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Abstract

This paper examines the ability of optical reflectance data assimilation to improve snow
depth and snow water equivalent simulations from a detailed multilayer snowpack
model. The direct use of reflectance data, instead of higher level snow products,
rules out uncertainties due to commonly used retrieval algorithms. Data assimilation5

is performed with an ensemble-based method, the Sequential Importance Resampling
Particle filter, to represent simulation uncertainties. Here, model uncertainties are
essentially ascribed to meteorological forcings. An original method of stochastic
perturbation is implemented to explicitly simulate the consequences of these
uncertainties on the snowpack estimates.10

The assimilation of spectral reflectances from the MODerate Imaging Spectrometer
(MODIS) sensor is examined, through twin experiments based on synthetic
observations, over five seasons at the Col du Lautaret, located in the French Alps.
Overall, the assimilation of MODIS-like data reduces root mean square errors (RMSE)
on snow depth and snow water equivalent by a factor of 2. At this study site, the15

lack of MODIS data on cloudy days does not affect the assimilation performance
significantly. The combined assimilation of MODIS-like reflectances and a few snow
depth measurements throughout the 2010/11 season further reduces RMSEs by
a factor of roughly 3.5. This work suggests that the assimilation of optical reflectances
should become an essential component of spatialized snowpack simulation and20

forecast systems. The assimilation of real MODIS data will be investigated in future
works.

1 Introduction

Seasonal snowpack modeling is a crucial issue for a large range of applications,
including the forecast of natural hazards such as avalanches or floods, or the study25

of climate change (e.g. Durand et al., 1999; Lehning et al., 2006; Bavay et al.,
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2013). The most sophisticated detailed snowpack models represent the evolution of
snow microstructure and the layering of snow physical properties (Brun et al., 1989,
1992; Jordan, 1991; Bartelt and Lehning, 2002; Vionnet et al., 2012) in response to
meteorological conditions. Despite constant efforts to improve these models, large
uncertainties remain in the representation of the snow physics, as well as in the5

meteorological forcings (Carpenter and Georgakakos, 2004; Essery et al., 2013;
Raleigh et al., 2015). These uncertainties are highly amplified when propagated to
avalanche hazard models (Vernay et al., 2015). For operational applications, the
assimilation of observations can help reducing the impact of the model and forcing
uncertainties in the snowpack simulations (e.g. Dechant and Moradkhani, 2011) using10

microwave radiance data.
In situ measurements are the most detailed and accurate observations of the

snowpack, but their spatial distribution is far too scarce to capture the high
spatial variability of the snowpack properties. Satellite observations are much more
appropriate for this purpose. Their main limitation is to provide a surface-only or15

a vertically integrated information on the snowpack, which is not always straightforward
to connect to the snow properties. This obstacle can be circumvented using satellite-
based snow products such as Snow Water Equivalent (SWE) estimates from passive
microwave sensors (Andreadis and Lettenmaier, 2006; Dong et al., 2007; De Lannoy
et al., 2012), snow cover fraction (Liu et al., 2013) or albedo (Dumont et al., 2012) from20

optical sensors. However, satellite snow products are derived using retrieval algorithms
which are not perfect and, perhaps more importantly, not physically consistent with the
snowpack model used for the data assimilation. For this reason, and as advocated
by Durand et al. (2009), assimilating the original satellite radiance data should be
preferred when possible.25

Snow remote sensing is primarily performed in the microwave (passive and active),
visible and near-infrared spectra. The potential of assimilating passive microwave
radiances collected by AMSR-E satellite have been examined by e.g. Dechant
and Moradkhani (2011) in the context of streamflow forecasting. But the coarse
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spatial resolution of these data considerably reduces their usefulness for small-scale
applications in mountainous areas (Foster et al., 2005; Cordisco et al., 2006; Dong
et al., 2007; Tedesco et al., 2010). As for active microwave, several tests have been
conducted to assimilate the satellite signal (e.g. Stankov et al., 2008; Phan et al., 2014).
These tests were however limited by the accuracy of the forward electromagnetic5

models and by the current lack of satellite data at a daily or even weekly time frequency.
Visible and near-infrared reflectances from satellite observations have never been

assimilated into snowpack models despite their great sensitivity to the snowpack
properties (Warren, 1982). Even if cloud cover might limit their utility, medium and
high spatial resolution data are available at daily resolution from several optical sensors10

(e.g. MODerate Imaging Spectrometer, Visible Infrared Imaging Radiometer Suite) and
seem to be quite suitable for complex topography (Sirguey et al., 2009). In particular,
the MODIS sensor, on board TERRA and AQUA satellites, offers a daily coverage
and provides reflectance measurements in seven bands distributed in the visible (at
250 to 500 m spatial resolution), near and short-wave infrared wavelengths. Surface bi-15

hemispherical reflectances corrected from complex topographic effects in mountainous
areas can be computed (Sirguey et al., 2009) and have been evaluated and used in
several rugged areas (Dumont et al., 2012; Brun et al., 2015).

The work presented in this article examines the possibility, the relevance and the
limitations of assimilating visible and near-infrared satellite reflectances into a multilayer20

snowpack model. Only synthetic observations (simulated by the assimilative model) are
used in this work, to examine the content of information of the observations, and the
impacts we can expect from their assimilation. Data assimilation is performed with
a particle filter and a Sequential Importance Resampling (SIR) algorithm (Gordon
et al., 1993; Van Leeuwen, 2009, 2014). The particle filter is easy to implement,25

free of hypotheses about the nature of the model and the observations, and provides
uncertainties in the estimation of the snowpack state.

