Referee #2 - Anonymous

First, we would like to thank the anonymous referee #2 for his valuable comments on
our paper.

As both referees agreed on the same two comments, we first discuss these two
points here before answering the other specific comments of each referee.

1 - Overstatement of the results and significance of the differences

As both referees mention it, we must agree that the title of the paper, as well as
some parts, might not be clear enough regarding the main purpose of our paper.

The fact is that EImer/Ice results for MISMIP and MISMP3d are the only ones
produced using a full-Stokes model, and as such, they are often used for comparison
with lower order models (e.g. Feldmann et al., 2014) and as a reference during the
development phase of new Stokes solvers. It was therefore important for us to let
know the community that these results are sensitive to the way the friction is
implemented in the close vicinity of the GL, at least for the resolutions that were used
to produce these results. By publishing this paper, we also offer the community new
Stokes MISMIP3d results at a much higher resolution than those previously
published.

We agree that the initial title was overstating the results presented. We agree that it
is a question of mesh sensitivity, but, we still think that the differences are substantial
for the mesh resolutions that were used to produce the MISMIP3d results and they
will certainly be substantial for the mesh resolutions that might reasonably be used
for a real large-scale application. We know for sure that finite element results are
mesh sensitive, and we show in this paper that by increasing the mesh resolution,
the difference between the three methods is decreased. But we also know that such
small resolutions are often not tractable for 3d problems. By quantifying the
differences obtained with the three different methods at different resolutions, we
advise the community about error associated to FS results for a given resolution.

The title has been modified by suppressing ‘substantial’. All along the paper, we have
specified that these important differences between the three methods are specific of
the mesh resolutions used to produce the MISMIP and MISMP13d results.

2 — Produce more results with more realistic friction

Both referees have suggested that the three methods should be compared on
different setups than MISMIP and MISMIP3d using a more realistic distribution of the
friction in the vicinity of the GL. We don'’t think that adding these results to the current
paper would be appropriate for two reasons. First, the objective of this paper is
clearly to revisit the MISMIP and MISMIP3d experiments, see the influence of the
three methods on the results and produce new Stokes results for MISMIP3d at higher
resolutions. Second, adopting a more realistic friction which vanishes at the GL (as
we suggest in the conclusion for the future model intercomparisons) will, by
construction, lead to the same results for the three methods, and therefore not being
relevant regarding the main purpose of the paper. In conclusion, building new setups
with more realistic friction at the GL is indubitably very interesting, but the objective



would be then to study if it reduces the difference between the Stokes and the lower
order approximations. We are working on that at LGGE, but it is clearly beyond the
scope of this paper.

The paper has been modified to state more clearly the objective of the presented
work. We agree it is short but it however fulfils the TC criteria in terms of length. To
make the discussion clearer, we have added two figures and extended some parts.

A new version of the paper, which changes highlighted in red is joined at the end of
this document.

Specific comments
1 General statement

The manuscript “On the substantial influence of the treatment of friction at the ground-
ing line” by O. Gagliardini and others analyzes the impact of different treatment of basal
friction in the immediate vicinity of the grounding line using a Stokes finite element
model implemented in Elmer/Ice. The study shows that the method applied to set up the
friction in the elements immediately in contact with the grounding line has an impact on
ice velocity, grounding line position in steady state as well as grounding line dynamics
for different MISMIP benchmark tests used by the ice sheet modeling community.

The paper describes different possible methods for applying basal stress for elements
adjacent to the grounding line and discusses their impact on ice flow simulations for
both flowband and three dimensional simulations. The title and abstract suggest that
these different methods have a large impact on the simulations performed using the
Stokes equations (e.g. “substantial influence”, “significantly different velocity fields”),
however the results do not support this statement. The grounding line position reached
using the three different methods lead to similar results for meshes with sufficiently
high resolution (see Fig. 3 for example). For coarser meshes, the results are different but
the differences between the three solutions are on the same order of magnitude as other
numerical errors: Fig. 3 shows similar differences between advance and retreat
grounding line positions (Fig. 3b) and between the different method adopted for the
treatment of basal friction (Fig. 3c). These differences are decrease with mesh reso-
lution until the mesh is refined enough and the three methods lead to similar results.
Furthermore, the three solutions seem to converge at a similar rate, and the discontinu-
ous (DI) method only leads to small improvements at coarse resolution. In short, [ don’t
see the point of comparing different basal drag parameterizations for numerical models
that are still mesh dependent. Since the different methods of basal friction parameteri-
zations are themselves mesh dependent, the results have to be different. What would be
a problem on the other hand, would be that these 3 methods yield different results at a
mesh resolution that is fine enough.

See the main answer 1 above.

The authors conclude by saying that the MISMIP experiments are probably unrealistic as
the friction remains very high up to the grounding line, while more realistic setups
would have a basal friction reduced in the vicinity of the grounding line. Comparing
results with such a friction would be of great interest for the paper as this is one of the
main points of the discussion and conclusions. This manuscript is relatively short and



the conclusions not fully supported by the results presented here, so adding such results
would be appropriate and would make the paper much more relevant.

See the main answer 2 above.

