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Abstract. A computationally efficient, open source feature tracking algorithm, called ORB, is

adopted and tuned for sea ice drift retrieval from Sentinel-1 SAR images. The best suitable set-

ting and parameter values have been found using four Sentinel-1 image pairs representative of sea

ice conditions between Greenland and Severnaya Zemlya during winter/spring. The performance of

the algorithm is compared to two other feature tracking algorithms (SIFT and SURF). Applied on5

43 test image pairs acquired over Fram Strait and north east of Greenland, the tuned ORB algorithm

produces the highest number of vectors (177 513, SIFT: 43 260 and SURF: 25 113) while being

computationally most efficient (66 s, SIFT: 182 s and SURF: 99 s per image pair using a 2.7 GHz

processor with 8 GB memory). For validation purpose, 314 manually drawn vectors have been com-

pared with the closest calculated vectors, and the resulting root mean square error of ice drift is10

563 m. All test image pairs show a significantly better performance of the HV channel due to higher

informativeness. On average, around four times more vectors have been found using HV polarisa-

tion. All software requirements necessary for applying the presented feature tracking algorithm are

open source to ensure a free and easy implementation.

1 Introduction15

Sea ice motion is an essential variable to observe from remote sensing data, because it strongly in-

fluences the distribution of sea ice on different spatial and temporal scales. Ice drift causes advection

of ice from one region to another and export of ice from the Arctic Ocean to the sub-Arctic seas.

Antarctic sea ice is even more mobile and its strong seasonality is linked to the ice transport from

high to low latitudes (IPCC, 2013). Furthermore, ice drift generates convergence and divergence20

zones that cause formation of ridges and leads. However, there is still a lack of extensive sea ice drift

data sets with sufficient resolution to estimate convergence and divergence on a spatial scaling of

less than 5 kilometres.

The regions of interest are the ice covered seas between Greenland and Severnaya Zemlya, i.e.

Greenland Sea, Barents Sea, Kara Sea and the adjacent part of the Arctic Ocean. This area is char-25

acterised by a strong seasonal cycle of sea ice cover, a large variation of different ice classes (Multi
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Year Ice, First Year Ice, Marginal Ice Zone etc.) and a wide range of drift speeds (e.g. strong ice drift

in Fram Strait).

With systematic acquisition of space-borne Synthetic Aperture Radar (SAR) data over sea ice ar-

eas, Kwok et al. (1990) have demonstrated that high resolution ice drift fields can be derived from30

SAR data. SAR is an active microwave radar which acquires data independent of solar illumina-

tion and weather condition. Sea ice motion fields of the Arctic Ocean with a grid spacing of 5 km

have been produced on a weekly basis between 1997–2012 using Radarsat and ENVISAT (Environ-

mental Satellite) SAR data and the geophysical processor system introduced by Kwok et al. (1990).

Thomas et al. (2008) have used pattern recognition to calculate sea ice drift between successive35

ERS-1 (European Remote-sensing Satellite) SAR images with a resolution of 400 m. This work has

been continued by Hollands and Dierking (2011) using ASAR data from ENVISAT. Komarov and

Barber (2014) used a similar pattern matching technique to evaluate ice motion results from dual-

polarisation Radarsat-2 images.

With the successful launch of Sentinel-1A in April 2014 and the planned launch of Sentinel-1B40

in early 2016, high resolution SAR data will be delivered for the first time with open and free access

for all users and unprecedented revisit time of less than one day in the Arctic (ESA, 2012). This

introduces a new era in SAR Earth observation. Sea ice drift data with medium resolution (10 km)

is provided operationally via the Copernicus Marine Environment Monitoring Service (CMEMS,

http://marine.copernicus.eu), but no sea ice drift algorithm using Sentinel-1 data has been published45

so far. The objective of this paper is to identify and develop the most efficient open source algorithm

for high resolution sea ice drift retrieval from Sentinel-1 data.

Our goal is to exploit recent improvements and developments in computer vision by adopting a

state of the art feature tracking algorithm to derive sea ice drift (i.e. vectors of sea ice displacement).

Current pattern matching algorithms constrain the high resolution vectors with low resolution esti-50

mates for practical reasons. Using feature tracking, drift vectors can be derived independently from

the surrounding motion, which leads to better performance e.g. along shear zones. For application on

large data sets and for operational use, we considered a computationally efficient algorithm, called

ORB (Rublee et al., 2011), tuned it for sea ice drift retrieval from Sentinel-1 imagery and compared

the results with other available feature tracking algorithms and existing sea ice drift products.55

The software requirements necessary for deriving ice drift fields from Sentinel-1 data (python

with openCV and the python toolbox Nansat) are all open source to ensure a free, user friendly and

easy implementation.

The paper is organised as follows: Section 2 introduces the used Sentinel-1A data product. The

ORB algorithm description and the used methods for tuning, comparison and validation are pre-60

sented in Section 3. The recommended parameter set including the tuning, comparison and valida-

tion results are provided in Section 4. The discussion can be found in Sect. 5.
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2 Data

The Sentinel-1 mission, an initiative of the European Union and operated by the European Space

Agency (ESA), is composed of a constellation of two identical satellites sharing the same near-polar,65

sun-synchronous orbit: Sentinel-1A, launched in April 2014, and Sentinel-1B, planned launch in

early 2016. Sentinel-1 carries a single C-band Synthetic Aperture Radar (SAR) instrument measur-

ing radar backscatter at a centre frequency of 5.405 GHz and supporting dual polarisation (HH+HV,

VV+VH). With both satellites operating, the constellation will have a revisit time of less than 1 day

in the Arctic. Radar data are delivered to Copernicus services within an hour of acquisition with70

open and free access for all users (ESA, 2012).

