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The work presents a novel approach to ice sheet modeling – essentially an Arbitrary Lagrange-
Eulerian (ALE) scheme applied to ice sheets. Inherent in the formulation of the problem is a
computational mesh which adapts to the changing thickness profile of the ice sheet in a smooth
and natural way by preserving the relative mass fraction in each computational sub-interval.
The work is presented carefully and clearly, and the figures are clear and well-captioned. I
think it will be a fine addition to the body of ice sheet modeling literature and I recommend
it for publication in The Cryosphere after some modifications to enhance the clarity of the
manuscript.

We thank the referee for his general comments about our work and for his insightful review that
has helped us to improve the manuscript. Responses to comments and subsequent changes are
detailed below.

I do have concerns that this approach might be difficult to scale up to the study of full Conti-
nental ice sheets.

From my perspective, this work follows in a rich tradition of Arbitrary Lagrange-Eulerian (ALE)
schemes, but there isn’t much in the way of reference to that line of prior work beyond the refer-
ences to Baines et al (in the authors’ defense, most examples of ALE hail from science domains
with little obvious connection to glaciology). It would be good if you made that linkage in the
introduction. Also, there is likely at least some commonality between your approach and those
in the literature which it would be useful to reference. (I’m not at all saying “this has been
done before” – there is much that is novel and specific to ice sheets, but it would be good to
make that connection.)

We agree with the referee and have inserted a sentence making the link between our method
and ALE schemes in the introduction, where we have added a further general reference for these
schemes.

One drawback I see to this approach is that moving the volume fraction is a globally-dependent
action, since it depends on the spatial distribution of mass over the entire ice sheet for each
time interval. Imagine, for example, the case where an ice sheet is locally in equilibrium, but
*downstream* there is a change in accumulation. You’d be moving your mesh locally, even
though nothing local changed. In that sense, it turns a purely local operation(updating the
thickness profile once the velocity has been computed) into one with a global dependence; I
could see this causing problems when applying this approach to continental-scale ice sheets,
particularly when running on large parallel machines.

The referee is raising an interesting point. However, our approach admits a domain decom-
position implementation in which the conservation of mass fractions of the entire ice sheet is
replaced by separate conservation of mass fractions in different parts of the ice sheet. This ap-
proach has been developed by Dodd (2013) to model the evolution of a marine ice sheet along
a flowline. In that case the essence of the method is the preservation of separate mass fractions
in the grounded part and the ice shelf.

Another general comment – you don’t seem to really engage with your example results – you
describe the problems and then point the reader to the tables and figures. It would be nice
if you commented on the results in the text (in part to ensure that a reader reaches the same
conclusions that you do). I’d suggest summarizing the results in the tables, etc and pointing
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out how the results support your conclusions.

We thank the referee and have re-organized the presentation of the results in Section 4 to clarify
the experiments and have summarised the results in tables and have added further discussion.

Minor points:

1. Scattered throughout the intro: “Adaptative” − > “adaptive”

Correction done.

2. p3, line 4: There exists − > *exist*

In the expression “There exists a number of techniques ...”, the subject of the verb “exists” is
“a number”, which is singular. Therefore the final s to exist is justified.

3. p4242, line 17 – Re: relying on dh/dr not being small (zero or close-to-zero) near the ice
margin. This will likely be problematic for marine ice sheets, particularly near calving fronts)

It is unrealistic for h and
∂h

∂r
to tend to zero simultaneously for continental margins. The ex-

pression for the velocity of the ice sheet margin is obtained by assuming that there is no calving
and h = 0 at the margin. The velocity of a calving front would not follow that expression.

4. eqn 8: I’m assuming that you used the fact that h=0 at the margin to derive eqn 8? If that’s
the case, it would be helpful to mention that detail for those trying to follow you.

Indeed we use the fact that h = 0 at the margin. We have made this point clearer in the
manuscript.

5. p. 4245, line 4: You take advantage of the fact that the lower boundary is at a stationary ice
divide. How would you approach the more-general case of a freely-moving left-hand boundary?

A freely moving left hand boundary would be treated in the same way as the right hand bound-
ary, already detailed.

6. p. 4245, line 20: ”“with SIA singularities can appear” – I’d suggest rephrasing as, “singu-
larities can appear with SIA...” or something similar.

Done.

7. eqn 16: The use of “g” here is confusing, since it also is used for gravity.

We have replaced gl involved in sections 3.4 and B.4 by φl.

8. eqn 16: Have you tried any other expansions? I could see a higher order reconstruction (like
a PPM sort of thing) being useful to increase solution accuracy and convergence. Why did you
choose the one you did?

We are not using this expansion to approximate the solution to the problem, but introduce it in
order to analyse the ice sheet margin behaviour. In this case it is the correct asymptotic form
where h = 0.
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9. p. 4246, line 13: “Supppose” − > “Suppose”

Correction done.

10. p. 4249, line 3: How did you arrive at your choice of timestep (here and generally)? Do
you have any idea about the stability properties of your scheme?

The time step is chosen to avoid spurious oscillations in the ice thickness profile and mesh node
overtaking in a trial and error manner. Spurious oscillations that can occur with our moving
point approach are similar to those that are observed with explicit schemes for fixed staggered
grid methods (Hindmarsh and Payne, 1996).

11. p. 4253, line 14: I think this approach would be problematic for grounding lines if you’re
trying to track them as a part of your scheme since they’re not generally going to move in the
same mass-fraction conserving way that your scheme is built around.

For the grounding line problem, a domain decomposition method can be applied. See response
to general comment under “One drawback ...”.

12. p4256, Eqn B5: This obviously implies U>0. Also, I suspect that you could improve the
accuracy by using centered differences everywhere except at the margin, and use a one-sided
stencil (likely still a three-point one for accuracy) at the margin itself.

Centred differences would certainly improve the accuracy, but there would be a danger of spu-
rious modes.

13. p4257, line 2: I’d suggest “first order” rather than “order-1” – “order 1” can be read as
‘O(1)” (i.e. non-consistent) as opposed to (O(dx)), which is what you’re trying to say here.

Modification done.

14. p. 4257, line 8, and elsewhere: “trapezoididal” − > “trapezoidal” (or is that an English
spelling?)

The correct English spelling is trapezoidal. So correction done.

15. p 4257, line 12: You mention that you constrain the timestep dt to “preserve the order in
Eq (B1).” Do you mean a situation where steepening of the ice profile results in mesh points
over taking each other? It would be good if you could expand on that (and any other timestep
constraints you observe in practice).