For a comprehensive snow simulations evaluation, as recommended by Essery et al.
(2013), our study is based on 5 hydrological seasons (2005/06, 2006/07, 2009/10,
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2010/11, 2011/12) which represent a wide range of possible snow cover conditions
in the Alpine area. Moreover, 2 experimental sites were used in this work in virtue
of a long, continuous time serie of meteorological data and an area suitable to remote
sensing measurements. Indeed, the Col de Porte (CdP) area, located in the Chartreuse
area, near Grenoble, France (1325 ma.s.l.) provides a data set from 1993 to present5

(Morin et al., 2012) from which meteorological statistic can be estimated, but the
instrumentation and surrounding forest at this site may affect satellite measurements.
For this reason, assimilation experiments are carried out at the Col du Lautaret (CdL)
located (2058 ma.s.l.) in the Ecrins area, France, which exhibits a large flat open area,
above treeline, more suitable for remote sensing.10

In Sect. 2, the SURFEX/ISBA – Crocus snowpack model used in this study is
described with an emphasis on the characteristics that affect the implementation of
the data assimilation method. In particular, we consider the meteorological forcings
as the only source of uncertainties. Section 3 presents in details how these forcings
are perturbed to take the uncertainties into account in the design of the ensemble15

simulations. The experimental setup and the data assimilation implementation are
presented in Sect. 4. The results of the reference assimilation experiment (baseline
experiment) using reflectance observations at one point are presented and discussed
in Sect. 5. In close relation to this previous experiment, results of different sensitivity
tests are addressed in Sect. 6.20

2 SURFEX/ISBA – Crocus

2.1 A brief overview

The unidimensional detailed multilayer snowpack model Crocus (Brun et al.,
1989, 1992) simulates the evolution of the snowpack physical and microstructural
properties driven by near-surface meteorology and including a representation of snow25

metamorphism. A detailed description of Crocus is provided by Vionnet et al. (2012);

6833

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/6829/2015/tcd-9-6829-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/6829/2015/tcd-9-6829-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 6829–6870, 2015

Assimilation of
optical reflectances

and snow depth
observations

L. Charrois et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

here we only emphasize aspects that are key to data assimilation. The snowpack is
vertically discretized into snow layers with different physical properties and a dynamical
layering scheme handles its evolution (see details in Sect. 2.2). The evolution of the
snow cover is a function of energy and mass transfer between the snowpack and the
atmosphere and the ground. The model simulates the major physical processes of5

snowpack evolution such as heat conduction, light penetration, water percolation and
refreezing, settlement and snow metamorphism.

Crocus has been run operationally at Météo-France in support of the avalanche risk
forecasting over the last 20 years (Durand et al., 1999). It has been also successfully
used for various applications such as climate studies or hydrology (e.g. Etchevers10

et al., 2001; Castebrunet et al., 2014). Recently, Crocus has been integrated into the
SURFEX externalized surface modeling system (Masson et al., 2013) as one of the
snow schemes within the Interactions between Soil, Biosphere and Atmosphere (ISBA)
land surface model (Noilhan and Planton, 1989). Thus the integrated system simulates
the energy fluxes between the snow cover and the multilayer soil component of the15

land surface model (ISBA-DIF, Boone and Etchevers, 2001).

2.2 Layering

In Crocus, the snowpack is vertically discretized in order to realistically simulate the
time evolution of a stratified snowpack. The layering scheme is dynamical so as to
preserve snowpack history and maintain the possible thin and weak snow layers within20

the snowpack. The number of layers ranges from 0 (bare soil) to a maximum of 50,
typically. Layering is updated at the beginning of each time step. It consists in adding,
removing, or merging layers depending on their physical properties and thicknesses.
The procedure basically follows this set of rules:

– For a snowfall on an existing snowpack, fresh snow is incorporated into the top25

layer if snow microstructure characteristics are similar and if the amount of new
snow is below a prescribed threshold. Otherwise, a new layer is created.
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– A snowfall on bare soil forms a snowpack with identical layers, the number of
which depends on the quantity of fallen snow.

– In absence of snowfall, the model seeks first to merge two thin and adjacent
layers with similar microstructure characteristics, or inversely, split the thick ones.
When the number of layers has reached its maximum of 50, layer that is too small5

relatively to a prescribed optimal vertical profile is aggregated with an adjacent
one.

– Most of the time, compaction makes layers thinner without grid resizing.

Dynamical layering adds an extra challenge in the assimilation of observations with
Crocus. Data assimilation methods commonly used in geophysics are well designed10

for fixed-grid models. For example, the Ensemble Kalman filter involves the averaging
of different snow profiles. This specificity of Crocus largely determines our data
assimilation method, as it will be discussed in Sect. 4.3.

2.3 Penetration of solar light in the snowpack

A new radiative transfer model, recently implemented in Crocus, provides spectral15

reflectances that can be used for the comparison and the assimilation of satellite data
such as MODIS. This model, named TARTES (Two-streAm Radiative TransfEr in Snow,
Libois et al., 2013, 2014), simulates the absorption of solar radiation within the stratified
snowpack using the δ-Eddington approximation, with a spectral resolution of 10 nm.
This contrasts with the original version of Crocus, where albedo was computed for three20

large spectral bands only and from the properties of the first two layers (Brun et al.,
1992; Vionnet et al., 2012). The radiative transfer is driven by the physical properties
of the snowpack (specific surface area, density, snow layer thickness, impurity content
and shape parameters) and the angular and spectral characteristics of the incident
radiance (e.g. the solar zenith angle and the presence of cloud cover). In particular,25
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impurities affect the absorption coefficient and the concentration of impurities can be
prescribed in the radiative scheme.

2.4 Snow impurities

Snow surface reflectance in the visible spectrum depends on the content of light-
absorbing impurities in the snowpack (Warren, 1982). The impurity content can have5

a major impact on the snowpack simulations (Dumont et al., 2014). Despite efforts
to improve the knowledge and the modeling of impurities in snow (e.g. Warren and
Clarke, 1990; Domine et al., 2004; Painter et al., 2007; Doherty et al., 2013), snow
impurity deposition and evolution remain poorly quantified.

Currently implemented in a version of SURFEX/ISBA – Crocus, the radiative model10

TARTES (introduced in Sect. 2.3) calculates the impurity content as an equivalent black
carbon content (Doherty et al., 2013; Gabbi et al., 2015). This impurity content evolves
according to (i) the impurity content in fresh snow, c0, (ii) the time of exposure of the
layer at the surface and (iii) the dry deposition flux of impurity, τdry as described in the
equation below.15

c(t+∆t) = c(t)+∆t τdrye−D/href (1)

where c(t) is the impurity content at time t, D is the depth of the middle of the
considered snow layer and href = 5 cm is the e-folding of the exponential decay rate
for the deposition of snow impurities ensuring that only the top layers are influenced by
dry deposition.20

2.5 Atmospheric forcings

The snowpack evolution strongly depends on near-surface meteorological forcings.
These forcings are provided by the meteorological downscaling and analysis tool
SAFRAN (Durand et al., 1993). SAFRAN is used to drive snowpack simulations
in the French mountains because it is designed to operate at the geographical25
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scale of meteorologically homogeneous mountain ranges. This model provides input
meteorological data to the snowpack model with an hourly time step for all slopes and
aspects, with 300 m elevation step. The forcing variables are air temperature, specific
humidity, wind speed, precipitation amount and phase, direct and diffuse solar radiation
and longwave downward flux (Durand et al., 1993).5