The Sentinel-1 product used in this paper is called “Extra Wide Swath Mode Ground Range De-

tected with Medium Resolution”. These images cover an area of 400 km× 400 km with a pixel spac-

ing of 40 m× 40 m (resolution: 93 m range× 87 m azimuth; residual planimetric distortions: within

10 m (Schubert et al., 2014)) and provide both HH and HV polarisation.75

Four image pairs (Table 1) representative of our region of interest have been chosen for parameter

tuning. Furthermore, 43 image pairs acquired over Fram Strait and north east of Greenland (Figure

8) have been used to test the performance of different feature tracking algorithms. To ensure an

independent evaluation, the 43 test image pairs have not been used for parameter tuning. The two

considered sets of image pairs cover both a range of different sea ice conditions (pack ice, fast ice,80

leads, ridges, marginal ice zone, ice edge etc.) and intervals between the acquisitions. We focused on

winter/spring data, since our area of interest experiences the highest sea ice cover during this period.

3 Method

Sentinel-1 datasets were opened and processed with the open source software Nansat (see Appendix

A; Korosov et al. (2015, 2016)). Nansat is a scientist-friendly Python toolbox for processing 2-D85

satellite Earth observation data. It is based on the Geospatial Data Abstraction Library (GDAL)

and provides easy access to geospatial data, a simple and generic interface to common operations

including reading, geographic transformation and export. Nansat proves to be efficient both for de-

velopment and testing of scientific algorithms and for fast operational processing. To extend the

functionality of GDAL, Nansat reads metadata from XML files accompanying Sentinel-1 data and90

supplements the GDAL data model with georeference information stored as ground control points

(GCPs). Originally GCPs are pairs of latitude/longitude and corresponding pixel/line coordinates. In

order to increase the accuracy of the geographic transformation, the projection of GCPs is changed

from cylindrical to stereographic centred at the centre of the scene. The reprojected GCPs are then

used by GDAL to calculate geographic coordinates of any pixel in the raster using spline interpola-95

tion. Reprojection of GCPs does not require much additional computational effort, but improves the

result significantly, particularly at high latitudes.
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The normalised radar cross section (σ0) is calculated from raw Sentinel 1A data using the follow-

ing equation:

σ0 =DN2
i /A

2
i (1)100

where DNi is the digital number provided in the source TIFF file, Ai is the value of normalisation

coefficient from the accompanying calibration metadata and i is an index of a pixel (Anonymous,

2014). No additional pre-processing of SAR data was performed.

Our algorithm for sea ice drift detection includes three main steps: (a) resampling of raw data to

lower resolution, (b) detection and matching of features and (c) comparison/validation.105

(a) To decrease the influence of speckle noise and increase the computational efficiency, the reso-

lution is reduced before applying the ice drift algorithm from 40 m to 80 m pixel spacing using

simple averaging.

(b) For detection and tracking of features on large data sets and for operational use, a computa-

tionally efficient algorithm, called ORB (Rublee et al., 2011), has been used. In our numerical110

experiments we tuned the parameters of ORB for optimal SAR sea ice drift application. The

best suitable parameter set (including spatial resolution of SAR image, patch size of FAST

descriptor, number of pyramid levels, scale factor, etc.) has been evaluated for our area and

season of interest.

(c) The introduced ORB setup is compared to other available OpenCV feature tracking algo-115

rithms, CMEMS data and manually drawn vectors for performance appraisal and validation.

3.1 ORB algorithm

ORB (Oriented FAST and Rotated BRIEF) is a feature tracking algorithm introduced by Rublee et al.

(2011) as ’a computationally-efficient replacement to SIFT that has similar matching performance,

is less affected by image noise, and is capable of being used for real-time performance’. ORB builds120

on the FAST keypoint detector (Rosten and Drummond, 2006) and the binary BRIEF descriptor

(Calonder et al., 2010) with many modifications to enhance the performance. It uses FAST to find

multiscale-keypoints on several pyramid levels and applies a Harris corner measure (Harris and

Stephens, 1988) to pick the best keypoints. To achieve rotation invariance, the orientation of the

keypoint is calculated by using the intensity-weighted centroid of a circular patch with the located125

keypoint at the centre. Rublee et al. (2011) states that the ORB descriptor performance is equal to

SIFT (Lowe, 2004) and higher than SURF (Bay et al., 2006). Like Rublee et al. (2011), we use

Brute Force matcher and Hamming distance for feature matching. Unlike SIFT and SURF, ORB is

an open-source software and use and distribution are not limited by any licenses.