In theory mesh point overtaking can occur if the time step is chosen too large. However, in
practice we have never observed overtaking since spurious oscillations in the ice thickness profile
always appear first. This behaviour is similar to that observed with explicit schemes for fixed
staggered grid methods (Hindmarsh and Payne, 1996). A sentence has been added to make
that point explicit.

16. p. 4257, line 15: “order-2” – “second order” is more common.

Modification done.

17, p. 4258, line 2 and B7: As before, I’d suggest “first order” to “order-1”.
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Modification done.

Also, this is actually a *downwind” difference here, isn’t it?

It depends on one’s viewpoint. The term arises from the positive ice velocity determined by the
slope of the ice thickness profile.

18. Table 2 – do the negative exponents imply that you’re presenting convergence in terms of
the number of points? Presenting convergence in terms of mesh spacing (dx) is more standard
(and would result in the positive exponents that people are more-used to) – so, you should make
that clear in the text.

Yes. We would prefer to remain with the number of points here because the mesh spacing is
variable in both time and space. We make that point clearer in the text.

19. Table 2 – I’m somewhat concerned that your total volume is only converging at a rate of
O(1.4) or so. Since total volume for the problems you’ve chosen (no flux across the margins)
should only depend on the initial condiition and the integral of the surface fluxes in space-time.
It seems to be that you should be doing better for that one, and I’m concerned that the low
accuracy there is polluting things elsewhere.

We agree that the accuracy is low for the total volume. The goal of the paper is to assess the
validity of the moving point approach. Therefore although the accuracy could be increased by
using higher order numerical approximations, this would be at the expense of increasing the
computational time and, incidentally, lengthening the paper. In comparison to other methods,
it can be seen that despite the low order approximations used, the absolute accuracy of the
scheme is high for only a small number of grid points.
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Abstract

Predicting the evolution of ice sheets requires numerical models able to accurately track the
migration of ice sheet continental margins or grounding lines. We introduce a physically-
based moving point approach for the flow of ice sheets based on the conservation of local
masses. This allows the ice sheet margins to be tracked explicitly. Our approach is also well
suited to capture waiting time behaviour efficiently. A finite difference moving point scheme
is derived and applied in a simplified context (continental radially-symmetrical shallow ice
approximation). The scheme, which is inexpensive, is verified by comparing the results with
steady states obtained from an analytic solution and with exact moving margin transient
solutions. In both cases the scheme is able to track the position of the ice sheet margin with
high accuracy.

1 Introduction

Ice sheets are an influential component of the climate system whose dynamics lead to
changes in terms of ice thickness, ice velocity or migration of ice sheet continental margins
and grounding lines. Therefore numerical modelling of ice sheets needs accuracy of the
physical variables but also in the position of their boundaries. However, simulating the
migration of an ice sheet margin or a grounding line remains a complex task (Huybrechts
et al., 1996; Vieli and Payne, 2005; Pattyn et al., 2012, 2013). This paper introduces
a moving point method for the numerical simulation of ice sheets, especially the migration
of their boundaries. In this paper we focus on the migration of continental ice sheet margins.

At the scale of an ice sheet or a glacier, ice is modelled as a flow which follows the Stokes
equations of fluid flows (Stokes, 1845), even though the flow is non-Newtonian. Solving
this problem at that scale is costly. A 3-D finite element model called Elmer/Ice has been
developed for this purpose numerically (see Gagliardini et al., 2013 for a detailed description
of Elmer/Ice). Other models take advantage of the very small aspect ratio of ice sheets and
use a thin layer approximation differing only in the order of the approximation. The oldest
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and numerically least expensive model used for ice flow is the Shallow Ice Approximation
or SIA (Hutter, 1983). It gives an analytical formulation for horizontal velocities of ice in
the sheet and for their vertically averaged counterpart. Although simple and fast, the SIA
captures well the nonlinearity of the system due to shearing at large scales. However, the
SIA is not designed to include basal sliding and is a poor approximation for small scales
especially at the ice divide and the ice sheet margin. The SIA is, nevertheless, an excellent
resource for testing numerical approaches, since moving-margin exact solutions exist in the
literature (Halfar, 1981, 1983; Bueler et al., 2005).

Significant efforts have been invested in ice sheet modelling. These have led ice sheet
modellers to compare results obtained by various models for the same idealistic test
problems. They first started by comparing results obtained with fixed-grid models for
grounded ice sheets using the SIA (EISMINT intercomparison project, Huybrechts et al.,
1996; Payne et al., 2000). Then the focus shifted to the simulation of the grounding line
migration. The MISMIP and MISMIP3d projects (Pattyn et al., 2012, 2013) have shown
that fixed-grid methods perform poorly without high resolution around the grounding line
or enforcing the flow at the grounding line using asymptotic results from a boundary layer
theory (Schoof, 2007, 2011). This has led ice sheet modellers to develop adaptive and
moving techniques to overcome this issue.

One approach to gain high resolution is to use automated adaptive remeshing (Durand
et al., 2009; Gudmundsson et al., 2012), forcing the resolution to stay high around the ice
sheet margin. A related approach is to use adaptive mesh refinement (AMR) techniques,
which allow improved resolution to be achieved in key spatially and temporally evolving
subregions (Goldberg et al., 2009; Gladstone et al., 2010; Cornford et al., 2013; Jouvet and
Gräser, 2013). However, even with AMR, the ice sheet margin still falls between grid points,
although by adapting the grid to increase the resolution near the margin, the accuracy
is kept high. Adapting the grid is, nevertheless, an expensive procedure, as areas where
refinement is needed have to be regularly re-identified.

Another possibility is to transform the moving domain. The number of grid points is kept
constant in time but the accuracy is kept high by the explicit tracking of the position of the
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ice sheet margin. This is done by transforming the ice domain to a fixed coordinate system
via a geometric transformation. This approach has been successfully applied by Hindmarsh
(1993) and Hindmarsh and Le Meur (2001) to an ice sheet along a flowline. However, it is
not easily translated into two dimensions.

We consider here intrinsically moving grid methods. As in the case of transformed grids,
these methods allow explicit tracking of the ice sheet margin. There exists a number
of techniques for generating the nodal movement in moving grid methods. They can be
classified into two subcategories, location-based methods and velocity-based methods
(Cao et al., 2003). In location-based methods the positions of the nodes are redefined
directly at each time step by a mapping from a reference grid (Budd et al., 2009). This is
generally done by choosing a monitor function. This approach has been used by Goldberg
et al. (2009), the main difficulty being the definition of the monitor function. In velocity-
based methods, on the other hand, the movement of the nodes is defined in terms of
a time-dependent velocity, which allows the nodes to be influenced by their previous position
(Baines et al., 2005; Lee et al., 2015). Currently, this approach has not been applied to the
dynamics of ice sheets.

