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Abstract. The effect of soil property uncertainties on permafrost thaw projections are studied using

a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis.

The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations

that are consistent with borehole temperature measurements at the study site, the Barrow Environ-5

mental Observatory. Each parameter combination is then used in a forward projection of permafrost

conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from

the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP)

8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of intra-

annual uncertainty due to soil properties and the inter-annual variability due to year to year differ-10

ences in CESM climate forcings. After calibrating to
::::::::
measured

:
borehole temperature data at this

well-characterized site, soil property uncertainties are still significant and result in significant intra-

annual uncertainties in projected active layer thickness and annual thaw depth-duration even with

a specified future climate. Intra-annual uncertainties in projected soil moisture content and Stefan

number are small. A volume and time integrated Stefan number decreases significantly in the future15

climate, indicating that latent heat of phase change becomes more important than heat conduction in

future climates. Out of 10 soil parameters, ALT, annual thaw depth-duration, and Stefan number are

highly dependent on mineral soil porosity, while annual mean liquid saturation of the active layer is

highly dependent on the mineral soil residual saturation and moderately dependent on peat residual

saturation. By comparing the ensemble statistics to the spread of projected permafrost metrics using20

different climate models, we show that the effect of calibration-constrained uncertainty in soil prop-
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erties, although significant, is less than that produced by structural climate model uncertainty for this

location.

1 Introduction

Increasing Arctic air and permafrost temperatures (Serreze et al., 2000; Jones and Moberg, 2003;25

Hinzman et al., 2002; Romanovsky et al., 2007), the resulting increase in the thickness of soil that

thaws on an annual basis (Romanovsky and Osterkamp, 1995), and the potential for greenhouse

gas release due to the ensuing decomposition of previously frozen organic carbon (Koven et al.,

2011; Schaefer et al., 2011) provide motivation for developing robust numerical projections of the

thermal hydrological trajectory of Arctic tundra in a warming climate. Projections of permafrost30

thaw and the associated potential for greenhouse gas release from the accelerated decomposition

of previously frozen carbon are subject to several sources of uncertainty, including (but not limited

to) structural uncertainties in the climate models; uncertainty about the model forcings/inputs in

the future (scenario uncertainty in the typology of Walker et al. (2003)); parametric uncertainties

in soil and surface properties that control the downward propagation of thaw fronts; and structural35

uncertainties in the surface and subsurface thermal hydrological models.

Previous efforts to characterize uncertainty in permafrost thaw projections have mostly focused

on climate model structural uncertainties and climate scenario uncertainties, presumably because of

an implicit assumption that those two sources of uncertainty overwhelm the other sources. However,

recent large-scale model comparisons suggest that a substantial portion of projected permafrost un-40

certainties is a result of structural model differences in land surface/subsurface schemes (Slater and

Lawrence, 2013; Koven et al., 2013), particularly how subsurface thermal hydrologic processes are

represented (Koven et al., 2013) rather than simply climate variation. Although those studies focused

on structural uncertainty in surface and subsurface models and not on soil property uncertainty, the

reported sensitivity to the subsurface model suggests that uncertainty in soil properties may also45

contribute significantly to overall uncertainty in thaw projections.

The bulk hydrothermal properties of soil that control the active layer thickness (ALT, i.e. the depth

of soil that thaws on an annual basis) (Neumann, 1860; Stefan, 1891; Romanovsky and Osterkamp,

1997; Peters-Lidard et al., 1998; Kurylyk et al., 2014) vary among sites and locally within a single

site, in particular being sensitive to the local organic matter content and bulk porosity (Letts et al.,50

2000; Price et al., 2008; O’Donnell et al., 2009; Hinzman et al., 1991; Chadburn et al., 2015a).

Langer et al. (2013) identify the soil composition uncertainties, particularly the soil ice/water con-

tent, to have the largest effect on ALT. Intermediate to large-scale thermal simulations of ALT are

known to be sensitive to soil properties (Hinzman et al., 1998; Rawlins et al., 2013). Because of this

sensitivity, large-scale Earth System Models (ESMs) were recently updated to include layers of moss55

and peat in order to better represent subsurface thermal conditions (Beringer et al., 2001; Lawrence
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and Slater, 2008; Wania et al., 2009; Subin et al., 2012; Ekici et al., 2014; Chadburn et al., 2015b).

Despite the recognition of soil property uncertainty and heterogeneity as important contributors to

uncertainties in permafrost conditions and extent, global and regional studies that address permafrost

future conditions and extent typically apply broad soil texture classifications, such as those defined60

by Clapp and Hornberger (1978) and Cosby et al. (1984), to parameterize soil properties (Lawrence

and Slater, 2008), usually without consideration of soil property uncertainty (Lawrence and Slater,

2005; Hinzman et al., 1998; Shiklomanov et al., 2007; Koven et al., 2013; Rinke et al., 2008).

Soil property uncertainty is different from many other sources of projection uncertainty (e.g. cli-

mate scenario uncertainty) in that uncertainties in soil properties may be reduced by a combination65

of site characterization (Hinzman et al., 1998) and model calibration (Romanovsky and Osterkamp,

1997; Nicolsky et al., 2009; Jiang et al., 2012; Atchley et al., 2015). Initial steps in that direction

have been taken. For example, Romanovsky and Osterkamp (1997) calibrate thermal soil properties

using a purely conductive thermal model using measured temperatures at several sites and Nicolsky

et al. (2009) perform a sensitivity analysis of a calibration (data assimilation) approach to identify70

its ability to recover thermal soil properties using a 1D thermal model and apply the calibration ap-

proach to several sites. Atchley et al. (2015) recently demonstrated an iterative approach for using

site characterization data to simultaneously refine thermal hydrology model structure and estimate

model parameters. Their approach was applied to the Barrow Environmental Observatory, but could

be used at other sites to improve model structure and parameter assignments in the regional or global75

context.