Finally, as mentioned in the introduction, results from Stokes models have been con-
sidered so far to be the reference for comparison with lower order approximations.
However, the results described here suggest that Stokes models are sensitive to both
mesh resolution as well as treatment of basal conditions in the vicinity of the grounding,
similarly to lower approximation models. If the latter have now implemented schemes
to reduce their dependency to these numerical parameters (Feldmann et al., 2014;
Leguy et al., 2014; Seroussi et al., 2014a), this remains a challenge for Stokes models and
no solution seems to exist today. The discontinuous basal friction at the ground- ing line
seems the more physical parameterization as mentioned in the manuscript, and the
results presented with this method are closer to results obtained with lower order
approximations and hydrostatic assumptions for grounding line positions. We would
therefore treat grounding line result of simulations performed with the Stokes equations
with more caution, instead of considering them as a reference.

There are two different points addressed here.

Regarding the sensitivity of a discrete model to its mesh refinement, it applies for
finite element method but also finite difference, and whatever the equations
implemented (Stokes or lower order). The method proposed by Seroussi or

Feldmann (having a sub-element evaluation of the floatation) is, in our understanding,
a way of increasing the mesh resolution. Anyway, as stated in our paper, this cannot
be applied for the FS contact problem (the contact has to be estimated at the mesh
nodes, not the integration points). Stokes models solving the contact between ice

and bed have then to adopt refined grid in the vicinity of the GL. Quantifying the
errors induced by the grid refinement has always been honestly assessed in all our
papers about GL (but not only), and so it is in this new paper.

Are lower order models better for that? By construction, lower-order models don’t
resolve the whole stress equilibrium and any numerical improvement will not change
that. For the MISMIP setup, according to the number given in Feldmann et al. (2014)
and Seroussi et al. (2014), the steady state differences are anyway much larger than
the errors found between the 3 methods in this paper (at best ~80 km versus ~10km).
As mentioned by referee #1, “the claim that Elmer/Ice produces a different steady
state due to its different stress balance is not disproven”. What would be nice would
be to have more than one FS model in the community, so that the numerical error
associated to the FS solution can be estimated. The aim of this paper is, for the
same code, but different implementations of the friction, to access a part of this
numerical error (for a given discretisation).

In conclusion, we don'’t agree that the Stokes equations should not stay a reference
(it should, there is no assumption on the equations), but like any numerical model,
the numerical errors (arising from discretisation, interpolation, etc...) should be
quantified as a function of the grid resolution. This is the aim of our paper.

2 Specific comments

p.3479 1.23: onn is not defined



We have added here the definition of Sigma_{nn}

p.3481 1.8: I think that this condition is not appropriate for transient models. u - n =0 is
a condition similar to the no penetration of ice in the bedrock for grounded ice. This
works for ice shelves in steady state (and in the case of zero melting) but not always in
the case of transient runs. The boundary condition at the base of the ice shelf is:

0zb @@ 0 zb @2 0 zb @2 A1/2
dt+un dx+ dy+1=m (1)

with m the melt rate at the ice shelf base. So the condition u - n = 0 can be applied only if
m=0zbot

Yes, we agree it is certainly not correct for a transient model, but here we are
specifically discussing BC for a diagnostic model. Moreover, we have specified that it
hold only assuming no basal melting below the ice-shelf.

p.3481 1.8: consider adding names for the boundary conditions (even simply BC1, BC2,
BC3)

Done

p.3482 and p.3484: there is absolutely no description of the MISMIP and MISMIP3d
experiments. These tests are commonly used in the ice sheet modeling community but a
little bit of background on the set up of these tests would be appropriate to have a self
consistent paper.

One cannot say that there is absolutely no description of the MISMIP and MISMP2d
experiments. Before each three parts using MISMIP and MISMP3d setups, there is a
small description of the experiments. As these experiments are very well described in
two reference papers (Pattyn et al., 2012, 2013), we don’t think the whole setup
should be repeated. We used the same notations and vocabulary to describe our
experiment results. But if the editor thinks this should be added, we will do it.

p.3486 1.2: It is not clear what “the behaviour in advance and retreat is not symmetrical”
means. The behavior should actually be symmetrical, and the difference is caused by
steady state not being reached in 100 years.

What we wanted to say is that, when the perturbation is removed, the GL retreat
doesn’t follow the same path as during its 100-year advance. It takes much longer
than 100 years to move back to the steady position but also, even with a non-
dimensional time (scaled by 100 years for advance, and the time needed to reach
again the steady position for retreat), the advance and retreat curves would not be
superposed. In that sense it is not symmetrical.

p.3486 1.7: Why are meshes different if the steady states are different? Are the meshes
automatically refined during the simulation to better capture the grounding line posi-
tion?

The meshes are different because the zone with smaller elements is located around
the steady state GL position, which is different for all three methods. This zone is
large enough to ensure the GL will stay in that zone during the transient simulation.