3 Design of Crocus ensemble simulations

3.1 General strategy

In view of assimilating observations to reduce snowpack simulation uncertainties, we
first need to actually simulate the errors affecting the snowpack simulation. As shown
in Raleigh et al. (2015), the meteorological forcings are the major source of uncertainty10

in snowpack simulations when a meteorological model is used to drive the snow
model. In the present study, air temperature, wind speed, snowfall and rainfall rates,
shortwave and longwave radiative fluxes, and the deposition rate of impurities will thus
be considered as the only sources of uncertainty. Snowpack model errors introduced
by metamorphism and other physical laws parametrization are not taken into account15

in this study.
We implement an ensemble method to represent the uncertainties in the forcings

and their impact on snowpack simulations. An ensemble of possible realizations of the
atmospheric forcings is formed and used to compute an ensemble of snow profiles
representing the probability distribution of the model simulation. The present section20

describes the construction of the ensemble of meteorological forcings and the response
of the model to this source of uncertainty, without assimilation.

3.2 Quantification of meteorological forcing uncertainties

To quantify and calibrate the meteorological forcing uncertainties, we compare 18 years
of surface meteorology from SAFRAN reanalysis with in situ observations at the CdP.25
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A long time-series from 1993 to present (Morin et al., 2012) being available at this site,
uncertainties in the SAFRAN meteorological reanalysis can be estimated.

Table 1 (left column) reports the bias and the standard deviation of the difference
between SAFRAN and the observations carried out at the CdP site, for each
meteorological variable (the right column reports other data discussed later). The table5

reflects significant differences between SAFRAN and in situ observations, resulting
from the different spatial representativities of both sources and from the intrinsic errors
of the analysis system.

As highlighted by Quintana Segui et al. (2008) who conducted an extended
evaluation of SAFRAN reanalysis but over a shorter period (one year), the large10

discrepancies between the model and the observations can be explained by local
effects due to orography and vegetation and, for the precipitation and wind speed, by
the hourly interpolation from the daily analysis. Durand et al. (2009) carried out, only on
a limited set of variables, a more systematic evaluation of SAFRAN for the 1958–2002
period using 43 sites in the French Alps. Their results are similar in terms of Root Mean15

Square Error on the air temperature bus this study also highlights the spatial variability
of SAFRAN performance.

3.3 Building the ensemble of meteorological forcings

The sample of meteorological forcings is formed by perturbing the original SAFRAN
reanalysis with a random noise commensurate with the actual uncertainty. We thus20

build an ensemble of meteorological forcings with a null bias with regard to the
SAFRAN reanalysis and a standard deviation close to the one computed from CdP
statistics (Table 1, left column).

To keep the procedure simple and preserve physically consistent time variations
of the forcings, the random perturbations are computed using a First Order25

AutoRegressive (AR(1)) model (Deodatis and Shinozuka, 1988) for each variable:

Xt =ϕXt−1 +εt, (2)

6838

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/6829/2015/tcd-9-6829-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/6829/2015/tcd-9-6829-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 6829–6870, 2015

Assimilation of
optical reflectances

and snow depth
observations

L. Charrois et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

with X being the perturbation value at time t and t−1. ϕ is the AR(1) model parameter
and can be written ϕ = e−∆tτ , ∆t being the time step and τ the decorrelation time. The
meteorological uncertainties are introduced with εt, a white noise process with zero
mean and constant variance σ2 computed from each standard deviation (Table 1, left
column).5

For each meteorological variable, the selection of an additive or multiplicative
perturbation method is driven by (i) the nature of the variable, and (ii) the dependency
of the model-measurement difference to the measured values. Perturbations are thus
considered additive for air temperature, wind speed, shortwave flux, and multiplicative
for precipitation rates and longwave radiations. For the multiplicative method, the10

perturbations are bounded to avoid too large values. The result from this perturbation
method is illustrated by Fig. S1 in the Supplement which shows the snowfall rates over
a week period, as described by SAFRAN reanalysis, a realization of the perturbed
analysis, and the full ensemble of perturbed analysis. The decorrelation time, τ, is
adjusted for each variable to produce a temporal variation of the perturbed variables15

similar to the one of the original variables (Fig. S1 bottom, in blue). To maintain physical
consistency between the meteorological variables, snowfall is changed to rainfall if
air temperature is higher than 274.5 K and the shortwave radiation is bounded to
200 Wm−2 in case of rain or snow fall.

Moreover, the choice of a multiplicative method for precipitation is motivated by the20

fact that SAFRAN reanalysis capture well the occurrence of precipitation (because it
uses surface observation network) but are more subject to errors in the amount of
precipitation.

Ensembles are generated with model errors coming from the statistics of the CdP
site but as explained previously, the assimilation framework is based on the CdL area.25

Some adjustments in the building of ensembles are also required to take into account
differences between these 2 areas. In particular the forest is masking part of the
shortwave radiation modifying the longwave flux at the CdP site and the local wind
field which explains the large discrepancies between the model and the observations.
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This is not the case for the CdL which is an open meadow area. For these reasons,
and after some sensitivity tests focused on shortwave and longwave radiations, the
standard deviation used in the AR(1) equation for short and longwave radiations were
reduced to, respectively, 70 and 7 Wm−2, against 79 and 24.5 Wm−2 (Table 1). The
standard deviation computed from the ensemble (right column) are close to the ones5

prescribed to generate the ensemble (left column).
In the end, this stochastic method of perturbations makes possible the construction

of an ensemble of perturbed forcings which are required when using ensemble
methods. The calibration of the perturbations are based on the CdP statistics while their
temporal correlation is ensured by the AR(1) model. The perturbation method exhibits10

some obvious limitations. Inter-variables correlations are indeed not taken into account
in the ensemble except from the precipitation phase and the maximum value of short-
wave radiation in case of precipitation. But this is not crucial in our twin experiment
context. Real data assimilation experiment might require a more physically consistent
ensemble, this will be investigated in future work.15

3.4 Perturbation of impurity deposition rate

In this study, the deposition fluxes of impurities are also considered as a meteorological
forcing but unlike meteorological variables previously mentioned (Sect. 2.5), the
deposition fluxes of impurities is not provided by the SAFRAN model. Instead, the
impurity content in fresh snow c0 and their dry deposition flux τdry are perturbed online20

during a model run.
The parameters c0 and τdry are subject to multiplicative perturbations drawn from

lognormal distributions. The perturbations are constant in time, but are reinitialized at
each observational update when data assimilation is performed. For c0, the probability
density function (pdf) parameters are σ = 0.8 and µ = 0. c0 is bounded at 0 and25

500 ngg−1 and the mode value of the pdf is 100 ngg−1. As for τdry, the pdf parameters

are σ = 1.2 and µ = 0. τdry is bounded at 0 and 0.5 ngg−1 s−1 with a mode value
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of 0.015 ngg−1 s−1. These values have been selected to obtain the same order of
magnitude of albedo decrease with snow age as in the original Crocus formulation
(Brun et al., 1992).