Recognizing that permafrost projections are sensitive to subsurface model representations and that

soil property uncertainties may be reduced through characterization and parameter estimation, a nat-

ural next step is to quantify how such activities will impact overall uncertainties in permafrost thaw

projections in comparison to other sources of uncertainty. Here we address that question. Specif-80

ically, we consider how uncertainties in soil hydrothermal properties propagate to uncertainties in

numerical projections of permafrost thaw at a well-characterized site. We go beyond a traditional

unconstrained uncertainty quantification and focus on the residual uncertainties that remain after

soil parameters have been carefully calibrated to borehole temperature data. The intent of the cur-

rent work is to develop initial insights into how effective site characterization activities might be at85

reducing uncertainties associated with soil parameters. We show that with future climate specified

and with the advantage of calibration targets from a well-characterized site, significant uncertain-

ties remain in projected ALT and other metrics important for carbon decomposition in the future

climate. We show that this residual uncertainty is significant, albeit less than that associated with

uncertainties in future climate.90

The
::::
arctic

::::
site

::
in

::::
this

:::::::::::
investigation

::
is
:::
the

:::::::::
polygonal

::::::
tundra

::::::
within

:::
the

:::::::
Barrow

:::::::::::::
Environmental

::::::::::
Observatory

::::::
(BEO).

::::
The

:::::::::
polygonal

::::::
tundra

::
of

:::
the

:::::
BEO

::
is

::::::::
classified

::
as

::
a

:::::::
lowland,

::::
cold

::::::::::
continuous

:::::::::
permafrost

::::::
system

::::
with

::
a
:::::
range

:::
of

::::::::
polygonal

:::::
types

::::
and

::::::
states,

::::::
which

:::::::
includes

:::::
intact

::::
low

::::::
center
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:::::::
polygons

:::
to

::::::::
degraded

:::
ice

:::::::
wedges

::::
and

:::::::::
associated

::::
high

::::::
center

:::::::::
polygons.

:::::
Much

:::
of

:::
the

:::::::::
polygonal

:::::
tundra

::::::::
contains

::
an

:::::::
organic

::::
rich

::::::
surface

:::::
layer

:::
of

::::
peat

:::::::::
overlaying

::
a

::::
silty

:::::
loam

::::
soil.

::::
Due

::
to

::
a
::::
low95

:::::::::
evaporative

:::::::
demand

::::
soils

::::::
remain

::::::
moist,

::::::
despite

::::::
relative

::::
low

::::::
annual

:::::::::::
precipitation,

::
of

::::::
which

:::
the

::::
bulk

:::
falls

::
in
:::
the

:::::::
summer

:::::::
months (Liljedahl et al., 2011).

::::::
While

:::
our

::::::::::
investigation

:::::::
focuses

::
on

:::
the

:::::::::
polygonal

:::::
tundra

::::::
within

::
the

:::::
BEO,

:::::
other

:::::
arctic

::::::::
landscape

:::::
types

:::
are

:::
also

::::::::
prevalent

:::::::::
(hillslopes,

:::::
lakes,

:::::::
pingos).

::::
The

:::::::::
importance

::
of

::::
soil

::::::::
properties

:::
and

:::
the

::::::::
dominate

::::::::
influence

::
of

:::::::::
particular

:::
soil

::::::::
properties

::::
may

:::::::
change

::
in

:::::::::
landscapes

::::
other

::::
than

:::::::::
polygonal

::::::
tundra.100

:::
The

:
methodology is described in Sect. 2. A brief description of our thermal hydrology process

model is presented in Sect. 3. The generation of the ensemble of calibration-constrained parameter

combinations is described in Sect. 4. Permafrost thaw projection metrics are described in Sect. 5.

The predictive uncertainty and trends in permafrost thaw projections are presented in Sect. 6. Sect. 7

presents the comparison of soil property and climate model uncertainty. A correlation analysis identi-105

fying the level of dependence between soil parameters and projection metrics is presented in Sect. 8.

Conclusions and discussion of the analysis are in Sect. 9.

2 Methodology

We use the Arctic Terrestrial Simulator (ATS) to numerically solve the coupled groundwater flow,

thermal, and surface energy balance equations. The uncertainty quantification is performed around110

a previous calibration by Atchley et al. (2015). Atchley et al. (2015) used 1D column models repre-

senting the dominant microtopographical features (center, rim, and trough of polygonal ground)

to calibrate hydro-thermal soil parameters using soil temperatures at the Barrow Environmental

Observatory (BEO )
::::
BEO

:
measured by the Next Generation Ecosystem Experiments Arctic (NGEE-

Arctic) team during calendar year 2013. The calibration
:::
data

::::::
period

::
is

::::::
limited

::
to

:::::::
calendar

::::
year

:::::
2013115

::::
since

::
at
:::
the

:::::
time

::
of

::::::::::
calibration,

:::
this

::::
was

:::
the

:::::
only

:::
full

::::
year

:::
of

::::::::
measured

::::
data

::::::::
available

::
at

:::
the

::::
site

(Atchley et al., 2015).
::::
The

:::::::::
calibration

:
considered temperatures measured at 9 depths from 10 to 150

cm.

The calibration was performed in a coupled fashion where each ‘model run’ of the calibration

consisted of simulating center, rim, and trough column models with the same soil parameter values120

for peat and mineral soil. This coupled calibration identifies soil parameters that provide a general-

ized fit, compromising in a least squares sense to match the data from all three models. An implicit

assumption of the coupled calibration is that the soil properties are independent of the microto-

pography. Atchley et al. (2015) first calibrated subsurface properties using 2 cm deep temperatures

measured in 2013 as Dirichlet boundary conditions and temperatures measured at the considered125

depths as calibration targets. Then an additional surface/subsurface calibration was performed to

verify that the surface energy balance model is capable of producing surface temperatures consistent
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with measurements. The coupled surface/subsurface model allows the use of future climate scenarios

as model forcings to drive hydro-thermal permafrost projections.

In order to make projections of hydro-thermal permafrost conditions, we use the surface/subsurface130

model of Atchley et al. (2015). We use the Community Earth System Model (CESM) (Gent et al.,

2011) driven by the Representative Concentration Pathway 8.5 (RCP8.5) greenhouse gas concentra-

tion trajectory (Moss et al., 2008) from year 2006 to 2100 as atmospheric forcings for the surface

energy balance of the model. In this way, we hold the climate scenario constant to isolate the effect

of soil property uncertainty. RCP8.5 corresponds to a business as usual warming scenario with 8.5135

Wm−2 forcing by 2100.