There is no remeshing during the simulation. We have modified this part to make it
clearer.
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Abstract. The dynamical contribution of marine ice sheets to sea level rise is largely controlled
by grounding line (GL) dynamics. |Seroussi et al.| (2014) emphasised the sensitivity of numerical
ice flow model results to the practical implementation of the friction of the ice on its bed in the
very close vicinity of the GL. Elmer/Ice is a reference finite element (FE) ice flow model used in
recent marine ice sheet model intercomparison (MISMIP) exercises. In the model, the GL is defined
as the nodes where the ice is in contact with the bedrock but belong to both grounded and floating
elements. Inherently to the FE method, computing the contribution of the friction by element requires
evaluating the friction at the integration points. In Elmer/Ice, this is done by interpolating the values
of the friction parameter C' prescribed at the nodes. In this brief communication, we discuss and
compare three alternative ways to prescribe the friction at the GL: (i) C'is prescribed and non null at
the GL nodes, (ii) C is set to zero at the GL nodes, and (iii) C is discontinuous at the GL nodes (i.e. is
prescribed and non null for grounded elements and otherwise null). So far, all published results using
Elmer/Ice were obtained with the first method. Using the MISMIP3d diagnostic experiment, we first
show that the three methods lead to significantly different velocity fields for the mesh resolution
adopted in [Pattyn et al.| (2013). We then show that these methods also lead to different steady state
GL positions and different transient behaviours, but that these differences decrease when the mesh
refinement is increased. Such model sensitivity to the methods discussed here is certainly specific to
the high friction prescribed in the MISMIP experiments and should be smaller in real setups where
friction in the vicinity of the GL would be expected to be lower. Results obtained with the three
methods, for higher resolutions than previously published, are available as Supplement for future

comparisons.
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1 Introduction

Marine terminating glaciers in Antarctica and Greenland control the dynamical contribution of these
ice sheets to sea level rise. Among the processes at play, the retreat of the grounding line (GL) has
a major impact on this dynamical contribution. Accurate modelling of GL dynamics is therefore
a precondition for prognostic simulations of the future of ice sheets in a warming climate. Previous
works have emphasised the importance of the mesh resolution around the GL (Vieli and Payne, 2005}
Durand et al., |2009al bj |Pattyn et al., 2012) and how the friction is interpolated in the vicinity of the
GL (Gladstone et al.l [2012; [Seroussi et al., 2014} [Leguy et al.| 2014). Two recent intercomparison
exercises were designed to compare and test the ability of ice-sheet models to resolve the advance
and retreat of the GL based on different perturbations. MISMIP was dedicated to two-dimensional
flow line geometry (Pattyn et al.l 2012) and used an analytical solution (Schoof] 2007), whereas
MISMIP3d was a fully three-dimensional setup (Pattyn et al.,2013)).

Elmer/Ice was the only Stokes model to perform the MISMIP experiment 3a (Pattyn et al., 2012
and it was one of only two Stokes models to perform the whole MISMIP3d experiments (Pattyn et al.|
2013)). Moreover, in the latter intercomparison exercise, the diagnostic experiment P75D was directly
build from the geometry obtained with Elmer/Ice after the 100 year perturbation experiment. As the
only Stokes model to perform the two intercomparison exercises, Elmer/Ice results are currently
used as references for comparison with other models based on lower order Stokes equations (e.g.
Feldmann et al.| [2014). The results of the MISMIP and MISMIP3d intercomparisons obtained with
Elmer/Ice have also been used as benchmarks to test Stokes models during their development.

Using a finite element lower order Stokes model (Shallow Shelf Approximation, SSA), |Seroussi
et al. (2014) compared various parameterisations of the GL position. Using the SSA, the GL position
is directly evaluated from the floatation criterion and can therefore be located at any point of the
domain and not only at the element nodes. In this way, the basal friction can be evaluated with
a subgrid resolution. Their results revealed the high sensitivity of the GL dynamics to the treatment
of basal friction in the close vicinity of the GL and also showed that sub-element parametrisation of
the GL significantly reduces the sensitivity of the results to the mesh size at the GL. The proposed
methods, by estimating the GL position at a subgrid scale, acts similarly than an increased mesh
resolution around the GL, but without the numerical cost associated with remeshing when the GL is
moving.

Unfortunately, for the Stokes problem, sub-element parametrisation cannot be applied to solve
the contact between the ice and its bed. Indeed, the contact condition can only be evaluated at the
element nodes. Therefore, the only way to improve the accuracy of the model is to increase the mesh
refinement in the close vicinity of the GL (Durand et al.l [2009b). However, even if a sub-element
parameterisation of the GL cannot be used, there is more than one possible way of treating the

friction in the vicinity of the GL.
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The aim of this paper is to present three possible ways to apply friction at the GL and the resulting
differences in terms of GL dynamics for the well-defined experiments MIMSIP and MISMIP3d. First
we present the three methods and their specificities. Then, using MISMIP and MISMIP3d setups,

we compare the three methods in advance and retreat configurations of the GL.

2 Friction in the close vicinity of the GL

Elmer/Ice uses the finite element method and, by construction, all the field variables are defined as
nodal values and so is the GL which follows the edges of the elements. The GL dynamics is solved as
a contact problem between the ice and the underlying bed. The effectiveness of the contact is tested
for each node belonging on the bed by comparing the residual force of the Stokes equations to the
force exerted by the sea water pressure (for more details, see Durand et al., 2009a). By definition, the
GL is the ensemble of nodes which are the last in contact with the bedrock, i.e. for which the Stokes
residual is strickly larger than the water force. Furthermore, the GL marks the transition between ice
in contact with the bedrock, and therefore subject to friction, and ice in contact with the ocean with
a free slip condition.

