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Abstract

We present a quantitative network design (QND) study of the Arctic sea ice-ocean system
using a software tool that can evaluate hypothetical observational networks in a variational
data assimilation system. For a demonstration, we evaluate two idealised flight transects
derived from NASA’s Operation IceBridge airborne ice surveys in terms of their potential to
improve ten-day to five-month sea-ice forecasts. As target regions for the forecasts we se-
lect the Chukchi Sea, an area particularly relevant for maritime traffic and offshore resource
exploration, as well as two areas related to the Barnett Ice Severity Index (BSI), a standard
measure of shipping conditions along the Alaskan coast that is routinely issued by ice ser-
vices. Our analysis quantifies the benefits of sampling upstream of the target area and of
reducing the sampling uncertainty. We demonstrate how observations of sea-ice and snow
thickness can constrain ice and snow variables in a target region and quantify the com-
plementarity of combining two flight transects. We further quantify the benefit of improved
atmospheric forecasts and a well-calibrated model.

1 Introduction

The Arctic climate system is undergoing a rapid transition. Such changes, in particular re-
ductions in sea-ice extent, are impacting coastal communities and ecosystems and are
enhancing the potential for resource extraction and shipping. In this context, the ability
to anticipate anomalous ice conditions and in particular sea-ice hazards associated with
seasonal-scale and short-term variations in ice cover is essential. For example, in 2012,
despite a long-term trend of greatly reduced ice cover in the Chukchi Sea off Alaska’s coast,
ice incursions and associated hazards led to early termination of the resource exploration
season (Eicken and Mahoney, 2015). In this context, high-quality predictions of the ice con-
ditions are of paramount interest. Such predictions are typically performed by numerical
models of the sea ice-ocean system. These models are based on fundamental equations
that govern the processes controlling ice conditions. Uncertainty in model predictions arises
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from four sources: First, there is uncertainty in the atmospheric forcing data (such as wind
velocity or temperature) driving the relevant processes. Second, there is uncertainty regard-
ing the formulation of individual processes and their numerical implementation (structural
uncertainty). Third, there are uncertain constants (process parameters) in the formulation
of these processes (parametric uncertainty). Fourth, there is uncertainty about the state of
the system at the beginning of the simulation (initial state).

Observational information can be exploited to reduce these uncertainties. Currently there
are several initiatives underway to extend and consolidate the observational network of the
Arctic climate system, ranging, e.g., from the International Arctic Systems for Observing the
Atmosphere and Surface (IASOAS) to the Global Terrestrial Network for Permafrost (GTN-
P). Ideally, all observational data streams are interpreted simultaneously with the process
information provided by the model to yield a consistent picture of the state of the Arctic
system that balances all the observational constraints, taking into account the respective
uncertainty ranges. Data assimilation systems that tie into prognostic models of the Arctic
system are ideal tools for this integration task because they allow a variety of observations
to be combined with the simulated dynamics of a model.

Quantitative Network Design (QND) is a technique that aims at designing an observa-
tional network with optimal performance. The approach is based on work by Hardt and
Scherbaum (1994) who optimised the station locations for a seismographic network. It was
first applied to the climate system by Rayner et al. (1996), who optimised the spatial distribu-
tion of atmospheric measurements of carbon dioxide. A series of QND studies (Rayner and
O’Brien, 2001; O’Brien and Rayner, 2002; Rayner et al., 2002) demonstrated the feasibility
of the network design approach and delineated the requirements for the implementation of
the first satellite mission designed to observe atmospheric CO2 from space (Crisp et al.,
2004). Since, the technique has been routinely applied in the design of CO2 space mis-
sions (Patra et al., 2003; Kadygrov et al., 2009; Kaminski et al., 2010; Rayner et al., 2014)
and the extension of the in situ sampling network for atmospheric carbon dioxide. Recent
examples focus on in situ networks over Australia (Ziehn et al., 2014) and South Africa
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(Nickless et al., 2014). The design of a combined atmospheric and terrestrial network of the
European carbon cycle is addressed by Kaminski et al. (2012).

The present study applies the QND concept to the Arctic sea ice-ocean system. It de-
scribes the Arctic Observational Network Design (AOND) system, a tool that can evaluate
the performance of observational networks comprising a range of different data streams.
We illustrate the utility of the tool by evaluating the relative merits of alternate airborne tran-
sects within the context of NASA’s Operation IceBridge (Richter-Menge and Farrell, 2013;
Kurtz et al., 2013a), assessing their potential to improve ice forecasts in the Chukchi Sea
and along the Alaskan coast.

