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Abstract

Snow consists of non-spherical grains of various shapes and sizes. Still, in many radiative
transfer applications, single-scattering properties of snow have been based on the assump-
tion of spherical grains. More recently, second-generation Koch fractals have been em-
ployed. While they produce a relatively flat phase function typical of deformed non-spherical5

particles, this is still a rather ad-hoc choice. Here, angular scattering measurements for
blowing snow conducted during the CLimate IMpacts of Short-Lived pollutants In the Polar
region (CLIMSLIP) campaign at Ny Ålesund, Svalbard, are used to construct a reference
phase function for snow. Based on this phase function, an optimized habit combination
(OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly10

distorted Koch fractals is selected. The single-scattering properties of snow are then com-
puted for the OHC as a function of wavelength λ and snow grain volume-to-projected area
equivalent radius rvp. Parameterization equations are developed for λ=0.199–2.7 µm and
rvp =10–2000 µm, which express the single-scattering co-albedo β, the asymmetry param-
eter g and the phase function P11 as functions of the size parameter and the real and15

imaginary parts of the refractive index. The parameterizations are analytic and simple to
use in radiative transfer models. Compared to the reference values computed for the OHC,
the accuracy of the parameterization is very high for β and g. This is also true for the phase
function parameterization, except for strongly absorbing cases (β > 0.3). Finally, we con-
sider snow albedo and reflected radiances for the suggested snow optics parameterization,20

making comparisons to spheres and distorted Koch fractals.

1 Introduction

Snow grains are non-spherical and often irregular in shape. Still, in many studies, spher-
ical snow grains have been assumed in radiative transfer calculations, due to the conve-
nience of using Mie theory. In fact, it has been shown that the spectral albedo of snow25

can be fitted by radiative transfer calculations under the assumption of spherical snow
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grains, when the effective snow grain size is considered an adjustable parameter (i.e., deter-
mined based on albedo rather than microphysical measurements) (Wiscombe and Warren,
1980; Grenfell et al., 1994; Aoki et al., 2000). Snow albedo parameterizations used in cli-
mate models and numerical weather prediction models are often semi-empirical and do30

not specify the snow grain shape (for some examples, see Wang and Zeng, 2010). How-
ever, in most (if not all) physically-based albedo parameterizations that explictly link the
albedo to snow grain size, spherical snow grains are assumed (Flanner and Zender, 2005;
Gardner and Sharp, 2010; Aoki et al., 2011).

It is, however, well known that the single-scattering properties (SSPs) of non-spherical35

particles, including the single-scattering albedo ω, the phase function P11, and the entire
phase matrix P, can differ greatly from those of spheres.1 A consequence of this is that
the assumed shape of snow grains has a profound effect on the bidirectional reflectance
distribution function BRDF of snow (Mischenko et al., 1999; Xie et al., 2006). Furthermore,
Aoki et al. (2000) showed that the modelled BRDF of snow agreed better with observa-40

tions if, instead of the actual phase function for spheres, the Henyey–Greenstein (HG)
phase function (Henyey and Greenstein, 1941) was assumed. The HG phase function is
very smooth, while that of spheres features icebow and glory peaks not seen for real snow,
along with very low sideward scattering. Based on a comparison of a few shape models with
phase function measurements for laboratory-generated ice crystals (Barkey et al., 2002),45

Kokhanovsky and Zege (2004) recommended, instead of spheres, the use of Gaussian
random spheres (Muinonen et al., 1996; Nousiainen and Muinonen, 1999) or Koch fractals
(Macke et al., 1996), which both exhibit a relatively featureless phase function. Since Gaus-
sian random spheres have several free parameters while Koch fractals have none (except
for the degree of distortion, for randomized Koch fractals), Koch fractals were selected by50

Kokhanovsky and Zege (2004). Kokhanovsky et al. (2005, 2011) further demonstrated that
the reflectance patterns computed for Koch fractals agreed reasonably well with actual mea-
surements for snow. Subsequently, they have been used in several studies related to remote

1While symbols and abbreviations are introduced at their first appearance, they are also listed in
Table A1.
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sensing of snow grain size and snow albedo (Lyapustin et al., 2009; Negi and Kokhanovsky,
2011; Kokhanovsky et al., 2011).55

Other snow grain shape models have also been considered. Tanikawa et al. (2006) sug-
gested the use of non-spherical ice particles with rough surfaces, specifically, cylindrical
particles for new snow and prolate ellipsoids for old granular snow. These choices im-
proved the agreement with observed angular reflectance patterns, as compared to the
use of spheres. Jin et al. (2008) compared anisotropic reflectance factors computed using60

spheres, hexagonal plates, hexagonal columns and aggregates of columns with ground-
based measurements in Antarctica, finding the best agreement for the aggregate model
and the largest discrepancies for spheres. Furthermore, Zege et al. (2011) tested, in their
retrieval algorithm of snow grain size and soot concentration in snow, a mixture of hexagonal
columns and plates with rough surfaces.65

Overall, while it is clear that spheres are not an ideal choice for modeling the SSPs of
snow, it is less clear which non-spherical model should be used. Kokhanovsky and Zege
(2004) noted that the final decision of the shape model should be made when in situ phase
function measurements for snow become available. The present paper makes a step to-
wards this direction. We employ angular scattering measurements for blowing snow per-70

formed with a polar nephelometer (Gayet et al., 1997) during the CLimate IMpacts of
Short-Lived pollutants In the Polar region (CLIMSLIP) campaign at Ny Ålesund, Svalbard
(Guyot et al., 2015) to construct a reference phase function for snow grains at the wave-
length λ=0.80 µm. This phase function is used to select a new shape model for snow, an
“optimized habit combination” (OHC) consisting of severely rough (SR) droxtals, aggregates75

of SR plates and strongly distorted Koch fractals. The SSPs for the OHC are then computed
as a function of wavelength and snow grain size, and parameterization equations are de-
veloped for the single-scattering co-albedo β = 1−ω, the asymmetry parameter g, and the
phase function P11. Such parameterizations are of substantial practical significance, as they
greatly facilitate the use of the OHC in radiative transfer applications. We are not aware of80

any such previous parameterizations for representing the snow SSPs.
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The outline of this paper is as follows. First, in Sect. 2, the models used to compute
the SSPs of Koch fractals, Gaussian spheres and spheres are introduced, along with the
database of Yang et al. (2013) used for several other shapes. In Sect. 3, the reference
phase function for snow is constructed. In Sect. 4, several shape models are compared in85

terms of their ability to reproduce the reference phase function, and the OHC is selected.
In Sect. 5, the SSPs for the OHC are computed as a function of wavelength and snow grain
size, and in Sect. 6, parameterization equations are developed. In Sect. 7, the snow SSP
parameterization is applied to radiative transfer computations, and comparisons are made
to spheres and Koch fractals. Finally, a summary is given in Sect. 8.90

2 Shape models and single-scattering data

Here, several shape models are considered as candidates for representing the SSPs of
snow. These include (1) second-generation Koch fractals, (2) Gaussian random spheres,
(3) nine different crystal habits in the Yang et al. (2013) single-scattering database and,
for comparison, (4) spheres. The snow grains are assumed to consist of pure ice (i.e., no95

impurities such as black carbon are included). The ice refractive index of Warren and Brandt
(2008) is employed.

The SSPs (extinction cross section, single-scattering albedo, phase function and asym-
metry parameter) of Koch fractals are simulated using the geometric optics code of Macke
(1993) (see also Macke et al., 1996). Both regular and distorted Koch fractals are con-100

sidered. A regular second-generation Koch fractal has 144 equilateral triangular surface
elements. Distortion is simulated using a statistical approach, where for each refraction-
reflection event, the normal of the crystal surface is tilted randomly around its original di-
rection (Macke et al., 1996). The zenith (azimuth) tilt angle is chosen randomly with equal
distribution between [0,θmax] ([0,360◦]), where θmax is defined using a distortion parameter105

t= θmax/90◦. Values of t= 0 (regular), t= 0.18 (distorted), and t= 0.50 (strongly distorted)
are considered. The geometric optics solution consists of ray tracing and diffraction parts,
which are combined as in Macke et al. (1996). For diffraction, the Fraunhofer (far-field) ap-

5



D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

proximation is employed. Either 3 million (in Sect. 4) or 1 million (in Sect. 5) rays per case
(i.e., crystal size, wavelength and degree of distortion) are used for the ray tracing part.110

Up to p= 12 ray-surface interactions per initial ray are considered (see Sect. 3A in Macke,
1993).