Three modelling strategies can be used to impose this transition at the GL between the slip condi-
tion to the free-slip condition (see Fig. [I). The first strategy is assuming that the GL defines the last
grounded (LG) nodes and that friction is applied up to the nodes belonging to the GL. In the second,
the nodes belonging to the GL are assumed to be the first floating (FF) nodes and are already freely
slipping. The third strategy assumes that the friction is discontinuous (DI) at the nodes belonging to
the GL: friction at these nodes is only applied if integrating over an element where all other nodes
are also in contact with the bedrock but a free slip condition is applied if the node belongs to an
element where at least one node is in contact with the ocean. The three methods are illustrated in
a two-dimensional flow line configuration in Fig. [T]

To build the finite element system to be solved, the friction needs to be interpolated at the inte-
gration points of each element. For the LG method, the first elements in contact with the ocean are
therefore undergoing some friction due to the interpolation between a non-zero friction value at the
nodes belonging to the GL and zero value at the other nodes. On the contrary, for the FF method the
friction is lowered in the last elements in contact with the bedrock because of the vanishing friction
at the GL nodes. The DI method is therefore certainly the most physical as friction is applied up
to the GL but switched off in the first elements in contact with ocean. However the three methods
should converge to the same solution when the elements size decreases. Moreover, the three methods
should give identical results if the friction at the GL is null, whatever the mesh discretisation. Up to
now, all the published Elmer/Ice results were obtained using the LG method (Durand et al., [2009a,
b, 2011 |Gagliardini et al.l 2010, 2013} |[Favier et al., 2012} 2014; Drouet et al.| |[2013}; |Gudmundsson:
et al.l 2012} [Pattyn et al.| 2012} 2013} |Krug et al.,[2014). In the following sections, we compare the
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three methods using numerical experiments proposed in MISMIP and MISMIP3d, known to present
high contrast in friction at the GL. Doing so, the obtained differences between the three methods
presented in this paper might be seen as upper bound values for more realistic cases with a smooth

transition in friction at the GL.

3 Influence on the flux at the GL

The three methods are first compared using the diagnostic experiment P75D of MISMIP3d. The
objective of experiment P75D was to compare the velocity field obtained by the various Stokes ap-
proximations for a prescribed glacier geometry. This geometry, the same for all numerical models,
was defined as the one obtained with Elmer/Ice at ¢ = 100 a for experiment P75S (the last time step
of the perturbation experiment, see below and |Pattyn et al.|(2013)) for more details on the experimen-
tal setups). We recall that at that time this geometry was obtained using the LG method. Exactly the
same mesh as in [Pattyn et al.[(2013) is used here to compare the three methods on this diagnostic
experiment.

In Pattyn et al.| (2013)), the boundary condition (BC) applied at the base of the ice-shelf for the
diagnostic experiment was not specified. If this condition is clear for lower-order Stokes models (i.e.
for vertically integrated models), this is not the case when solving for the full-Stokes solution. In the
next part, the possible BCs to be applied at the base of the ice-shelf are presented. The velocity field

obtained with the three methods for interpolating the friction at the GL are then compared.
3.1 BC below ice-shelf for a diagnostic simulation

In this part we give more details about the different possibilities for the BC at the base of the ice-shelf.
Which BC to be applied was not specified for the diagnostic experiment in [Pattyn et al.| (2013). For
a Stokes prognostic simulation, assuming no accretion/melting, [Durand et al.| (2009a) have shown

that the following BC should be applied at the base of the ice-shelf (BC1):

Unnlb = —ng(lw - Zb) + Cnum (1)

where oy, is the normal Cauchy stress applied at the base of the ice-shelf, [, and 2z, are the

sea and ice-shelf bottom elevations, respectively, p,, the water density, g the gravity, u, = u - 1 the

normal component of the ice velocity and C,, = pyg+/1 + (021,/0x)% + (021, /Jy)2dt. As explained
in [Durand et al.| (20094), C,, acts like a damper on the bottom interface so that the normal stress
induced by C\u, will counteract the buoyancy stress and will avoid too large velocity that would
arise even for a small buoyancy disequilibrium.

For a Stokes diagnostic simulation, one can think about two other BC for the ocean/ice interface.
For all of them we implicitly assume that there is no melting or marine ice accretion below the

ice-shelf.
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The first is deduced from the free surface evolution assuming a steady-state geometry and no
melting or accretion. Under such hypotheses, the bottom free surface evolution reduces to the simple

Dirichlet BC (BC2):
U, =u-n=>0. ()
The second, a Neumann BC, assumes the buoyancy equilibrium at the interface ice/ocean (BC3):

Unnlb = —ng(lw - Zb)- 3)

BC1 derives from BC3 with an implicit evaluation of z, at ¢ + dt using the free surface equation for
zp. Note that vertically integrated models does not require any BC at the base of the ice-shelf for a
diagnostic simulation as far as the vertical velocity is not computed.

For a steady-state geometry and assuming no melting or accretion below the ice-shelf, all three
BC should give the same velocity field as one expects u, =0 and the buoyancy equilibrium to
be fulfilled. Here, for the diagnostic experiment P75D, because the geometry does correspond to
a snapshot of a transient evolution, the ice-shelf is not exactly at the buoyancy equilibrium. This is
true for the LG method with which the geometry was obtained, and even worse for the two other
methods which have completely different geometries after the 100 year perturbation (see discussion
below and Fig.[7). We therefore tested the three possibilities for the bottom ice-shelf BC.