3.5 Ensemble simulations

To investigate the impact of the stochastic perturbations, an ensemble of 3005

simulations of the snowpack, forced by the 300 forcings of the meteorological
ensemble, is run over the 2010/11 hydrological season without data assimilation.
Figure 1 presents the time evolution of the reflectance at 640 nm (first MODIS band
central wavelength), snow depth (SD), and snow water equivalent (SWE), for the
ensemble (blue envelops) and for the snowpack model run with unperturbed forcings10

from SAFRAN reanalysis (red lines). The 300 ensemble members are represented by
the black lines. The simulation forced by the unperturbed reanalysis is included within
the envelop of the ensemble. The spread of the ensemble reflects the consequences
of possible overestimations and underestimations of meteorological data by the
reanalysis.15

The spread of the SD and SWE ensembles (Fig. 1b and c) is the largest at the end of
the season, leading to 24 days spread on the melt-out date. The maximum dispersion
range (∆SWE ≈ 300kgm−2) occurs in early April. At this time, some ensemble
members have just started to melt, while some others have already disappeared.

Snowfalls reset all members to high reflectance values (at 640 nm, 0.98 for20

a significant event, Fig. 1a) and drastically reduce the spread of the reflectance
ensemble. Concomitantly, the SD and SWE ensemble spreads can increase due to
the uncertainties in the precipitation rates. After a snowfall, impurity content and grain
size increase along with the age of snow, decreasing the surface reflectance. This
evolution is also influenced by atmospheric forcings, which are slightly different from25

one ensemble member to another, enlarging the spread of the ensemble. We can
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therefore expect that the timing of the available reflectances will strongly affect the
impact of their assimilation on the snowpack ensemble simulations.

3.6 Dispersion of the ensemble of Crocus simulations

Here we assess whether our ensemble of simulation represents a realistic spread of
SD over time with respect to previous evaluations of the model through a spread-skill5

plot.
Given that no SD measurements were systematically carried out at the CdL site,

we were not able to evaluate our ensemble spread from SAFRAN-Crocus simulations
with a time series of in situ measurements at this site. But, as demonstrated by
Fortin et al. (2014), the ability of the ensemble spread to depict the simulation error10

can be evaluated by the comparison of the root-mean-squared error (RMSE) and the
ensemble spread (Spd) with respect to the ensemble mean. The two terms are defined
as follows, for a variable X ,

RMSE(X ) =

(
1
M

M∑
n=1

(
Xn −X truth

)2
)1/2

, (3)

Spd(X ) =

 1
M

M∑
k=1

1
Ne

Ne∑
n=1

(
Xk,n −Xk

)2

1/2

, (4)15

where M represents the number of time steps and Ne the size of the ensemble. The
value from SAFRAN-Crocus simulation is given by Xn, and X truth is the value from the
reference. The value of the ensemble member n at the date k is Xk,n and Xk is the
mean of the ensemble at the date k. RMSE and Spd are computed at observation
times.20

Consequently, we compare the Spd of our ensemble simulation at the CdL site with
a SAFRAN-Crocus RMSE over a larger domain. In that purpose, we used roughly 60
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daily snow depth measurements stations from the Météo-France observation stations
network. Each of these stations are within the same altitude range than the CdL site
(1800–2200 ma.s.l.). The results are reported in Fig. 2.

Figure 2 shows that, over the 2010/11 season, the SAFRAN-Crocus RMSE is roughly
two times higher than the SD dispersion (Spd) of our ensemble. This means that our5

ensemble is under-dispersive in terms of SD. This may be explained, in part, by the
fact that the perturbations calibration is based on statistics for only one location (CdP)
which is not highly affected by wind erosion/accumulation in contrast to many of the
others measurements sites. In addition, only meteorological errors are considered in
our ensemble whereas the model error likely also contribute to the simulation error.10

Nonetheless, given that experiments in the present work are twin and that the
observations are selected within the ensemble, the impact of this under dispersion
is not crucial for our study but must be considered while using real data.

4 Data assimilation setup

This section describes the assimilation framework and the assimilation strategies15

designed for this study prior presenting results of assimilation experiments (Sects. 5
and 6). First of all, the experimental setup and diagnostics applied in this study are
detailed before describing the two observations datasets used for assimilation. An
overview of the SIR filter is given at the end of this section and more physics details
are provided in the Appendix A.20

4.1 General settings and diagnostics

The assimilation experiments are twin, meaning that the observations are synthetic
and come from an independent model simulation. They are performed over five winter
seasons at the CdL area.
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A control simulation is first obtained running Crocus forced by one perturbed
meteorological forcing, as detailed in Sect. 3.3. The virtual observations used in all
the assimilation experiments reported in Sects. 5 and 6 are extracted from this control
simulation. The control simulation is also considered as the truth to evaluate the
performance of data assimilation.5

Data assimilation performances are quantified with the ensemble Root Mean Square
Error (RMSE), with respect to the truth and by the representation of the 33, 50 and 67
quantiles of the ensemble members on the figures.

For a variable X , the ensemble RMSE is defined as:

RMSE(X ) =

 1
Ne

Ne∑
n=1

(
Xn −X truth

)2

1/2

, (5)10

whereNe represents the size of the ensemble, Xn the value from the ensemble member
n, and X truth the value from the control simulation. RMSE are computed at observation
times. The uncertainty on the melt-out date is quantified as the difference (in days)
between the first and the latest full melted member.