The SSPs of Gaussian random spheres are computed with the geometric optics code of
Muinonen et al. (1996). Details of the Gaussian random sphere shape model are discussed
(e.g.) in Nousiainen and McFarquhar (2004). The shape of the particles is described in115

terms of three parameters: the relative SD of radius σ, the power-law index ν in the Legen-
dre polynomial expansion of the correlation function of radius (the weight of the lth degree
Legendre polynomial Pl being cl ∝ l−ν), and the degree of truncation lmax for this polyno-
mial expansion. In broad terms, increasing σ increases the large-scale non-sphericity of the
particle, while decreasing ν and increasing lmax adds small-scale structure to the particle120

shape. Four values were considered for σ (0.15, 0.20, 0.25 and 0.30), four for ν (1.5, 2.0, 2.5
and 3.0), and three for lmax (15, 25 and 35), which yields 48 parameter combinations. A total
of 1 million rays with 1000 realizations of particle shape per case were employed in the ray
tracing computations. Diffraction was computed by applying the Fraunhofer approximation
to equivalent cross-section spheres.125

Recently, Yang et al. (2013) published a comprehensive library of SSPs of non-spherical
ice crystals, for wavelengths ranging from the ultraviolet to the far infrared, and for parti-
cle maximum dimensions dmax ranging from 2 µm to 10 000 µm. The library is based on
the Amsterdam discrete dipole approximation (Yurkin et al., 2007) for small particles (size
parameter smaller than about 20) and improved geometric optics (Yang and Liou, 1998;130

Bi et al., 2009) for large particles. Here, single-scattering properties for nine ice particle
habits in the Yang et al. (2013) database are used: droxtals, solid and hollow hexagonal
columns, aggregates of 8 columns, plates, aggregates of 5 and 10 plates, and solid and
hollow bullet rosettes. For each habit, the SSPs are provided for three degrees of particle
surface roughness: completely smooth (CS), moderately rough (MR) and severely rough135

(SR). The effect of roughness is simulated in a way that closely resembles the treatment
of distortion for Koch fractals: the surface slope is distorted randomly for each incident ray,
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assuming a normal distribution of local slope variations with a SD of 0, 0.03 and 0.50 for the
CS, MR and SR particles, respectively, in Eq. (1) of Yang et al. (2013). In fact, this approach
does not represent any specific roughness characteristics, but rather attempts to mimic the140

effects on SSPs due to non-pristine crystal characteristics in general (both roughness ef-
fects and irregularities).

For comparison, results are also shown for spheres. The SSPs of spheres are computed
using a Lorenz-Mie code (de Rooij and van der Stap, 1984; Mischenko et al., 1999).

3 Observation-based phase function for blowing snow145

We employ as a reference an observation-based phase function for blowing snow. The ref-
erence phase function was derived from ground-based measurements conducted during
the CLIMSLIP field campaign at Ny Ålesund, Svalbard (Guyot et al., 2015), on 23 and 31
March 2012. The blowing snow case on 23 March was preceded by heavy snowfall on 22
March, ending during the night of 23rd. The last snowfall before the March 31 blowing snow150

case occurred on 29 March. Consequently, the case of 23 March represents essentially
new snow, while on 31 March, some snow metamorphism had occurred, and the snowpack
was probably denser (although snow density was not measured). The near-surface air tem-
perature ranged from −5 to −9◦C during the 23 March case and from −18 to −20◦C during
March 31. Correspondinly, the wind speeds ranged from 1 to 9 m s−1 on 23 March (me-155

dian value 4 m s−1) and from 5 to 8 m s−1 on 23 March (median value 7 m s−1). Mainly
cloudy conditions prevailed on 23 March, while 31 March was cloud-free. The phase func-
tions discussed below are averages over the entire blowing snow events, which lasted for
approximately 10 hours (8–18 UTC) on 23 March and 12 hours (12–24 UTC) on 31 March.

The angular scattering coefficient Ψ(θs)[µm−1sr−1] of blowing snow was measured with160

the Polar Nephelometer (PN; Gayet et al., 1997; Crépel et al., 1997) on 23 and 31 March
2012, at 31 scattering angles in the 15◦ ≤ θs ≤ 162◦ range at a nominal wavelength of
λ=0.80 µm. The corresponding phase function P11(θs) was obtained by normalizing Ψ(θs)
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by the volume extinction coefficient σext:

P11(θs) = 4π
Ψ(θs)

σext
. (1)165

Here σext was estimated from the PN data following Gayet et al. (2002), with a quoted ac-
curacy of 25 %.

The derived phase functions are shown in Fig. 1a. There are only minor differences
between the 23 March and 31 March cases. In both cases P11 decreases sharply from
15 to 50◦, then more gradually until 127◦. At larger scattering angles P11 rather increases170

slightly, with a local maximum around 145◦ (discussed below). Hereafter, the average over
the two cases is used as a reference for the modeled phase functions:

P ref
11 = 0.5 ·

(

P 23 March
11 +P 31 March

11

)

. (2)

In Fig. 1b, P ref
11 is compared with three other phase functions: a non-precipitating cir-

rus case over Southern France in the CIRRUS’98 experiment (Durand et al., 1998) (dis-175

cussed in Jourdan et al., 2003), and two phase functions for glaciated parts of nimbostra-
tus over Svalbard in the ASTAR 2004 experiment, corresponding to Clusters 6 and 7 in
Jourdan et al. (2010). These phase functions were derived from raw PN data using a sta-
tistical inversion scheme (Jourdan et al., 2003, 2010). Perhaps as expected, the blowing
snow phase function P ref

11 is generally closer to the glaciated nimbostratus phase functions180

than to the cirrus phase function. In particular, at sideward angles between roughly 55◦ and
135◦, P ref

11 falls mostly between the two nimbostratus phase functions, while the cirrus phase
function exhibits somewhat smaller values. The smallest P11 in the cirrus and nimbostratus
cases occurs at θs = 120◦, as compared with θs = 127◦ for P ref

11 . All four phase functions
then increase until θs ≈ 140◦, after which the nimbostratus and cirrus phase functions be-185

come quite flat. In contrast, P ref
11 shows a local maximum around θs ≈ 145◦.

The origin of the maximum at θs ≈ 145◦ is not clear. While it may, in principle, be caused
by scattering by snow grains, this feature is not captured by any of the particle shapes con-
sidered in this study; nor is it present in phase functions measured for laboratory-generated

8
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ice crystals in Barkey et al. (2002) and Smith et al. (2015). Rather, it falls between the ice-190

bow peak for spherical ice particles near 135◦ and a maximum seen for many pristine
hexagonal shapes at 150–155◦ (see Fig. 3). Curiously, this feature coincides with the scat-
tering maximum of small water droplets with a ∼ 10µm diameter at 140–145◦. However, wa-
ter droplets seem like an implausible explanation, since the conditions at the measurement
site were subsaturated with respect to liquid water (the relative humidity being roughly 92–195

95% on 23 May and 79–87% on 31 May), and especially the 31 March case was quite cold.
Yet the 145◦ feature is clearly visible in the measured phase function in both cases. Finally,
we cannot discount the possibility that inaccuracy in the PN angular scattering measure-
ments influences this feature. Shcherbakov et al. (2006) report relative accuracy of scat-
tered intensities of 3-5% between 15◦ and 141◦, but degrading to 30% for 162◦, for an200

experimental setup with low extinction. Thus the phase function derived from the PN mea-
surements is, overall, less reliable near the backscattering direction than in near-forward
and side-scattering directions.

Whether the phase function feature at 145◦ is an artifact or a real feature caused by scat-
tering by snow should be resolved through further measurements, preferably using some205

alternative technique. However, in either case, it has only a small impact on the snow SSP
parameterizations derived in this paper. This detail cannot be captured by any of the shape
models considered, so it is not present in the parameterized phase functions. Its influence
on the asymmetry parameter is also modest. Even a complete elimination of the maximum
by linear interpolation of P ref

11 between the minima at 127◦ and 155◦ would increase g by210

only ≈ 0.007.
The size distribution of blowing snow was measured with the Cloud Particle Imager

(CPI) instrument (Lawson et al., 2001). The CPI registers particle images on a solid state,
one million pixel digital charge-coupled device (CCD) camera by freezing the motion of the
particle using a 40 ns pulsed, high power laser diode. Each pixel in the CCD camera array215

has an equivalent size in the sample area of 2.3 µm. In the present study, the minimum size
for the CPI’s region of interest is set up to 10 pixels. Therefore particles with sizes ranging
approximately from 25 µm to 2mm are imaged.
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Figure 2a shows examples of particles imaged by the CPI on 31 March 2012. While some
needle-shaped crystals can be spotted, many of the particles are irregular, which also ap-220

plies to the 23 March 2012 case. It is also noted that many of the particles show rounded
edges, possibly related to sublimation during snow metamorphosis. Size distributions de-
rived from the CPI data are shown in Fig. 2b. A lognormal distribution was fitted to the data
(averaged over the 23 and 31 March cases):

n(dp) =
1√

2π lnσgdp
exp

[

−(lndp− lndp,0)
2

2ln2σg

]

. (3)225

Here, dp is the projected-area equivalent diameter of the particles, dp,0=187 µm is the
median diameter, and σg =1.62 the geometric SD. This size distribution was used for all
shape models, when comparing the modeled phase functions with P ref

11 . Since absorption
is weak at λ= 0.80µm and the particles are much larger than the wavelength, the modeled
P11 is only weakly sensitive to the size distribution employed, if the shape of the snow230

grains is independent of size. This holds true for spheres, Gaussian spheres, Koch fractals,
droxtals, and the three aggregate habits in the Yang et al. (2013) database. However, for
solid and hollow hexagonal columns, plates, as well as solid and hollow bullet rosettes, the
crystal geometry is a function of size, with some influence on P11 (see end of Sect. 4 for
more discussion).235

4 Selecting a shape model for snow optics

The purpose of this section is to select a shape model of snow for use in Sects. 5 to 7. The
phase function for blowing snow from the CLIMSLIP campaign, as defined by Eq. (2), is
used as a reference. It is emphasized that the approach is deliberately pragmatic: we do not
attempt to model the scattering based on the shapes of the observed snow grains, but rather240

try to develop an equivalent microphysical model for representing the SSPs. Previously, the
choice of Koch fractals for approximating the scattering by snow (Kokhanovsky and Zege,

10



D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

2004) was likewise based on phase function data only. Furthermore, our approach is con-
ceptually analogous to the widely used practice of modeling the SSPs of irregular dust parti-
cles. Instead of considering the actual dust particle shapes, shape distributions of spheroids245

are used operationally in a variety of applications (Dubovik et al., 2006, 2011; Levy et al.,
2007), as they have been found to reasonably mimic scattering by dust. In contrast, current
state-of-the-art models for ice cloud SSPs include ice crystal habit distributions parameter-
ized as a function of crystal size, based on in situ microphysical observations (Baum et al.,
2005, 2011; Hong et al., 2009). In principle, it would be desirable to use this approach also250

for snow, to provide a more direct link between the actual snow grain shapes and those
assumed in the parameterization, and to account for changes in snow grain shape with
size, which we currently neglect. This would require, first, the analysis and subsequent
parameterization of snow grain shape distributions as a function of size, and second, the
computation and parameterization of the respective SSPs. The main reason why we have255

not attempted this approach in the current work is that a very large fraction of the particles
in blowing snow (and snow on ground) are irregular, more than 80% according to manual
classification of CPI images (Guyot et al., 2015) (see also Fig. 2a), and cannot be unam-
biguosly associated with habits considered (e.g) in the database of Yang et al. (2013).