We generated an ensemble of 1,153 calibration-constrained parameter combinations by the Null-

Space Monte Carlo (NSMC) method (Doherty, 2004). The NSMC approach samples from insensi-

tive regions of the parameter space (i.e. the null space) determined by an eigenanalysis of parameter

sensitivities calculated at the calibration point. Based on analysis of ensemble forward simulations of140

the calibration year (2013) and a convergence analysis of the 95th confidence band of simulated tem-

peratures, we consider all parameter combinations in the ensemble calibrated and equally consistent

with measured temperatures.

Predictive uncertainty of projections is determined by comparison of permafrost metrics at year

2006 and for the last decade of the projections (2091 through 2100). The metrics include (1) ALT,145

(2) annual thaw depth-duration (D), (3) annual mean liquid saturation (Sl), and (4) a modified Stefan

number (ST ) and are described in detail in Sect. 5.

To provide a reference point for the effect and magnitude of soil property uncertainty, we also per-

form ATS projections forcing the energy balance model with atmospheric projections from CESM,

INM-CM4 (INM) (Volodin et al., 2010), BCC-CSM1-1 (BCC) (Ji, 1995), MIROC (Watanabe et al.,150

2010), CanESM2 (CAN) (Verseghy, 1991), and HadGEM2-CC (HAD) (Jones et al., 2011; Bellouin

et al., 2011; Collins et al., 2011) climate models based on RCP8.5 using the calibrated soil param-

eters from Atchley et al. (2015). Using the calibrated soil parameters in these simulations isolates

the effect of structural climate uncertainty. We compare permafrost projection uncertainty due to the

NSMC ensemble of soil parameters (hydrothermal soil property uncertainty) and to the variability155

between climate models (structural climate uncertainty).

The soil property uncertainty in this analysis is parametric and can be considered more aleatoric/probabilistic

in nature. The climate model uncertainty is epistemic in nature due to a lack of knowledge regarding

modeling of atmospheric phenomena. These distinctions do limit comparisons that can be drawn

between these two uncertainties. However, the comparison is relevant for our purposes to provide160

a frame of reference for soil property uncertainty to one of the other current, primary sources of

permafrost thaw uncertainty.

5



3 Model

We use the ATS computer code to simulate surface/subsurface thermal hydrology processes. ATS is

an integrated thermal hydrological code developed specifically for Arctic permafrost applications. It165

implements the modeling strategy outlined by Painter et al. (2013) using the multiphysics framework

Arcos (Coon et al., 2015b) to manage model complexity in process rich simulations such as these.

Various components of ATS have already been described elsewhere, therefore, only a brief summary

is provided here.

In the subsurface, the ATS solves nonlinear conservation equations for water and energy, using170

a three-phase (air-water-ice), single-component representation (Karra et al., 2014), which is a sim-

plification of a more general two-component (water and representative gas phase) model (Painter,

2011). A recently developed constitutive model (Painter and Karra, 2014) is used to partition water

between ice and liquid phases in unsaturated or saturated conditions. The partitioning model relates

unfrozen water content below the nominal freezing point to the unfrozen soil moisture character-175

istic curve, thus avoiding empirical freezing curves. The model has been successfully compared to

a variety of laboratory experiments on freezing soils (Painter and Karra, 2014; Karra et al., 2014;

Painter, 2011). Surface boundary conditions use a “fill and spill approximation”, where we allow

up to 4 cm of water to pond on the surface; all additional ponded water may run off the domain.

The surface and subsurface thermal hydrology systems are coupled using continuity of pressure,180

mass flux, temperature, and energy flux, in a thermal extension of the coupling strategy presented in

(Coon et al., 2015a). Additionally, we use a surface energy balance (Hinzman et al., 1998; Ling and

Zhang, 2004; Atchley et al., 2015) in which surface latent and sensible heat, incoming and outgoing

radiation, and conducted heat terms, along with incoming precipitation and outgoing evaporation

are tracked. Finally, a dynamic, single-layer snow model is incorporated for tracking snow aging185

and consolidation, with resulting effects on albedo and melt (Atchley et al., 2015). Not represented

within this system are carbon cycle and vegetation processes, including long-term changes of peat

composition, variability in peat thickness, and evolving microtopography due to degradation of ice

wedges.

The subsurface domain is represented by a 2 cm layer of moss, followed by a 10 cm layer of peat,190

and approximately 50 m mineral soil layer. The required climate forcings for the ATS models are

precipitation of snow and rain, air temperature, wind speed, relative humidity, and incoming short

and longwave radiation.

4 Creation of ensemble of soil parameter combinations

In order to determine the effect that calibration-constrained soil property uncertainty can have on195

long term projections of permafrost conditions, we performed an uncertainty quantification around

the calibrated soil parameters of Atchley et al. (2015). The strategy involved identifying a repre-
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sentative set of parameter combinations that all produce simulated temperatures that are consistent

with observed temperatures. We use Null-Space Monte Carlo (NSMC) (Tonkin and Doherty, 2009),

a form of calibration-constrained Monte Carlo, to accomplish this goal. NSMC was selected based200

on its sampling economy given the computational burden of the simulations involved.

A subset of the 16 soil parameters from the calibration of Atchley et al. (2015) are included here

and presented in Table 1. The top pressures of the center and trough profiles from the calibration

(parameters toppresctr and topprestrg in Atchley et al. (2015)) are not included here as these are

internally calculated in the surface/subsurface ATS model. The van Genuchten water retention pa-205

rameters (αvgpeat, αvgmin, mvgpeat, mvgmin in Atchley et al. (2015)) are not included either as

they were found to significantly exceed their physical boundaries during NSMC sampling. This is

an indication that these are highly insensitive parameters and do not significantly effect simulated

temperatures. This may be explained by the fact that these parameters control the shape of the water

retention curve, but that this influences thermal properties of the soil only for a limited time near210

freeze-up or thaw.