4.2 Nature of the assimilated observations15

The first set of observations is composed of surface reflectances of the first seven
bands of MODIS (central wavelengths: 460, 560, 640, 860, 1240, 1640, 2120 nm;
Hall and Riggs, 2007). Snow surface reflectances in the visible and near-infrared
spectra are sensitive to the properties of the first millimeters to the first centimeters
of the snowpack for a given wavelength (Li et al., 2001). They are mainly varying with20

snow microstructure (near-infrared part) and impurity content (visible part) (Warren,
1982). The reflectance observations error variances, necessary for the assimilation,
are defined according to Wright et al. (2014). They are prescribed to 7.1×10−4,
4.6×10−4, 5.6×10−4, 5.6×10−4, 2.0×10−3, 1.5×10−3 and 7.8×10−4, for the seven
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bands, respectively. In the framework of our twin experiments, the covariance matrix of
observation errors is diagonal.

Note that the TARTES model calculates bi-hemispherical reflectances while the
satellite measurements provides directly hemispherical-conical top of atmosphere
reflectances (Dumont et al., 2012). This difference should be considered when the5

true MODIS data will be assimilated. In the later case, atmospheric and directional
corrections of the reflectances must be performed, adding uncertainties to the
simulation system.

The second set of observations is composed of snow depth (SD) observations.
Previous studies have indeed reported that the assimilation of snowpack bulk variables10

such as SD greatly improve snow estimations (Morin, 2014; Liu et al., 2013). However,
SD observations are only available at one point. In our study, the observation error
variance of SD is taken to 0.003 m (corresponding to a standard deviation of about
5 cm). The impact of SD assimilation is detailed in Sect. 6.3.

The setup designed in our study (one point, twin experiments) allows relevant15

comparisons of the benefits of assimilating separately or jointly the two above
mentioned types of observations.

4.3 Assimilation method: the particle filter

The data assimilation method has been chosen after considering the requirements and
the possible degrees of freedom that our problem imposes or offers.20

Firstly, we require that the method quantifies uncertainties. This plays in favor of
ensemble methods (e.g. Blayo et al., 2014). Secondly, we prefer an already existing
and well tested method. This argues for the Ensemble Kalman Filter (EnKF, Evensen,
2009) or the particle filter (Van Leeuwen, 2009, 2014). Thirdly, the method should not
rely on assumptions about the physical system, such as linearity or weak nonlinearity,25

because the physics of our model are nonlinear. This draws us toward the particle filter.
Fourthly, the method should be easy to implement for this first study. Abaza et al. (2015)
assessed the effectiveness assimilating streamflow data using an EnKF sequential
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procedure but implemented in a simplest snow scheme than Crocus. The fact that
the EnKF involves state-averaging operations, to which Crocus hardly complies due
to its varying number of snowpack layers, argues in favor of the particle filter. Note
that Dechant and Moradkhani (2011) also chose the SIR filter for the assimilation of
microwave radiances in a snowpack model. The major drawback of the particle filter is5

that it is not applicable to high-dimensional systems (Snyder et al., 2008) because it
quickly degenerates (all ensemble members converge toward a unique and spurious
model trajectory). But our model, with hardly more than a few hundreds of variables, is
not high-dimensional. Our experiments show it indeed does not degenerate if a well-
tested resampling method is used, with ensembles of a few hundreds of members only.10

Thus, we choose the Sequential Importance Resampling (SIR) filter (Gordon et al.,
1993), which is a particular flavor of the particle filter. Our ensembles are composed of
300 members.

The SIR filter seeks to represent the probability density function (pdf) of the model
state by a discrete set (an ensemble) of states commonly called particles. The15

propagation over time of all particles, through the nonlinear model equations, describes
the evolution of the model pdf. When observations are available, the ensemble is
updated following two steps: (i) the particles are weighted according to their respective
distances to the observations, and (ii) the pdf defined by the newly weighted particles
is resampled by ruling out particles with negligible weights, and duplicating particles20

with large weights, so that the updated pdf is again represented by an ensemble of
equally-weighted particles. The new ensemble is then ready to be propagated in time
by the model. As long as a particle is not removed, it keeps its original perturbed
forcing to be propagated. Inversely, a new perturbed forcing is attributed to a duplicated
particle to the propagation up to the next analysis. The governing equations of the data25

assimilation scheme are given in the Appendix A and more details are presented in
Van Leeuwen (2009) or Van Leeuwen (2014).
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5 Assimilation of MODIS-like reflectances

In this section, we assess to what extent the assimilation of the available MODIS-
like reflectance observations allows the accurate estimation of snowpack properties
throughout the season. This experiment will be considered as our baseline experiment.

Data assimilation results for the 640 and 1240 nm reflectance (first and fifth MODIS5

bands) and for SD and SWE over the hydrological season 2010/11 are shown in Fig.
3. To mimic real cloud conditions, reflectances are assimilated at 34 clear sky days
of the season. We define a clear sky date according the real MODIS data as the
complete absence of cloud for the pixel covering the satellite measurement site. The
corresponding 640 and 1240 nm reflectance observations are shown by the red dots in10

Fig 3a and b. The control simulation (from which the observations are drawn) is shown
by the red lines.

All along the season, the envelops of SD and SWE ensembles (Fig 3, blue envelops)
include the control simulation, which is a prerequisite for the good behaviour of
the assimilation. Overall, the assimilation of reflectance observations reduces the15

uncertainties in the estimation of the snowpack characteristics throughout the season.
This is observed in Fig. 3, where the blue envelops are narrower than the grey ones
(ensemble without assimilation, reported from Fig. 1). In particular, the snow melt-
out date is estimated much more accurately with the assimilation of reflectances: the
uncertainty drops from 24 days without assimilation to 9 days with assimilation.20

Figure 4 shows the time evolution of the RMSE with assimilation just before and just
after the filter analysis (blue solid and blue dotted lines, respectively) compared to the
RMSE without assimilation (grey lines). The RMSE of the ensemble with assimilation
is always lower than the RMSE without assimilation by a factor of 1.9 on a seasonal
average (Table 2: seasonal RMSE SD: 0.07 m; SWE: 19.7 kgm−2 compared to 0.13 m25

and 35.4 kgm−2 from the ensemble without assimilation). It is remarkable that, despite
this significant improvement, there is most of the time no strong reduction of the RMSE
after a single analysis. The reduced RMSEs with assimilation are consequently due to
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the continuous flow of observations through the season, highlighting the role of model
dynamics.