In this paper, we apply a particular velocity-based moving point approach based on
conservation of local mass fractions to continental ice sheets. The method is in the tradition
of ALE (Arbitrary Lagrangian Eulerian) methods (Donea et al., 2004) with the difference that,
instead of seeking a velocity intermediate between Lagrangian and Eulerian, the method
uses both Eulerian and Lagrangian conservation to deduce the velocity and solution,
respectively (see Baines et al. (2011) and references therein). We derive a finite difference
moving point scheme in a simplified context and verify the approach with steady states
obtained from an analytic solution and with exact moving margin transient solutions in the
case of radially-symmetrical ice sheets. We show in particular that the scheme is able to
track the position of the ice sheet margin accurately. The paper is organised as follows:
in Sect. 2 we recall the SIA and detail the simplified context of our study, in Sect. 3 we
describe our velocity-based moving point approach, and in Sect. 4 we verify our approach
by comparison with exact solutions before concluding in Sect. 5.
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2 Ice sheet modelling

2.1 Ice sheet geometry and Shallow Ice Approximation

We consider a single solid phase ice sheet whose thickness at position (x,y) and time t is
denoted by h(t,x,y). We assume that the ice sheet lies on a fixed bedrock and denote by
b(x,y) the bed elevation. The surface elevation, s(t,x,y), is then obtained as

s = b +h (1)

The evolution of ice sheet thickness is governed by the balance between the ice gained
or lost on the surface, snow precipitation and surface melting, and ice flow draining ice
accumulated in the interior towards the edges of the ice sheet. This is summarised in the
mass balance equation

∂h

∂t
= m−∇ · (hU) in Ω(t) (2)

where m(t,x,y) is the surface mass balance (positive for accumulation, negative for
ablation), U(t,x,y) is the vector containing the vertically averaged horizontal components
of the velocity of the ice, and Ω(t) is the area where the ice sheet is located.

Formally derived by Hutter (1983), the Shallow Ice Approximation (SIA) is one of the most
common approximations for large-scale ice sheet dynamics. Combined with Glen’s flow law
(Glen, 1955), the SIA provides (in the isothermal case) an analytical form for U as follows:

U =− 2

n +1
A(ρig)n hn+1 |∇s|n−1 ∇s (3)

Parameters involved in this formulation are summarised in Table 1. Regarding the exponent
n > 1, its fixed value is classically set to 3 (see Cuffey and Paterson, 2010, for more details).
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2.2 Radially-symmetrical ice sheets

As a first step, we confine the study to limited area ice sheets with radial symmetry, in other
words, Ω(t) = [0, rl(t)] × [0,2π]. The ice sheet is centred on (0,0) and rl(t) denotes the
position of the ice sheet margin (edge of the ice sheet) at time t (see Fig. 1, which shows a
section through the ice sheet). The radial symmetry implies that the geometry of the sheet
depends only on r, so h(t,x,y) = h(t,r), s(t,x,y) = s(t,r) and b(x,y) = b(r). The vector
U can then be written in the radial coordinate system as

U = U r̂, U =− 2

n +2
A (ρig)nhn+1

∣∣∣∣
∂s

∂r

∣∣∣∣
n−1 ∂s

∂r
(4)

where r̂ is the unit radial vector, and the mass balance Eq. (2) simplifies to

∂h

∂t
= m− 1

r

∂ (rhU)

∂r
(5)

A symmetry condition is added at the ice divide (r = 0):

U = 0 and
∂s

∂r
= 0, (6)

and the ice sheet margin rl(t) is characterised by the Dirichlet boundary condition:

h(t,rl(t)) = 0 (7)

We also assume that the flux of ice through the ice sheet margin is zero (no calving).
Under hypotheses regarding the regularity of the ice thickness near the margin (see

Calvo et al., 2002), we can differentiate Eq. (7) with respect to time. Using the mass balance
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equation Eq. (5) and h = 0 at the margin,

dh

dt
(t,rl(t)) =

∂h

∂t
+

∂h

∂r

drl

dt
= m− 1

r

∂ (rhU)

∂r
+

∂h

∂r

drl

dt
= 0 (8)

and

∂ (rhU)

∂r
= h

(
Ur + r

∂Ur

∂r

)
+ rUr

∂h

∂r
= rUr

∂h

∂r
(9)

at the margin. Realistically, since h = 0 at the margin, ∂h/∂r will not be zero there, and
hence

drl

dt
= U(t,rl(t))−m(t,rl(t))

(
∂h

∂r

)−1

(10)

This velocity (Eq. 10) will be used in the moving point approach described in the next
section.

3 A moving point approach

In the following paragraphs we describe the moving point method that we use to simulate
the dynamics of ice sheets in the context of Sect. 2.2. This method is essentially a velocity-
based (or Lagrangian) method relying on the construction of velocities for grid points at
each time step. This allows the grid to move with the flow of ice. Moving points cover the
domain only where the ice sheet exists, so that no grid point is wasted. Adjacent points
move to preserve local mass fractions and the movement is thus based on the physics
(Blake, 2001; Baines et al., 2005, 2011; Scherer and Baines, 2012; Lee et al., 2015). This
conservation method has been applied to a variety of problems and is perfectly suitable for
multi-dimensional problems (different examples are summarised in Baines et al. (2011) and
references therein; see also Partridge (2013) for the special case of ice sheet dynamics).
The key points of the method are given in the next paragraphs and the numerical verification
of the method is carried out in Sect. 4.
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3.1 Conservation of mass fraction

Moving point velocities are derived from the conservation of mass fractions (CMF). To apply
this principle we first define the total mass of the ice sheet θ(t) as

θ(t) = 2πρi

rl(t)∫

0

rh(t,r)dr (11)

where ρi is the constant density of ice. Since only mass fractions are considered in this
paper and ρi is assumed constant, we can omit ρi without loss of generality.