To provide a quantitative measure for the agreement between the modeled and reference260

phase functions (Pmodel
11 and P ref

11 , respectively) we define a cost function as the root-mean-
square error of the logarithm of phase function:

cost =

√

√

√

√

∫ 162◦

15◦

(

lnPmodel
11 − lnP ref

11

)2
sinθsdθs

∫ 162◦

15◦
sinθsdθs

. (4)

To start with, the phase function for single crystal shapes is compared with P ref
11 in

Fig. 3. To be consistent with the CLIMSLIP observations, the phase function is computed at265

λ=0.80 µm, and it is integrated over the size distribution defined by Eq. (3). Several points
can be noted.
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First, unsurprisingly, the phase function for spheres agrees poorly with the observa-
tions (Fig. 3a). In particular, sideward scattering is underestimated drastically, and there
is a strong icebow peak at θs = 134◦, which is not seen in P ref

11 .270

Second, for 2nd generation Koch fractals (Fig. 3b), the agreement with P ref
11 is consider-

ably better than for spheres. The main features of the phase function are similar for regular
and distorted Koch fractals. However the regular Koch fractal’s phase function exhibits sev-
eral sharp features specific to the tetrahedral geometry, which are not observed in P ref

11 . The
distorted Koch fractals’ versions are more consistent with the measurements even though275

marked deviations from P ref
11 are still present. Scattering is underestimated between 15 and

30◦ and overestimated between 45 and 100◦. Also, the gradient of P11 in the backscattering
hemisphere is consistently negative, while P ref

11 rather increases slightly between 127 and
162◦. Overestimated sideward scattering by Koch fractals has been previously noted in the
context of cirrus clouds (Francis et al., 1999) and in a comparison with a measured phase280

function for laboratory-generated ice crystals (Fig. 3 in Kokhanovsky and Zege, 2004).
Third, for Gaussian spheres, the level of agreement with P ref

11 depends on the shape pa-
rameters chosen. Four cases out of the 48 considered are shown in Fig. 3c (for all of these,
lmax = 15, but the general features for lmax = 25 and lmax = 35 are similar). For example, for
the parameter values σ = 0.15 and ν = 3.0, which are close to those estimated from shape285

analysis of small quasi-spherical ice crystals in cirrus clouds in Nousiainen et al. (2011),
the deviations from P ref

11 are substantial. The phase function features undesirable large-
scale oscillations, and in particular, scattering at θs ≈ 45–75◦ is underestimated substan-
tially. Best agreement with P ref

11 is obtained in the case σ = 0.30, ν=0.15, which features
both pronounced large-scale non-sphericity and small-scale structure in the particle shape.290

The sideward scattering is overestimated (mainly between 70 and 100◦), but the cost func-
tion (0.163) is clearly smaller than that for distorted Koch fractals (0.284), and is, in fact, the
smallest among all single-habit shape models considered.

Fourth, regarding the habits in the Yang et al. (2013) database (Fig. 3d–l), both visual
inspection and the cost function values indicate that the agreement with P ref

11 improves with295

increasing particle surface roughness. While completely smooth and, in many cases, mod-
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erately rough particles exhibit halo peaks, for severely rough particles the phase function
is quite smooth and featureless, as is P ref

11 . It is further seen that in general, increasing
the roughness increases sideward scattering and reduces the asymmetry parameter. While
none of the habits considered provides perfect agreement with P ref

11 , the cost function is300

smallest for the aggregate of 8 columns (0.172).
Since none of the individual shape models agrees fully satisfactorily with P ref

11 , we con-
sidered combinations of two or three shapes. We thus use

Pmodel
11 =

n
∑

j=1

wjP
j
11, (5)

where n= 2 or n= 3 is the number of shapes in a combination and P j
11 is the phase func-305

tion for shape j, integrated over the size distribution (Eq. 3) for each shape separately.
Thus, the potential dependence of snow grain shapes on their size is not considered here.
For each combination of shapes considered, the optimal weight factors wj were searched
by minimizing the cost function (Eq. 4), subject to the conditions that all wj are non-negative
and their sum equals 1. Since pristine particles and even moderately rough particles fea-310

ture halo peaks (or an icebow peak in the case of spheres), which are absent in P ref
11 , the

following groups of habits are considered: distorted Koch fractals, Gaussian spheres, and
severely rough (SR) particles in the Yang et al. (2013) database.

Figure 4 illustrates a comparison with P ref
11 for three single-habit cases (Fig. 4a and d) (the

best Koch fractal case, the best Gaussian sphere case, and the best case with Yang et al.315

(2013) particles), the best three two-habit cases (Fig. 4b and e) and the best three three-
habit cases (Fig. 4c and f), as defined in terms of the cost function. As expected, the agree-
ment of Pmodel

11 with P ref
11 improves with increasing number of crystals in the combination.

The best three-habit cases follow P ref
11 quite faithfully, though slightly underestimating P ref

11 in
near-forward directions and not capturing the details of P ref

11 near θs=145◦. Furthermore, it320

is seen that the best three-habit combinations produce nearly identical P11, agreeing even
better with each other than with P ref

11 .
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The relationship between the asymmetry parameter g and the cost function is considered
in Fig. 5, where all single-habit cases and combinations of two or three habits are included.
While high values of cost function can occur at any g, the lowest values (< 0.10) always325

occur for three-habit combinations with 0.775 < g < 0.78. This supports a best estimate of
g ≈ 0.78 for snow at λ=0.80 µm, of course subject to the assumption that the measure-
ments for blowing snow used to construct P ref

11 are also representative of snow on ground.
The three-habit combinations with cost function below 0.1 are listed in Table 1. All of them

include SR droxtals and either strongly distorted (t= 0.50) or distorted (t= 0.18) Koch frac-330

tals, but the third habit included in the combinations varies from case to case. The differ-
ences in cost function and asymmetry parameter between the best habit combinations are
very small, which makes the choice of a single “best” habit combination for representing the
SSPs of snow somewhat arbitrary. For further use in representing the SSPs as a function of
wavelength and size, we select the following habit combination: 36 % of SR droxtals, 26 %335

of aggregates of 10 SR plates, and 38 % strongly distorted 2nd generation Koch fractals
(t=0.50), where the weights refer to fractional contributions to the projected area. This
habit combination is represented with a blue line in Fig. 4c and f and is marked with an
arrow in Fig. 5. Hereafter, this habit combination will be referred to as the “optimized habit
combination” (OHC). The primary reason why we selected this OHC rather than either of340

the first two habit combinations in Table 1, which have a marginally lower cost function,
is that these habit combinations include either hollow columns or bullet rosettes. For these
habits (unlike aggregates of plates), the particle geometry assumed in the Yang et al. (2013)
database depends on particle size, with the aspect ratio of the crystals increasing with their
length. However, due to snow metamorphosis on ground, size-shape relationships based345

on crystal growth in ice clouds are most likely not valid for snow. Therefore, we considered
it better to use a crystal geometry that is independent of size. This also helps to keep the
SSP parameterization simpler.
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5 Snow single-scattering properties as a function of size an d wavelength

The SSPs, including the extinction efficiency Qext, single-scattering co-albedo β, asymme-350

try parameter g and scattering phase function P11(θs) were determined for the OHC, for 140
wavelengths between 0.199 and 3 µm and for 48 particle sizes between 10 and 2000 µm.
Here, the size is defined as the volume-to-projected area equivalent radius rvp = 0.75V/P .
As stated above, the OHC consists of SR droxtals, aggregates of 10 SR plates, and strongly
distorted Koch fractals. The SSPs for droxtals and aggregates of plates were taken from the355

Yang et al. (2013) database (interpolated to fixed values of rvp) while those of Koch fractals
were computed using the geometric optics code of Macke (1993), as explained in Sect. 2.
Four caveats should be noted:

1. due to problems associated with the truncation of numerical results to a finite number
of digits (P. Yang, personal communication, 2013), the values of β in the Yang et al.360

(2013) database are unreliable in cases of very weak absorption. To circumvent this
issue, it was assumed that in cases of weak absorption (β < 0.001 for Koch fractals),
the values for droxtals and aggregates of plates may be approximated as

βdroxtal(λ,rvp) = 0.943βfractal(λ,rvp), (6)

βaggregate(λ,rvp) = 0.932βfractal(λ,rvp). (7)365

Here the scaling factors were determined as βdroxtal/βfractal and βaggregate/βfractal,
where the overbar refers to averages over the cases in which 0.001 < βfractal < 0.01
and the size parameter x= 2πrvp/λ > 100.