The strongest impacts of the assimilation of reflectances occur right after extended
and unobserved periods without precipitation. During these periods (e.g. from 7 to
14 December 2010, or from 11 to 21 January 2011), the ensemble uncertainties5

on reflectances, SD and SWE grow under the influence of the perturbed forcings
including the perturbed impurity deposition rate. Observations of reflectances have
a large impact when they are used. However, since reflectance observations are poorly
sensitive to the inner snowpack hidden by recent snowfalls, the uncertainties on SD and
SWE accumulated earlier and not corrected by past analysis remain, which ultimately10

results in limited corrections on SD and SWE (for example, on 28 January 2011), and
sustained ensemble spreads and RMSE throughout the season.

After a significant snowfall, the uncertainties in SD and SWE may increase, and the
assimilation of reflectances generally has a very small impact on these two variables.
Indeed, the uncertainty in the amount of snowfall (translated here in perturbations15

on the snowfall rate) tends to increase the ensemble spread and RMSE on SD and
SWE. On top of this, whether it be in the visible range of wavelengths sensitive to the
impurity content or in the infrared part where changes on the microstructure dominates,
a snowfall resets the whole ensemble to a unique set of reflectance values. This
makes the discrimination between members impossible only from the reflectances,20

and the analysis provides a rather small uncertainty reduction for SD and SWE. This is
illustrated on the 10 November and the 1 December 2010, for example.

The remarks stated above for the season 2010/11 hold for the other seasons.
Figure 5 reports the time evolution of the SD and SWE RMSEs for all the selected
seasons, in the experiments without assimilation (red lines) and with assimilation of25

reflectances (blue line; the experiments shown in green and black are discussed in the
next section). The SD and SWE RMSEs coarsely decrease twofold on average with
assimilation. The error reduction is particularly marked at the end of the seasons.
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Consequently, our ability to control the seasonal evolution of the snowpack with the
assimilation of reflectances is demonstrated, though it meets limitations. In particular,
the reduction of the snowpack SD and SWE ensemble spread greatly depends on the
timing of the assimilated observations.

6 Sensitivity to the nature and the timing of observations5

6.1 Impact of clouds coverage on the experiment

The presence of clouds strongly reduces the number of optical data available for
assimilation. To investigate the impact of the limited number of available data, an
experiment similar to the first one (see Sect. 5) is carried out but assimilating an
observation every day, (134 days) instead of 34 days in the baseline experiment.10

Figure S2 in the Supplement presents the results with the blue patterns representing
the envelops of the ensemble assimilating daily MODIS-like observations and the grey
patterns the envelops of the baseline experiment, reported from Fig. 3.

Obviously, in this second experiment, the spread of the 640 nm reflectance
ensemble is greatly reduced (Fig. S2a). The ensemble members perfectly fit the15

reflectance observations and do not show any extended periods with a large range
of reflectance values anymore. Compared to the baseline experiment (grey envelops),
the uncertainties in the snow melt-out date is also reduced to 3 days. However during
the major part of the winter, the SD and SWE ensemble spreads (Fig. S2b and c: blue
envelops) are comparable to the spreads obtained in the baseline experiment (Fig. S2b20

and c: grey envelops). This is also reflected in Table 2: The seasonal RMSEs on SD
and SWE are 0.05 m and 14.4 kgm−2, respectively, against 0.07 m and 19.7 kgm−2 in
the baseline experiment. This shows that the limited number of satellite data due to
realistic cloud conditions are not necessarily harmful to the estimation of the snowpack
state. Note that this conclusion holds here for bulk variables such as SD and SWE. The25
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estimation of other physical properties of the snowpack will be addressed in a future
work using real observations.

6.2 On the timing of observations

The baseline experiment suggests that the timing of observations may largely
determine the quality of the assimilation process. To explore the role of the timing,5

four additional assimilation tests are designed for which MODIS-like reflectances are
assimilated (i) only at the beginning of the season (before 31 December 2010, Fig. S3),
(ii) only in the second part of the snow season (after 31 December 2010, Fig. S4), (iii)
only after several day-long periods without precipitations (Fig. S5) and (iv) only right
after snowfalls (Fig. S6).10

In case (i), results show that even if the SD and SWE spreads are reduced during
the assimilation period, the assimilation has almost no effect on the snow estimates
during the snow melt. The ensemble spread retrieves to almost the same value than the
experiment without assimilation. The uncertainty of the snow melt-out date is reduced
to 22 days only, in comparison with 24 days without assimilation. As for case (ii), the15

spread reduction becomes quite discernible roughly 2 months after the first assimilation
date and never reaches the value of the baseline experiment. The uncertainty of the
snow melt-out date is however reduced to 11 days. This demonstrates that it is essential
to assimilate reflectances over the entire season to compensate the fast growth of the
snowpack ensemble in response to the uncertainties in the meteorological forcing.20

In both cases (iii) and (iv), reflectances are assimilated at only 7 dates of the
season. Case (iii) exhibits a larger SD and SWE spreads reduction compared to case
(iv). The uncertainty on the snow melt-out date drops to 9 days in case (iii) while it
stays to 23 days in case (iv). In absence of precipitation, the snow surface is aging,
leading to a decrease of reflectance values and a spread of the reflectance ensemble25

(Fig. S5a). Therefore, an observation after such a period provides a significant amount
of information and produces an efficient analysis. On the contrary, solid precipitation
resets the reflectance to high values and limits the spread of the reflectance ensemble
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(Fig. S6a) leading to a limited efficiency of the ensemble analysis. Assimilating only
a few observations well distributed in time nearly leads to the same uncertainty of SD
and SWE estimates as the baseline experiment assimilating 34 observations (Table 2:
seasonal RMSE SD: 0.07 m; SWE: 21.8 kgm−2 compared to baseline experiment
0.07 m and 19.7 kgm−2, respectively).5

Consequently, the time distribution of the observation turns out to be a key element
in the expected success of the assimilation of reflectance observations. The end of an
extended period without precipitation, when the surface snow layer is aging, is the best
time to assimilate reflectances.

