; 41.36
Fixed Depth= 60, 70;
Altitude = 10 m above bottom
R4 7123 14:37 5:05 Yo-Yo =5-50; 30.93
Fixed Depth = 60, 70;
Altitude = 10 m above bottom
RS 7724 18:12 5:26 Yo-Yo 5-60; 34.91

Fixed Depth=40, 55, 70;
Altitude = 10 m above bottom
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Table 2: Water mass properties in Sarqardleq Fjord

Water mass Surface Ilulissat Icefjord Glacially Glacially

Water (SW) Waters (IIW) Modified Water I  Modified Water 2
(GMW1) (GMW2)

Depth range (m) 0-20 20-SF bottom 35-60 50-70

S (PSU) 21-30.5 32.5-33.5 30.8-31.5 31.1-32.3

0 (°C) 1.5-10 0.8-1.5 0.75-0.85 0.59-0.75

oo (pe— 1000 kg m™)  16.0-24.3 25.9-26.7 24.6-25.1 24.8-25.8

Turbidity (NTU) Low (<4 Low (<4 NTU) High (>9 NTU) High (>9 NTU)
NTU)

Origin/Formation Local Disko and Local formation ~ Local formation
formation Baffin Bay
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Table 3: Sarqardliup sermia subcatchments and runoff estimates

Subcatchment Cl C2 C3 SS (3C1-3)
Discharge location D1 D2 D3 --
Bathymetry along catchment terminus

Average depth (m) 116.4 101.5 39.9 --
Maximum depth (m) 150.4 131.8 49.9 --
Morlighem et al. (2014) (MBM2014)

Catchment area (kmz) 268.74 47.97 23.31 340.02
Catchment area compared to SS (%) 79% 14% 7% --
Catchment average daily runoff July 115.78 + 20.62 + 9.97 + 146.37 £
2012 £ 6oy (Qse) (m* s™) 42.59 7.33 3.47 53.26
Average daily July runoff compared to 79% 14% 7% --

SS (%)

Catchment average daily runoff during 88.70 + 16.10 £ 7.89 + 112.69 +
the field expedition (DOY 200, 203-206) 42.59 7.33 3.47 53.26

£ 60y (Qsg) (m3 S_l)

Bamber et al. (2013) (BBM2013)

Catchment area (km®) 402 42 9 453
Catchment area compared to SS (%) 89% 9% 2% --
Catchment average daily runoff July 171.01 £ 17.47 3.72 £ 192.20 +
2012 = 60y (Qsg) (M’ s™) 64.27 6.40 1.36 71.75
Average daily July runoff compared to 89% 9% 2% --

SS (%)

Catchment average daily runoff during 122.83 + 14.08 + 3.05+ 139.96 +
the field expedition (DOY 200, 203-206) 64.27 6.40 1.36 71.75

+ oLy (Qsp) (m’ s™)
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991 | Table 4. Fuovant plume model simulations for D1 and D2 scenarios at MBM2014
992 | subglacial discharge values. Plume 0 and S ranges are plotted in Fig. - c, d.

LAS 1/27/16 4:50 PM

993 .
D1 D2 LAS 1/27/16 4:50 PM
Deleted: 5¢
Ambient 0/S profile CTD 1 CTD 2
Calving face depth (m) 153 140
Subglacial Discharoe (O (ms™) 46.11,88.70, 131.29]  [8.77,16.10, 23.43] LAS 1/27/16 4:50 PM
Deleted: Channel mouth surface area ... [2]
° 1 1 2 4 7.0.82 ; ¢ )
Plume 0 (°C) at neutral buoyancy depth - [0.52, 0.85, 0.84] [0.25,0.52, 0.57] RN (/1S 1/27/16 4:50 PM
Plume S (PSU) at neutral buoyancy [30.50, 29.72, 29.17] [31.32,30.88.30.50]
depth ‘ LAS 1/27/16 4:50 PM

| Deleted: [5.99, 8.71, 10.90]
Plume o (py — 1000 kg m'3) at neutral _[24.34, 23.74, 23.30] _[24.90, 24.59, 24.35] | LAS 1/27/16 4:50 PM
Deleted: [2.32, 3.28, 4.07]
LAS 1/27/16 4:50 PM
Neutral buoyancy depth (m) [21.79, 14.03, 13.79] [41.41,31.23, 27.68] Deleted:
Volume fraction of entrained water  [0.94, 0.94, 0.94] 10.96, 0.96, 0.96] T
994 | LAS 1/27/16 4:50 PM

| Deleted: 56
995 LAS 1/27/16 4:50 PM
Deleted: 54
LAS 1/27/16 4:50 PM
Deleted: 69
LAS 1/27/16 4:50 PM
Deleted: 67
LAS 1/27/16 4:50 PM
Deleted: 64
LAS 1/27/16 4:50 PM
Deleted: 24.51,22.92,21.87
LAS 1/27/16 4:50 PM
Deleted: 27.91, 26.59, 25
LAS 1/27/16 4:50 PM
Deleted: [19.54, 18.27, 17.43]
LAS 1/27/16 4:50 PM
Deleted: [22.26, 21.20, 20.64]
LAS 1/27/16 4:50 PM
Deleted: 7.15,7.12, 7.16
LAS 1/27/16 4:50 PM
Deleted: 9.75, 9.88, 9.08
LAS 1/27/16 4:50 PM
Deleted: flux (V) (m®s™)
LAS 1/27/16 4:50 PM
Deleted: [24.73, 29.88, 33.65]
LAS 1/27/16 4:50 PM
Deleted: [15.71, 18.34, 20.34]