This leaves the 10 soil parameters listed in Table 1. The parameters Θr,peat and Θr,min are van

Genuchten soil moisture characteristic residual saturations (Van Genuchten, 1980).Kpeat andKmin

are thermal conductivities for peat organic matter and mineral grains within the soil layers. These

are not bulk thermal conducitivities for the soil layers, but are used in their calculation. Apeat,fr,215

Apeat,un, Apeat,fr, and Apeat,un are emperical exponents describing the dependence of frozen (fr)

and unfrozen (un) Kersten numbers (i.e. ratios of partially to fully saturated thermal conductivities)

to ice and liquid saturation states, respectively (Painter, 2011). Bulk thermal conductivities for peat

and mineral soil layers are calculated within ATS using the Material Component model defined by

Atchley et al. (2015) with the parameters listed in Table 1. The minimum and maximum parameter220

boundaries are modified from the calibration for the NSMC sampling (the parameter ranges are

reduced in most cases) to physical limits identified through literature review and field observations

from the BEO (Hinzman et al., 1991, 1998; Lawrence and Slater, 2008; Letts et al., 2000; Beringer

et al., 2001; Overduin et al., 2006; O’Donnell et al., 2009; Quinton et al., 2000; Nicolsky et al., 2009;

Zhang et al., 2010).225

To a lesser degree, other parameters were also found to exceed their physical boundaries during

NSMC sampling. Therefore, we used the intersection of the null space and parameter boundaries as

our criterion to accept samples. The generation of 20,000 samples within the null space resulted in

1,153 samples within the parameter boundaries. Samples outside of the parameter boundaries were

discarded.230

Figure 1 presents histograms while Fig. 2 presents paired plots of the NSMC ensemble soil pa-

rameters. In the matrix of plots in Fig. 2, parameter histograms are plotted along the diagonal (also

presented in greater detail in Fig. 1), paired scatterplots in the lower triangle, and Pearson corre-

lation coefficients are presented in the upper triangle. In Fig. 1, it is apparent that Kpeat followed
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Table 1. NSMC parameter minimum and maximum bounds, units, and descriptions

Parameter Min Max Units Description

φpeat 0.7 0.93 – Peat porosity

φmin 0.19 0.76 – Mineral porosity

Θr,peat 0.04 0.4 m3m−3 Peat residual liquid saturation

Θr,min 0.05 0.25 m3m−3 Mineral residual liquid saturation

Kpeat 0.05 0.38 Wm−1K−1 Peat thermal conductivity

Kmin 0.2 4.0 Wm−1K−1 Mineral thermal conductivity

Apeat,fr 0.1 3.0 – Frozen peat thermal conductivity shape parameter

Apeat,un 0.1 1.5 – Unfrozen peat thermal conductivity shape parameter

Amin,fr 0.1 3.0 – Frozen mineral thermal conductivity shape parameter

Amin,un 0.1 1.5 – Unfrozen mineral thermal conductivity shape parameter

by Apeat,un are the most constrained parameter by the NSMC analysis. The rest of the parameters235

span significant portions of their range. This indicates that their
::::
there

:
are many combinations of pa-

rameters that result in calibrated temperatures. Many of the histograms are seen to butt up against

their boundaries, indicating that these are parameters where the extent of the null space exceeds their

range.

The correlations imposed by the NSMC sampling are evident by inspecting the Pearson corre-240

lation coefficients and scatterplots in Fig. 2. The strong correlations that are present are a result

of a balancing act between parameters to achieve a least squares fit to measured temperatures. For

example, the relatively strong negative correlation between Kpeat and Kmin (correlation of -0.81)

is due to the fact that deeper temperatures in the soil profiles are controlled by the effective ther-

mal conductivity. Therefore, there are numerous (negatively correlated) combinations of Kpeat and245

Kmin that produce similar effective thermal conductivities resulting in good matches to measured

temperatures. Many other correlated parameter pairs are also apparent, most with significantly lower

correlations. There are also many uncorrelated parameter pairs (e.g. φpeat and Kpeat) indicating a

complete lack of interaction between the parameter pairs. The following analysis of permafrost pro-

jection uncertainty is conditional on the NSMC correlations presented here, and any conclusions take250

these correlations into account. References to Fig. 2 are made in the following sections explaining

some of the impacts of these correlations.

The range in RMSE values is from around 0.55 to 0.65◦C. The accuracy of the temperature probes

are ±0.02◦C. Therefore, the percentage of the RMSE that may be attributable to measurement im-

precision is around 2-3%.255
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Figure 1. Histograms of calibration-constrained hydrothermal soil parameter combinations
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Figure 3 presents the 95% confidence band of temperatures for the NSMC ensemble. Figure 4

presents the convergence analysis for the NSMC ensemble based on the confidence band inclusion

ratio (i.e. the ratio of measured temperatures within the 95th% confidence band of the ensemble

simulated temperatures). The relatively stable confidence band inclusion ratio after around 800 en-

semble members indicates that the ensemble has converged and that more samples are not necessary.260

The measured temperatures are within the 95% confidence band 79% of the time for the center, 59%

for the rim, 46% for the trough, and 61% overall. The primary causes of these discrepencies are due

to difficulties in capturing trends that are not purely random. The low values are primarily due to

the 95% confidence band missing measured values at deep measurements apparent in Figs. 15, 16,

and 17 in Sect.
::::::::
Appendix A. A lack of overlap is apparent during thawing (around day of year 150)265

and freeze-up (around day of year 320), and is particularly evident in the rim profile in Fig. 3. Many

physical processes may be leading to this result. For one, the exposed sides of the rim and subse-

quent lateral heat flow are not explicitly modeled and may at least partially explain the discrepency.

During the thaw, a lack of advective transport of heat by liquid water through the pore space cre-

ated by sublimation during the winter (not included in the model) may result in warmer measured270

temperatures.

NSMC conventionally involves a recalibration step, where a few Levenberg-Marquardt iterations

are applied to each NSMC sample, often using existing sensitivities from the calibration point. Based

on the RMSE values of the ensemble and the percentages of measured temperatures within the 95%

confidence band, we consider all the unmodified NSMC samples to be calibrated and do not apply275

this step. These observations also led to the assumption that all NSMC samples are equally consistent

with measured temperatures as opposed to using a weighting scheme.