2. While the largest maximum dimension for particles in the Yang et al. (2013) database
is 10 000 µm for all habits, the corresponding maximum values of rvp are smaller and370

depend on the habit. For droxtals, rvp,max = 4218µm, while for the aggregates of 10
plates, it is only rvp,max = 653µm. Thus, to extend the SSPs for the OHC to sizes up to
rvp = 2000µm, we extrapolated the SSPs for the aggregates of plates based on how
the SSPs depend on size for Koch fractals. See Appendix A for details.
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3. The SSPs for Koch fractals were computed using a geometric optics code, which375

means that the accuracy deteriorates somewhat in cases with smaller size parame-
ters (typically for x < 100). This issue pertains mainly to small snow grains at near-IR
wavelengths (e.g., for λ= 2.5µm, x= 100 corresponds to rvp ≈ 40µm).

4. Lastly but importantly, since the OHC was selected based on measurements at a sin-
gle wavelength λ= 0.80µm for only two cases, there is no guarantee that it represents380

the snow SSPs equally well at other wavelengths, or for all snow grain sizes.

Figure 6 compares wavelength-dependent SSPs for the OHC with those for two shape
assumptions previously used in modeling snow optics: spheres and Koch fractals (distorted
Koch fractals with t=0.18 were selected for this comparison; this is close though not iden-
tical to the shape assumption used by Kokhanovsky et al., 2011). Two monodisperse cases385

are considered, with rvp =50 µm and rvp = 1000µm, respectively. For all three habits, the
asymmetry parameter g (Fig. 6a) and the single-scattering co-albedo β (Fig. 6b) show well-
known dependencies on particle size and wavelength. Thus, g is largely independent of both
λ and rvp in the visible region where β is very small. In the near-IR region, β increases with
increasing imaginary part mi of the refractive index and with increasing particle size. With390

increasing β, the fractional contribution of diffraction to the phase function increases, which
results in larger values of g (e.g. Macke et al., 1996). The most striking differences between
the three shape assumptions occur for the asymmetry parameter, especially in the visible
region, where g ≈ 0.89 for spheres, g ≈ 0.74 for distorted Koch fractals, and g ≈ 0.77–0.78
for the OHC. The values of β for the OHC are also intermediate between the two single-395

shape cases: larger than those for spheres (except for rvp = 1000µm at the strongly ab-
sorbing wavelengths λ > 1.4µm), but slightly smaller than those for distorted Koch fractals.
The implications of these differences for snow albedo are considered in Sect. 7.

While the co-albedo values in Fig. 6b are strongly wavelength dependent through mi, the
effects of shape on absorption can be distinguished more clearly by considering the non-400
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dimensional absorption parameter (Kokhanovsky and Zege, 2004; Kokhanovsky, 2013)

ξ =
Cabs

γV
=

QextPβ

γV
, (8)

where Cabs is the absorption cross section, Qext the extinction efficiency, P the projected
area and V the particle volume, and γ = 4πmi/λ, mi being the imaginary part of ice re-
fractive index. Figure 6c displays ξ at the wavelengths λ=0.199–1.4 µm, where absorption405

by snow is relatively weak. Consistent with the co-albedo values (Fig. 6b) and previous
studies (e.g. Kokhanovsky and Nauss, 2005), Fig. 6c indicates that absorption is generally
stronger for non-spherical than spherical particles, for the same rvp. The difference is par-
ticularly clear in the visible region, where ξ ≤ 1.3 for spheres (except for some spikes that
occur in the Mie solution especially for rvp =50 µm), ≈ 1.7 for the Koch fractals, and slightly410

over 1.6 for the OHC.
At wavelengths beyond λ= 1.0µm, ξ tends to decrease especially for the larger particle

size rvp =1000 µm considered, as absorption no longer increases linearly with mi. Fur-
thermore, in the UV region, Koch fractals and the OHC show a distinct increase in ξ with
decreasing wavelength. This is related to the corresponding increase of the real part of415

the refractive index mr. Interestingly, it is found that for these shape assumptions, absorp-
tion scales linearly with m2

r , and furthermore, for Koch fractals, ξ/m2
r ≈ 1 when absorp-

tion is weak (Fig. 6d). For spheres, the dependence of ξ on mr is weaker. Equation (4) in
Bohren and Nevitt (1983) provides the absorption efficiency of weakly absorbing spheres
in the limit of geometric optics, which can be rewritten in terms of ξ as420

ξ =
m3

r −
(

m2
r − 1

)3/2

mr

=m2
r −

(

m2
r − 1

)3/2

mr

. (9)

For rvp = 1000µm, ξ for spheres follows this approximation closely until λ≈ 1.0µm (Fig. 6c
and d). However, it appears that for Koch fractals, only the first term should be included.

It should be noted that ξ for the OHC is not independent of that for Koch fractals (due to
the scaling of co-albedo in Eqs. (6) and (7)). However, we found that ξ also scales linearly425
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with m2
r for Gaussian spheres (this was tested for σ=0.17, ν=2.9, lmax = 15), suggesting

that this might apply more generally to complex non-spherical particles.
Finally, it should be recalled that our choice of the OHC was based on phase function

observations at the wavelength λ= 0.80µm. At this wavelength, absorption is so weak that
it has very little impact on the phase function. Therefore, these observations cannot be used430

to constrain absorption by snow. In spite of this, we think it is worth providing a co-albedo
parameterization based on the OHC (Eq. 11 in Sect. 6.2). The reason for this is that snow
grains are distinctly non-spherical, and for non-spherical particles, ξ and β are, in general,
systematically larger than those for spheres, as demonstrated by Fig. 6. In fact, considering
the wavelength λ= 0.80µm, the values of ξ integrated over the size distribution defined by435

Eq. (3) are, for the large majority of the non-spherical shapes considered, between 1.55 and
1.75, the value for the OHC being ξ = 1.62 (Table 1). The corresponding value for spheres
is substantially lower, ξ = 1.29. Thus, while we cannot constrain ξ or β precisely, it is very
likely that the actual values for snow exceed those for spheres.

6 Parameterizations for the single-scattering properties of snow440

In this section, parameterization equations are provided for the computation of snow SSPs
(extinction efficiency Qext, single-scattering co-albedo β, asymmetry parameter g and scat-
tering phase function P11(θs)) for the OHC discussed above. The parameterizations are pro-
vided for the size range rvp =10–2000 µm and wavelength range λ=0.199–2.70 µm. They
are expressed in terms of the size parameter x and real and imaginary parts of refractive445

index (mr and mi). Here, the size parameter defined with respect to the volume-to-projected
area equivalent radius is used:

x= xvp = 2π
rvp

λ
. (10)

For the OHC, the size parameter defined with respect to the projected area is xp ≈ 1.535xvp.
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6.1 Extinction efficiency450

The extinction efficiency Qext for the OHC is displayed in Fig. 7. For most of the wavelength
and size region considered, Qext is within 1 % of the asymptotic value Qext = 2 for particles
large compared to the wavelength. Note that the deviations from Qext = 2 are probably
somewhat underestimated because the OHC includes Koch fractals, for which Qext ≡ 2 due
to the use of geometric optics. For simplicity, we assume this value in our parameterization,455

while acknowledging that the actual value tends to be slightly higher especially for small
snow grains in the near-IR region.

6.2 Single-scattering co-albedo

The single scattering co-albedo is parameterized as

β = 0.470
{

1− exp
[

−2.69xabs

(

1− 0.31min (xabs,2)
0.67

)]}

, (11)460

where the size parameter for absorption is defined as

xabs =
2πrvp

λ
mim

2
r . (12)

The general form of this parameterization was inspired by the ice crystal optics parameteri-
zation of van Diedenhoven et al. (2014); however our definition of xabs differs from theirs in
that the factor m2

r is included, based on the findings of Fig. 6c and d. The performance of this465

parameterization is evaluated in Fig. 8a and c. In Fig. 8a, the parameterized values (shown
with contours) follow extremely well the reference values computed for the OHC (shading).
The relative errors ∆β/β are mostly below 1 %; errors larger than 3 % (and locally even
> 10%) occurring only for small snow grains (rvp < 50µm) at wavelengths λ > 1.2µm. The
rms value of the relative errors (computed over 125 values of λ ∈ [0.199,2.7µm] and 48470

roughly logarithmically spaced values of rvp ∈ [10,2000µm]) is 1.4 %.
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6.3 Asymmetry parameter

The asymmetry parameter is parameterized as

g = 1− 1.146[mr − 1]0.8[0.52−β]1.05
[

1+8x−1.5
vp

]

, (13)

where the parameter values were determined by trial and error, with the aim of minimizing475

the rms error in g. The form of this parameterization reflects how g decreases with increas-
ing mr, increases with increasing absorption (i.e., increasing co-albedo β), and increases
slightly with increasing size parameter xvp even at non-absorbing wavelengths, in part be-
cause the diffraction peak becomes narrower. In practice, the co-albedo β plays the most
important role (cf. van Diedenhoven et al., 2014), which explains the general increase of g480

with increasing rvp in the near-IR region (Fig. 8b). The parameterized values of g (shown
with contours in Fig. 8b) follow the reference values (shading) very well. Note that when
producing these results, parameterized rather than exact β was used in Eq. (13). The differ-
ences from the reference are mostly below 0.001 at the weakly absorbing wavelengths up
to λ= 1.4µm, and while larger differences up to |g|= 0.007 occur at the strongly absorbing485

wavelengths (Fig. 8d), the overall rms error is only 0.0019.