2 Methods

Our AOND system evaluates observational networks in terms of their impact on target quan-
tities in a data assimilation system. Both the data assimilation system and the AOND system
are built around the same model of the Arctic ocean sea-ice system. Below, we first present
the model, then the assimilation system and finally the QND approach operates on top of
this model.

2.1 NAOSIM

The model used for the present analysis is the coupled sea ice-ocean model NAOSIM
(North Atlantic/Arctic Ocean Sea Ice Model, (Kauker et al., 2003)). NAOSIM is based on
version 2 of the Modular Ocean Model (MOM-2) of the Geophysical Fluid Dynamics Labo-
ratory (GFDL). The version of NAOSIM used here has a horizontal grid spacing of 0.5◦ on
a rotated spherical grid. The rotation maps the 30◦W meridian onto the equator and the
North Pole onto 0◦ E. Hence, the model’s x and y directions are different from the zonal and
meridional directions, and the grid is almost equidistant. In the vertical it resolves 20 levels,
their spacing increasing with depth from 20 m to 480 m. At the southern boundary an open
boundary condition has been implemented following Stevens (1991), allowing the outflow
of tracers and the radiation of waves. The other boundaries are treated as closed walls. At
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the open boundary near 50◦ N the barotropic transport is prescribed from a coarser reso-
lution version of the model that covers the whole Atlantic northward of 20◦ S (Köberle and
Gerdes, 2003).

A dynamic-thermodynamic sea ice model with a viscous-plastic rheology (Hibler, 1979) is
coupled to the ocean model. The prognostic variables of the sea ice model are ice thickness,
snow depth, and ice concentration. Ice drift is calculated diagnostically from the momentum
balance. Snow depth and ice thickness are mean quantities over a grid box. The thermo-
dynamic evolution of the ice is described by an energy balance of the ocean mixed layer
following Parkinson and Washington (1979). Freezing and melting are calculated by solv-
ing the energy budget equation for a single ice layer with a snow layer. When atmospheric
temperatures are below the freezing point, precipitation is added to the snow mass. The
snow layer is advected jointly with the ice layer. The surface heat flux is calculated through
a standard bulk formula approach using prescribed atmospheric data and sea surface tem-
perature predicted by the ocean model. Owing to its low heat conductivity the snow layer
has a high impact on the simulated energy balance (Castro-Morales et al., 2014). The sea
ice model is formulated on the ocean model grid and uses the same time step. The models
are coupled following the procedure devised by Hibler and Bryan (1987).

Atmospheric forcing (10m-wind velocity, 2m-air temperature, 2m-dew point temperature,
total precipitation, and total cloud cover) is taken from the National Centers for Environmen-
tal Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis (Kalnay
et al., 1996). This study is based on a model integration from 1 April 2007 to 31 August
2007. The initial state of this integration is the final state of a hindcast from January 1948
to end of March 2007, forced by NCEP/NCAR reanalyses and in turn initialized from PHC
(Steele et al., 2001) (ocean temperature and salinity), zero ocean velocities and zero snow
depth, a constant ice thickness of 2m with 100% ice cover where the air temperature is
below the freezing temperature of the ocean’s top layer and zero ice drift. The model’s
process formulations depend on a number of uncertain parameters. Table 1 summarises
atmospheric forcing fields, initial fields and lists a subset of the model’s relevant process
parameters.
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2.2 Assimilation

The variational assimilation system NAOSIMDAS (Kauker et al., 2009, 2010) operates
through minimisation of a cost function that quantifies the fit to all observations plus the
deviation from prior knowledge on a vector of control variables x:

J(x̃) =
1

2

[
(M(x̃)−d)TC(d)−1(M(x̃)−d)+ (x̃−x0)

TC(x0)
−1(x̃−x0)

]
(1)

where M denotes the model, considered as a mapping from the control vector to obser-
vations, d the observations with data uncertainty covariance matrix C(d), x0 the vector of
prior values of the control variables with uncertainty covariance matrix C(x0), and the su-
perscript T is the transpose operator. The control variables are typically a combination of
the initial state, the atmospheric forcing and the process parameters. The data uncertainty
C(d) reflects the combined effect of observational C(d obs) and model error C(d mod):

C(d)2 = C(d obs)
2+C(d mod)

2 (2)

C(d mod) captures all uncertainty in the simulation of the observations except for the uncer-
tainty in the control vector, because this fraction of the uncertainty is explicitly addressed by
the assimilation procedure through correction of the control vector.