An initial ensemble created using Latin Hypercube Sampling with 1,000 samples postprocessed

to include parameter combinations with RMSE’s below various thresholds indicated that to achieve

a convergent ensemble using Latin Hypercube Sampling would be computational
:::::::::::::
computationally280

prohibitive. An additional NSMC analysis was performed with a more restrictive null space (only

2 eigenvectors out of 10 included in the null space). This ensemble did not require postprocessing

based on RMSE, since all the RMSE values were deemed sufficiently small. This analysis resulted in

over-correlated parameters. We therefore chose a loosely constrained NSMC (5 out of 10 eigenvec-

tors included in the null-space) excluding samples with RMSE greater than 0.65◦C. We considered285

other RMSE cutoffs, but selected 0.65◦C based on achieving a confidence band inclusion ratio and

ensuring that simulated temperatures for 2013 were as consistent near the active layer base as possi-

ble across the ensemble. ALT in 2013 was around 40 cm (refer to Figs. 15, 16, and 17).

The projection simulations took on the order of several hours (∼2-4 hours) on a Linux cluster with

3.2 GHz processors. We used the Model Analysis ToolKit (MATK) Python module (http://matk.lanl.gov)290

to facilitate the concurrent execution of the ensemble of ATS models on high performance computing

clusters.
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5 Permafrost metrics

5.1 Active layer thickness (ALT)

Permafrost is traditionally defined as the region of the subsurface that remains at or below 0◦C for295

two or more years. The ALT defined that way would be the minimum of the maximum annual thaw

depth over each two year moving window. We use a less arbitrary definition for the ALT here as the

annual maximum thaw depth, similar to Koven et al. (2011). Given the discrete nature of our mesh,

and the nonlinear nature of vertical soil temperature profiles near 0◦C, we determine ALT as the

bottom of the deepest thawed mesh cell (temperature above 0◦C) for the year.300

5.2 Annual thaw depth-duration (D)

ALT controls the amount of organic carbon experiencing thaw and thus microbially induced decom-

position during a year. Because ALT is defined as the maximum thaw depth, it does not include

information on duration of thaw. To quantify increasing duration of thaw in future climate as well as

increasing depth, a new metric is introduced here: the mean annual thaw depth D, defined as305

D =
1

365

∫ ∫
H(T (z, t))dzdt (1)

where H is the heavyside function (1 if T (z, t) is above 0◦C, 0 otherwise), z is depth in meters,

and t is time in days. The fraction on the right side of Eq. (1) normalizes the metric by the 365

days in a year. We express D with units of m3m−2 to indicate that this metric defines the volume

of thawed soil per unit area. Of course, this can be reduced to simply meters, however, it must310

be recognized that the metric is averaged over the entire year including while the soil column is

completely frozen. D is a rough proxy for the potential for soil organic matter decomposition. It

merges the amount of unfrozen soil and duration that soil is above freezing
:::::::::
temperature

:
for a given

year. It is noted that, while the annual amount of decomposition is likely correlated with D, the two

quantities are not directly proportional because soil temperature and moisture will also change and315

affect the decomposition rates in future climates. In addition, the soil organic matter content in soils

generally decreases with depth, which is not accounted for in theD metric. Nevertheless, uncertainty

in D is of interest as it is an important control on uncertainty in future decomposition rates.

5.3 Annual mean liquid saturation (Sl)

The annual mean liquid saturation Sl is defined as320

Sl =

∫ ∫
H(T (z, t))Sl(z, t)dzdt∫ ∫

H(T (z, t))dzdt
. (2)
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:::::
where

::::::
Sl(z, t)::

is
:::
the

:::::
liquid

:::::::::
saturation

::
as

:
a
:::::::
function

::
of
:::::
depth

::::
and

::::
time.

:
Sl quantifies the spatially and

temporally averaged liquid saturation in the unfrozen soil for a given year. Note that the denominator

in Eq. (2) is the annual thaw depth-duration metric D from above, except without dividing by 365.

While frozen soil (i.e. soil below 0◦C) in our models contain a residual liquid saturation, this is not325

included in Sl (refer to Eq. (2)). Liquid saturation within the active layer is of interest because of its

control on decomposition rates. In particular, decomposition may be slower in dry conditions, and

oxygen limitations in saturated or nearly saturated conditions may cause methane production to be

favored over CO2 production. Therefore, Sl provides an indication of the potential rate of decompo-

sition as well as an indication of the chemical form of the resulting greenhouse gas produced in the330

active layer.

5.4 Stefan number (ST )

We propose an extension of the Stefan number from the form in Kurylyk et al. (2014) to one that

incorporates intra-annual temporal changes and stratified soil properties. The Stefan number is the

ratio of subsurface sensible to latent heat. In the current context, this refers to the amount of subsur-335

face heat exchange that results in a change in temperature versus the amount that is consumed in the

isothermal conversion of ice to liquid water. In its most basic form, the Stefan number is defined as

ST =
cb∆T

Lf
. (3)

where cb is the bulk specific heat of the material and Lf is the latent heat of fusion of water (334,000

J kg−1). Kurylyk et al. (2014) define the Stefan number for the permafrost problem as340

ST =
cbρb(Ts−Tf )

SwfρwφLf
(4)

where ρb is the density of the thawed zone, Ts is the surface temperature, Tf is the temperature of

freezing or thawing soil (taken as 0◦C), Swf is the liquid saturation in the thawed zone that was

frozen, and ρw is the density of liquid water. Kurylyk et al. (2014) use this definition to evaluate

the thermal regime of analytical solutions of soil thaw. We expand this definition here to include the345

increased detail available in our numerical simulations as

ST =

∫ ∫
cb(z)ρb(z) H

(
dT
dt

)
dT
dt dzdt

ρiceLf

∫ ∫
H
(
−dSice

dt

)(
−dSice

dt

)
φ(z)dzdt

(5)

where Sice is ice saturation. The integrations are performed over the entire year (i.e. from Jan. 1

through Dec. 31). Equation 5 expands on Eq. (4) to allow the consideration of details of transient

heating and cooling throughout the year and stratified hydrothermal soil properties within the soil350

profile.
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6 Permafrost thaw projection uncertainty

Figure 5 present boxplots of permafrost metrics for the first year (2006) and the last decade (2091-

2100) of the projections. Individual boxplots for each year present the intra-annual predictive uncer-

tainty, while comparisons between boxplots for each metric indicate the inter-annual variability of355

the projections for the specified climate scenario. We present the first year as an indication of the

intra-annual uncertainty at the beginning of the projections.