Since the flux of ice through the ice sheet margin is assumed to be zero, any change in
the total mass over the whole ice sheet is due solely to the surface mass balance m(t,r),
and hence the rate of change of the total mass, θ̇, is given by

θ̇(t) = 2π

rl(t)∫

0

rm(t,r)dr (12)

We now introduce the principle of the conservation of mass fractions. Let r̂(t) be a moving
point and define µ(r̂), the relative mass in the moving subinterval (0, r̂(t)), as

µ(r̂) =
2π

θ(t)

r̂(t)∫

0

rh(t,r)dr (13)

The rate of change of r̂(t) is determined by keeping µ(r̂) independent of time for all moving
subdomains of [0, rl(t)]. Note that µ(r̂) ∈ [0,1] is a cumulative function with µ(0) = 0 and
µ(rl) = 1.
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3.2 Trajectories of moving points

We obtain the velocity of a moving point by differentiating Eq. (13) with respect to time,
giving

d

dt



2π

r̂(t)∫

0

rh(t,r)dr



 = µ(r̂) θ̇(t) (14)

Carrying out the time differentiation using Leibniz’s integral rule and substituting for ∂h/∂t
from the mass balance Eq. (5) gives

d

dt





r̂(t)∫

0

rh(t,r)dr



 =

r̂(t)∫

0

rm(t,r)dr + r̂(t)h(t, r̂(t))

(
dr̂

dt
−U(t, r̂(t))

)
(15)

with boundary conditions (Eq. 6) at r = 0. From Eqs. (14), (15) and (12), we can determine
the velocity of every interior point as

dr̂

dt
= U(t, r̂(t))+

1

r̂(t)h(t, r̂(t))



µ(r̂)

rl(t)∫

0

rm(t,r)dr−
r̂(t)∫

0

rm(t,r)dr



 (16)

The point at r = 0 is located at the ice divide, which does not move during the simulation.
The point at rl(t) is dedicated to the ice sheet margin, which moves with the velocity
obtained in Eq. (10). We verify in Appendix A that the interior velocity calculated by Eq. (16)
coincides with the boundary velocities calculated directly from the boundary conditions (see
Eq. 10).

3.3 Determination of the ice thickness profile

Once the velocities dr̂/dt of the moving points r̂(t) have been found from Eq. (16), the
points are moved in a Lagrangian manner. In addition, the total mass θ(t) is updated from
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Eq. (12). The ice thickness profile is then deduced from Eq. (13) as follows. Differentiating
Eq. (13) with respect to r̂2, we obtain

h(t, r̂(t)) =
θ(t)

π

dµ(r̂)

d(r̂2)
(17)

which allows the ice thickness profile at time t to be constructed since dµ(r̂)/d(r̂2) is
constant in time and therefore known from the initial data. Note that the positivity of the
ice thickness is preserved since µ is by definition a strictly increasing function (see Eq. 13).

3.4 Asymptotic behaviour at the ice sheet margin

As pointed out by Fowler (1992) and Calvo et al. (2002), singularities can appear with the
SIA at the margin of grounded ice sheets. The singularity arises because of the vanishing
of h at the margin and the steepening of the slope ∂h/∂r. Nevertheless the ice velocity U
defined by Eq. (4) can remain finite even if the slope is infinite. We give more details on this
subject in this subsection. We also detail the influence of the singularity on the movement
of the ice sheet margin.

At a fixed time and for points r sufficiently close to rl, we can write the ice thickness
profile h(r) as the first term in a Frobenius expansion

h(r) = (rl− r)γφl (18)

to leading order, where φl = O(1). If γ = 1, then h(r) is locally linear with slope φl, but if
γ < 1 the slope ∂h/∂r is unbounded. Hence in the asymptotic region near the margin, in
the case where the bedrock topography b(r) is constant, from Eq. (4)

U =
2

n +2
A (ρig)nγn(rl− r)(2n+1)γ−nφl

2n+1 (19)

which vanishes as r tends to rl if γ > n/(2n +1) and remains finite if γ = n/(2n +1).
Suppose that in the evolution of the solution over time, γ(t) > n/(2n +1) initially so that

rl(t) is constant and the boundary is stationary (waiting). If r̂(t) follows a CMF trajectory
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then, in the absence of accumulation/ablation, the velocity of the moving coordinate r̂(t) is
given by

U =
2

n +2
A (ρig)nγ(t)n(rl(t)− r̂(t))(2n+1)γ(t)−nφl(t)

2n+1 (20)

Asymptotically, except at the boundary itself, this velocity is finite and positive, since U > 0
and its spatial derivative ∂U/∂r < 0 sufficiently close to the boundary, showing that the
distance rl(t)− r̂(t) decreases with time.

In the absence of accumulation/ablation, therefore, the conservation of mass fractions
from Eq. (13) implies that (rl

2(t)− r̂2(t))h(t, r̂(t)) is constant in time. Thus, from Eq. (18),
for points r̂(t) sufficiently close to the boundary (rl(t) + r̂(t))(rl(t)− r̂(t))γ(t)+1φl(t) is
constant in time. Hence, since (rl(t)− r̂(t)) is decreasing, γ(t) is also decreasing. When
γ(t) reaches n/(2n +1) the boundary moves.

It is a technical exercise to show that this property extends to cases with
accumulation/ablation and with a general bedrock with a finite slope ∂b/∂r at the margin
(see Partridge, 2013). The key point to notice is that the asymptotic behaviour depends on
an infinite slope of h at the margin whereas b(r) always has a finite slope.

3.5 Numerics

We now implement a numerical scheme using a finite difference method. The complete
algorithm is detailed in Appendix B. In addition, we explain in Appendix B6 why our
implementation respects the asymptotic behaviour of the ice sheet at its margin.

4 Numerical results

This section is dedicated to the verification of the numerical scheme derived from the
moving point method detailed in Sect. 3 and to the study of its behaviour. Every numerical
experiment is performed with the parameter values given in Table 1.
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4.1 Verification with steady states on flat bedrock

4.1.1 Accurate estimation of steady ice thickness profile

We consider a surface mass balance m(r) independent of time. The steady state of an ice
sheet occurs when the temporal change in ice thickness ∂h/∂t is zero. In that case, from
Eq. (5), the following relationship is valid:

rm =
∂

∂r
(rh∞U∞

r ) (21)

with h∞(r) the thickness of the steady ice sheet and U∞(r) its ice velocity. By integrating
the previous equation and by including the boundary conditions (Eqs. 6 and 7), the position
of the margin r∞l can be obtained from

r∞l∫

0

rm(r)dr =

r∞l∫

0

∂

∂r
(rh∞U∞

r )dr = [rh∞U∞
r ]∞0 = 0 (22)