Before the feature tracking algorithm can be applied to a satellite image, the SAR backscatter130

values σ0 have to be transformed into the intensity i range (0≤ i≤ 255 for i ∈ R) used in openCV.
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This transformation is done by using Eq. (2) and setting all intensity values below and above the

range to 0 and 255.

i = 255 · σ0−σ0
min

σ0
max−σ0

min

(2)

Lower and upper brightness boundaries σ0
min and σ0

max are user defined and chosen to be constant135

in order to limit the influence of speckle noise and be independent of e.g. high backscatter values σ0

over land. Converting the linear backscatter values before the transformation into decibel units has

been tested, but decreased the algorithm performance for both channels.

After the transformation into intensity values, keypoints are detected on both SAR scenes using

the FAST-9 keypoint detector (Rosten and Drummond, 2006). FAST-9 compares the intensity Ip of a140

center pixel to the intensities of pixels on the surrounding circle with a perimeter of 16 pixels (Figure

1). If there exists a set of nine contiguous pixels in the circle which are all brighter than Ip+ t, or all

darker than Ip− t, the center pixel is recognized as a keypoint. The threshold t is set low enough to

get more than the predefined amount N of keypoints.

To detect features of different scales, the keypoint search is performed on several pyramid levels.145

The number of pyramid levels in combination with the scale factor defines the range and increment

of the keypoint detection scaling. A scale factor of 2 means that each next pyramid level has 4 times

less pixels, but such a large scale factor degrades the feature matching score. On the other hand, a

small scale factor close to 1 means to cover a certain scale range needs more pyramid levels and

hence, the computational cost increases.150

FAST does not produce a measure of cornerness and Rublee et al. (2011) have found that it has

large responses along edges. Harris corner measure (Harris and Stephens, 1988) is used to order

the FAST keypoints according to their cornerness and reject less reliable keypoints. Considering a

window w(x,y) around the keypoint, the intensity derivatives Ix, Iy in x and y direction can be

written in a matrix M:155

M=
∑
x,y

w(x,y)

 I2x IxIy

IxIy I2y

 (3)

The eigenvalues λ1 and λ2 of M contain the intensity derivative in the direction of the fastest and

slowest change, respectively. Based on λ1 and λ2, a score R can be calculated for each keypoint:

R= λ1λ2− k(λ1 +λ2)
2 (4)

with k being an empirical constant. A high intensity variation in both dimensions returns a high R160

value. The top N keypoints with the highest R values are used and the rest is rejected.

FAST does not include orientation, but ORB adds a direction to each keypoint using the intensity-

weighted centroid from Rosin (1999). Using the momentsmpq of a circular area around the keypoint,

mpq =
∑
x,y

xpyqI(x,y) (5)165
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the intensity-weighted centroid has its location at

C = (
m01

m00
,
m10

m00
) (6)

The orientation θ (e.g. green arrow in Figure 1) represents the direction of the vector connecting

the keypoint with the intensity-weighted centroid. The moments mpq are computed with x and y

remaining within a circular region of radius r, where r is chosen to be the size of the patch p used170

for the following feature description Rublee et al. (2011).

After locating and adding orientation to the best N keypoints, a patch p around each keypoint

is used for feature description (NB: keypoint refers to 1 pixel, feature refers to description of p).

ORB applies a modified version of the binary descriptor BRIEF (Calonder et al., 2010). Rublee et

al. (2011) defines a binary test τ for a patch p as follows:175

τ(p;X,Y ) :=

1 if p(X)< p(Y )

0 if p(X)≥ p(Y ),
(7)

with p(X) and p(Y ) being the intensities at test point X and Y , respectively. ORB uses 5x5 sub-

windows as test points (e.g. in Figure 1). Applying n binary tests on a single patch, Rublee et al.

(2011) derive a binary feature vector f :

fn(p) :=
∑

1≤i≤n

2i−1τ(p;Xi,Yi) (8)180

The considered set of n binary tests with test points (Xi,Yi) can be written in a 2 xn matrix (Rublee

et al., 2011):

S=

X1, ...,Xn

Y1, ...,Yn.

 (9)

To be invariant to in-plane rotation, Rublee et al. (2011) steers S according to the orientation θ using

the corresponding rotation matrix Rθ:185

Sθ =RθS. (10)

A good set S of sampling pairs needs to be uncorrelated, so that each pair adds new information to

the descriptor, and have high variance, to make features more discriminative. Rublee et al. (2011)

applied a greedy search on a large training dataset to obtain a set for ORB with n= 256 relatively

uncorrelated tests with high variance.190

After the feature description, openCV allows different matching procedures for ORB. Like Rublee

et al. (2011), we use Brute Force matching and compare each feature of the first image to all features

in the second image.

As a comparison measure, we use the Hamming distance which is equal to the number of positions

in which the two considered feature vectors have a different value. E.g. comparing the two binary195
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vectors b1 and b2

b1 = 1011101

b2 = 1001001 (11)

returns the Hamming distance d= 2, since the third and fifth position have a different value.

Our setting returns the best two matches and applies the ratio test from Lowe (2004) to decide

whether the best match is accepted or rejected. The match is accepted if ratio of the distances d1
d2
<200

is below a given threshold. The ratio test eliminates a high number of false matches, while discarding

only few correct matches.