i

buoyancy depth
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Fig. 1. The Sarqardleq Fjord/Sarqardliup sermia outlet glacier system in West Greenland. Modified
from NunaGIS 1:100,000 map (Asiaq, Greenland Survey). Sill locations shown in red. Fig. 3 location

shown in red box.
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Fig. 2. REMUS-100 AUV and past Sarqardliup sermia terminus positions in Sarqardleq Fjord. (a)
REMUS-100 AUV before deployment in Sarqardleq Fjord. Note dense ice cover along Sarqardliup
sermia terminus. (b) Sarqardliup sermia terminus 1975-2013 summertime positions digitized from the
Landsat archive (http://earthexplorer.usgs.gov/) over fjord bathymetry and subglacial topography (see
Fig. 3). Front position dates are listed in the legend as year and day of year.
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Fig 3. July 2012 Survey of Sarqardleq Fjord. Sarqardleq Fjord bathymetry (10—meter colored contours
below sea level within fjord) and Morlighem et al. (2014) (10—meter colored
contours above and below sea level outside of fjord) are shown. The Sarqardliup sermia front position and
coastline from a June 19, 2012 Landsat image are mapped in red and black , respectively. Depth

measurements collected during July 2012 field operations used to create the Sarqardleq Fjord bathymetry
are plotted as grey dots over the contoured bathymetry. REMUS transects R1-R5 are shown in black,
with LBL transponders mapped with red triangles. Subglacial subcatchments C1, C2, and C3 dividing
lines from MBM2014 analysis are mapped in dashed blue line, with the location of D1, D2, and D3
subglacial discharge channels along the submerged terminus shown with thin black arrows. CTD casts are
shown with diamonds: white diamonds are CTD casts along R1 used in REMUS cross-calibration, and
the blue, gold, and grey diamonds are CTD casts 1, 2, and 3 that were taken along RS within GMW1,
GMW?2, and the region between GMW1 and GMW?2 (outlined in blue, gold, and white, respectively).
Three proglacial stream entries to Sarqardleq Fjord are shown along the northeast and southwest fjord
coastlines with thick black arrows.
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Fig. 4. Select REMUS Across-Fjord Sections. 6 (°C), S (PSU), and turbidity (NTU) sections along
REMUS lines (a—c¢) RS, (d-f) R3, and (g—i) R1 from 0 to 100 m depth. Sections are oriented looking
away from the terminus, with the southwestern end of the section on the left. Across-fjord transect
distance is plotted as horizontal distance along section, with 0 km located at the intersection of the
REMUS section with an along-fjord line running from D1 to the southwestern LBL transponder along R1
(Fig. 3). GMWI1 and GMW?2 regions identified by black ellipses, and labeled in blue and gold,
respectively in a—c. Isopycnals plotted in grey, REMUS mission tracks shown in white (Table 1), and

bathymetry shown in black (Fig. 3).
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Fig 5. Glacially Modified Water in Sarqardleq Fjord. 6 (°C) (a) and S (b) profiles for R4 and RS
measurements over the full water-column depth (grey), with the average of R4 and R5 measurements and
the ambient fjord waters in black and red, respectively. Panel a and b insets show same data from 20-95-
m depth over a finer 0 or S range, with measurements taken within the GMW1 and GMW?2 regions along
R4 and RS (Fig. 3) shown in blue and gold, respectively. 6/S plots of R4 and RS measurements (c¢) (colors
same as in a and b), with melt and runoff mixing lines. Intersection for melt and runoff mixing lines set to
CTD2 properties at grounding line depth (Fig. 6 b). Black square along ambient fjord water profile shows
0/S properties at sill depth (70 m). 6/S results for the Jenkins (2011) plume modeling (Table 4) of D1
(blue triangles) and D2 (gold triangles) shown. (d) Same data as in ¢ over finer 0/S range indicated by
thin black box in c.
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Fig. 6. Turbidity of Glacially Modified Waters. 6 (°C) and S (PSU) profiles from the regions along R4
and RS outlined in blue (GMW1 region) (a), gold (GMW?2 region) (b), and white (the region between
GMW1 and GMW?2) (¢) in Figure 3, with turbidity plotted as the color of the point. CTD1 (a), CTD2 (b),
and CTD3 (c) are plotted in grey. The GMW region in 6/S space is outlined in purple. The average of all
R4 and R5 measurements and the ambient fjord waters are plotted in black and red, respectively. Black
square along ambient fjord water profile shows 6/S properties at sill depth (70-m).
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Fig. 7. Sarqardliup sermia catchments and discharge. a) Estimated Sarqardliup sermia catchment
(thick black line) and sub-catchments C1, C2, and C3 (dashed black line) from the MBM2014 analysis
over Morlighem et al. (2014) (filled contours) and ice sheet surface (magenta
contours). BBM2013 catchment and subcatchments outlines in thick solid and dashed grey lines,
respectively. Ice sheet margin and coastlines shown in red and blue, respectively. RACMO2.3 11-km
resolution grid points shown with white diamonds. Sarqardleq fjord bathymetry and outer Sarqardleq
fjord CTD positions (black triangles) and depth measurements also shown. b) Daily C1, C2, and C3
subcatchment MBM2014 RACMO2.3 discharge estimates (red, blue, and black lines, respectively) and
daily average RACMO2.3 temperature (green line) across the Sarqardliup sermia subcatchment C1 for
DOY 150-250, 2012. Daily C1, C2, and C3 subcatchment BBM2013 RACMO2.3 discharge estimates in
pink, cyan, and grey lines, respectively. Dates of REMUS and CTD sampling from DOY 200-207
marked by grey bar.
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