The minimum of Eq. (1) achieves a balance between the observational constraints and
the prior information. This variational approach to assimilation guarantees (in contrast to
sequential approaches) full consistency with the model dynamics. For our model this means
that we infer a trajectory through the state space that assures conservation of mass, energy
and momentum (except at the lateral domain boundaries). We note that, in this QND study,
no minimisation of Eq. (1) is required.

2.3 QND

We provide a brief description of the methodological background for QND, which follows
Kaminski and Rayner (2008). The approach is based on propagation of uncertainty from the

6



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

data to a target quantity of interest. The target quantity may be any aspect (e.g. a prognostic
or diagnostic variable or a process parameter) that can be extracted from a simulation with
the underlying model, for example, the sea-ice concentration integrated over a particular
domain and time period.

QND proceeds in two steps. In the first step, the second derivative (Hessian) of the cost
function (Eq. 1) is used to approximate the inverse of the covariance matrix C(x) of poste-
rior uncertainty of the control vector, which quantifies the uncertainty ranges of the control
variables that are consistent with uncertainties in the observations and the model. Denoting
the linearisation of the model by M′ we can approximate this posterior uncertainty by

C(x)−1 =M′
T
C(d)−1M′+C(x0)

−1 . (3)

The first term on the right hand side quantifies the observational impact which yields an un-
certainty reduction with respect to the prior uncertainty (inverse of the second term). When
the prior uncertainty is already small the second term is large, and a large observational
impact is required to achieve a substantial uncertainty reduction. The observational impact
is large, when the observations are highly sensitive to changes in the control variables
and when the data uncertainty is small. The first condition describes the relevance of the
observation and the second condition its quality.

In the second step, the linearisation N′ (Jacobian) of the model N used as a mapping
from the control vector to target quantities is employed to propagate the uncertainties in the
control vector forward to the uncertainty in a target quantity σ(y):

σ(y)2 =N′C(x)N′
T
+σ(ymod)

2 . (4)

If the model were perfect, σ(ymod) would be zero. In contrast, if the control variables were
perfectly known, the first term on the right hand side would be zero. Eq. (4) relates the
uncertainty in control space to uncertainty in a target quantity. To reduce uncertainty for a
target quantity, the observations need to reduce uncertainty in the sub-space of the control
space that (through the matrix N ′) projects onto the target quantity. In other words, it does
not help to constrain parts of the parameter space that have no impact on the target quantity
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(as quantified byN ′). Specific examples and further discussion of how to interpret the matrix
N ′ will be provided in the Sect. 4 below.

We note that (through Eqs. 3 and 4) the posterior target uncertainty solely depends on
the prior and data uncertainties as well as the linearised model responses of simulated ob-
servation counterparts and of target quantities. The approach does not require real obser-
vations, and can thus be employed to evaluate hypothetical candidate networks. Candidate
networks are defined by a set of observations characterised by observational data type,
location, time, and data uncertainty. Hence, the QND approach does not require running
the assimilation system. Here, we define a network as the complete set of observations, d,
used to constrain the model. The term network is not meant to imply that the observations
are of the same type or that their sampling is coordinated. For example, a network can
combine in situ and satellite observations.

In practice, for pre-defined target quantities and observations, model responses can be
pre-computed and stored. A network composed of these pre-defined observations, can then
be evaluated in terms of the pre-defined target quantities without further model evaluation.
Only matrix algebra is required to combine the pre-computed sensitivities with the data un-
certainties. This aspect is exploited in our AOND system. The linearised response functions
were computed by the tangent linear version of NAOSIM generated from the model’s source
code through the automatic differentiation tool TAF (Giering and Kaminski, 1998).

3 Experimental setup

3.1 Target quantities

The goal of this study is to explore the utility of the AOND system in guiding observations
for short-term to seasonal-scale sea-ice predictions. Ice forecasting at these time scales
has been identified as a high priority in the context of safe maritime operations (Richter-
Menge and Walsh, 2012; Kurtz et al., 2013a; Eicken, 2013) management of marine living
resources (Robards et al., 2013) and food security for indigenous communities (Brubaker
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et al., 2011). Here, we focus on the first two issues in the Chukchi and Beaufort Seas north
of Alaska (Figs. 1 and 2), which are experiencing some of the highest reductions in summer
ice concentration anywhere in the Arctic, along with major offshore hydrocarbon exploration
and potential impacts on protected species such as walrus (Eicken and Mahoney, 2015).
Thus, the selection of target quantities for the AOND system seeks to evaluate and improve
predictions aimed at the information needs of stakeholders and resource managers for this
region. Of particular interest is the summer season with its reduced ice cover. From an
observational point of view this period is particularly challenging, as surface melt and its
impact on ice dielectric properties complicate retrievals of variables such as snow depth
and ice thickness through satellite remote sensing. For this study we deliberately selected
the year 2007, a year of particularly low ice extent, which may be regarded as representative
of future ice conditions in a rapidly changing Arctic. As is detailed in the following, we study
both, predictions for selected days and for integrals over selected time periods.