3.2 ORB setting and parameter tuning

Achieving the best possible performance of ORB for sea ice drift from Sentinel-1 images, requires

a good setting and tuning of the parameters shown in Table 2.205

It is not recommended to re-project one image onto the projection of the second image before

applying the ORB algorithm, since this is computationally very expensive. Instead, geographic co-

ordinates of the matched start and end point shall be calculated independently using the georeference

information from GCPs of the first and second image.

Manual interpretation of ice drift results (using the training data from Table 1) reveals that a good210

compromise between amount of vectors and correct results can be achieved with a Lowe ratio test

threshold equal to 0.75. That means that the Hamming distance of the best match has to be less than

0.75×Hamming distance of the second best match. Tested on the image pairs from Table 1, the

ratio test showed clear better performance and is computationally less expensive than the alternative

cross-check, where features are matched in both directions (first image to second image and vice215

versa) and rejected if the drift vectors are too different.

Unreasonably high sea ice displacements (e.g. above 40 km for a time difference between two

scenes of ∼30 hours) are removed in a post-processing step from the drift field. In addition, dis-

placements below 2.5 km are rejected during the testing to disregard matches over land. This does

not influence the number of correct matches, since the sea ice displacement in all considered test220

images is above 2.5 km.

Based on our observations we assume that the proportion of wrong matches does not increase with

increasing total number of matches. Under this assumption the algorithm performance refers to the

total number of matches and is used to tune the algorithm parameters in Table 2. ORB is computa-

tionally more efficient enabling testing the parameters over a wide range with high resolution using225

both HH and HV polarisation.

As a starting point, the tested parameters were set as follows: resize factor = 0.5, patch size = 31,

pyramid levels = 8, scale factor = 1.2, HH limits = [0,0.12], HV limits = [0,0.012] and ratio test = 0.8.
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As a compromise between performance and computational efficiency, the amount of maximum re-

tained keypoints is set to 100 000. Tested range and parameter meaning are shown in Table 2.230

In order to find an optimal value for the tested parameter, it is varied in reasonable a range, the

feature tracking algorithm is applied and the total number of matched vectors is found. Once the best

suitable value for a tested parameter is found, it is applied for further testing.

3.3 Comparison of ORB to SIFT and SURF

The presented ORB algorithm has been compared to other OpenCV feature tracking algorithms,235

namely SIFT (Lowe, 2004) and SURF (Bay et al., 2006), using 43 image pairs acquired over Fram

Strait and north east of Greenland (Figure 8). SIFT and SURF were used in standard mode and the

framework conditions were set equal for the comparison. Image pre-processing has been done as

described above, Brute Force Matching including the Lowe ratio test with threshold 0.75 has been

applied for all three algorithms as well as the removal of unreasonably high sea ice displacements in240

a post-processing step. Since SIFT allows to define the number of retained keypoints, this parameter

has been set to 100 000 as done for ORB. The further tuning of SIFT and SURF is not the aim of

this paper, since these two algorithms are not open source and computationally less efficient.

The distribution and reliability of the calculated vector fields have been assessed for each image

pair using two parameters on a grid with cell size 1 ◦longitude× 0.2 ◦latitude: number of derived245

vectors per grid cell (N ) and root mean square distance (D) of all vectors in a gird cell computed as

follows:

D =

√∑
i(ui− ũ)2 +(vi− ṽ)2

N
(12)

where i is the index of a vector inside the grid cell, ui and vi are the eastward and northward drift

components and ũ, ṽ the corresponding mean values. To combine the results of several image pairs,250

the sum of N and the mean of D is considered.

3.4 Validation

The ORB algorithm has been validated against drift data from two independent sources using the

image pair “Fram Strait” (Table 1). First, 350 features have been identified by a sea ice expert in

both images and manually connected using ArcGIS. Second, sea ice drift vectors were taken from255

the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu).

The SAR ice drift product of CMEMS is operated by the Technical University of Denmark (DTU)

and drift data is provided with a resolution of 10 km using pattern matching techniques (Pederson et

al. (2015), http://www.seaice.dk/).

Since the starting location of ORB, manual and CMEMS vectors do not coincide, the correspond-260

ing (ORB) reference vectors were found as nearest neighbours within 5 km radius from the (CMEMS

or manual) validation vectors.

8



Three parameters were considered for the comparison: root mean square error (E), slope (S) and

offset (O) of the linear fit between the reference and validation vectors. E was calculated as follows:

265

E =

√∑
i(ui−Ui)2 +(vi−Vi)2

n
(13)

where i is the index of a vector pair (reference and validation vector) inside the entire sample, ui and

vi are eastward and northward drift components of the validation vector, Ui and Vi are eastward and

northward components of the reference vector and n is the number of vector pairs.

In addition, the CMEMS data has been validated against manual vectors in order to understand270

the credibility of the reference data.

4 Results

4.1 ORB parameter tuning

Table 2 shows the recommended parameter set for ORB Sentinel-1 sea ice drift application for

our region and period of interest. Using these parameters yielded the best compromise between275

performance and computational efficiency for the four representative image pairs from Table 1.

4.1.1 Patch size

Figure 2 shows that changing the size (length and width) of the considered patch p between 10 and

60 pixels can modify the resulting amount of vectors by an order of magnitude. To resolve drift

gradients with high resolution, the patch size shall be as small as possible. Taking this into account280

and the performance represented by the amount of matches, the best suitable patch size was chosen

to be 34 pixels . For our training dataset (Table 1), this yields on average around 1 and 4 vectors per

10 km2 for HH and HV, respectively. The four image pairs respond similar to a patch size variation.