Even for the LG method, no convergence of the non-linear iteration was obtained with the Neu-
mann BC3. This indicates that even a small buoyancy disequilibrium renders the Stokes problem
ill-posed. Adding the viscous damper C,, to the hydrostatic stress (BC1 given by Eq. [T has a stabili-
sation effect and allow convergence. No results are therefore presented for BC3. Results for the two

other BCs, BC1 and BC2, are presented in the next part.
3.2 Results fron MISMIP3d P75D

Changes along the z direction of the x component of the surface velocity at y = 0 (symmetry axis
for the flow and centre for the perturbation of the basal friction parameter) and at y = 50 km (side
of the domain) are presented for all three methods and for the two BCs BC1 and BC2 in Fig.[2] As
can be seen in this figure, the LG method leads to the smallest velocity and the FF method to the
largest, while the velocity obtained with the DI method is between the two. The way the friction is
interpolated at the GL not only influences the velocity downstream from the GL but also over a few
ice thicknesses upstream from the GL. At the GL, the relative difference in velocity between LG and
FF methods is as high as 23 % for y = 0 and 17 % for y = 50 km. The difference is greater at y =0
than at y = 50 km despite less friction at the GL at y = 0 than at y = 50 km. As the vertical gradients
of horizontal velocity are small at the GL, similar differences would be expected in ice fluxes trough
the GL. As depicted in Fig.[3] these differences in velocity are induced by different distributions of

the basal shear stress between the three methods. Figure [Bshows high relative differences of the local
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tangential stress between the three methods (larger than 50% at some place), but these differences
are located in the close vicinity of the GL and they compensate when integrated over all the bedrock.
Indeed, all three methods have the same total traction force at the base, as required by the global
equilibrium of the ice mass submitted to the gravity force. As expected, the basal shear stress is
overestimated downstream the GL for the LG method relative to the DI method (Fig. Eh). This excess
of stress downstream the GL for the LG method is compensated by a lower shear stress upstream the
GL. The opposite pattern is observed for the FF method relative to the DI method (Fig. Bp). If the
change in basal stress stays local, the induced changes on the velocity are transported and cumulated
downstream, explaining the shape of the curves depicted in Fig.[2] Given the mesh resolution adopted
to produce these results, the way the friction law is applied in the very close vicinity of the GL is
found to have a significant effect on the velocity field.

The Elmer/lce velocity solution for experiment P75D in [Pattyn et al] (2013)) is also shown in
Fig. [2] (black curve, named LFA in [Pattyn et al [2013). As Elmer/Ice has been used to design

the experiment, the geometry and velocity field were directly extracted from the last time step of

the transient experiment P75S. Because of the time-integration scheme in Elmer/Ice, the velocity
field was in fact computed from the previous time step geometry (t — 0.5 a), and not computed as
the steady-state solution of the geometry provided. This explains the minor difference between the
published velocity solution and the newly computed LG solution (brown thick curve in Fig.[2).

The two solutions for the BC below the ice-shelf give slightly different results for all three meth-
ods. As shown in Fig. [2| the horizontal flow at the GL for BC2 is found to be slower by approxi-
mately 1 % than the one for BC1, for all three methods and both at y = 0 and y = 50 km. For BC1,
despite its theoretical validity only for transient simulation (time step d¢ entering Eq. [T, the results
presented in Fig. 2] were obtained assuming an arbitrary time step d¢ = 1 a. Anyway, other realistic
choices of d¢ would not change significantly the results as the term Cyuy in Eq. (I)) is found to be at
least 10 times smaller than the hydrostatic pressure —py, g (I — 21,). Because the Dirichlet boundary
condition BC2 is certainly the easiest to implement and test, the results for both BCs BC1 and BC2
are given as Supplement. For future comparisons, it would be therefore more consistent to use the
results in the Supplement of the present publication, either with the buoyancy BC1 or the Dirichlet
BC?2 applied at the base of the ice-shelf.

For this diagnostic application, the influence of the mesh discretisation has not been inferred.
Nevertheless, as expected theoretically, and as will be shown in the following part, the difference
between the three methods should decrease by increasing the mesh refinement in the vicinity of the

GL.
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4 Influence on the GL dynamics

The previous part has indicated a strong sensitivity of the velocity field to the chosen method to
interpolate the friction at the GL, and one might therefore expect similar sensitivity on the GL steady
state position and GL dynamics. To study this sensitivity, the three methods are compared using both

MISMIP and MISMIP3d experiments.
4.1 MISMIP 3a like experiments

This part presents results on the sensitivity to the mesh resolution using a flow line configuration. For
that purpose, the GL dynamics is studied using a set up adapted from experiment 3a of the MISMIP
intercomparison exercise (Pattyn et al., 2012). Experiment 3a assumes an overdeepened bedrock,
a non-linear Weertman friction law and that the GL is evolved by step changes of the ice fluidity pa-
rameter. Previous works have shown that steady-state position of GL could differ slightly depending
on whether it is obtained from advancing or retreating GL, but that this difference decreased with an
increase in mesh resolution (Durand et al., [2009a). We will therefore compare the three methods in
cases of both advance and retreat and with various mesh discretizations. Starting from the ice-sheet
geometry given by the semi-analytical solution of [Schoof] (2007)) for steps 1 and step 5 of experi-
ment 3a (see [Pattyn et al.| (2012) for more details), the ice fluidity for step 3 is then applied and the
geometry is evolved until a steady state is obtained, one in advance (from step 1 to step 3) and one
in retreat (from step 5 to step 3).