For all target regions delineated in Fig. 1, we use spatial averages of ice concentration
(fraction of area covered by ice, regardless of the 15% floor used in the definition of ice
extent), ice thickness, and snow thickness. For each of the target regions we look at these
quantities for different days or time periods. For the target region Chukchi Sea we examine
these three quantities for each of 10 April, 30 June, and 31 August, yielding a total of
nine target quantities. In order to specifically address information needs with respect to
safe shipping between Bering Strait and the central and eastern Beaufort Sea (including
supply of coastal communities and the oil industry hub at Prudhoe Bay, offshore resource
exploration and transits through the Northwest Passage), we evaluate an additional set of
target quantities derived from the Barnett Ice Severity Index (BSI). The BSI has developed
into a standard measure of shipping conditions and potential hazards encountered along
the Alaskan coast and at a critical chokepoint of the Northwest Passage and is routinely
issued by ice services (Barnett, 1976). Drobot (2003) has examined the predictive skill of
statistical models in BSI seasonal forecasts. The BSI is a composite of eight aspects of
summer ice conditions (see Table 2), four related to the distance of the ice pack north of
Point Barrow (NOB) in mid-August and mid-September and four related to the timing of ice
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retreat along the sea route from Bering Strait to Prudhoe Bay during the entire navigation
season (BS2PB). In replicating these variables in condensed way, we identify the two target
regions as shown in Fig. 1. The target region NOB covers a corridor of 50 km (one grid
cell) width extending from Point Barrow to 75◦N on 10 and 31 August. We use 31 August
in contrast to 15 September (which is used in the definition of the BSI), because from the
end of August to mid September 2007 the ice edge was located northwards of 75◦N. For
the region BS2PB, in keeping with the BSI we use the time period from May to August.

3.2 Control variables

In our variational assimilation system the largest possible control vector is the superset of
initial and surface boundary conditions as well as all parameters in the process formula-
tions. To keep our AOND system numerically efficient, two- and three-dimensional fields
are grouped into regions. We proceeded by dividing the Arctic domain into nine regions
(Fig. 2). In each of these regions we add a scalar perturbation to each of the forcing fields
(indicated in Table 1 by the type boundary “f” ). Likewise we add a scalar perturbation to five
initial fields (indicated in Table 1 by the type initial “i” ). For the ocean temperature and salin-
ity the size of the perturbation is reduced with increasing depth. Finally we have selected
18 process parameters from the sea ice-ocean model. This procedure resulted in a total of
126 control variables, a superset of the set of control variables identified by Sumata et al.
(2013) to have largest impact on the simulation. Unlike the study by Kauker et al. (2009) the
control vector used here also includes process parameters. We conducted sensitivity ex-
periments in which we remove components from the control vector. For example, removing
the atmospheric forcing explores the (hypothetical) case of a perfect seasonal atmospheric
forecast and removing the process parameters the (hypothetical) case of a perfectly cali-
brated model.

The prior uncertainty of the control variables, C(x0) (see Eqs. 1 and 3) is, assumed to
have diagonal form, i.e. there are no correlations among the prior uncertainty relating to
different components of the control vector. The diagonal entries are the square of the prior
uncertainty (quantified by its standard deviation, in the following denoted as SD or prior
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sigma). For process parameters this SD is estimated from the range of values typically used
within the modelling community. The SD for the components of the initial state is based
on a model simulation over the past twenty years and computed for the twenty member
ensemble corresponding to all states on the same day of the year. Likewise the SD for the
surface boundary conditions is computed for the twenty member ensemble corresponding
to all five-month forecast periods starting on the same day of the year.

As the QND approach does not require the minimisation of Eq. (1), the prior uncertainty
only serves as a reference such that the impact of observations is quantified in terms of a
percentage change relative to the prior uncertainty (uncertainty reduction). If the prior un-
certainty was too optimistic the impact of the observations would be underestimated, and,
vice versa, if the prior uncertainty was too high the impact of the observations would be
overestimated. As we will use the same prior uncertainty as the reference for all observa-
tional configurations, their relative performance is not affected.