6.3 Assimilation of snow depths10

To better evaluate the impact of the reflectance assimilation, we here compare the
baseline experiment to an experiment assimilating synthetic SD observations keeping
the same time distribution of the observations. Apart from the different nature of the
observations, the assimilation setup is the same as the one described in Sect. 5
including the time frequency of observations. The results are displayed in Fig S7.15

The assimilation of SD greatly improves the estimates of SD and SWE (Fig. S7b
and c). The spread reduction is much stronger than with the assimilation of reflectance
observations (Table 2: the seasonal RMSE on SD and SWE are 0.03 m and 7.4 kgm−2,
respectively, against 0.07 m and 19.7 kgm−2 in the baseline experiment) and is
maintained all along the season. Figure 5 also shows that this is the case for the 520

studied seasons. The uncertainty on the snow melt-out date is decreased to 8 days
compared to 9 assimilating MODIS-like reflectances and 24 days without assimilation
for the 2010/11 season. Note that the spread reduction of the reflectance ensemble
is very limited compared to the baseline experiment. This is consistent with the fact
that while SD and SWE are better estimated in the case of SD simulation, the surface25

and inner physical properties of the snowpack are less impacted than in the case of
assimilating reflectance observations.
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Figure S7 shows that, at the beginning of the snow season (before
16 November 2010) and for a thin snowpack (less than 20 cm), SD assimilation seems
to have less impact than reflectance assimilation. Indeed, with a thin snowpack, visible
wavelengths penetrate down to the ground, and reflectance contains information on
the whole snowpack. In this case, reflectance contains more information than SD. This5

could explain the better performance of the baseline experiment.
An additional experiment (not shown here) was also conducted assimilating daily

synthetic SD observations because such measurements are usually daily available
at about 60 different stations in the French Alps. This shows that on the contrary to
reflectance assimilation, for SD assimilation, the more frequent the observations, the10

greater the spread reduction (seasonal RMSE SD: 0.02 m; SWE: 4.7 kgm−2).
Excepted for thin snow cover, the assimilation of SD observations outperforms

reflectance assimilation in terms of SWE and SD estimates and seems to be
less affected by the time distribution of the observations. However, this experiment
assimilating a bulk variable highlights the good performance of the assimilation using15

reflectance observations (a “surface” information only) to correct the whole snowpack
estimation.

6.4 Combining reflectance and snow depth assimilation

Though the assimilation of SD observations generally outperforms reflectance
assimilation, spatialized SD measurements are rarely available over large areas on20

a daily basis. In-situ SD observations give information only at the measurement point
and many studies attest to the strong spatial variability of the snow cover (e.g. López-
Moreno et al., 2011; Veitinger et al., 2014; Bühler et al., 2015). Airborne LiDAR or
ground based laser LiDAR provide accurate SD measurements with fine resolution,
but their punctual usage in time limits their utility for operational applications. So,25

one can imagine that over a mountain range, SD measurements are available at
several locations for only a few dates in the season (e.g. occasional snow course,
crowd-sourcing, ski resorts observations). This scenario motivates the set-up of the
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following experiment. The experimental setup is the same as the baseline reflectance
assimilation scheme previously described with an extra SD observation the 10th of
each month. Results are compared to the previous experiments in Fig. 5.

Combining the assimilation of MODIS-like reflectances with the assimilation of
synthetic SD observations provides a benefit compared to assimilating reflectance only5

(Fig. 5, black and blue lines respectively). (i) In presence of a thin snow cover, the SD
and SWE RMSEs of the combined reflectances and SD ensembles are reduced as
the ones from the assimilation of the reflectance only. (ii) Almost all along the season,
SD and SWE RMSEs remain below the reflectance assimilation RMSE thanks to SD
assimilation. The combined assimilation leads to SWE seasonal RMSE of 9.6 kgm−2

10

to be compared to 7.4 kgm−2 for the experiment assimilating SD observations and
19.7 kgm−2 for the baseline reflectances assimilation experiment (Table 2).

These results encourage to combine these two datasets in operational applications.
However, given the strong spatial variability of the snow cover, the spatial
representativity of SD measurements may make their assimilation questionable. This15

issue should be addressed with experiments over two-dimensional, realistic domains.

7 Conclusions

This study investigates the assimilation of MODIS-like reflectances from visible to near-
infrared (the first seven bands) into the multilayer snowpack model Crocus. The direct
use of reflectance data instead of higher level snow products limits uncertainties due to20

retrieval algorithms. For the assimilation, we implement a particle filter. A particle filter
is chosen because (i) it is an ensemble method providing estimate uncertainties, and
(ii) it is easily implemented (in comparison with other assimilation methods) with Crocus
model, characterized by strong nonlinearities and its lagrangian representation of the
snowpack layering. Given that the major source of error in snowpack simulations can25

be attributed to meteorological forcings, a stochastic perturbation method is designed
to generate an ensemble of possible meteorological variables. This algorithm uses
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a First Order Auto Regressive model to account for the temporal correlations in the
meteorological forcing uncertainties. This ensemble of meteorological forcings is then
applied to generate the ensemble of snowpack simulations for the assimilation. Twin
experiments were conducted at one point in the French Alps, the Col du Lautaret, over
five hydrological years. The assimilated reflectance data corresponds to the first seven5

spectral bands of the MODIS sensors.
Reflectance assimilation using only data from clear-sky days improves the SD and

SWE seasonal RMSE by a factor close to 2. The uncertainty on the snow melt-out date
drops to 9 days compared to 24 without assimilation. Additional assimilation tests using
different time distributions of the observations show that (i) reflectance assimilation10

greatly improves snowpack estimates if the observation comes after an extended
period without precipitation, (ii) the assimilation has almost no impact if it comes right
after a snowfall, and (iii) using only a few observations with the appropriate timing,
i.e. after extended periods without precipitation, provides results almost as good as
assimilating reflectances on a daily basis.15

The assimilation of synthetic SD observations leads to a decrease of SD and
SWE RMSE by a factor of more than 4. The uncertainty on the snow melt-out date
is reduced to 8 days. The assimilation of SD observations generally outperforms
reflectance assimilation except for thin snowpacks, typically less than 20 cm. However,
whereas optical reflectance maps can be obtained daily thanks to spaceborne sensors20

such MODIS or VIIRS, SD measurements are rarely available either over large areas
or at the same time frequency. Combining reflectance assimilation with only 4 SD
observations assimilation during the snow season leads to a decrease of SD and SWE
RMSE by a factor close to 3.

This study provides a general theoretical framework to test the efficiency of several25

kind of data assimilation in a snowpack model and highlights the benefit of using
remotely sensed optical surface reflectance in the assimilation scheme to provide
significant improvements of the snowpack SD and SWE estimates. Even if the
assimilation of SD outperforms the assimilation using reflectance data, the sparsity of
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in situ measurements in space and/or time strongly reduces their utility in real data
assimilation systems. Nevertheless, given their complementary features, combining
remotely sensed reflectances and SD data, when available, would definitely improve
snowpack simulations.