’Franz Josef Land’ has the highest number of HH matches and the lowest for HV.

4.1.2 Brightness boundaries285

The performance of the algorithm (represented by the amount of matches) for different backscatter

limits σ0
max (Equation 2) for HH and HV polarisation is shown in Fig. 3. Within the chosen backscat-

ter range, the amount of vectors can vary by an order of magnitude. As a compromise between the

different results of the four image pairs, we suggest to set the upper brightness boundary σ0
max to

0.08 and 0.013 for HH and HV. The chosen lower boundary σ0
min is 0 for both HH and HV, because290

the number of matches decreases for increasing values of σ0
min (not shown). Applying this setting

on the training dataset yields on average around 1 and 4 vectors per 10 km2 for HH and HV.
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4.1.3 Pyramid levels and scale factor

We calculated the number of matches using 1 to 14 pyramid levels and the scale factors 1.1, 1.2,

1.3 and 1.4. As a compromise between performance, i.e. number of matches, and computational295

efficiency (linked to the number of pyramid levels), a scale factor of 1.2 with seven pyramid levels

was chosen. As shown in Figure 4, the number of matches does not increase significantly when using

more than seven pyramid levels and even decreases towards 14 pyramid levels.

4.2 HH and HV comparison

Figures 2, 3 and 4 display the HH and HV results with solid and dashed lines, respectively. All300

image pairs show significantly better performance of the HV channel. On average, around 4 times

more vectors have been found using HV. Even the image pair “Franz Josef Land” (Table 1), which

has the best HH and the worst HV performance, shows more than two times more vectors using HV

channel. However, due to the different appearance of sea ice in the HH and HV image, the spatial

distribution of the resulting drift vectors is also slightly different.305

Figure 6 shows the spatial distribution of identified keypoints and matched features in a 200×200

pixels sub-image from image pair “Fram Strait” (Table 1). The results for HH and HV are displayed

in two separate panels. The density of identified keypoints in HH (11 keypoints per 10×10 pixels

window) is in the same order of magnitude as in HV (15 keypoints per 10×10 pixels window).

This is expected, since the number of retained keypoints for both channels is set to 100 000 for the310

entire scene. However, the number of matched features in HH is significantly lower (0.15 features per

10×10 pixels window) than in HV (1.6 features per 10×10 pixels window). The observed difference

in matching success can be explained by looking at the frequency distribution of the radar backscatter

standard deviation in a sliding window with same size as used for feature description (34×34 pixels).

The comparison in Figure 7 shows that HH provides a few windows with very high variability, i.e.315

high standard deviation, but the majority has very low backscatter variability (sharp peak with mode

20). On the HV image however, most of the windows have a medium to high backscatter variability

(wide peak with mode 25) which is more favourable for keypoint detection.

4.3 Comparison with SIFT and SURF

A total of 177 513, 43 260 and 25 113 vectors are found for the 43 test image pairs (Figure 8) using320

ORB, SIFT and SURF, respectively (Figure 9 a). Comparing the vector fields using the sum of N

and the mean of D, as described in Section 3, shows that ORB covers the largest area with close to

1000 vectors per grid cell and lower corresponding mean root mean square distance values.

Comparing the distributions of N (Q-Q plot in Figure 10, left panel), shows that ORB derives

in all cases around 5 times more vectors than SIFT and SURF. The Q-Q plot in the right panel325

of Figure 10 considers the distributions of D. For D < 500m, the vectors derived by ORB exhibit
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a higher variability within one grid cell (slightly higher D), probably due to a larger number of

vectors N . For the higher root mean square values (D > 500m), SIFT and SURF vectors are much

less consistent than ORB vectors (higher D).

4.4 Computational efficiency330

The OpenCV feature tracking algorithms ORB, SIFT and SURF in combination with the python-

toolbox ’Nansat’ are computationally efficient (total processing time on regular MacBook Pro: 2–4

minutes) and allow high resolution sea ice drift retrieval from datasets with large temporal and spatial

extent. The processing times shown in Table 3 are based on testing the algorithms on a MacBook

Pro from early 2013 with a 2.7 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory.335

Applying the introduced ORB algorithm needs 36 % and 67 % of the processing time necessary to

compute drift fields with SIFT and SURF, respectively.

4.5 Validation

Since reference vectors were searched only within a given radius of the validation vectors, the num-

ber of match-ups decreased for the ORB vs manual comparison from 350 possible matches to 314,340

for ORB vs CMEMS from 560 to 436 and for CMEMS vs manual from 350 to 201 (Table 4). The

average distance between compared vectors was 1702 m, 2261 m and 3440 m for ORB vs manual,

ORB vs CMEMS and CMEMS vs manual, respectively.

The validation of ORB vectors with manual derived vectors (Figure 5 a, Table 4) reveals a high

accuracy of our tuned ORB algorithm with root mean square error E = 563m, slope S = 1.02 and345

offset O =−372m. Given the displacement range for the used image pair of 10–35 km, the relative

error of the algorithm (ratio of E to mean drift) is 2.5%.