3.3 Observational networks

There are various types of observations sampling the Arctic sea ice-ocean system, many
of which are potentially suitable for assimilation into a model like NAOSIMDAS. Our AOND
system focuses on observations of ice concentration (not used in the present study) snow
depth and ice thickness. It provides response functions for each of these three observables,
for each surface grid cell, and for each day of the simulation period (i.e. about 5 million pos-
sible observations) with a user-defined data uncertainty. In this study we demonstrate the
application and potential utility of the system in evaluating the relative merits and quan-
titative contribution to improving sea-ice forecasts for two alternate ice-thickness airborne
survey profiles. This example is based on the need for objective guidance on flight routing as
part of NASA’s Operation IceBridge, an airborne laser altimeter and snow radar campaign
meant to provide information on the mass budget of the Arctic ice pack (Richter-Menge and
Farrell, 2013). Recent work has demonstrated the utility of such data, collected in spring
for initialization and constraints on seasonal forecasts of summer ice extent (Lindsay et al.,
2012; Kurtz et al., 2013a). Based on an evaluation of flown and hypothetical IceBridge
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transects, we evaluate the impact of simulated measurements along two transects within
AOND. The first is a transect from Bering Strait to Fram Strait, which we denote by Chukchi
to Fram (C2F, Fig. 1, red) and the second from the Beaufort Sea to Fram Strait which we
denote by Beaufort to Fram (B2F, Fig. 1, yellow). Both flights are assumed to take place on
5 April 2007. The “observations” consist of model output of ice and snow thickness at each
grid cell that intersects with the transect as indicated in Fig. 1. The default case specifies
a data uncertainty of 30 cm for both quantities. To explore the sensitivity of the results with
respect to the data uncertainty, we also test a data uncertainty of 10 cm. While the former is
at the lower end of what is expected for IceBridge altimeter data (Kurtz et al., 2013b), the lat-
ter corresponds to the lower bounds of airborne electromagnetic induction measurements
(Haas et al., 2009).

4 Results and discussion

Figure 3 shows the performance of each transect in improving forecasts over the Chukchi
target region. We define the uncertainty reduction relative to the case without observational
constraints, where the prior uncertainty in the control vector (see Sect. 3.2) is propagated to
the three target quantities. Overall we note a larger impact of C2F on the short-term forecast
(10 days) while for B2F the impact increases for the mid-term forecast (3 months). For the
mid-term forecast C2F surpasses B2F with respect to the impact on predicted ice concen-
tration and snow thickness, while its impact is marginally smaller for ice thickness. For the
10 day forecast C2F has a much larger impact on predicted ice and snow thickness than on
ice concentration. This is mostly a result of the flights observing specifically the former two
quantities, whereas the model dynamics require some time to transfer any constraints on
snow and ice thickness into constraints on ice concentration. Moreover, ice concentration
in this region is also strongly dependent on factors other than snow and ice thickness, in
particular during spring and early summer when the role of wind forcing greatly exceeds
that of the other two variables.

12



D
iscussion

P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|
D

iscussion
P
aper

|

Mathematically, through N ′ in Eq. (4), each target quantity defines a one dimensional
sub-space (target direction, (Kaminski et al., 2012)) of the space spanned by the control
vector (control space). All control vectors v perpendicular to the target direction yield N ′v =
0. Similarly, through M ′ in Eq. (3) each observation defines a second one-dimensional
sub-space of the control space, the observed direction. The better the observed direction
projects onto the target direction, the more efficient is the observation in reducing the uncer-
tainty in the target quantity. According to Eq. (3) the uncertainty reduction increases with the
response of the observable to a change in the control vector (M ′) and decreases with the
data uncertainty. Figure 4 provides a visualisation of the complete matrix N ′, which shows
the response of the three target quantities to a change in each of the control variables by
one SD of the prior probability density function (Table 1). The position on the x-axis corre-
sponds to the number of the control variable in the last column of Table 1. This provides
two pieces of information: First, it shows the target direction, second it shows the size of the
impact of an uncertainty reduction in the target direction. We note that the initial conditions
of ice and snow have highest impact for the short-term forecast. For the mid-term forecast,
atmospheric forcing and model parameters gain in importance. For the interpretation of the
windstress components taux and tauy recall that the model operates on a rotated coordinate
system. Taking the rotation into account, for regions 6, 7, and 8 Fig. 5 shows the direction
in which a change of tau yields the largest increase in ice thickness. Adding a 25◦ Ekman
deflection the change of ice motion is towards the target region. For the long-term forecast
(153 days), the impacts (not shown) are generally small, because there is little ice left in the
target area. The impact of the B2F transect on the 10 day forecast of ice concentration over
the (remote) Chukchi target region (panel b of Figure 3) is remarkable. It is explained by the
relatively high impact of the lead closing parameter h0 in the formulation of freezing (control
variable # 89) on ice concentration (Figure 4). Since h0 is a global parameter, observations
on both transects can help to reduce uncertainty in this parameter.

