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Abstract.

This paper examines the ability of optical reflectance data assimilation to improve snow depth

and snow water equivalent simulations from a chain of models with the SAFRAN meteorological

model driving the detailed multilayer snowpack model Crocus now including a two-stream radiative

transfer model for snow, TARTES. The direct use of reflectance data, allowed by TARTES, instead5

of higher level snow products, mitigates uncertainties due to commonly used retrieval algorithms.

Data assimilation is performed with an ensemble-based method, the Sequential Importance Re-

sampling Particle filter, to represent simulation uncertainties. In snowpack modeling, uncertainties

of simulations are primarily assigned to meteorological forcings. Here, a method of stochastic per-

turbation based on an autoregressive model is implemented to explicitly simulate the consequences10

of these uncertainties on the snowpack estimates.

Through twin experiments, the assimilation of synthetic spectral reflectances matching the MOD-

erate resolution Imaging Spectroradiometer (MODIS) spectral bands is examined over five seasons

at the Col du Lautaret, located in the French Alps. Overall, the assimilation of MODIS-like data

reduces by 45% the root mean square errors (RMSE) on snow depth and snow water equivalent.15

At this study site, the lack of MODIS data on cloudy days does not affect the assimilation perfor-

mance significantly. The combined assimilation of MODIS-like reflectances and a few snow depth

measurements throughout the 2010/2011 season further reduces RMSEs by roughly 70%. This work

suggests that the assimilation of optical reflectances has the potential to become an essential compo-

nent of spatialized snowpack simulation and forecast systems. The assimilation of real MODIS data20

will be investigated in future works.

1 Introduction

Seasonal snowpack modeling is a crucial issue for a large range of applications, including the fore-

cast of natural hazards such as avalanches or floods, or the study of climate change (e.g. Durand

et al., 1999; Lehning et al., 2006; Bavay et al., 2013). The most sophisticated detailed snowpack25
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models represent the evolution of snow microstructure and the layering of snow physical properties

(Brun et al., 1989, 1992; Jordan, 1991; Bartelt and Lehning, 2002; Vionnet et al., 2012) in response

to meteorological conditions. Despite constant efforts to improve these models, large uncertainties

remain in the representation of the snow physics, as well as in the meteorological forcings (Car-

penter and Georgakakos, 2004; Essery et al., 2013; Raleigh et al., 2015). These uncertainties are30

highly amplified when propagated to avalanche hazard models (Vernay et al., 2015). For operational

applications, the assimilation of observations can help reduce the impact of the model and forcing

uncertainties in the snowpack simulations (e.g. Dechant and Moradkhani, 2011).

Satellite observations are becoming an essential component of snow modeling and forecasting

systems. In situ measurements are the most detailed and accurate observations of the snowpack,35

but their spatial distribution is far too scarce to capture the high spatial variability of the seasonal

snowpack properties and improve snowpack simulations through their assimilation. For this reason,

the assimilation of satellite observations of snow is an active area of research.

Snow remote sensing is primarily performed in the microwave (passive and active), visible and

near-infrared spectra. Since the direct assimilation of such data requires the use of radiative transfer40

models, a common and simple approach consists in using satellite-based snow products. In partic-

ular, the assimilation of snow cover fraction (SCF) estimates derived from optical sensors (such as

MODIS) and Snow Water Equivalent (SWE) or Snow Depth (SD) estimates derived from passive

microwave sensors (such as AMSR-E) has been investigated extensively (Sun et al., 2004; Andreadis

and Lettenmaier, 2006; Clark et al., 2006; Dong et al., 2007; De Lannoy et al., 2012; Liu et al., 2013).45

These studies have suggested that, most of the time, assimilating snow observations may be useful

to improve snowpack estimation. SWE or SD assimilation generally outperforms the assimilation of

SCF only, except from (Andreadis and Lettenmaier, 2006) because of large erros in the AMSR-

E SWE products. The assimilation of both combined revealed larger benefit by mitigating sensors

limitations. Recently, ? investigated the assimilation of (synthetic) ice surface temperature while Du-50

mont et al. (2012) also experimented the assimilation of albedo retrievals, both from optical sensors.

Dumont et al. (2012) obtained a mass balance RMSE decrease of up to 40% assimilating albedo

data. However, satellite snow products are derived using retrieval algorithms which are not perfect

and, perhaps more importantly, not physically consistent with the snowpack model used for the data

assimilation. For this reason, and as advocated by Durand et al. (2009) who tested the assimilation55

of in situ microwave radiance observations, assimilating the original satellite radiance data should

be preferred when possible.