Results are presented in Fig. ] and in Table [I] These results were obtained using the same type
of mesh than the one used for producing the Elmer/Ice MISMIP results, with an evolving resolution
along the flow direction (see [Durand et al.|(2009a)) for more details). For all configurations, the LG
method leads to the most advanced GL, the FF method to the least advanced GL and the DI method
to an intermediate GL position. For a given discretisation, differences on the steady GL position
from the three methods are of the same order than differences from advance to retreat (comparison
of Fig. E}) and c). For a 200 m discretization, the difference between the LG and FF methods is
18.2km in advance and 21 km in retreat. The DI position is almost exactly half way between the
LG and FF positions. With a 25 m resolution at the GL, these differences are reduced to less than
2 km in both advance and retreat. For the purpose of comparison, with a given method, the difference
between advance and retreat is around =~ 26 km at the resolution of 200 m and is decreased to less
than 3 km at a resolution of 25 m.

Figure [ also shows the published Elmer/Ice GL position obtained in advance from step 2 to
step 3 in [Pattyn et al.| (2012). This solution was produced using the same discretisation of 200 m at
the GL, but not exactly the same mesh. Despite the same discretisation at the GL, there is a 3 km
difference with the new LG solution. In line with [Durand et al.| (2009b), these differences illustrate

the sensitivity of the GL position not only to the mesh resolution at the GL, but also to the other
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mesh characteristics, and more specifically how strongly the mesh resolution is reduced downstream
and upstream the GL.

In the previous analysis, we only focussed on the final steady state position of the GL. Using the
same experiments, we accessed the transient response by plotting the GL position as well as the rate
of change in the volume above floatation (VAF), as a function of time (see Figs. E] and @ Because
the initial geometries are the same for the three methods (step 1 and step 5 given by [Schoofl, 2007),
but the steady state solutions are different, it appears that the rate of change of the VAF is mainly
controlled by the distance from the steady solution. In other words, the longer the distance between
the initial geometry and the steady state, the higher the rate of change of the VAF. For the 25 m
resolution, the different steady state geometries being very close, VAF rate of changes are also very
similar.

As expected theoretically, the MISMIP flow line study confirms that, despite a high jump in fric-
tion at the GL, all three methods converge to an identical solution as the mesh resolution is improved,

but can lead to significantly different solutions for a too coarse mesh.
4.2 MISMIP3d P75S and P75R

The three methods are finally compared using the prognostic experiments of MISMIP3d. This exper-
iment is decomposed in three steps. First, assuming no lateral variation in y, a steady state geometry
is obtained for each model. In the second step, P75S, a Gaussian sliding perturbation is introduced
precisely at the grounding line and centred on the axis of symmetry at y = 0 km. This constant per-
turbation is applied for the next 100 years. Finally, during the last step, P75R, the perturbation is
removed and the GL moves back to its initial steady position. Only the first 100 years of the removal
are studied. Note that for the grounding line to get back to its initial steady state position might take
much longer than 100 years as the behaviour in advance and retreat is not symmetrical.

The three methods are first compared using a mesh with similar discretisations in both longitudinal
and lateral directions as the one used to obtain the LFA results in |[Pattyn et al.[(2013). The element
size of the mesh is varied horizontally along the main flow direction, such that the GL stays in the
refined zone during the whole experiment. Because the steady state geometries are different for the
three methods, the refined zone lies at different places, and even if all meshes present similar features
(same number of nodes, same refinement at the GL), they cannot be identical.

As expected from the results presented in the previous part, the steady GL positions obtained with
the three methods are significantly different, the LG solution being more advanced by ~ 7km in
comparison to the FF one (see Table 2. It should be noticed that this distance is similar to the one
obtained between the LG solution and the LFA solution published in [Pattyn et al.|(2013)), using the
same discretisation at the GL but not exactly the same mesh. This gives an indication on how the
results are sensitive to the mesh, and not only in the vicinity of the GL. In what follows, the transient

response is discussed relative to the steady GL position x, of each model. It should however be also
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noticed that these differences stay much smaller than the differences obtained between the Stokes

and SSA solutions (= 525 km for the Stokes against ~ 605 km for the SAA (Pattyn et al] 2013}

[Seroussi et al} [2014} [Feldmann et al.l 2014)).
Figure [/| shows the evolution of the GL during the 100 years of the perturbation (from 0 to

100 years) and during the same time after the perturbation has been removed (from 100 to O years),
aty = 0 and y = 50 km. As shown in this figure, the transient responses of the three methods relative
to their initial position x ¢, are similar during the first 5 years, but then differ significantly. Interest-
ingly, if the LG GL is continuously advancing at y = 0, this is not anymore the case for the two other
methods. The rapid advance of the FF GL position at y = 0 occurring during the first years is then
followed by a retreat of almost the same magnitude after 100 years, with a difference lower than
2km with the initial GL position, when it is almost 19 km for the LG one (see Table 2)). After the
perturbation is removed, the GL starts to move back towards its initial steady state position. Never-
theless, after 100 years (dashed lines from 100 to 0 a in Fig.[]), the GLs are still far from having
reached again the steady state position (A, = 0). The LG method is the fastest in coming back to
its steady state position whereas the FF is the slowest.