If the bedrock is flat, the profile of the steady ice sheet, from Eqs. (21) and (4), is

h(r)∞ =

((
2(n +1)

nρi g

)n n +2

2A

) 1
2(n+1)





r∞l∫

r



 1

r′

r′∫

0

m(s)sds





1
n

dr′





n
2(n+1)

(23)

This approach was already in use in the EISMINT intercomparison project (Huybrechts
et al., 1996) with the following constant-in-time surface mass balance.

m(r) = min
(
0.5m a−1,10−2 m a−1 km−1 · (450km− r)

)
(24)

Eq. (22) has an analytical formulation with this surface mass balance. Therefore, r∞l is
determined with machine precision by numerical root-finding algorithms (r∞l ≈ 579.81km)
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and the profile of the steady state is accurately estimated from Eq. (23) by a single
numerical integration (

∫ r′

0 m(s)sds in Eq. (23) has an analytical form) using a composite
trapezoidal rule (we take enough grid points to ensure that the error of the estimates is
smaller than 0.01m).

4.1.2 Runs with different initial profiles

We check the ability of the CMF method to track either advancing or retreating ice sheet
margins by performing three different model runs. In each case, the numerical model has
a grid with 21 points, uses the EISMINT surface mass balance and is initialised using the
following profile

h(t0, r) = h0

(
1−

(
r

rl(t0)

)2
)p

(25)

For each of the three different runs, we take

(a). a uniformly distributed initial grid with rl(0) = 450km, h0 = 1000m and p = 3/7

(b). an initial grid with rl(0) = 500km and with higher resolution near the margin, h0 =
1000m and p = 1

(c). a uniformly distributed initial grid with rl(0) = 600km, h0 = 4000m and p = 1/4

The model is run for 25000a with a constant time step ∆t = 0.1a.
Fig. 2 shows the evolution of the geometry and the overall motion of the grid points for

each run. In run (a). the margin is staying at its initial position until the ice sheet is large
enough and the sheet front steep enough to make it advance. Run (b). shows a retreating
margin at an early stage before advancing and run (c). captures the opposite behaviour.

We also note that run (b). has no difficulty with a non-uniform initial grid and keeps the
resolution high close to the margin. This stresses the flexibility of the CMF method to deal
with various resolutions at the same time.
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We then check the convergence of the three initial states to the same steady state. The
calculated ice thickness at the ice divide and the position of the margin at the final time are
compared with reference values in Table 2. In each case our numerical model has been
able to approach the position of the margin with high accuracy (less than 400 m) at low
resolution, as only 21 grid points have been employed.

4.1.3 EISMINT moving margin experiment

We now perform the moving-margin experiment described in the EISMINT benchmark in
order both to verify our numerical model in this case and to compare our results with
those obtained by 2-D fixed grid models used in Huybrechts et al. (1996). Compared with
the experiments performed in section 4.1.2, the only differences are that we use an initial
uniformly distributed grid with 28 nodes, an initial domain of length rl(0) = 450km and an
initial ice thickness profile h(0, r) = ∆t ·m(r), where ∆t = 0.1a is the constant model time
step and m(r) is given by Eq. (24). Then we run the model as in the EISMINT experiment
for 25000a to reach the steady state.

We first verify the result of our run with the steady state obtained in section 4.1.1. As
shown in Fig. 3, absolute errors in the ice thickness profile mostly occur near the ice sheet
margin rising to 58.23m at the last grid point (compared to an RMS error of 15.71m and an
absolute error at the ice divide of 18.81m). Regarding the ice sheet margin, its position is
again well estimated (with an absolute error of only 138.5m).

We next compare these results with results from fixed grid models involved in the
EISMINT intercomparison project. We confine our comparison to 2-D fixed grid models
as we only use radial symmetry (see Huybrechts et al., 1996). Regarding the ice thickness
at the ice divide, our model result 3005.76m is within the range of estimation given by the
intercomparison 2982.3± 26.4m. These results are summarised in Table 3 showing that
our moving point method is able to achieve as good an equivalent estimation as classical
fixed-grid methods with a small number of nodes while providing accurate tracking of the
movement of the margin, in the context of a shallow grounded ice sheet.
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4.1.4 Rates of convergence with EISMINT moving margin experiment

We now study the rate of convergence of our method towards the reference solution in the
EISMINT experiment. Rates of convergence are generally expressed in the form O((∆r)γ)
with ∆r some mesh spacing. However, this approach is not appropriate in our case since
the moving point method has mesh spacings varying in time and space. Instead we present
our estimated rate of convergence as function of the number of grid points.

We calculate the absolute error for both the margin position and ice thickness at the ice
divide from the results obtained in the EISMINT framework using an initial uniformly spaced
grid with nr = 20,30,40,60 and 80 grid points. From those results we estimate the rate of
convergence for both errors. Results are summarised in Table 4. We observe that the error
for the margin position decreases at an almost quadratic rate O(n−1.95

r ) and the error in the
ice thickness at the ice divide at a linear rate O(n−1.16

r ). This confirms that our CMF method
is well able to track the ice sheet margin without losing accuracy in the ice thickness profile.

4.2 Steady states with non-flat bedrock

The steady state approach of section 4.1.1 is still valid for an ice sheet lying on a non-flat
bedrock. However, the experiments in such cases are quite limited as we only have the
position of the steady margin from Eq. (22). Nevertheless we carry out a few experiments
in this context in order to demonstrate that the CMF moving point approach is perfectly
suitable for non-flat bedrock.

We consider the following fixed bedrock elevation:

b(r) = 2000m− 2000m ·
( r

300km

)2
+1000m ·

( r

300km

)4

− 150m ·
( r

300km

)6
(26)

As in the previous section, experiments are performed with the EISMINT surface mass
balance (Eq. 24). At an initial time t = 0 we prescribe a uniformly distributed grid with
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a margin located at rl(0) = 450km and an initial ice thickness h(0, r) = ∆t · m(r) for the
constant time step ∆t = 0.1a. The model is run for 25000a. The resulting evolution of the
geometry and the overall motion of the grid points are shown for a grid of 20 points in
Fig. 4. Regarding the position of the margin at steady state, our run has an absolute error
of 127.7m. This is even better than the previous result obtained for a flat bedrock.

We also check the convergence of the estimated margin position at steady state towards
its reference value by performing the same experiment with an initial uniformly spaced grid
and nr grid points, nr = 20,30,40,60 and 80. Absolute errors are summarised in Table 5.
As in section 4.1.4 we observe that the absolute error for the margin position decreases at
a nearly quadratic rate O(n−1.83

r ). This corroborates the ability of the moving point method
to track the ice sheet margin even for non-flat bedrocks.