Boxplots of ALT are shown in Fig. 5a. The median ALT increased from approximately 30 cm in

2006 to nearly 0.9 m by the end of the century. The intra-annual uncertainty in ALT also increases

significantly from the beginning to later years of the projections. The intra-annual variability of360

ALT projections is dependent on climate, as warmer years (e.g. 2094) have greater ALT and larger

uncertainty than cooler years. This is apparent in Fig. 6 where the ensemble thaw depth statistics

(median and 95% confidence band) and CESM8.5 air temperature times series are plotted together

for comparison.

Boxplots of annual thaw depth-duration (D) are presented in Fig. 5b. The intra-annual uncertainty365

inD during the last decade of the projections is significantly greater than for the first year (2006). As

expected, the inter-annual trends in D and ALT are similar. Also, the uncertainty of D is relatively

larger during warmer years than cooler years, similar to ALT.

Boxplots of the annual mean liquid saturation (Sl) are presented in Fig. 5c. The intra-annual

uncertainty in Sl actually decreases slightly from the first year to the last decade. Also, in general,370

the last decade is slightly wetter than 2006, but only marginally so. Therefore, this hydrothermal

analysis does not indicate that the partitioning of carbon decomposition between CO2 and CH4 will

change significantly as permafrost thaws. However, other factors affecting carbon decomposition not

considered here could affect the partitioning of carbon decomposition end products.

Boxplots of the Stefan number (ST ) are presented in Fig. 5d. In 2006 the soil profiles for the375

majority of the ensemble are latent heat dominated. However, some Stefan numbers are greater than

1, with values ranging from around 0.3 to 1.4 (from around 3 times the latent heat as sensible heat to

1.4 times the sensible as latent heat). However, by the last decade, nearly all Stefan numbers are 0.2 or

less (at least 5 times as much, and up to 20 times as much latent heat as sensible heat). This indicates

a fundamental change in the way that the active layer processes energy between the beginning and380

later years of the projections. The thermal regime of the active layer becomes significantly more

dominated by latent heat during the projections. The amount of energy that is utilized in creating a

temperature gradient in the soil profile becomes proportionately smaller compared to the amount of

energy consumed in the isothermal melting of ice. This is at least partially due to the approximately

3 times increase in the quantity of ice that is melted during later years of the projections. Perhaps385

the most significant result of this change is the temperature regime of the underlying permafrost

in decreased seasonal temperature variations and their depth of penetration. Intra-annual uncertainty
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appears to decrease from 2006 compared to the last decade, but this is likely due to the Stefan number

approaching its lower limit.

To further illustrate intra-annual uncertainty of the ALT projections, temperature profiles at the390

time of ALT for year 2100 are presented in Fig. 7. Summary statistics (median and 5th and 95th

percentiles) for 2006 are presented for reference. The discrete surface temperatures categorized by

day of year (colors) reflect the fact that the surface temperature is highly dependent on the climate/air

temperature, which is the same for all projections. The increase in median ALT from around 30 cm

to around 0.9 m from 2006 to 2100 is also apparent in this figure. The difference in the temperature395

regime within the profile is apparent in these figures as well by the curve near the surface in most of

the profiles in 2100 compared to 2006. This indicates that as the climate warms and the day of year

when ALT occurs becomes later in the year (day of year ALT occurs in 2006 projections is from 246

to 260), the surface temperature at that time will be cooler. This increase in lag time from the surface

temperature to the active layer base is a result of the thermal wave traveling a greater distance to400

reach the permafrost. This may also be due to relative changes in the temperature gradient within the

active layer and the permafrost as the ALT increases leading to delayed freeze from below.

Figure 8 shows similar plots to Fig. 7, but in this case, statistical measures of the ensemble are plot-

ted. Statistical representation of the temperature profiles in Fig. 7 are plotted in Fig. 8a, along with

bulk thermal conductivity (Fig. 8b) and ice (Fig. 8c), liquid (Fig. 8d), and gas (Fig. 8e) saturation405

profiles when ALT occurs in 2006 and 2100. The variation in thermal conductivity and saturation

states further illustrates the intra-annual projection uncertainty due solely to soil properties. Substan-

tial shifts in intra-annual uncertainty are also apparent from 2006 to 2100. In Fig. 8a, it is apparent

that the thermal conductivity in the soil profile decreases from 2006 to 2100 due to the loss of the

more thermally conductive ice from the profile, thereby inhibiting the propagation of the thermal410

wave. The deepening of the permafrost table is apparent in Fig. 8c as a deepening of the ice satu-

rated region. Note that liquid saturations for mineral soil remain at its residual values below 0◦C and

that residual liquid saturations (Θr,peat and Θr,min) are variable parameters within the uncertainty

quantification (refer to Table 1). As a result, the ice saturation within the permafrost region is vari-

able within the ensemble. In Figs. 8d and 8e, it is apparent that the liquid and gas saturations both415

increase as ice is converted to liquid and void space becomes available with the deepening of the

permafrost table.

7 Comparison to climate model structural uncertainty

In this section, we provide a frame of reference to the effect of soil property uncertainty on per-

mafrost thaw projections by comparison to the uncertainty currently present in climate models.420

Figure 9 presents histograms of projection metrics collected from each ensemble sample for years

2091 through 2100 (a total of 11,530 values, i.e. 1,153 samples × 10 years). This combines the
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Figure 5: Boxplots of projected metrics including (a) ALT, (b) annual thaw depth-
duration, (c) annual mean liquid saturation, and (d) Stefan number for year 2006 and
from 2091 to 2100. The bottom and top of the boxes are the first and third quartiles,
the red lines are medians, the whisker lengths are 1.5 times the interquartile range
(50%), and the plus symbols are outliers.
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Figure 5. Boxplots of projected metrics including (a) ALT, (b) annual thaw depth-duration, (c) annual mean

liquid saturation, and (d) Stefan number for year 2006 and from 2091 to 2100. The bottom and top of the boxes

are the first and third quartiles, the red lines are medians, the whisker lengths are 1.5 times the interquartile

range (50%), and the plus symbols are outliers.
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Figure 8: Intra-annual predictive uncertainty due to soil property uncertainty for depth
profiles of ensemble statistical quantities when ALT occurs for calendar years 2006 and
2100. The shaded regions are the 95% confidence intervals for 2006 (red) and 2100
(blue).
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Figure 8. Intra-annual predictive uncertainty due to soil property uncertainty for depth profiles of ensemble

statistical quantities when ALT occurs for calendar years 2006 and 2100. The shaded regions are the 95%

confidence intervals for 2006 (red) and 2100 (blue).
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intra-annual uncertainty for the last decade of the projections. The 95% confidence band of the

calibration-constrained ensemble for each metric is indicated by dashed vertical lines in each plot.