Figure 6 shows the performance of each transect for improving forecasts for the tar-
get region covering the coastal ocean from Bering Strait to Prudhoe Bay (BS2PB). They
show similar performance because this target quantity is temporally averaged from May to
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August. B2F is superior for snow thickness and C2F for ice thickness and area. As an addi-
tional test case we evaluate the combination of the two transects, which clearly shows their
complementarity.

Figure 7 shows the response of the three target quantities to a 1 prior sigma change in
each of the control variables. The impact of wind stress dominates. For both, region 7 and
8, Fig. 8 a change of tau yields the largest increase in ice thickness. Adding a 25◦ Ekman
deflection (to the right) the change of ice motion is towards the intersection of the respective
region’s coast line with the target area BS2PB. Parameter pstar has a positive impact,
because it yields more rigid ice. Parameter h0 has a negative impact: Increasing h0 yields
thicker newly formed ice and consequently reduces the ice concentration.

Figure 9 shows the performance of each transect for improving forecasts over the NOB
target region. The performance of B2F is much better than that of C2F for both forecast
times. This result appears counter-intuitive, because C2F is much closer than B2F, but
can be explained through the influence of the westward circulation prevailing in the waters
off the Alaskan coast (Eicken and Mahoney, 2015). For forecast times of 4–5 months, an
upstream observation is associated with much more predictive skill than an observation
directly over the target area. In fact the same mechanism explains the previously mentioned
higher uncertainty reduction of B2F for the long-term forecast in the Chukchi area. For the
target area BS2PB none of the transects dominate, because the target period is an integral
from forecast months 2 to 5.

Figure 10 shows the response of the three target quantities (on both, 10 and 31 August)
to a 1 prior sigma change in each of the control variables. We note the highest impact for
tauy in region 8 (positive impact of southwest increase) leading to more ice in the target
region (see Fig. 11). Furthermore there is relatively high impact of other atmospheric forc-
ing variables, but also of some parameters (the albedo of melting ice, albm, and the ice
strength parameter, pstar) and the ice initial conditions. There is generally little difference
in the responses for the two forecast periods. This is an indication of the robustness of our
linearisation of the coupled ocean sea-ice system and confirms an analysis of Kauker et al.
(2009) who found, for the same model, moderate differences between the linearisation and
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finite size perturbations. A consequence of this robustness is that the specific target days
we chose, only play the role of a typical day within a longer time period.

Figure 12 shows the sensitivity of the performance of (the superior) B2F transect with
respect to various impact factors for the NOB target region (cmp. 9. The reduction in data
uncertainty from 0.3 to 0.1m for both ice and snow thickness yields a considerable improve-
ment in performance (panel a). The effect is particularly pronounced for ice area. Reducing
the prior uncertainty for the atmospheric forcing to zero mimics the availability of a per-
fect seasonal atmospheric forecast. Under this assumption, the performance of the B2F
transect is strongly increased (panel b). Likewise a reduction of the prior uncertainty for
all process parameters mimics a perfectly calibrated model. Its effect on the performance
of the B2F transect is relatively small (panel c). Interestingly, combining the perfectly cal-
ibrated model and the perfect atmospheric forecast assumptions doubles the uncertainty
reductions compared to the perfect atmospheric forecast assumptions alone.

5 Conclusions

We have presented an Arctic Observational Network Design (AOND) System that evaluates
hypothetical observational networks of the coupled sea ice-ocean system in terms of their
constraint on target quantities of interest within an assimilation system. We have applied the
tool to evaluate the potential of two flight transects to reduce uncertainties in ice forecasts
over periods from ten days to five months for regions with high offshore resource exploration
(Chukchi Sea) or shipping activity (North-West Passage). For our analysis and case study
we selected the year 2007, a year of particularly low ice extent, which may be regarded as
representative of future ice conditions in a rapidly changing Arctic.