4.3 Verification with time-dependent solutions

In the previous paragraphs, steady states were used to verify our numerical CMF moving
point numerical method. However these experiments did not verify the transient behaviour
of the ice sheet margin. To do so, we use exact time-dependent solutions.

4.3.1 Similarity solutions

Few exact solutions for isothermal shallow ice sheets have been derived in the literature.
Most are based on the similarity solutions established by Halfar (1981, 1983) for a zero
surface mass balance. Bueler et al. (2005) extended this work to non-zero surface mass
balance and established a new family of similarity solutions by adopting the following
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parameterised form for the surface mass balance,

m(ε)(t,r) =
ε

t
h(ε)(t,r) (27)

with ε a real parameter in the interval
(
−1

2n+1 ,+∞
)

. Assuming that t > 0 this leads to the
following family of similarity solutions

h(ε)(t,r) =
1

tα(ε)

(
h

2n+1
n

0,1 −Λ(ε)
( r

tβ(ε)

)n+1
n

) n
2n+1

for r ∈
[
0, tβ(ε)Θ(ε)

]
(28)

with

α(ε) =
2− (n +1)ε

5n +3
, β(ε) =

1 + (2n +1)ε

5n +3
(29)

and

Λ(ε) =
2n +1

n +1

(
(n +2)β(ε)

2A(ρi g)n

) 1
n

, Θ(ε) = h
2n+1
n+1
0,1 Λ(ε)−

n
n+1 (30)

The total mass of such ice sheets, as defined in Eq. (11), is

θ(ε)(t) = β(ε)−
2

n+1 tε W1 (31)

where W1 is a constant independent of ε

W1 = 2π

Θ(1)∫

0

s

(
h

2n+1
n

0,1 −Λ(1)s
n+1

n

) n
2n+1

ds (32)
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4.3.2 Results

We study in this section the accuracy of transient model runs in comparison with the time-
dependent exact solutions. The initialisation of every experiment is done by using the exact
time-dependent solution (Eq. 28) and, at each time step, the surface mass balance is
evaluated at each moving node by using the relationship m = ε

t h from Eq. (27). When ε
is non-zero, some feedback between the surface mass balance and the ice thickness is
expected (Leysinger Vieli and Gudmundsson, 2004). Each model run in this section uses
a fixed time step of ∆t = 0.01a.

The first experiment is conducted with the constant mass similarity solution (ε = 0)
between t = 100a and t = 20000a for the reference period. Rapid changes occur in the
state of the similarity solution between t = 100a and t = 1000a ; then the dynamics
dramatically slow (see Fig. 5 for the evolving ice thickness profile of the similarity solution).
The ice thickness at the ice divide decreases at a rate t−1/9 and the position of the margin
increases at a rate t1/18.

We begin by analysing the results obtained with a grid made up of 100 nodes, uniformly
distributed at the initial time. In terms of thickness, errors mostly occur near the ice sheet
margin as is the case with fixed grid methods (see Bueler et al., 2005). For example at
the final time t = 20000a, a maximum error of 134m in the ice thickness is obtained at the
margin while the interior of the sheet has errors less than 10m (see Fig. 6). We also notice
that errors in the ice thickness (both maximum and RMS errors) decrease as the ice sheet
slows down (see Fig. 7). Regarding the margin, even if the absolute error in its position
increases in time, it is kept under one kilometer (880m at the final time t = 20000a). This
confirms the combined ability of our method to model accurately the evolution of the ice
thickness profile and to track precisely the movement of the ice sheet margin in transient
behaviour.

We then study the convergence of our scheme at a final time t = 20000a when the
number of grid points is increased. We perform the same analysis for ε =−1/8,1/4 and
3/4. Rates of convergence for different errors (RMS error and maximum error for ice
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thickness profile, absolute error for the position of the margin and the volume of the ice
sheet) are summarised in Table 6. These demonstrate the ability of the scheme to achieve
accurate results for the position of the margin and the ice thickness profile for transient
behaviour even with a small number of nodes.

5 Conclusions

In this paper, we have introduced a moving point approach for ice sheet modelling using
the SIA (including non-flat bedrock) based on the conservation of local mass. From this
principle we derived an efficient finite-difference moving point scheme. The scheme was
verified by comparing results with steady states from the EISMINT benchmark (Huybrechts
et al., 1996) and time-dependent solutions from Bueler et al. (2005). Accurate results have
been achieved with a small number of grid points in both cases. In particular our approach
has been able to track the position of the ice sheet margin with high accuracy without
compromising the estimation of the ice thickness profile. Hence the comparison shows that
the approach has considerable potential for future investigations.

Whilst this paper uses a vertically averaged horizontal ice velocity given by the shallow ice
approximation, the moving mesh scheme is independent of the form of the ice velocity used
here and could be used as a solver for mass balance alongside more complex vertically-
integrated approximations (see e.g. Schoof and Hindmarsh, 2010).

As mentioned earlier, the conservation approach is suitable not only for 1-D-cases
(flowline or radial) but also for 2-D-scenarios. A first application has been demonstrated
in Partridge (2013) and will be the subject of a new paper. The conservation approach can
also be applied to marine ice sheets. In these cases, different kinds of boundaries have to
be considered: e.g. grounding line, shelf front, and continental margin. Preliminary results
with the moving point method have been obtained in Dodd (2013). However, the problem
of initialisating such a model for use in real applications remains open. The incorporation of
various data assimilation procedures is currently being investigated in this context.
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Appendix A: Consistency of the moving point approach at boundaries

We now verify that dr̂/dt tends to the velocity obtained from Eq. (10) at the ice margin when
r̂(t) tends to rl(t). Assuming the continuity of ∂h/∂r and m in the vicinity of the ice sheet
margin, by L’Hôpital’s rule

lim
r̂(t)→rl(t)

dr̂

dt
= U(t,rl) + lim

r̂(t)→rl(t)

(
θ̇
θ r̂h(t, r̂)− r̂m(t, r̂)

h(t, r̂) + r̂ ∂h
∂r (t, r̂)

)
(A1)

This gives

lim
r̂(t)→rl(t)

dr̂

dt
= U(t,rl)−m(t,rl)

(
∂h

∂r
(t,rl)

)−1

(A2)

The limit is consistent with the velocity of the moving margin obtained in Eq. (10). The same
approach can be used to show that dr̂/dt tends to 0 when r̂(t) tends to the ice divide r = 0.