The vector distributions of ORB and CMEMS (Figure 5 b) are similar. ORB covers a larger area

in total, but in a few regions only CMEMS provides drift information. The ORB vs CMEMS com-

parison gives an error E = 1641m, slope S = 1.03 and offset O = 265m (Table 4).350

Validating CMEMS using manual data results in the highest root mean square error E = 1690m

with slope S = 0.98 and offset O =−415m (Table 4) .

Decreasing the threshold radius between reference and validation vectors does not influence the

error E significantly but reduces the number of found matching vectors especially when comparing

CMEMS and manual vectors.355

5 Discussion and outlook

The open source feature tracking algorithm ORB (Oriented FAST and Rotated BRIEF) has been

tuned for sea ice drift retrieval from Sentinel-1 SAR imagery and used for processing winter/spring

data in the ice covered oceans between Greenland and Severnaya Zemlya. Validating calculated
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drift results against manual derived vectors, we found that our algorithm (EORB = 563m) had a360

distinctly higher accuracy than the drift dataset provided by CMEMS (ECMEMS = 1690m). The

given root mean square errors E represent a combination of three error sources:

– error of manual ice drift identification introduced by the sea ice expert;

– difference between derived and reference vector due to different geographical location of the

starting point (maximum 5 km);365

– actual error of the algorithm.

Hence, the actual error of the tuned ORB algorithm is expected to be even lower than 563 m.

As expected, the application of the tuned ORB algorithm is much more efficient than manual

ice drift assessment: e.g. 6920 vectors have been calculated within 3 minutes, whereas identifying

350 sea ice drift vectors manually takes several hours. The number of calculated vectors can be370

increased by returning a higher number of keypoints (e.g. 1 000 000). However, the processing time

increases proportional to the square of the considered keypoints and the algorithm performance

becomes suboptimal at some point.

The presented ORB algorithm also outperforms other available feature tracking algorithms, such

as SIFT and SURF not only in processing time, but also in quantity and quality of drift vectors,375

measured by the two introduced indexes N and D. This proves that ORB is the best option for

feature tracking of sea ice on Sentinel-1 SAR imagery.

The algorithm tuning has been performed using winter/spring data, since our area of interest expe-

riences the highest sea ice cover during this period. During summer/autumn, most considered areas

have very little or no ice cover (e.g. Barents Sea and Kara Sea), making ice drift calculation during380

this period less meaningful. Nevertheless, some areas, like the western Fram Strait, experience sea

ice cover during the entire year. Dependence of the algorithm performance on the season needs to be

evaluated in future work. Computing sea ice drift from summer/autumn data is expected to be more

demanding, since features might be destroyed by melting.

Comparing the four considered image pairs, ’Franz Josef Land’ yields the highest number of HH385

matches, accompanied by the lowest number from HV channel. A distinct shorter time difference

between the acquisitions (8 hours for ’Franz Josef Land’ compared to more than 30 for the other

image pairs) might be one reason for an improved HH performance. That would conclude that HH

features are less preserved over time and increasing the repeat frequency of the satellite (as planned

with Sentinel-1B) will improve the algorithm performance in particular for the HH channel. The sea390

ice conditions are another important factor, when comparing the algorithm performance for different

scenes. The image pair ’Fram Strait’ includes the marginal ice zone in the eastern part and multi year

ice in the north west. Not many matches are expected in the marginal ice zone, but the multi year

ice includes more stable deformation pattern, like ridges, that lead to a good feature tracking perfor-

mance. ’Svalbard North’ includes a very small part of the marginal ice zone and the major part is395
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comparable homogeneous pack ice with long cracks along a prevailing direction. ’Franz Josef Land’

and ’Kara Sea’ are clearly less homogeneous and show a mixture of ice floes with different scales

and newly formed young ice. This paper has been focusing on finding the best suitable algorithm for

a range of ice conditions found in the considered area and we can give an idea how ice conditions and

acquisition time might affect the ORB feature tracking performance. Further investigations needs to400

be done in order to evaluate the algorithm performance for different ice conditions and other areas

like the Beaufort Sea or Antarctica.

Komarov and Barber (2014) have evaluated sea ice drift results from dual-polarisation Radarsat-2

imagery using a combination of phase and cross-correlation. Comparing the polarisation channels,

HH is more sensitive to small-scale roughness, whereas the HV channel provides more stable, large405

scale features linked to ice topography. Komarov and Barber (2014) concludes that the combination

of HH and HV is beneficial, since more reliable vectors are provided and the vector distributions

complement each other. They also found that noise floor stripes in the HV images do not affect the

motion tracking from pattern matching. We can extent this discussion for feature based algorithms.

Using noise removal for HV and angular correction for HH has been tested, but did not improve the410

feature tracking results, i.e. a lower number of vectors has been found. Like Komarov and Barber

(2014), we recommend the usage of both channels since the vector distributions are complementary.

However, using feature tracking, HV provides about 4 times more vectors than HH, making HV the

more informative channel. The different performance can be explained by a higher variability of the

HV backscatter intensity, considering a window with the same size as used for feature description415

(34×34 pix).