6.4 Phase function

The phase function parameterization consists of three terms,

P11(θs) = wdiffPdiff(θs)+wrayPray(θs)+Presid(θs), (14)

which represent contributions due to diffraction, due to the ray tracing part, and a residual490

that corrects for errors made in approximating the former two parts. The weight factors for
diffraction wdiff and ray tracing wray are given by

wdiff =
1

Qextω
≈ 1

2ω
, (15)

wray =
Qextω− 1

Qextω
≈ 2ω− 1

2ω
, (16)
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where the latter form assumes Qext = 2 (e.g. Macke et al., 1996).495

It should be noted that in practice, the division of the phase function expressed by Eq. (14)
is conceptual rather than rigorous. The fitting was based on the total phase function rather
than the diffraction and ray tracing parts separately, as these two parts are not separated
in the Yang et al. (2013) database. The general aim of the fitting was to minimize the rms
errors in lnP11.500

For diffraction, the HG phase function (Henyey and Greenstein, 1941) is used:

Pdiff(θs) = PHG(gdiff,θs). (17)

The HG phase function is given by

PHG(g,θs) =
1− g2

[1+ g2 − 2g cosθs]
3/2

, (18)

and the asymmetry parameter gdiff is approximated as505

gdiff = 1− 0.60/xvp = 1− 0.921/xp , (19)

where we have utilized the relation xp ≈ 1.535xvp specific to the OHC. Compared to the
parameterization derived by van Diedenhoven et al. (2014), Eq. (19) yields somewhat lower
values of gdiff, which to some extent compensates for the fact that the actual shape of the
diffraction peak deviates from the HG phase function. Overall, this treatment of diffraction510

is a rough approximation, and clearly not ideal for studies of very near-forward scattering,
but it serves well the current purpose. On one hand, it improves the accuracy compared to
the assumption of a delta spike, and on the other hand, the HG phase function has a very
simple Legendre expansion

PHG(g,θs) =

∞
∑

n=0

(2n+1)gnPn(cosθs), (20)515
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where Pn denotes the nth order Legendre polynomial. This facilitates greatly the use of PHG

in radiative transfer models such as DISORT (Stamnes et al., 1988).
The phase function for the ray tracing part is approximated as

Pray(θs) = w1PHG(g1,θs)+ (1−w1), (21)

where the latter term 1−w1 is intended to emulate the nearly flat behaviour of P11 in the520

near-backward scattering directions. The weight factor for the HG part is parameterized as

w1 = 1− 1.53 ·max(0.77− gray,0)
1.2, (22)

where gray is the asymmetry parameter for the ray tracing (i.e., non-diffraction) part. It is
derived from the condition g = wdiffgdiff +wraygray, which yields

gray =
g−wdiffgdiff

wray
. (23)525

The total asymmetry parameter g is computed using Eq. (13) above. Finally, the asymmetry
parameter g1 needed in Eq. (21) is

g1 = gray/w1. (24)

While the sum of the first two terms of Eq. (14) already provides a reasonably good ap-
proximation of the phase function (see below), the fit can be further improved by introducing530

the residual Presid, which is represented as a Legendre series. It turns out that, except for
cases with strong absorption, a series including terms only up to n= 6 yields very good
results

Presid(θs) =

6
∑

n=0

(2n+1)anPn(cosθs), (25)
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provided that δ-M-scaling (Wiscombe, 1977) is applied, with a truncated fraction f = a6.535

Thus,

Presid(θs)≈ P ∗
resid(θs) = 2fδ(1− cosθs)+ (1− f)

5
∑

n=0

(2n+1)
an − f

1− f
Pn(cosθs)

= 2a6δ(1− cos θs)+

5
∑

n=0

(2n+1)(an − a6)Pn(cosθs), (26)

where δ is Dirac’s delta function. What remains to be parameterized, then, are the coeffi-
cients a0. . .a6. A rough but useful approximation is to express them as a simple function of540

the co-albedo β and the asymmetry parameter g:

an = c1n + c2nβ+ c3ng+ c4nβg. (27)

The parameterization coefficients cmn were determined by minimizing the rms errors of an
with the LAPACK subroutine DGELS, and they are given in Table 2. Note specifically that
the coefficients cm0 and cm1 are all zero. The formulation of Pdiff and Pray ensures that545

the phase function (Eq. 14) is correctly normalized and that its asymmetry parameter is
consistent with Eq. (13) even without considering Presid; therefore a0 = a1 = 0. Equivalently,
the Legendre expansion may be replaced by an ordinary polynomial. This yields

Presid(θs)≈ P ∗
resid(θs) = 2a6δ(1− cos θs)+

5
∑

n=0

bn(cosθs)
n, (28)

where550

bn = d1n + d2nβ+ d3ng+ d4nβg. (29)

Here, the coefficients dmn were obtained directly based on the coefficients cmn in Eq. (27),
by writing out the Legendre polynomials in Eq. (26). Their numerical values are given in
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Table 3. In summary, the phase function parameterization reads

P11(θs) = wdiffPHG(gdiff,θs)+wrayw1PHG(g1,θs)+wray(1−w1)+Presid(θs), (30)555

where Presid(θs) is given by Eq. (26) or, equivalently, by Eq. (28).
Finally, it is worth noting how this parameterization can be used in DISORT, when ap-

plying a “δ-NSTR-stream” approximation for radiative transfer, NSTR being the number
of streams. In this case, DISORT assumes by default a truncation factor f = aNSTR. If
NSTR> 6, the Legendre expansion for Presid in Eq. (26) should be formally extended to560

n= NSTR, with an = a6 for n=7. . . NSTR. Thus the Legendre coefficients input to DIS-
ORT become

pn =











1, for n= 0

wdiffg
n
diff +wrayw1g

n
1 + an, for 1≤ n≤ 6

wdiffg
n
diff +wrayw1g

n
1 + a6, for 7≤ n≤ NSTR

, (31)

where we have utilized the Legendre expansion of the HG phase function in Eq. (20).
To provide a compact view of how the phase function parameterization performs, we565

define, analogously to Eq. (4), a cost function as the rms error of the natural logarithm of
the phase function,

cost =

√

√

√

√

∫ 180◦

0◦

(

lnP param
11 − lnPOHC

11

)2
sinθsdθs

∫ 180◦

0◦
sinθsdθs

, (32)

where P param
11 is the parameterized phase function and POHC

11 is the reference value, defined
here as the “exact” phase function computed for the OHC. Figure 9a shows the cost function570

for the full phase function parameterization, and Fig. 9b for a simpler parameterization that
includes only the first two terms of Eq. (14) (i.e., Presid is excluded). Note that the parame-
terized phase function is computed here using parameterized (rather than exact) values of
Qext, β, and g.
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Most importantly, Fig. 9a shows that in a large part of the wavelength and size domain,575

the accuracy of the full parameterization is very high, with cost function values ≤ 0.03.
This corresponds to a typical relative accuracy of 3 % in the computed phase function, as
compared with the reference values for the OHC. The primary exception is that substantially
larger errors occur for large snow grains at the strongly absorbing wavelengths in the near-
IR region. In broad terms, the accuracy starts to degrade appreciably when β > 0.3, that is,580

in cases in which snow reflectance is quite low (β=0.3 corresponds roughly to a spherical
albedo of 0.03 for an optically thick snow layer). At the largest wavelengths considered
(λ > 2.5µm), somewhat larger values of the cost function also occur for smaller values of
rvp and β. The cost function for the simplified parameterization (Fig. 9b) shows mainly the
same qualitative features as the full parameterization in Fig. 9a; however, the cost function585

values in the weakly absorbing cases are ≈ 0.07, in contrast with the values of ≈ 0.03 for
the full parameterization.

Figure 10 displays examples of phase function for nine combinations of λ and rvp. In the
weakly absorbing cases in Fig. 10a–c, and also at the more strongly absorbing wavelength
λ= 1.50µm for rvp =10 µm and rvp = 100µm (Fig. 10d, e), the full parameterization fol-590

lows extremely well the reference phase function computed for the OHC, to the extent that
the curves are almost indistinguishable from each other. Even at λ=2.00 µm, the devia-
tions from the reference are generally small in the cases with relatively small snow grains
(rvp = 10µm and rvp = 100µm; Fig. 10g, h), although backward scattering is slightly overes-
timated in the latter case. In contrast, in cases with very strong absorption and large snow595

grains (rvp = 1000µm for λ= 1.50µm and λ= 2.00µm in Fig. 10f, i) there are more sub-
stantial deviations from the reference. Here, the parameterized phase function is generally
underestimated in the backscattering hemisphere and overestimated at θs < 30◦ especially
for λ=2.00 µm; rvp =1000 µm. Furthermore, the Legendre expansion in Presid leads to os-
cillations in the backscattering hemisphere, which do not occur in the reference phase func-600

tion. Again, it should be noted that the largest errors occur in cases in which snow is very
“dark”: the spherical albedo corresponding to the cases in Fig. 10f and i is only ∼ 0.005.
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In many respects, the simplified parameterization (i.e., without Presid) produces quite sim-
ilar phase functions as the full parameterization. Two differences can be noted. First, the
simplified parameterization does not capture the slight increase in phase function at an-605

gles larger than θs ≈ 120–130◦, which is present in the reference and full parameterization
phase functions, and which was also suggested by the CLIMSLIP data for blowing snow at
λ= 0.80µm, along with the other phase functions in Fig. 1b. Second, in the cases with very
strong absorption (Fig. 10f and i) the simplified phase function avoids the oscillations seen
in the full parameterization.610

The utility of providing a phase function parameterization is further demonstrated by
showing in Fig. 10, for comparison, the HG phase function computed using the asymmetry
parameter from Eq. (13). The differences from the reference phase function are systematic.
The scattering in the diffraction peak is underestimated (although this is not properly seen
from Fig. 10), but otherwise forward scattering is overestimated until a scattering angle615

of ≈35◦–80◦, depending on the case. Conversely, at sideward and backscattering angles,
scattering is underestimated. Consequently, the cost function values for the HG phase func-
tion given in Fig. 10 substantially exceed those for both the full and simplified phase function
parameterizations.