Below the histograms are the values obtained using atmospheric forcing data from CESM, INM,425

BCC, MIROC, CAN, and HAD climate models to drive the ATS models with the calibrated soil pa-

rameters for the same years, 10 values each. BCC has only 9 values as we could only obtain its data

through year 2099. These values provide a sampling of current climate model structural uncertainty

due to varying assumptions and numerical representations of atmospheric phenomena.

Note that the CESM values lie within the support of the calibration-constrained ensemble his-430

tograms in all cases. This is expected since the calibration-constrained ensemble is forced using the

CESM scenario. Similarly, the supports of calibration-constrained ensemble histograms for other

climate scenarios would be expected to encompass the calibrated soil parameter values (circles in

Fig. 9) as well. This indicates that different climate scenarios
:::::
models

:
will result in different mag-

nitudes of projection uncertainty due to soil property uncertainty. For example, if the calibration-435

constrained ensemble was simulated using MIROC, the magnitude of the projection uncertainty of

D (Fig. 9b) could be as much as 4-5 times larger than for CESM. This indicates the interactive effect

that soil property and structural climate model uncertainties have on projection uncertainty and that

these forms of uncertainty are not easily decoupled.

These plots present the magnitude of projection uncertainty due to only soil property uncertainty440

based on CESM atmospheric projections (histograms) and to only structural climate model uncer-

tainty (circles). By comparing the ensemble 95% confidence bands for the metrics to the range

of values across the climate models, it is apparent that structural climate model uncertainty has a

greater impact on projection uncertainty than soil property uncertianty
:::::::::
uncertainty. The ratios of the

ensemble 95% confidence band width and the range between the minimum and maximum values for445

climate models are 26% for ALT, 9% for D, 45% for Sl, and 80% for ST . As explained above, if

a different climate model had been used for the ensemble calculations, these percentages would be

different.

8 Dependence of permafrost projections on soil parameters

Figure 10 presents paired plots of calibration-constrained projections for year 2100. The diagonals450

are projection histograms, the lower triangle contains paired scatterplots, and the upper triangle

contains the Pearson correlation coefficients between matrix pairs. The samples are discrete in ALT

due to the mesh discretization. The mesh cell thickness increases with depth, and the active layer

is determined as the depth to the bottom of the deepest unfrozen cell (i.e. with a temperature above

0◦C).455

From this figure, it is apparent that all the metrics are positively correlated. The correlation be-

tween ALT andD is expected given the definition ofD as a metric defining the quantity and duration
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Figure 9: Comparison of (a) ALT, (b) annual thaw depth-duration, (c) annual mean
liquid saturation, and (d) Stefan number projection uncertainty due to soil property un-
certainty (histograms) and structural climate model uncertainty (circles). Histograms
include calibration-constrained ensemble values for years 2091 to 2100 (11,530 values)
based on the CESM8.5 climate scenario. Open circles below the histograms are values
for the various climate scenarios for the same years using the calibrated soil parameters
(10 values each, except for BCC which has 9). Ensemble 95% confidence band (CB)
limits are indicated as vertical dashed lines.24

Figure 9. Comparison of (a) ALT, (b) annual thaw depth-duration, (c) annual mean liquid saturation, and (d) Ste-

fan number projection uncertainty due to soil property uncertainty (histograms) and structural climate model un-

certainty (circles). Histograms include calibration-constrained ensemble values for years 2091 to 2100 (11,530

values) based on the CESM8.5 climate scenario. Open circles below the histograms are values for the various

climate scenarios for the same years using the calibrated soil parameters (10 values each, except for BCC which

has 9). Ensemble 95% confidence band (CB) limits are indicated as vertical dashed lines.
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of unfrozen soil. The correlation of Sl to ALT is a result of the deeper portions of the thicker ALT

scenarios having slightly increased levels of saturation, which is apparent the liquid saturation statis-

tical profiles in Fig. 8d for year 2100. The correlation betweenD and Sl can be explained by a similar460

argument. Increased levels of saturation lead to higher bulk thermal conductivy of the mineral soil

layer, resulting in thicker ALT and larger D due to increased energy flux. Correlations between ST

and the other projection metrics indicate that as ALT increases, resulting in increased annual thaw

depth-duration D and annual mean liquid saturation Sl, the system becomes increasingly latent heat

dominated. This is due to the fact that more energy is required to thaw greater depths of frozen soil465

each year.

Figures 11, 12, 13, and 14 explore correlations between the calibration-constrained parameters

and projected metrics. These figures plot scatterplots between hydro-thermal soil parameters and

projection metrics for year 2100. The discrete nature of the samples with respect to ALT mentioned

above due to the mesh discretization is also apparent in Fig. 11. Pearson correlation coefficients for470

each soil parameter/projection metric pair are presented on each scatterplot. The points are colored

by D in Fig. 11 and by ALT in Figs. 12, 13, and 14 to further illustrate the correlations between

metrics already presented in Fig. 10. Peat parameters are presented along the left column and mineral

soil parameters along the right column of each figure.

Some strong correlations are apparent in Figs. 11, 12, 13, and 14 with coefficients greater that
::::
than475

0.9. Many of these correlations confirm our qualitative understanding of the model. It is apparent that

in many cases projection metrics have stronger dependencies on the mineral soil porosity (φmin) and

residual saturation (Θr,min) parameters compared to the corresponding peat parameters (φpeat and

Θr,peat). Dependence on the other parameters is less predictable. For example, decreasing mineral

soil porosity (φmin) increases the bulk thermal conductivity of the mineral soil due to the relatively480

large thermal conductivity of the mineral soil grains, leading to larger ALT (top right plot in Fig. 11).