Contemporary algorithms for calculating sea ice drift vectors from consecutive image pairs are

based either on feature tracking or pattern matching. The feature tracking approach detects key-

points on two images based solely on the backscatter distribution of the images without taking other

keypoints into account. Hence, ORB identifies the keypoints independently. Based on the keypoint420

locations, the binary feature vectors are calculated. During the second step, all features in the first

images are compared to all features in the second image without taking drift information from sur-

rounding vectors into account, i.e. the matching of features from one image to the other is also done

independently. Although very close keypoints may share some pixels during the feature description

process (i.e. overlap of the considered patches around the keypoints), the detection of keypoints and425

matching of features are done independently. Eventually, feature tracking vectors are independent of

each other in terms of position, lengths and direction, allowing very close drift vectors to point into

different directions.

Figure 11 illustrates 430 drift vector anomalies detected in a 300×400 pix (24×32 km) sub-

image from “Fram Strait” (Table 1) close to the marginal ice zone. The anomalies are calculated as430

difference to the mean drift of the entire scene. This example shows that very small scale dynamic
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processes, such as the observed rotation, can be detected and quantified with the feature tracking

approach.

Common pattern matching techniques limit the independence of neighbor vectors for practical

reasons. First, pattern matching is usually performed on a regular grid, determining the position and435

distance between vectors. Second, pattern matching often follows a pyramid approach in order to

speed up processing (Thomas et al., 2008): low resolution drift is initially estimated using large sub-

windows and large steps. This first guess constrains the following pattern matching at finer scale.

Repeating this procedure increases the resolution of the end product, but length and direction of

the high resolution vectors depend on the low resolution estimates, i.e. neighbor vectors depend on440

each other. Although pattern matching can be designed to retrieve independent vectors by varying

the extent of the correlation area and the spacing between vectors, for practical reasons the overlap

between the correlation areas is usually half the size of the area (Thomas et al., 2008b).

The independence of feature tracking vectors has positive and negative implications. On one hand,

very close vectors, that are independent in length and direction, allow identification of ice deforma-445

tion at very high resolution. The variogram (Fig. 12), which shows how vector differences dependent

on the distance between them (Cressie, 1993), indicates, that very close vectors may differ signifi-

cantly, although the difference is generally linearly proportional to the distance. On the other hand,

feature tracking vectors are not evenly distributed in space, and large gaps may occur between clouds

of densely located vectors. Spatial irregularity is not optimal for systematic detection of divergence450

and shear zones and calculation of deformation.

Therefore, computationally efficient feature tracking should be complemented by systematic pat-

tern matching to deliver evenly distributed, high resolution vector fields. Combining the two different

drift calculation approaches and making use of the respective advantages is planned as the next step

of our research.455

Appendix A: Open source distribution

The presented work is entirely based on open source software (Python, openCV and Nansat)

and satellite images with open and free access for all users. Sentinel-1 SAR data can be down-

loaded at no cost, in near real time under https://scihub.esa.int/dhus/. The used programming lan-

guage is Python, a free and open source software available under https://www.python.org. The460

OpenCV (Open Source Computer Vision) programming library includes the ORB algorithm, and

a python compatible version can be downloaded under http://opencv.org. To handle and read

the satellite data, Nansat is used, which is a scientist friendly Python toolbox for processing 2-

D satellite Earth observation data (source code incl. installation description can be found under

https://github.com/nansencenter/nansat). The presented sea ice drift algorithm including an applica-465

tion example can be downloaded from https://github.com/nansencenter/sea_ice_drift.
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Table 1. Sentinel-1 image pairs used for parameter tuning.

Region 1-st image acquisition time, UTC 2-nd image acquisition time, UTC Time gap

Fram Strait 2015-03-28 07:44:33 2015-03-29 16:34:52 33 h

Svalbard North 2015-04-22 06:46:23 2015-04-23 13:59:03 31 h

Franz Josef Land 2015-03-24 03:21:13 2015-03-24 11:30:06 8 h

Kara Sea 2015-04-22 11:37:16 2015-04-24 11:20:59 48 h

Table 2. Recommended set of parameters for retrieval of sea ice drift from Sentinel-1 data using ORB.

Parameter Meaning Tested range Recommended

(increment) setting

Amount keypoints Maximum number of keypoints to retain – 100 000

Resize factor Resolution reduction during pre-processing 0.5–1 (0.5) 0.5

Patch size Size of descriptor patch in pixels 10–60 (1) 34

Pyramid levels Number of pyramid levels 1–15 (1) 7

Scale factor Pyramid decimation ratio 1.1–1.4 (0.1) 1.2

[σ0
min, σ0

max] (HH) Brightness boundaries for HH channel [0–0.04,0.01–0.2] (0.01) [0,0.08]

[σ0
min, σ0

max] (HV) Brightness boundaries for HV channel [0–0.007,0.001–0.02] (0.001) [0,0.013]

Ratio test Threshold for ratio test 0.5–1 (0.1), 0.7–0.8 (0.01) 0.75

Thomas, M., Geiger, C. A., and Kambhamettu, C.: High resolution (400 m) motion characterization of sea ice515

using ERS-1 SAR imagery, Cold Reg. Sci. Technol., 52, 207–223, 2008.