7 Radiative transfer applications620

In this section, we consider the impact of snow optics assumptions on snow spectral albedo
A and reflected radiances L↑.The purpose is, on one hand, to evaluate the accuracy of
the proposed snow SSP parameterization, and on the other hand, to compare the results
obtained with three shape assumptions: spheres, 2nd generation Koch fractals (distorted
with t=0.18) and the OHC proposed here. Throughout this section, the results for the OHC625

are used as the reference, although it is clear that they cannot be considered an absolute
benchmark for scattering by snow. The radiative transfer computations were performed with
DISORT (with 32 streams, delta-M-scaling included), assuming an optically thick (i.e., semi-
infinite) layer of pure snow with a monodisperse size distribution.
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Like most other solar radiative transfer studies involving snow, close-packed effects are630

ignored in the calculations. It has been shown by Kokhanovsky (1998) that, at least as a first
approximation, they do not have a pronounced impact on the snow reflectance.

First, snow albedo as a function of λ and rvp is considered in Fig. 11. Direct incident radi-
ation with a cosine of zenith angle µ0 = cosθ0 = 0.5 is assumed. Figure 11a demonstrates
the well-known features of snow albedo: the values are very high in the UV and visible re-635

gion, and decrease with increasing particle size in the near-IR. The results computed using
the parameterized snow optical properties Qext, β, g, and P11 are almost indistinguishable
from those obtained using the “exact” optical properties for the OHC. The differences be-
tween these two are mostly within 0.002 (Fig. 11b), although larger differences up to 0.02
occur for very small snow grains (rvp ≈10–20 µm) at wavelengths with strong absorption640

by snow (λ > 1.4µm). These results are only weakly sensitive to the assumed direction of
incident radiation. Furthermore, while the parameterized albedo values were computed us-
ing the full phase function parameterization, the values for the simplified parameterization
(without Presid in Eq. (14)) differed very little from them, mostly by less than 0.001.

For distorted Koch fractals, the albedo values are higher than those for the OHC, but645

the difference is rather small, at most 0.017 (Fig. 11c). Conversely, for spheres, the albedo
values are lower, with largest negative differences of −0.08 from the reference (Fig. 11d).
This stems from the higher asymmetry parameter of spheres, which is only partly compen-
sated by their lower co-albedo (Fig. 6). To put it in another way, for a given albedo A in the
near-IR region, a smaller (slightly larger) particle size is required for spheres (for distorted650

Koch fractals) than for the OHC.
To compare the simulated radiance distributions to the reference, we next consider the

root-mean-square error in the logarithm of reflected radiances integrated over the hemi-
sphere:

LOGRMSE =

√

√

√

√

√

1

2π

2π
∫

0

π/2
∫

0

[

lnL↑(θ,φ)− lnL↑

OHC(θ,φ)
]2

sinθdθdφ, (33)655
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where θ and φ denote the zenith angle and azimuth angle, respectively, and L↑

OHC is the
radiance in the reference computations for the OHC. Figure 12a–c shows LOGRMSE as
a function of particle size and wavelength for the full parameterization, for three directions of
incident radiation (µ0=0.8, µ0=0.4 and µ0=0.1, corresponding to θ0=36.9◦, θ0=66.4◦

and θ0=84.3◦, respectively). For weakly absorbing wavelengths up to λ=1.4 µm, the660

performance of the parameterization is extremely good for all particle sizes, with values
of LOGRMSE< 0.01 for µ0=0.8 and µ0=0.4 and between 0.01 and 0.02 for µ0=0.1.
LOGRMSE∼ 0.01 implies a typical relative accuracy of ∼ 1% in the reflected radiances.
The accuracy in radiances at weakly absorbing wavelengths is even higher than that in the
phase function (Fig. 9a) because strong multiple scattering diminishes the effect of phase665

function errors. At wavelengths λ > 1.4µm, LOGRMSE increases, not only due to larger
phase function errors, but also because multiple scattering is reduced due to stronger ab-
sorption. Even here, LOGRMSE stays mainly below 0.05 for relatively small snow grains
(rvp < 100µm), but substantially larger errors occur in the cases with large and strongly ab-
sorbing grains, consistent with the modest accuracy of the phase function parameterization670

in these cases (Fig. 9b). These errors depend only weakly on µ0. It should be noted that
the largest relative errors occur in cases where the reflected radiances and radiance errors
are small in an absolute sense and probably matter little for practical applications.

Values of LOGRMSE obtained using the simplified phase function parameterization are
shown in Fig. 12d–f. Consistent with the phase function errors (cf. Fig. 9a vs. b), the simpli-675

fied parameterization is slightly less accurate in simulating reflected radiances than the full
parameterization, except for the most strongly absorbing cases. Nevertheless, the accuracy
is quite high for the weakly absorbing cases; LOGRMSE ranging from ∼ 0.01 (or even less)
for µ0 = 0.8 to ∼ 0.03 for µ0=0.1.

For comparison, Fig. 12g and h shows LOGRMSE computed for distorted Koch fractals680

and spheres (for µ0 = 0.4 only). Unsurprisingly, LOGRMSE is generally smaller for Koch
fractals than for spheres (e.g., 0.05–0.10 in weakly absorbing cases, as compared with
∼ 0.20 for spheres). In both cases, again excepting large particles at strongly absorbing
wavelengths, the values of LOGRMSE are substantially larger than those associated with

28



D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

the snow SSP parameterization. This indicates that in general, numerical fitting errors in the685

parameterization are a minor issue in comparison with the radiance differences associated
with different shape assumptions.

Examples of the angular distribution of reflected radiances are given in Figs. 13 and 14.
Here, only a single particle size rvp = 200µm is considered, and the azimuth angle for
incident radiation is φ0 = 0◦. In Fig. 13, results are shown for three zenith angles of inci-690

dent radiation, corresponding to µ0 = 0.8, µ0 = 0.4, and µ0 = 0.1, for a single wavelength
λ=0.80 µm. In Fig. 14, three wavelengths are considered (λ=0.30, 1.40 and 2.20 µm) but
for µ0=0.4 only. In each figure, panels (a)–(c) display the distribution of reflected radiances
in the reference calculations for the OHC, while the remaining panels show the relative dif-
ferences from the reference for distorted Koch fractals with t=0.18 (panels d–f), for spheres695

(g–i), for the Henyey-Greenstein phase function (j–l), for the full snow SSP parameterization
(m–o), and for the simpler parameterization without Presid in Eq. (14) (p–r). For brevity, only
some main points are discussed.

First, it is seen, consistent with Fig. 12, that in general, the radiance distribution for
spheres differs more from the reference than the distribution for Koch fractals does. For700

example, for λ= 0.80µm and µ0 = 0.4, both positive and negative differences larger than
50 % occur for spheres (Fig. 13h), while for Koch fractals, the differences exceed 10 % only
locally (Fig. 13e). Furthermore, in the same case, the radiance errors are < 1% almost
throughout the (θ,φ) domain for the full parameterization (Fig. 13n), and mostly < 2% even
for the simplified parameterization (Fig. 13q). In contrast, when the HG phase function is705

employed in the calculations, the differences from the reference reach locally 30 % and
−40 % (Fig. 13k).

Second, while the results noted above for λ=0.80 µm and µ0 = 0.4 are also mostly valid
for µ0 = 0.8 and µ0 = 0.1, and for λ=0.30, 1.40 and 2.20 µm, some quantitative differences
can be noted. When µ0 decreases from 0.8 to 0.1, the pattern of reflected radiances be-710

comes increasingly non-uniform and more sensitive to both the assumed particle shape
and the errors in phase function parameterization. This occurs because the relative role of
first-order scattering increases (e.g., Mischenko et al., 1999). For the same reason, the sen-

29



D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

sitivity of the radiance pattern to the phase function increases with increasing absorption.
Thus, while the qualitative features are mostly similar at all wavelength considered here, the715

relative differences are generally larger at λ=1.40 µm and λ=2.20 µm than at λ=0.30 µm
and λ=0.80 µm. Especially at the wavelength λ=2.20 µm, at which snow absorption is
quite strong and the albedo for the OHC is only 0.11, the radiance pattern is dominated by
first-order scattering and is thus very sensitive to the details of the phase function. In a rela-
tive (though not absolute) sense, the errors in parameterized radiances are also somewhat720

larger than at the other wavelengths considered (Fig. 14o and r).
Third, even at weakly absorbing wavelengths, the role of first-order scattering is clearly

discernible: many differences in the pattern of reflected radiances can be traced directly to
phase function differences. For example, considering the results for λ=0.80 µm for both
µ0=0.4 and µ0=0.1, we note the following:725

– Three regions appear in the radiance differences between distorted Koch fractals and
the OHC in Fig. 13e and f. Going from left to right, negative radiance differences occur
at large values of θ and small values of φ (roughly for θ > 65◦ and φ < 20◦), followed by
a region of positive differences, and another region of negative differences (roughly for
θ > 40◦,φ > 140◦). These regions occur because the phase function for Koch fractals730

is larger than that for the OHC at intermediate scattering angles (29◦ ≤ θs ≤ 134◦) but
smaller in the near-forward and near-backward directions.

– For spheres in Fig. 13h and i, the reflected radiances greatly exceed those for the
OHC for roughly θ > 60◦,φ < 40◦ because the phase function for spheres is generally
larger than that for the OHC for θs < 54◦. Conversely, at larger θs, the phase function735

for spheres is (mostly) considerably smaller than that for the OHC. This results in
generally smaller reflected radiances for spheres in most of the (θ,φ) domain with
φ > 50◦. As an exception, the icebow feature for spheres at θs ≈ 135◦ results in an arc
with larger radiances for spheres than for the OHC.