Such large differences for the transient response of the three methods can only be explained by
a too coarse mesh. The steady solution being reasonably close, and independent of the lateral dis-
cretisation of the mesh (no transverse variation of any field so that the steady GL is a straight line
perpendicular to the x direction), the source of discrepancy for the transient response certainly arises
from the lateral discretisation. The number of lateral elements N, is only 20 for the previous simula-
tions. The sensitivity of the transient response to the lateral discretisation is investigated by running
the same experiment with two finer lateral mesh resolution, everything else being the same. Results
for N, =40 and NN,, = 80 are presented in Figs. @and@, respectively. As can be seen by comparing
Figs. [7HI] (see also Table 2] and Fig. [T0), differences in the transient response of the three methods
are significantly decreased when the lateral mesh refinement is increased. Nevertheless, even with
the finest mesh (N, = 80), the difference between the methods stays relatively important (=~ 5 km
between LG and FF at the end of the perturbation experiment, but to be compared to 17 km for
N, = 20). Figure ﬂljl indicates that the difference for the three methods between the higher resolu-
tion (N, = 80) and the two other mesh refinements (N, = 40 and N, = 20) is smaller for the DI
method than the two others. In other words, the DI method seems to be less sensitive to the mesh
refinement than the two other methods, certainly because it gives an intermediate solution whatever
the mesh resolution. This is one more reason that justify that the DI method should be preferentially
adopted for future works. Note however that the decrease in mesh sensitivity is not as high as for the

subgrid methods proposed for the SSA (Seroussi et al.| 2014).
Higher lateral discretisation were not further explored for computing resource purpose, but this

study clearly indicates that, as expected theoretically and shown in the previous part using the flow

line setup MISMIP, the difference between the three methods is decreased as the mesh resolution is
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increased. Published LFA results (Pattyn et al., 2013) were obtained with a lateral discretisation of
N, = 20 elements, which was certainly insufficient as shown by these new results using 40 and 80
lateral elements. For further comparisons, we recommend to use the more accurate results presented

in Fig.[9]and provided as Supplement.

5 Conclusions

In this paper, we have presented three methods for the treatment of the friction at the GL for a finite
element formulation of the Stokes equations. So far, in all the applications using Elmer/Ice, it was
assumed that the friction is applied up to the GL using the LG method. In so doing, the first elements
immediately downstream from the GL undergo a little friction even if being in contact with the
ocean.

We have shown that the treatment of the friction at the GL has a strong influence on both the ve-
locity field and on the resulting GL dynamics for the mesh resolutions that were used to produce the
MISMIP and MISMIP3d results. As expected theoretically, differences between the three methods
are shown to decrease as the mesh resolution is increased, but these differences remains substantial
when using mesh resolutions numerically affordable for usual 3D applications. Even for the small-
est refinements accessed for the three-dimensional test case, differences are still observed. However,
these differences are much smaller than those between Stokes and lower-order models. This give
an indication on the model error to be expected when performing GL dynamics simulations with a
Stokes model. Moreover, using MISMIP3d experiment, the lateral refinement is shown to have also
a significant influence on the transient behaviour. All these results were obtained using the MISMIP
and MISMIP3d setups, which are known to present a very high friction at the GL.

Because the GL is in contact with the ocean, one would expect basal friction to vanish at the GL,
i.e. that the friction parameter C' tends to zero as the upstream distance to the GL tends to zero. In
such a case, if C'= 0 at the GL, it is clear that all three methods (LG, DI and FF) would be identical
and therefore result in the same solution whatever the mesh resolution. Consequently, we expect
that for more realistic applications, the sensitivity of the model results to the choice of the friction
treatment at the GL would be smaller. The methods proposed by |Pattyn et al.| (2006)), Leguy et al.
(2014), Tsai et al.|(2015) and |Gladstone et al.|(2015) present interesting approaches in that direction.
Future intercomparison exercices should adopt such approaches to avoid too large jump in friction
at the GL and allow the comparison of the different models on more realistic setups. In any case,
we recommend to use the discontinuous DI method which is certainly the most realistic and the
less sensitive to the mesh refinement of the three. We also recommend to use these newly published

results with finer mesh resolutions for future model comparison.
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Table 1. Experiment MISMIP 3a: steady GL position for step 3 in meter for the three methods in advance and
in retreat. Obtained positions which are not a multiple of the mesh discretisation is the result of the adaptive

mesh technics.
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Last Grounded (LG)
Discontinuous (DI)
First Floating (FF)