This study presents a first attempt to assimilate snow observations into the Crocus5

snowpack model with the overarching objective of improving operational snowpack
forecasting. The next steps to proceed toward operational applications must include
the assimilation of actual satellite data and the spatialization of the assimilation
on larger domains. These steps include several challenges such as the increased
calculation costs and degrees of freedom, and the need for a physically consistent10

2-D meteorological ensemble, what will be addressed in future work.

Appendix A: Particle filter and sequential importance resampling, definitions

In a discrete-time space model, the state of a system evolves according to:

xk = fk(xk−1,v k−1),

where xk is the state vector of the system at time k, v k−1 is the state noise vector and15

fk is the non-linear and time-dependent function describing the evolution of the state
vector.

Information about xk is obtained though noisy measurements, yk , which are
governed by the observation operator equation:

yk = hk(xk ,nk), (A1)20

where hk is a possibly non-linear and time-dependent function linking the state vector
to the observation (observation operator) and nk is the measurement noise vector.

The filtering problem is to estimate sequentially the values of xk , given the observed
values y0, . . .,yk , at any time step k. In a Bayesian setting, this problem can be
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formalized as the computation of the distribution p(xk |y1:k), which can be done
recursively in two steps:

Prediction step:

p(xk |y1:k−1) =
∫
p(xk −1|yk−1)p(xk |xk−1)dxk−1. (A2)

Updating step to estimate p(xk |y1:k) using Bayes’rule:5

p(xk |y1:k) ∝ p(yk |xk)p(xk |y1:k−1). (A3)

In the particle filter, the prior pdf is represented by equally-weighted delta functions
centered on the ensemble members or particles:

p(xk−1|y1:k−1) =
1
N

N∑
i=1

δ
(
xk−1 −xik−1

)
,

where N is the ensemble size. With this representation, the propagation step A210

provides:

p(xk |y1:k−1) =
1
N

N∑
i=1

δ
(
xk −xik

)
,

where x
i
k = f

(
x
i
k−1,v ik−1

)
; v ik−1 is a realization of the noise v k−1. Then the analysis

step follows with:

p(xk |y1:k) =
N∑
i=1

w ikδ
(
xk −xik

)
,15

where the w ik are the particle weights, normalized to sum up to 1, and given by:

w ik ∝ p
(
yk |xik

)
.
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To compute the weights, the error nk of the observation operator hk (Eq. A1) is often
considered additive and Gaussian with mean 0 and covariance matrix Rk , so that the

likelihood p
(
yk |x

i
k

)
writes:

p
(
yk |xik

)
∝ exp

(
−1

2

(
yk −h

(
xik

))T
R−1
(
yk −h

(
xik

)))
.

After the computation of the weights, the ensemble is resampled: particles with zero or5

negligible weights are ruled out; particles with large weights are duplicated a number
of times commensurate with their weights. Several algorithms exist for this resampling
step; we use the one of Kitagawa.

The Supplement related to this article is available online at
doi:10.5194/tcd-9-6829-2015-supplement.10
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Table 1. Means and standard deviations of the differences between SAFRAN reanalysis and
in situ observations (left) and the differences between SAFRAN reanalysis and the ensemble
built up in the present study (right), for the perturbed meteorological forcings. The first set of
statistics is derived from 18 years of observations and reanalysis at the CdP and the second
set is derived from our 300 members ensemble over the 2010/11 hydrological season.

Variables CdP: Reanalysis – Observations CdL: Reanalysis – Ensemble

Bias Standard Bias Standard
deviations deviations

Air temperature (◦C) 0.28 1.08 5.0×10−3 1.07
Wind speed (ms−1) 0.2 1.12 4.0×10−4 0.4
Shortwave radiation (Wm−2) 22.4 79 −3.1×10−3 58.3
Longwave radiation (Wm−2) −14.0 24.5 2.0×10−2 7.0
Snowfall rate (kgm−2 h−1) −2.0×10−2 0.4 5.0×10−3 0.1
Rainfall rate (kgm−2 h−1) 7.2×10−3 0.5 −5.0×10−3 0.1
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Table 2. Seasonal SD and SWE RMSE computed with respect to the truth for all experiments.

Fig. 1 Baseline Fig. S7 Fig. S2 Fig. S3 Fig. S4 Fig. S5 Fig. S6 Fig. 5

SD (m) 0.13 0.07 0.03 0.05 0.05 0.12 0.07 0.12 0.04
SWE (kg m−2) 35.4 19.7 7.4 14.4 12.9 35.5 21.8 37.2 9.6
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1

Figure 1. Ensemble simulation with 300 members at the Col du Lautaret site over the 2010/11
hydrological season. (a) Reflectance at 640 nm (band 1 of MODIS), (b) SD, and (c) SWE. On
each graph, the red solid line is the simulation forced by the unperturbed SAFRAN analysis.
The blue patterns represent the envelops including the 300 members which are shown by the
black lines.
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2

Figure 2. Time evolution over the 2010/11 season of (in red) the SD ensemble Spd with respect
to the ensemble mean and (in blue) the SD RMSE between SAFRAN-Crocus estimates and
in situ observations.
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3

Figure 3. Evolution of the ensemble over the 2010/11 season. (a) and (b) Reflectance at 640
and 1240 nm (first and fifth MODIS band, respectively), (c) SD and (d) SWE. The blue patterns
represent the envelops of the ensemble assimilating MODIS-like reflectances and the grey
patterns the envelops of the ensemble without assimilation. The red lines represent the control
simulation (truth). On graph (a) and (b), the red dots show the assimilated observations. On
both (c) and (d), the black solid line shows the 50 % quantiles (median of the ensemble) and
the black dotted lines the 33 and 67 % quantiles.
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4

Figure 4. Time evolution of the ensemble RMSEs on (a) Reflectance at 640 nm, (b) reflectance
at 1240 nm, (c) SD and (d) SWE, over the 2010/11 season, for the run without assimilation
(grey lines), and the baseline assimilation experiment (Blue solid line: forecast; blue dotted line:
analysis). Dots indicate analysis steps.
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5

Figure 5. Time evolution of ensemble RMSEs on SD (left) and SWE (right) for the five seasons
under study, for the run without assimilation (red lines), the baseline experiment (assimilating
reflectances, blue lines), the experiment assimilating SD data (green lines) and the experiment
assimilating combined reflectances and SD data (black lines). Crosses indicate analysis steps.
Seasonal means are displayed in the upper left corner of each graph. The model control
simulation is represented by the grey lines, scaled by the “Model control” y axes.
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