Appendix B: A finite difference algorithm

The moving point method is discretised on a radial line using finite differences on the grid
{r̂i}, i = 1, . . .,nr where

0 = r̂1(t) < r̂2(t) < .. . < r̂nr−1(t) < r̂nr(t) = rl(t), (B1)

The approximation of h(t,r) at r̂i(tk) = r̂k
i is written hk

i and that of the ice velocity U(t,r) as
Uk

i . The velocity of the points is represented by vk
i . The symbol θk designates the numerical

approximation of the total mass and the constant mass fractions are represented by µi for
every µ(r̂k

i ).
Before giving the formula for every quantity calculated, we give the structure of the finite

difference algorithm in Algorithm 1.
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Algorithm 1 Finite difference moving point algorithm
Require:

{
r̂0
i

}
and

{
h0

i

}
, i = 1, . . . ,nr with r̂0

1 = 0 and h0
nr

= 0.
1: Compute total mass θ0 with eq. (B2)
2: Compute mass fractions µi, i = 1, . . . ,nr, with eq. (B3)
3: while t < tend do
4: Compute ice velocities Uk

i with eq. (B4) and eq. (B5)
5: Compute point velocities vk

i with eq. (B6) and eq. (B7)
6: Update total mass θk+1 with eq. (B8)
7: Update moving point positions r̂k+1

i with eq. (B9)
8: Update ice thickness hk+1

i with eq. (B10) and (B11)
9: k← k +1

10: t← t +∆t
11: end while

B1 Initialisation

At the initial time the user needs to provide the initial location of each grid point
{r̂0

i } and the initial ice thickness {h0
i } there. By definition, we assume that r̂0

1 = 0 and
h0

nr
= 0. We estimate the total mass of the ice sheet at the initial time by using a composite

trapezoidal rule approximating Eq. (11). This gives:

θ0 =
π

2

nr−1∑

j=1

(
h0

j +h0
j+1

)((
r̂0
j+1

)2−
(
r̂0
j

)2
)

(B2)

We derive the numerical approximation for the mass fractions µi by discretising Eq. (13)
following the same principle:

µ1 = 0, µi =
π

2θ0

i−1∑

j=1

(
h0

j +h0
j+1

)((
r̂0
j+1

)2−
(
r̂0
j

)2
)

(B3)
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B2 Ice velocities

We confine the algorithm to n = 3 for the creep exponent in the Glen flow law. Then Eq. (4)
giving the ice velocity can be expanded by using the binomial theorem:

|U(t,r)| =
2

5
A (ρig)3

∣∣∣∣∣h
4

(
∂b

∂r

)3

+
3

5

∂(h5)

∂r

(
∂b

∂r

)2

+
1

3

(
∂(h3)

∂r

)2
∂b

∂r
+

27

343

(
∂(h7/3)

∂r

)3
∣∣∣∣∣∣

(B4)

We choose to rewrite the radial form of Eq. (4) in this way in order to ensure that the ice
velocity at the ice sheet margin computed with a finite difference scheme can be non-zero as
noted in Sect. 3.4. The bedrock elevation b and its derivative are known for every location
of the domain. The sign of Uk

i (Uk
1 = 0) is obtained by calculating the sign of sk

i − sk
i−1

(approximating the sign of the surface slope by an upwind scheme). We also approximate
the derivatives of hp for any p > 0 by an upwind scheme:

∂(hp)

∂r

∣∣∣∣
r=rk

i

=

(
hk

i

)p−
(
hk

i−1

)p

rk
i − rk

i−1

(B5)

B3 Approximate nodal velocities

The velocity of interior nodes is obtained by discretising Eq. (16) as

vk
1 = 0, vk

i = Uk
i +

1

2 r̂k
i hk

i



µi

r̂k
nr∫

0

m(tk, r)d
(
r2

)
−

r̂k
i∫

0

m(tk, r)d
(
r2

)


 (B6)

where the integrals in Eq. (B6) are approximated by a composite trapezoidal rule. For the
velocity of the ice sheet margin, Eq. (10) is discretised by using a first order upwind scheme,
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namely,

vk
nr

= Uk
nr
−m

(
tk, rk

nr

) r̂k
nr
− r̂k

nr−1

hk
nr
−hk

nr−1

(B7)

B4 Time stepping

The total mass θk+1 is updated by using an explicit Euler scheme

θk+1 = θk +∆t θ̇k = θk +∆tπ

r̂k
nr∫

0

m(t,r)d
(
r2

)
(B8)

Again the integral is approximated by a composite trapezoidal rule.
As in the case of the total mass, the position of the nodes is updated by using an explicit

Euler scheme

r̂k+1
i = r̂k

i +∆tvk
i (B9)

∆t is taken small enough to preserve the node order in Eq. (B1) and to avoid oscillations
in the ice thickness profile. In practice we have never observed node overtaking since
spurious oscillations always appear first. This behaviour is similar to that observed with
explicit schemes for fixed staggered grid methods (Hindmarsh and Payne, 1996).
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B5 Approximate ice thickness

The ice thickness for interior nodes hk+1
i is recovered algebraically at the new time using a

second order midpoint approximation of Eq. (17), namely,

hk+1
i =

θk+1

π

µi+1−µi−1(
r̂k+1
i+1

)2
−

(
r̂k+1
i−1

)2 (B10)

The ice thickness at the ice divide hk+1
1 is obtained by using the first order upwind scheme.

hk+1
1 =

θk+1

π

µ2−µ1(
r̂k+1
2

)2
−

(
r̂k+1
1

)2 (B11)
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B6 Behaviour of the approximate ice velocity at the ice margin

As in Sect. 3.4, assuming that the topography of the bedrock is flat in the vicinity of the
margin, the asymptotic form of the radial ice velocity is

U =
2

n +2
A (ρig)nγn(rl− r)(2n+1)γ−nφl

2n+1 (B12)

Hence the leading term in the numerical approximation (Eq. B4) to the ice velocity at the
approximation hl to the ice margin is

− 2

5
sgn(snr − snr−1)A (ρig)3

(
3

7

)3
∣∣∣∣∣
h7/3

nr −h7/3
nr−1

r̂nr − r̂nr−1

∣∣∣∣∣

3

=−2

5
sgn(snr − snr−1)A (ρig)3

(
3

7

)3
∣∣∣∣∣

h7/3
nr−1

r̂nr − r̂nr−1

∣∣∣∣∣

3
(B13)

since hnr = 0. But from Eq. (B12) the asymptotic analytic ice velocity (when n = 3) is

2

5
A (ρig)3

(
3

7

)3

(rnr − r)7γ−3φl
7 =

2

5
A (ρig)3

27

343

(
h(r)7/3

rnr − r

)3

(B14)

by Eq. (18). Hence the numerical approximation to the ice velocity has the same asymptotic
behaviour as the asymptotic analytic ice velocity with n = 3. The result also holds for general
creep exponent n.
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Table 1. Parameters involved in the computation of the vertically averaged horizontal components
of the velocity of the ice.