Figure 1. Two-dimensional schematic explanation of the three different alternatives to impose the friction in
the close vicinity of the GL. (a) Zoom on the triple junction point between ice, bedrock and ocean, defined as
the GL (red dot and x4) and (b) changes in the friction parameter C close to the GL, with the three methods:
friction is applied at the GL which is then the last grounded node (LG, brown), pure sliding is applied at the
GL which is then the first floating node (FF, blue) and the friction is discontinuous at the GL (DI, purple). The
coloured dots are the bottom boundary nodes of the finite element mesh: brown in contact with the bedrock,

blue in contact with the ocean and red at the GL.
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Figure 2. Experiment MISMIP3d P75D: surface velocity along the = direction for the three different methods:
LG (brown), DI (purple) and FF (blue) on the symmetry axis (y = O; continuous line) and on the free-slip
boundary (y = 50 km, dashed line), for BC (Eq. |I|) (thick line) and BC (Eq. |Z|) (thin line). The LFA Elmer/Ice
solution published in is represented in black (mostly hidden by the LG brown thick curve),
The signs indicate the GL position in y = 0 (dot) and y = 50 km (star).
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Table 2. Experiment MISMIP3d: initial steady GL position (xg,, km) and differences between the final (¢t =

100 a) and initial GL positions (Az g, km) in y = 0 and y = 50 km, as a function of the method and the number
of element along the y direction (V). LFA is the Elmer/Ice solution published in |Pattyn et al] (2013).

Last Grounded LG Discontinuous DI First Floatinf FF LFA
Ny 20 40 80 20 40 80 20 40 80 20
TG, 529.550 526.800 522.350 537.078
Azglo 18950 16.350  15.050 9.250 10.825  11.950 1.950 6.425 9.900 17.622
Azglso  —0.100 —2.750 —3.850 —8.000 —7.050 —6.250 —13.050 —10.250 —7.850 —1.178

Figure 3. Experiment MISMIP3d P75D: relative difference between the shear stress at the bed for (a) the DI

and LG methods and (b) the DI and FF methods [%]. The black line indicates the GL position. The tangent

used to compute the shear stress is the one perpendicular to the transverse direction of the flow.
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Figure 4. Experiment MISMIP 3a step 3: (a) grounding line positions in advance (stars) and retreat (dots)
obtained with the three different methods LG (brown), DI (purple) and FF (blue), (b) difference in the position
of GL in advance and retreat obtained with the three different methods (same colour legend), and (c) difference
between the LG solutions and the two others, as a function of mesh resolution at the GL. In (a), the black star
corresponds to the published GL position for step 3 of experience 3a in |Pattyn et al.| (2012) and the dot-dashed
line is the |Schoof] (2007) solution.
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Figure 5. Experiment MISMIP 3a, steps 1 to 3 (advance) and 5 to 3 (retreat): evolution with time of the
GL position for the three methods LG (brown), DI (purple) and FF (blue) in advance (solid line) and in retreat
(dashed line) for the four resolutions (a) 200 m, (b) 100 m, (¢) 50 m and (d) 25 m. The steady state GL positions
plotted in Fig.[and given in Table[T]are obtained at ¢ = 10ka. This figure focusses on the first 5 ka.

18



A b |
g 0,
e i TY A
- A TN
3 i il e
5 _olufih | L |
e Mo
<
S
©
-100 g Hit g
{ X
T T T T T T T T
50 c | \ d |
N\
E \mm“\_ B )
» e Ad R S A
IS 0 TV VPR P
- i \_{‘I-v';‘r"""‘,‘:'rﬁa J— e
2 ; Mwm,u- ,-"J/”
2 -50p ‘;,"' 1 A 1
< t V4
> 1, J
o K 7
—100p/ 1 H 1
d L L L L l L L L L
0 1 2 3 4 5 0 1 2 3 4 5
time [ka] time [kal

Figure 6. Experiment MISMIP 3a, steps 1 to 3 (advance) and 5 to 3 (retreat): evolution with time of the rate of
change of the VAF for the three methods LG (brown), DI (purple) and FF (blue) in advance (solid line) and in
retreat (dashed line) for the four resolutions (a) 200 m, (b) 100 m, (¢) 50 m and (d) 25 m. The rate of change
of the VAF is averaged over a 20 year time window. The steady state GL positions plotted in Fig. ] and given

in Table[T]are obtained at ¢ = 10 ka. This figure focusses on the first 5 ka.
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Figure 7. Experiment MISMIP3d P75S and P75R: time-dependent plot of the GL position relative to the steady
position zg, (see Table during (P75S; continuous) and after (P75R; dashed) the basal sliding perturbation,
on the symmetry axis (y = 0; top curves) and on the free-slip boundary (y = 50 km; bottom curves) for the
three different methods: LG (brown), DI (purple) and FF (blue). The black dotted curve is the GL evolution

for the LFA solution published in (LG method and N,, = 20). The mesh resolution in the
y direction is /Ny, = 20 elements for all simulations.

20

A Xq (km)

Figure 8. Same as Fig. Mbut for a lateral discretisation of N, = 40 elements.
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Figure 9. Same as Fig. [7]but for a lateral discretisation of N, = 80 elements.
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Figure 10. Experiment MISMIP3d P75S and P75R: evolution of the absolute differences in km between the
highest resolution (N, = 80) and the two others (/N, = 40 continuous line and /N, = 20 dashed line) for the
three different methods: LG (brown), DI (purple) and FF (blue), on the symmetry axis (y = 0; thick curves) and

on the free-slip boundary (y = 50 km; thin curves).
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