– For the HG phase function, the pattern of overestimated radiances up to φ∼ 60◦ and740

underestimated radiances at larger azimuth angles (Fig. 13k and l) arises because the
30
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HG phase function exceeds that for the OHC for θs < 80◦ and falls below it at larger
scattering angles (see also Fig. 10).

8 Summary

In this work, measurements of angular distribution of scattering by blowing snow made745

during the CLIMSLIP campaign in Svalbard were used to select a shape model for rep-
resenting the single-scattering properties (SSPs) of snow. An optimized habit combination
(OHC) consisting of severely rough (SR) droxtals, aggregates of SR plates and strongly
distorted Koch fractals was selected. The SSPs (extinction efficiency Qext, single-scattering
co-albedo β, asymmetry parameter g and phase function P11) were then computed for750

the OHC as a function of wavelength and snow grain size. Furthermore, parameterization
equations were developed for the SSPs for the wavelength range λ=0.199–2.7 µm, and
for snow grain volume-to-projected area equivalent radii rvp = 10–2000 µm. The parame-
terizations are expressed in terms of the size parameter and real and imaginary parts of
refractive index. The relative accuracy of the parameterization, as compared with the ref-755

erence calculations for the OHC, is very high for the single-scattering co-albedo and the
asymmetry parameter. This is also true for the phase function parameterization in weakly
and moderately absorbing cases, while in strongly absorbing cases (mainly for β > 0.3), the
accuracy deteriorates. Such strongly absorbing cases are, however, associated with small
values of snow albedo and reflected radiances.760

The SSPs and the resulting snow albedo and reflected radiances for the OHC were com-
pared with two previously used shape assumptions for snow grains, spheres and second-
generation Koch fractals. The asymmetry parameter for the OHC is distinctly smaller than
that for spheres but slightly higher than that for Koch fractals. Consistent with this, snow
albedo for the OHC is generally substantially higher (slightly lower) than that for spheres765

(Koch fractals), for a given snow grain size rvp. Also for the distribution of reflected radi-
ances, spheres differ more from the OHC than Koch fractals do.
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The main limitation of the current work is that the SSP parameterization is based on
a rather limited observational dataset. The OHC was selected using scattering measure-
ments at a single wavelength λ= 0.80µm, for only two cases with blowing snow. This raises770

several potential issues:

– The choice of the OHC based on scattering measurements only implies that most
probably, it does not represent properly the actual distribution of snow grain shapes in
blowing snow (or snow on ground). It also neglects the potential dependence of snow
grain shapes on their size. Therefore, there is no guarantee that it represents the snow775

SSPs equally well at other wavelengths, or for all snow grain sizes.

– Since absorption is very weak at λ= 0.80µm, the observations do not constrain prop-
erly absorption by snow. Therefore, we cannot expect that our parameterization of β
(Eq. 11) predicts precisely the actual values for snow. However, we do expect that
it captures reasonably the systematic difference between non-spherical snow grains780

and spheres: in general β is larger for non-spherical particles.

– It is also possible that the snow grain shapes, and therefore the SSPs of snow on
ground might differ from those of blowing snow, and they might well vary from case to
case, depending on how much metamorphosis the snow has experienced.

All these issues point to the need for validation of the derived parameterization against785

actual snow reflectance measurements in future work.
In spite of the concerns mentioned above, it seems reasonable to assume that the OHC

selected here provides a substantially better basis for representing the SSPs of snow than
spheres do. Moreover, the parameterization equations provided in this paper are analytic
and simple to use. A Fortran implementation of the snow SSP parameterizations is available790

at https://github.com/praisanen/snow_ssp.
To conclude, this paper describes a first-of-its-kind parameterization for representing the

SSPs of snow in the solar spectral region. The parameterization is provided in hope that it
will be useful, especially to those researchers that still use spherical particles for computing
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the radiative effects of snow. Nevertheless, it should definitely not be viewed as the "final795

solution" to the treatment of SSPs of snow. We hope that the present work will inspire the fu-
ture development of snow SSP parameterizations based on more comprehensive datasets.
Furthermore, at least in principle, it would be desirable to replace the current approach
(where the shape distribution of snow grains is selected based on scattering measurements
only) with an approach that more directly links the snow grain shapes to those actually ob-800

served. This would require, first, the parameterization of the size-shape distribution of snow
grains based on observations, and second, the computation and parameterization of their
SSPs. The main challenge in such an approach is the treatment of irregular grains, which
are very common in snow.

Appendix A: Extrapolation of single-scattering propertie s805

The largest value of volume-to-projected area equivalent radius for which the SSPs are
defined for aggregates of 10 plates in the Yang et al. (2013) database is rvp,max=653 µm,
which falls below the upper limit of 2000 µm considered for the OHC. Thus, to extend the
SSPs for the OHC to sizes up to rvp = 2000µm, we extrapolated the SSPs for the aggre-
gates of plates based on how the SSPs depend on size for Koch fractals:810

Qext,aggregate(rvp) = 2+ [Qext,aggregate(rvp,lim)− 2] · rvp,lim

rvp
, (A1)

βaggregate(rvp) = βaggregate(rvp,lim) ·
βfractal(rvp)

βfractal(rvp,lim)
, (A2)

gaggregate(rvp) = 1− [1− gaggregate(rvp,lim)] ·
1− gfractal(rvp)

1− gfractal(rvp,lim)
, (A3)

P11,aggregate(rvp,θs) = P11,aggregate(rvp,lim,θs) ·
P11,fractal(rvp,θs)

P11,fractal(rvp,lim,θs)
. (A4)
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Here, rvp,lim =650 µm. While this is an ad-hoc approach, the resulting uncertainty in the815

SSPs for the OHC (in which the aggregates of plates have a weight of 26 %) is most likely
small. When the extrapolation was based on droxtals instead of Koch fractals, this changed
the values of g by at most 0.0025 and β by at most 0.006 (or 1.4 % in relative terms).
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Table 1. List of best three-habit combinations. w1, w2 and w3 are the weights (i.e., fractional contri-
butions to projected area) of each habit, “cost” is the cost function, g the asymmetry parameter, and
ξ a non-dimensional absorption parameter defined by Eq. (8). SR refers to severely rough particles,
and t is the distortion parameter for 2nd generation Koch fractals. The “optimed habit combination”
(OHC) is highlighted with italic font.

w1 habit1 w2 habit2 w3 habit3 cost g ξ

0.38 fractal (t= 0.50) 0.32 SR droxtal 0.30 SR hollow column 0.084 0.777 1.64
0.38 fractal (t= 0.50) 0.26 SR droxtal 0.36 SR hollow bullet rosette 0.085 0.777 1.65
0.38 fractal (t= 0.50) 0.36 SR droxtal 0.26 aggregate (10 SR plates) 0.086 0.778 1.62
0.30 fractal (t= 0.50) 0.34 SR droxtal 0.36 aggregate (5 SR plates) 0.086 0.778 1.60
0.46 fractal (t= 0.50) 0.36 SR droxtal 0.18 SR plate 0.087 0.778 1.66
0.38 fractal (t= 0.50) 0.28 SR droxtal 0.34 SR solid column 0.090 0.776 1.63
0.42 fractal (t= 0.18) 0.26 SR droxtal 0.32 SR hollow bullet rosette 0.095 0.779 1.66
0.42 fractal (t= 0.18) 0.32 SR droxtal 0.26 SR hollow column 0.095 0.778 1.65
0.34 fractal (t= 0.18) 0.32 SR droxtal 0.34 aggregate (5 SR plates) 0.096 0.779 1.61
0.42 fractal (t= 0.18) 0.34 SR droxtal 0.24 aggregate (10 SR plates) 0.098 0.780 1.63
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Table 2. Parameterization coefficients appearing in Eq. (27).

c1n c2n c3n c4n

n= 0 0.00000 0.00000 0.00000 0.00000
n= 1 0.00000 0.00000 0.00000 0.00000
n= 2 −0.01400 −0.10367 0.02144 0.08903
n= 3 −0.13184 −0.01741 0.16890 −0.06365
n= 4 −0.20878 −0.03438 0.27353 −0.10418
n= 5 −0.29763 −0.06931 0.38501 −0.11329
n= 6 −0.32153 −0.10691 0.41282 −0.07934
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Table 3. Parameterization coefficients appearing in Eq. (29).

d1n d2n d3n d4n

n= 0 −0.06679 0.34357 0.09553 −0.42542
n= 1 −0.53413 0.15642 0.74905 −0.62700
n= 2 −1.49866 −2.42334 1.76580 2.10118
n= 3 1.01884 −2.05239 −1.59160 3.54237
n= 4 4.43936 2.85558 −5.48475 −0.97817
n= 5 2.07065 3.25673 −2.40933 −2.94094
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Table A1. List of abbreviations and symbols.