Since our quantitative results are specific to the conditions in this particular year, we
focus on overarching conclusions that can be drawn from this case study. First, we note
that the network performance depends on the specific question asked, i.e., on the target
quantity. As important in the highly advective Arctic sea-ice regime is the finding that the
longer the forecast time, the further upstream we have to sample, well outside of the re-
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gion of interest. This may result in significant interannual variability in the area that needs
to be targeted for measurements relative to the region of interest. This finding also sup-
ports the broader notion of an adaptive sampling grid that reflects a priori knowledge of
the state and dynamics of the ice cover at the end of the ice growth season. On another
level, we furthermore demonstrated in a quantitative way how the model dynamics trans-
fer the observational information from one set of variables (snow depth and ice thickness)
to another variable (ice concentration). In this context, we note that in our case study the
target quantities and framework for assessing the QND were based on the specific objec-
tive of predicting summer ice conditions or navigation along a heavily trafficked route in
the Alaskan Arctic at the seasonal scale. Future work will have to evaluate the degree of
overlap in uncertainty reduction for predictions on seasonal as compared to interannual or
multidecadal timescales.

When defining candidate networks to be evaluated it is essential to take logistic con-
straints into account. The selection of alternate flight routes for the C2F and B2F transects
inherently reflects logistic factors. However, the QND approach lends itself to inclusion of
quantitative constraints on specific regional data acquisition patterns that may require fur-
ther work to evaluate. Similarly, an essential input to the tool is the data uncertainty, which
is the combination of uncertainties in the observations and in modelling their counterparts
(model uncertainty). Hence, the QND approach can also help in evaluating methodological
improvements or evaluate the costs/benefits of advances in instrumental design that reduce
measurement errors. These findings make it clear that a QND tool needs to be operated by
a team consisting of observationalists and modellers in order to derive maximum benefits.

We note that the afore-mentioned model uncertainty to be provided to the tool does
not necessarily need to refer to the specific model that is used. As long as the response
functions of our model are approximately correct, we can use the present system to simulate
the observational impact on an assimilation system around a different model. For QND
results to be valid beyond the model at hand, one has to employ a well-validated model that
includes all relevant processes. For example the model should have adequate sensitivity of
regionally integrated ice properties with respect to the initial ice thickness. For the model
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used here this sensitivity is similar for resolutions from 1/2 to 1/12th degree. One would
not expect a drastic change of this sensitivity when moving to even finer (eddy permitting)
scales, but this requires further investigation. Computationally, the current 126 dimensional
control space requires 127 model simulations (over five months each) for the approximation
of the Jacobian matrices (M ′ of Eq. (3) and N ′ of Eq. (4)) quantifying observational and
target sensitivities. This should be feasible even for high-resolution models.

The current AOND system has the flexibility to also evaluate the potential of space mis-
sions or further in situ sampling strategies. There are a number of obvious ways to refine the
present system. It can be extended to cover climate conditions over longer time scales and
further into the future, possibly also representative of the state of the Arctic under climate
change scenario for mid-century and beyond. Moreover, one could add oceanic observa-
tions, further target quantities, or extend the control vector to gain broader insights into
observing system design in the coupled atmosphere-sea ice-ocean system. Furthermore,
rather than operating Arctic-wide, the same concept can be applied on smaller regional
scale, when the forecasting period is short enough to ensure that the main influence factors
can be appropriately simulated within the model domain.
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Table 1. Control Variables. Column 1 lists the quantities in the control vector, column 2 gives the
abbreviation for each quantity, column 3 indicates whether the quantity is an atmospheric boundary
(forcing, i.e. f) field, an initial field (i), or a process parameter (p), column 4 gives the name of
each quantity, column 5 indicates (the SD of) the prior uncertainty and the corresponding units
and provides the magnitude of the parameter value in parenthesis, where applicable, and column
6 identifies the position of the quantity in the control vector; for initial and boundary values (which
are differentiated by region) this position refers to the first region, the following components of the
control vector then cover regions 2 to 9.

index # name type meaning prior unc (value) start

1 taux f wind stress model x component 0.02Nm2 1
2 tauy f wind stress model y component 0.02Nm2 10
3 2mT f 2m air temperature 1.2K 19
4 DewT f dew pointe temperature 1.1K 28
5 cld f cloud cover 0.07 37
6 precip f total precipitation 0.4× 10−8ms−1 46
7 scalwnd f scalar wind speed 0.6m s−1 55
8 kappam p vertical viscosity coeff. 0.1× 10−3(1.0× 10−3)m2 s−1 64
9 kappah p vertical diffusion coeff. 1.0× 10−5(1.0× 10−5)m2 s−1 65

10 cdbot p bottom drag coeff. 0.5× 10−3 (1.2× 10−3) 66
11 tempi i initial ocean temperature 0.5K (vertically decreasing) 67
12 salinityi i initial salinity 0.5psu (vertically decreasing) 76
13 pstar p ice strength 10000(15000)Nm 85
14 cstar p ice strength depend. on ice conc. 5.0(20.0) 86
15 eccen p squared yield curve axis ratio 0.5(2.0) 87
16 gmin p regime plastic-linear viscous 1.0× 10−9(5.0× 10−9) 88
17 h0 p lead closing 1.0(0.5)m 89
18 cdwat p ocean drag coeff. 2.0× 10−3(5.5× 10−3) 90
19 cdwin p atmosphere drag coeff. 1.0× 10−3(2.475× 10−3)