Thomas, M., Geiger, C.A., Kannan, P., Kambhamettu, C.: Streamline Regularization for Large Discontinuous

Motion of Sea Ice, in 2008 IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS 2008), ed. by

Selim Aksoy and Nicolas H. Younan, International Association for Pattern Recognition, Institute of Electrical

and Electronics Engineers, Inc., Tampa, FL, 1–4, doi: 10.1109/PRRS.2008.4783171, 2008.520

Table 3. Processing times for sea ice drift computation from one channel.

Process Time [s]

Create two Nansat objects from Sentinel-1 image pair 21.1

Read matrixes from two Nansat objects 48.8

Apply feature tracking algorithm – ORB 65.8

Apply feature tracking algorithm – SIFT 181.8

Apply feature tracking algorithm – SURF 98.5
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Table 4. Comparison of ORB, CMEMS and manual derived sea ice drift data from image pair ’Fram Strait’

(Table 1). The total numbers of derived vectors are 6920 (ORB), 560 (CMEMS/DTU) and 350 (manual). The #

vector pairs is the number of used vector pairs for comparison, i.e. vector pairs with maximum 5 km distance.

The average distance refers to the starting locations of the used reference and validation vectors. E is the root

mean square error, S and O are slope and offset of the linear fit.

Algorithm E [m] S O [m] # vector pairs Average distance [m]

ORB vs manual 563 1.02 -372 314 1702±1325

ORB vs CMEMS 1641 1.03 265 436 2261±1247

CMEMS vs manual 1690 0.98 -415 201 3440±1105
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Figure 1. Subset of the 1st image from ’Fram Strait’ pair (Table 1) with centre at 2.31◦W, 81.70◦N and pixel

spacing of 80 m. The centre pixel (red) is recognised as keypoint since > 9 contiguous pixels (bold blue) of the

surrounding blue circle have intensity values smaller than the centre minus threshold t. The orientation θ of the

keypoint is shown with a green arrow. The displayed area (34x34 pixels) around the keypoint represents the

considered patch p used for feature description. The yellow 5x5 pixels sub-windows X and Y are an example

for a possible binary test sampling pair with p(X)< p(Y ) and hence, τ(p;X,Y ) = 1 (Equation 7).
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Figure 2. Patch size of descriptor versus number of matches of the four test image pairs from Table 1. Solid

and dashed lines represent results for HH and HV polarisation, respectively. Mean values of the four image

pairs are shown in black and the sum of the mean values in red. Vertical grey line at 34 pixels represents chosen

parameter.
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Figure 3. Upper brightness boundary σ0
max (Equation 2) versus number of matches of the four test image pairs

from Table 1. Solid and dashed lines represent results for HH and HV, respectively. Black lines are the mean

values of the four image pairs. Vertical grey lines at 0.08 (HH) and 0.013 (HV) represent chosen parameters.
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Figure 4. Number of pyramid levels versus number of matches of the four test image pairs from Table 1 for a

scale factor of 1.2. Solid and dashed lines represent results for HH and HV polarisation. Mean values are shown

in black and the sum of the mean values in red. Vertical grey line at 7 represents chosen number of pyramid

levels.
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a)

30km

b)

30km

Figure 5. Sea ice drift of the Sentinel-1 image pair “Fram Strait” (Table 1). (a) Manually drawn vectors are

shown in white and the computed ORB vectors in red. (b) shows ORB vectors in comparison to the drift vectors

from the CMEMS/DTU data (blue).
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Figure 6. Identified keypoints (blue) and matched features (red) on a 200×200 pixels sub-image from the pack

ice area in image pair “Fram Strait” (Table 1). Results of HH are shown in the left panel and HV in the right

panel.

Figure 7. Frequency distribution of radar backscatter standard deviation using a 34×34 pixels sliding window

(step = 1 pixel) on a 1000×1000 pixels sub-image from image pair “Fram Strait” (Table 1). The radar backscat-

ter is scaled to range 0–255 using Equation 2. The considered sub-image covers pack ice, marginal ice zone and

small parts of open water. Results for HH are shown in blue and HV in green.
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Figure 8. Overlapping area of 43 Sentinel-1 image pairs used to compare ORB, SIFT and SURF. The image

pairs have been acquired between 2nd January and 21st March 2015 with time gaps varying between 7 hours

and 48 hours.
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Figure 9. Sea ice drift derived from 43 Sentinel-1 image pairs (Figure 8) using both HH and HV channel and

ORB (first column, 177 513 vectors), SIFT (second column, 43 260 vectors) and SURF (third column, 25 113

vectors) algorithm. The panels show: sum of number of vectors per grid cell N (green, first row) and mean root

mean square distance D in km (red, second row).
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Figure 10. Q-Q plot of number of vectors N (left panel) and root mean square distance D (right panel) from

results shown in Figure 9. Tuned ORB algorithm (X-axis) compared to SIFT (Y-axis, blue dots) and SURF

(Y-axis, green dots).
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Figure 11. Sea ice drift anomaly (compared to mean drift of the scene) detected in a 300×400 pix (24×32 km)

sub-image from “Fram Strait” (Table 1) close to the marginal ice zone.
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Figure 12. Variogram of drift vectors (black line) on top of 2D histogram of distance between vectors and dif-

ference between vectors estimated from vectors identified on the Sentinel-1 image pair “Fram Strait” (Table 1).

Colour of the 2D histogram indicates the number of vectors.

25