CLIMSLIP CLimate IMpacts of Short-Lived pollutants In the Polar region
CPI cloud particle imager
CS completely smooth particles (Yang et al., 2013)
DISORT Discrete Ordinates Radiative Transfer Program for a Multi-Layered Plane-Parallel Medium (Stamnes et al., 1988)
HG Henyey–Greenstein (Henyey and Greenstein, 1941)
LAPACK Linear Algebra Package
LOGRMSE root-mean-square error in the logarithm of reflected radiances
MR moderately rough particles (Yang et al., 2013)
OHC optimized habit combination
PN polar nephelometer
SSP single-scattering properties
SR severely rough particles (Yang et al., 2013)

β single-scattering co-albedo = 1 − single-scattering albedo
δ Dirac’s delta function
θ zenith angle
θ0 zenith angle for incident radiation
θs scattering angle
λ wavelength
µ0 cosine of zenith angle for incident radiation
ν power-law index in the Legendre polynomial expansion of the correlation function of radius for Gaussian random spheres
ξ non-dimensional absorption parameter (Eq. 8)
σ relative SD of radius for Gaussian random spheres
φ azimuth angle
ω single-scattering albedo

f truncated fraction of phase function in δ-M-scaling (Wiscombe, 1977)
g asymmetry parameter
g1 asymmetry parameter for the Henyey–Greenstein part in Eq. (21), defined by Eq. (24)
gdiff asymmetry parameter for diffraction (Eq. 19)
gray asymmetry parameter for the ray-tracing part (Eq. 23)
lmax degree of truncation of the Legendre polynomial expansion of the correlation function of radius for Gaussian random spheres
mi imaginary part of refractive index
mr real part of refractive index
P projected area
P11 phase function
P ref
11 reference phase function constructed from CLIMSLIP data (Eq. 2)

POHC
11 phase function for the optimized habit combination

PHG Henyey–Greenstein phase function (Eqs. 18, 20)
Pdiff parameterized phase function for diffraction (Eq. 17)
Pray parameterized phase function for the ray tracing part (Eq. 21)
Presid residual in the phase function parameterization (Eq. 25)
P ∗

resid residual in the phase function parameterization, truncated for δ-M-scaling (Eqs. 26, 28)
Pn nth order Legendre polynomial
Qext extinction efficiency
rvp volume-to-projected area equivalent radius
t degree of distortion for Koch fractals
V volume
w1 weight factor for the Henyey–Greenstein part in Eq. (21), defined by Eq. (22)
wdiff weight factor for the diffraction part in the parameterized phase function (Eqs. 14, 30), defined by Eq. (15)
wray weight factor for the ray tracing part in the parameterized phase function (Eqs. 14, 30), defined by Eq. (16)
x size parameter
xabs size parameter for absorption (Eq. 12)
xp size parameter defined with respect to the projected area equivalent radius
xvp size parameter defined with respect to the volume-to-projected area equivalent radius (Eq. 10)
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Figure 1. (a) Phase function of blowing snow as derived from the CLIMSLIP data on 23 March 2012
(red) and on 31 March 2012 (blue). The reference phase function P ref

11 (grey) was defined as the aver-
age of the 23 and 31 March cases. (b) Comparison of P ref

11 with phase functions for non-precipitating
cirrus (CIRRUS’98, black line) and glaciated Arctic nimbostratus (ASTAR Clusters 6 and 7, red and
blue lines).
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Figure 2. (a) Examples of snow grains imaged by the CPI instrument on 31 March 2012 and (b) size
distributions for both the 23 and 31 March cases.
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Figure 3. Comparison of phase function for various shape models with the reference phase function
derived from CLIMSLIP data (P ref

11 shown with gray dots in each panel). (a) Spheres, (b) regular and
distorted 2nd generation Koch fractals (with distortion parameters t= 0.18 and t= 0.50), (c) four
realizations of Gaussian spheres, and (d–l) nine habits in the Yang et al. (2013) database. For each
habit, the phase function was averaged over the size distribution defined by Eq. (3). In the figure
legends, the two numbers in parentheses give the asymmetry parameter and the cost function de-
fined by Eq. (4), respectively. For the Gaussian spheres in (c), the notation indicates the shape
parameters (e.g., for 0.15_3.0, σ= 0.15 and ν= 3.0); lmax was fixed at 15. For the Yang et al. (2013)
habits in (d–l) , CS, MR and SR refer to particles with completely smooth surface, moderate surface
roughness, and severe surface roughness, respectively.
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Figure 4. Comparison of modeled phase functions with the reference phase function (P ref
11 shown

with gray dots in a–c). (a) Selected single-habit cases: 1= distorted Koch fractals with t= 0.18;
2=Gaussian spheres with σ= 0.30, ν= 1.5 and lmax= 15; and 3= aggregates of 8 severely rough
(SR) columns. (b) Best combinations of two habits: 4= aggregates of 8 SR columns and SR hol-
low bullet rosettes (weights 0.61 and 0.39); 5= aggregates of 8 SR columns and aggregates of 5
SR plates (weights 0.61 and 0.39); and 6= aggregates of 8 SR columns and SR hollow columns
(weights 0.68 and 0.32). (c) Best combinations of three habits: 7=SR droxtals, SR hollow columns
and distorted Koch fractals (t= 0.50) (weights 0.32, 0.30 and 0.38); 8=SR droxtals, SR hollow bul-
let rosettes and distorted Koch fractals (t= 0.50) (weights 0.26, 0.36 and 0.38); and 9=SR droxtals,
aggregates of 10 SR plates and distorted Koch fractals (t= 0.50) (weights 0.36, 0.26 and 0.38). In
the legends in (a–c), the two numbers in parentheses give the asymmetry parameter and the cost
function defined by Eq. (4), respectively. (d–f) show the corresponding differences from P ref

11 .
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Figure 5. A scatter plot of asymmetry parameter vs. cost function (Eq. 4) for single habits (black
dots), for combinations of two habits (red dots), and for combinations of three habits (blue dots). The
“optimized habit combination” selected for parameterization of snow single-scattering properties is
marked with an arrow. Note that some single-habit cases fall outside the range plotted here. These
include spheres, for which cost= 1.90 and g= 0.892.
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Figure 6. Comparison of single-scattering properties for spheres (black lines), distorted Koch frac-
tals with t= 0.18 (red), and the optimized habit combination (blue), for rvp = 50 µm (solid lines) and
rvp = 1000µm (dashed lines), for a monodisperse size distribution. (a) Asymmetry parameter g;
(b) single-scattering co-albedo β = 1−ω; (c) non-dimensional absorption parameter ξ (Eq. 8); and
(d) ξ divided by the real part of refractive index squared. In (c and d), the grey line represents Eq. (9).
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Figure 7. Extinction efficiency Qext for the optimized habit combination as a function of wavelength
(λ) and volume-to-projected area equivalent radius (rvp).

51



D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

D

i

s



u

s

s

i

o

n

P

a

p

e

r

|

Figure 8. Comparison of (a) parameterized single-scattering co-albedo β (contours) with the refer-
ence values computed for the OHC (shading), and (b) parameterized asymmetry parameter g (con-
tours) with the reference values (shading). (c) Relative errors (%) in the parameterized co-albedo.
(d) Absolute errors in the parameterized asymmetry parameter.
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Figure 9. Cost function for the phase function parameterization as defined by Eq. (32) for (a) the full
parameterization (Eq. 14) and (b) without the term Presid. The black solid line indicates, for reference,
a co-albedo value of β = 0.3, which approximately corresponds to a spherical albedo of 0.03 for an
optically thick snow layer.
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Figure 10. Examples of the reference phase function computed for the OHC (black lines) and of the
parameterized phase function for the full parameterization (red lines), the simplified parameteriza-
tion without the term Presid in Eq. (14) (blue lines), and the Henyey-Greenstein phase function with
asymmetry parameter defined by Eq. (13) (dashed green lines) for nine combinations of wavelength
λ and volume-to-projected area equivalent radius rvp. For reference, the values of single-scattering
co-albedo β, asymmetry parameter g, and cost functions for the full parameterization (cost1), for the
simplified parameterization (cost2) and for the Henyey-Greenstein phase function (cost3) are listed
in each panel.
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Figure 11. Albedo of a semi-infinite snow layer for direct incident radiation with the cosine of zenith
angle µ0 = 0.5. (a) Reference values computed for the OHC (shading) and values for the full snow
optics parameterization (contours). (b) The difference between the parameterization and the refer-
ence, (c) between distorted Koch fractals (t= 0.18) and the reference, and (d) between spheres and
the reference. Note that the colour scale differs between the figure panels.
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Figure 12. Root-mean square errors in ln(radiance) (Eq. 33) for (a–c) the full parameterization and
(d–f) the simpler parameterization without the term Presid in the phase function, as compared with
reference calculations for the OHC, for three directions of incident radiation (cosine of zenith angle
µ0 = 0.8, µ0 = 0.4, and µ0 = 0.1, respectively). (g and h) show the respective differences from the
reference calculations for distorted Koch fractals (t= 0.18) and spheres (for µ0 = 0.4 only).
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Figure 13. (a–c) Angular distribution of reflected radiances for the OHC for a single wavelength
λ= 0.80 µm and a single particle size rvp = 200µm. The yellow sphere indicates the cosine of zenith
angle for the incident radiation (µ0 = 0.8, µ0 = 0.4 and µ0 = 0.1 for (a–c), respectively). The azimuth
angle for the incident radiation is φ0 = 0◦. (d–f) and (g–i) show the fractional differences in reflected
radiances (in %) from the OHC for distorted Koch fractals with t= 0.18 and for ice spheres, respec-
tively. (j–l) show the differences from the OHC for the Henyey-Greenstein phase function (with g
computed using Eq. 13 and β using Eq. 11), (m–o) for the full snow optics parameterization and
(p–r) for the simpler parameterization without Presid in Eq. (14). Note that the colour scale in (m–r)
differs from that in (d–l) .
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Figure 14. As Fig. 13, but for three wavelengths λ= 0.30, 1.40 and 2.20 µm, for a single value of
the cosine of zenith angle for incident radiation µ0 = 0.4 and a single particle size rvp = 200 µm.
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