(absorbed in taux/y)
20 angwat p ice turning angle 5.0◦ (25.0◦) 92
21 cdsens p sensible heat flux coeff. 0.5× 10−3(1.75× 10−3) 93
22 cdlat p latent heat flux coeff. 0.5× 10−3(1.75× 10−3) 94
23 albw p open water albedo 0.05(0.1) 95
24 albi p freezing ice albedo 0.1(0.7) 96
25 albm p melting ice albedo 0.1(0.68) 97
26 albsn p freezing snow albedo 0.1(0.8) 98
27 albsnm p melting snow albedo 0.1(0.77) 99
28 hi i initial ice thickness 0.5m 100
29 ai i initial ice concentration 0.1 109
30 hsni i initial snow thickness 0.2m 118
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Table 2. Aspects entering the definition of the BSI.

Distance from Point Barrow northward to ice edge (10 Aug).
Distance from Point Barrow northward to ice edge (15 Sep).
Distance from Point Barrow northward to boundary of five tenths ice concentration (10 Aug).
Distance from Point Barrow northward to boundary of five tenths ice concentration (15 Sep).
Initial date entire sea route to Prudhoe Bay less than/equal to five tenths ice concentration.
Date that combined ice concentration and thickness dictate end of prudent navigation.
Number of days entire sea route to Prudhoe Bay ice free.
Number of days entire sea route to Prudhoe Bay less than/equal to five tenths ice concentration.
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Figure 1. Target Regions: Chukchi (dark blue); North of Barrow (NOB, green) Bering Strait to Prud-
hoe Bay (BS2PB, red) and flight transects: Chukchi to Fram (C2F, red); Beaufort to Fram (B2F,
yellow).
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Figure 2. Sub-regions defined in the study. 1 (light plum) central Arctic. 2 (dark blue) North Atlantic,
and then counterclockwise to 7 (yellow) Bering Strait/Chukchi Sea, 8 (orange) Beaufort Sea, 9 (red)
Baffin Bay.
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(a) (b)

Figure 3. Uncertainty reduction for the Chukchi target area for flight transect C2F (panel a) and B2F
(panel b) for target quantities mean ice concentration a, mean ice thickness h and mean snow depth
hsn.
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(a) (b)

Figure 4. Sensitivity of target quantities over Chukchi area for 10 day (panel a), and 91 day (panel
b) forecasts to 1 sigma prior uncertainty change in each control variable. Units of target quantities
(and their sensitivities): ice concentration (a) (0–1); ice thickness (h) in m; snow thickness (hsn) in
m.
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Figure 5. Wind stress direction with highest impact of tau component in control vector on ice thick-
ness in Chukchi target region (dark red colour). Colour indicates magnitude.
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Figure 6. Uncertainty reduction for target area BS2PB for flight transects C2F, and B2F, and both.
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Figure 7. Sensitivity of target quantities for BS2PB area to 1 sigma prior uncertainty change in each
control variable. Units of target quantities (and their sensitivities): ice concentration (a) (0–1); ice
thickness (h) in m; snow thickness (hsn) in m.
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Figure 8. Wind stress direction with highest impact of tau component in control vector on ice thick-
ness in BS2PB target region (dark red colour). Colour indicates magnitude.
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(a) (b)

Figure 9. Uncertainty reduction for target areas NOB for flight transect C2F (panel a) and B2F (panel
b).
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(a) (b)

Figure 10. Sensitivity of target quantity over NOB area for 132 day (panel a), and 153 day (panel b)
forecasts to 1 sigma prior uncertainty change in each control variable. Units of target quantities (and
their sensitivities): ice concentration (a) (0–1); ice thickness (h) in m; snow thickness (hsn) in m.
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Figure 11. Wind stress direction with highest impact of tau component in control vector on ice
thickness in NOB target region (dark red colour). Colour indicates magnitude.
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(a) (b)

(c) (d)

Figure 12. Uncertainty reduction for target areas NOB for flight transect B2F with data uncertainty
of 0.1m (panel a), the assumption of perfectly known atmospheric forcing (panel b), the assumption
of a perfectly calibrated model (panel c), the assumption of perfectly known atmospheric forcing and
of a perfectly calibrated model (panel d).
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