Parameter Meaning Value

n creep exponent in Glen’s flow law 3
A creep parameter in Glen’s flow law 10−16 Pa−3 a−1

ρi density of ice 910 kg m−3

g gravitational acceleration 9.81m s−2
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Table 2. Comparison between reference steady state described in Section 4.1.1 and results
obtained after a 25,000a run using 21 moving points with the EISMINT surface mass balance and
initial profile described by Eq. (25). Exp 1(a): initial uniform grid with rl(0) = 450km, h0 = 1000m and
p = 3/7, Exp 1(b): initial grid with higher resolution near the margin with rl(0) = 500km, h0 = 1000m
and p = 1, Exp 1(c): initial uniform grid with rl(0) = 600km, h0 = 4000m and p = 1/4.

ice thickness at r = 0 (in m) position of the margin (in km)

Reference 2986.95± 0.01 579.81± 0.01
Exp 1(a) 3019.59 579.99
Exp 1(b) 3040.28 579.77
Exp 1(c) 3017.75 579.43
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Table 3. Comparison between intercomparison results for the EISMINT moving-margin experiment
in steady state (see Table 5 in Huybrechts et al., 1996) and results obtained for the same experiment
with the moving point method with an identical number of grid points nr = 28. The reference values
are obtained from the accurate evaluation described in section 4.1.1.

ice thickness at r = 0 (in m) position of the margin (in km)

Reference 2986.95± 0.01 579.81± 0.01
EISMINT / 2d 2982.3± 26.4 593.3± 9.0
Moving point 3005.76 579.68
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Table 4. Estimation of absolute errors from results obtained in the EISMINT framework using the
moving point method with an initial uniformly spaced grid with nr = 20,30,40,60 and 80 grid points.
Rates of convergence are estimated directly from the calculated absolute errors.

number of absolute error in absolute error in
gridpoints nr the ice thickness at r = 0 (in m) the position of the margin (in m)

20 29.46 233.58
30 17.29 139.02
40 12.51 62.17
60 7.97 28.49
80 5.86 16.33

rate of convergence O(n−1.16
r ) O(n−1.95

r )
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Table 5. Estimation of absolute error from results obtained with the non-flat bedrock described by
Eq. (26) using the moving point method with an initial uniformly spaced grid with nr = 20,30,40,60
and 80 grid points. Rates of convergence are estimated directly from the calculated absolute errors.

number of absolute error in
gridpoints nr the position of the margin (in m)

20 127.74
30 98.44
40 43.96
60 18.23
80 12.39

rate of convergence O(n−1.83
r )
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Table 6. Rate of convergence of different errors between numerical results obtained for time-
dependent solutions at time t = 20000a. The different estimated rates of convergence are
obtained by performing experiments with nr = 10,20,40,60,80,100 and 200 grid points for different
configurations of surface mass balance (Eq. 27).

ε = 0 ε =−1/8 ε = 1/4 ε = 3/4

RMS error on h O(n−1.07
r ) O(n−1.10

r ) O(n−1.10
r ) O(n−1.12

r )
Max. error on h O(n−0.57

r ) O(n−0.60
r ) O(n−0.59

r ) O(n−0.60
r )

Error in rl O(n−1.32
r ) O(n−1.41

r ) O(n−1.38
r ) O(n−1.41

r )
Error in total volume – O(n−1.24

r ) O(n−1.43
r ) O(n−1.43

r )
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Figure 1. Section of a grounded radially-symmetrical ice sheet.
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Figure 2. Evolution of the geometry (on the left) and overall motion of the grid points (on the right) for
three experiments with the EISMINT surface mass balance and initial profile described by Eq. (25).
Top: initial uniform grid with rl(0) = 450km, h0 = 1000m and p = 3/7, middle: initial grid with higher
resolution near the margin with rl(0) = 500km, h0 = 1000m and p = 1, bottom: initial uniform grid
with rl(0) = 600km, h0 = 4000m and p = 1/4.
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Figure 3. The steady state from the EISMINT moving-margin experiment compared with our 25000a
model run with 28 nodes, uniformly distributed at the initial time. The reference profile is obtained
by a numerical integration of Eq. (23) using a composite trapezoidal rule. The error in the ice
thickness occurs mostly near the ice sheet margin, as in other experiments (RMS error is 15.71m
and maximum error is 58.23m). The position of the margin is well determined as the absolute error
is only 138.5m.
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Figure 4. Evolution of the geometry and overall motion of the grid points for the non-flat bedrock
(topography given in Eq. 26) with the EISMINT surface mass balance. At steady state, the observed
error for the position of the margin is 127.7m.
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Figure 5. The reference ice sheet profile (ε = 0) obtained from transient similarity solutions (see
section 4.3.1) is displayed for t = 100 years, t = 1000 years, and at 1000 year intervals thereafter.
Rapid changes occur in the state of the sheet at the beginning of the simulation, then the dynamics
dramatically slow. The ice thickness at the ice divide decreases at a rate t−1/9 and the position of
the margin increases at a rate t1/18.
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Figure 6. The result obtained at final time t = 20000a with 100 nodes equally distributed at initial
time t = 100 a and a fixed time step ∆t = 0.01 a is compared to the reference transient similarity
solution with ε = 0 (see section 4.3.1). A maximum error of 134m on the ice thickness is obtained
at the margin, while the interior of the sheet has errors less than 10m. The position of the margin is
obtained with an error of 880m.
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Figure 7. Evolution of the RMS error and maximum absolute error in the ice thickness, and absolute
error in the position of the margin between the run obtained with 100 nodes equally distributed at
initial time t = 100a and a fixed time step ∆t = 0.01a and the reference transient similarity solution
with ε = 0 (see section 4.3.1). Errors in the ice thickness decrease as the ice sheet slows down. The
errors in the position of the margin increase in time but their evolution is slower when the dynamics
are slower.

42