We determine linear dependency coefficients of projection metrics to calibration-constrained pa-

rameters using ordinary least squares. We limit the analysis to soil parameter/projection metrics

exibiting moderate to strong correlation (|ρ|> 0.7). Table 2 presents the intercept and slope coef-

ficients from the analysis, along with their 95% confidence intervals. All coefficients in Table 2485

are significant at the 1% level. The coefficient of determination (R2) is presented indicating the

portion of the variance explained by the regression for each case. Note that since we use ordinary

least squares including an intercept, the R2 is simply the square of the correlation coefficients (ρ)

presented in Figs. 11, 12, 13, and 14. Calibration-constrained parameters not included in Table 2

resulted in regressions with R2 less than 0.5.490

The slope coefficients are emphasized in bold in the table since these describe the first-order

dependence of projection metrics on the calibration-constrained parameters. The slope coefficients

describe the change in ALT given a unit change in the calibration-constrained parameter. For exam-
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Figure 12. Scatterplots between calibration-constrained parameters and projected annual thaw depth-duration.
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Figure 13. Scatterplots between calibration-constrained parameters and projected annual mean saturation. Soil

parameters associated with peat are on the left and with mineral soil on the right. Colors represent ALT. The

associated Pearson correlation coefficient ρ is indicated in each plot.
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Figure 14. Scatterplots between calibration-constrained parameters and projected Stefan number. Soil parame-

ters associated with peat are on the left and with mineral soil on the right. Colors represent ALT. The associated

Pearson correlation coefficient ρ is indicated in each plot.
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Table 2. Linear regression intercept and slope coefficients for permafrost metrics as a function of calibration-

constrained parameters

Metric Parameter Intercept 95% Conf. Int. Slope 95% Conf. Int. R2

ALT φmin 1.66 1.65 – 1.67 -1.39 -1.41 – -1.37 0.95

D φmin 0.465 0.462 – 0.468 -0.402 -0.408 – -0.397 0.95

Sl

Θr,peat 0.510 0.506 – 0.513 0.227 0.215 – 0.240 0.52

Θr,min 0.452 0.450 – 0.455 0.702 0.687 – 0.717 0.87

ST φmin 0.327 0.323 – 0.331 -0.381 -0.387 – -0.374 0.92

ple, if φmin increases by 0.1, we would estimate that ALT will decrease by around 0.14 m. These

coefficients can be useful in gaging the impact of soil parameter changes on projection metrics.495

9 Discussion and Conclusions

In summary, we extended previous calibration and model refinement work (Atchley et al., 2015)

to quantify post-calibration uncertainty in soil properties and the impact of that uncertainty on pro-

jections of permafrost thaw. Using a model with parameters calibrated against data from the BEO,

driving the NSMC ensemble of models using the CESM climate model in the RCP8.5 scenario, and500

comparing against other climate models in the RCP8.5 scenarion, the following conclusions can be

made:

– The median ALT and annual thaw depth-duration (D) of the calibration-constrained ensemble

increase by around a factor of 3 by the end of the century.

– The effect of soil property uncertainty based on CESM atmospheric forcings is approximately505

26% of the uncertainty caused by climate model structural uncertainty for ALT, 9% for D,

45% for Sl, and 80% for Stefan number.

– Intra-annual uncertainty of ALT and D due to soil property uncertainty increase significantly

from the first year to the last decade of the projections

– Intra-annual uncertainty of soil moisture content due to soil property uncertainty is not signif-510

icantly changed by the end of the century.

– Intra-annual uncertainty of the Stefan number due to soil property uncertainty decreases, but

this is at least partially due to this metric approaching its lower boundary in the last decade.

– The active layer moves to an increasingly latent heat dominated system due to larger quantities

of frozen ground thawed each year.515
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– ALT, D, and ST are highly dependent on φmin, while Sl is highly dependent on Θr,min and

moderately dependent on Θr,peat.

Efforts to quantify the relative roles of subsurface versus climate and scenario uncertainty have

only recently begun. We found that the effect of soil property uncertainties can be reduced to levels

lower than the uncertainty generated by uncertainties in climate model structure through a process of520

calibration to field observations, model structural refinement (Atchley et al., 2015), and calibration-

constrained uncertainty analysis. However, we had the advantage of data from an unusually well-

characterized site, which suggests that the residual uncertainty identified here is close to a practical

limit.

The quantitative results shown here are specific to the site, available data, RCP trajectory assump-525

tion, and climate model. Nevertheless, the approach presented here is anticipated to be useful for un-

derstanding the impact that additional data collection might have on reducing uncertainty associated

with other high-latitude permafrost sites. Potential directions for future work include the investiga-

tion on the impact that longer data streams and other types of observation might have on reducing

uncertainties. In particular, the calibration against borehole temperature data was uninformative of530

certain water retention properties of the soils (van Genuchten α and m parameters). Therefore, co-

located measurements of soil moisture would be useful to help constrain those parameters. More-

over, given the known spatial variability in soil properties across the pan-Arctic (Hinzman et al.,

1998; Rawlins et al., 2013), calibration-constrained soil property uncertainty across larger spatial

scales warrants further investigations.535

Appendix A: Supplemental information

Figures 15, 16, and 17 present the 95th confidence band for NSMC ensemble temperatures during

the calibration year for all depths. These figures present the complete data set from which Figure 3

was drawn, which presents the 40 cm depth values only (near the ALT in 2013).
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Figure 15. Time-series of temperature at specific depths for the polygonal center. Measured values from the

field
:::
BEO

::::
used

::
as

::::::::
calibration

:::::
targets

:
are shown as a red line, the mean of the NSMC sample as a blue line, and

the 95% confidence band is the shaded light blue region.
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Figure 16. Time-series of temperature at specific depths for the polygonal rim. Measured values from the field

::::
BEO

:::
used

::
as
:::::::::
calibration

:::::
targets are shown as a red line, the mean of the NSMC sample as a blue line, and the

95% confidence band is the shaded light blue region.
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Figure 17. Time-series of temperature at specific depths for the polygonal trough. Measured values from the

field
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used
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calibration
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