The potential of assimilating passive microwave radiances (in the form of brightness temperature)

collected by AMSR-E satellite have been examined by Dechant and Moradkhani (2011) and Che

et al. (2014). Significant improvements in the SWE/SD predictions occurred but only during the60

accumulation period. Though the melt period, when the snowpack is wet, liquid water alters the

microwave signal resulting in a lower performance of the assimilation. Moreover, for small-scale
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applications in mountainous areas, the coarse spatial resolution of these data considerably reduces

their usefulness (Foster et al., 2005; Cordisco et al., 2006; Dong et al., 2007; Tedesco et al., 2010).

As for active microwave measurements, several tests have been conducted to assimilate the satellite65

signal (e.g. Stankov et al., 2008; Phan et al., 2014). These tests were however limited by the accuracy

of the forward electromagnetic models and by the current lack of satellite data at a daily or even

weekly time frequency.

Visible and near-infrared reflectances from satellite observations have never been assimilated into

snowpack models despite their great sensitivity to the snowpack properties (Warren, 1982). Even70

if cloud cover might limit their utility, medium and high spatial resolution data are available at

daily resolution from several optical sensors (e.g. MODerate Imaging Spectrometer, Visible Infrared

Imaging Radiometer Suite) and seem to be quite suitable for complex topography (Sirguey et al.,

2009). In particular, the MODIS sensor, onboard TERRA and AQUA satellites, offers a daily cover-

age and provides reflectance measurements in seven bands distributed in the visible (at 250 to 500 m75

spatial resolution), near and short-wave infrared wavelengths. Surface bi-hemispherical reflectances

corrected from complex topographic effects in mountainous areas can be computed (Sirguey et al.,

2009) and have been evaluated and used in several rugged areas (Dumont et al., 2012; Brun et al.,

2015).

The work presented in this article examines the possibility, the relevance and the limitations of80

assimilating visible and near-infrared satellite reflectances into a multilayer snowpack model. A

convenient approach, known as twin experiment, uses synthetic data in the same spectral bands than

the real data, to examine the content of information of the observations, and the impacts we can

expect from their assimilation. In twin experiments, the model used to create the synthetic data is

the same as the model used for the assimilation. The synthetic observations are extracted from a85

member of the ensemble considered as the true state. Twin experiments are preferred in this first

study in order to focus on the information content of the observations and to avoid the problem of

observational biases. Data assimilation is performed with a particle filter and a Sequential Impor-

tance Resampling (SIR) algorithm (Gordon et al., 1993; Van Leeuwen, 2009, 2014). The particle

filter is easy to implement, free of hypotheses about the nature of the model and the observations,90

and provides uncertainties in the estimation of the snowpack state.

For a comprehensive snow simulation evaluation, as recommended by Essery et al. (2013), our

study is based on 5 hydrological seasons (2005/2006, 2006/2007, 2009/2010, 2010/2011, 2011/2012)

which represent a wide range of possible snow cover conditions in the Alpine area. Moreover, two

experimental sites were used in this work in virtue of a long, continuous time series of meteorologi-95

cal data and an area suitable to remote sensing measurements. The Col de Porte (CdP) area, located

in the Chartreuse area, near Grenoble, France (1325 m a.s.l.) provides a data set from 1993 to present

(Morin et al., 2012) from which meteorological statistics can be estimated, but the instrumentation

and surrounding forest at this site may affect satellite measurements. For this reason, assimilation
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experiments are carried out at the Col du Lautaret (CdL) located (2058 m a.s.l.) in the Ecrins area,100

France, which exhibits a large flat open area, above treeline, more suitable for remote sensing. Con-

sequently, an ensemble of perturbed forcing was generated in order to represent the range of possible

weather conditions at the CdL area. To this end, we developed a stochastic method using a first-order

autoregressive model based on the estimated meteorological uncertainty.

In Section 2, the SURFEX/ISBA - Crocus snowpack model used in this study is described with105

an emphasis on the characteristics that affect the implementation of the data assimilation method.

In particular, we consider the meteorological forcings as the only source of uncertainties. Section 3

presents in details how these forcings are perturbed to take the uncertainties into account in the de-

sign of the ensemble simulations. The experimental setup and the data assimilation implementation

are presented in Section 4. The results of the reference assimilation experiment (baseline experi-110

ment) using synthetic reflectance observations at one point are presented and discussed in Section

5. In close relation to this reference experiment, results of different sensitivity tests are addressed in

Section 6.

2 SURFEX/ISBA - Crocus

2.1 A brief overview115

The unidimensional detailed multilayer snowpack model Crocus (Brun et al., 1989, 1992) simulates

the evolution of the snowpack physical and microstructural properties driven by near-surface me-

teorology and includes a representation of snow metamorphism. A detailed description of Crocus

is provided by Vionnet et al. (2012); here we only emphasize aspects that are key to data assimila-

tion. The snowpack is vertically discretized into snow layers with different physical properties and120

a dynamical layering scheme handles its evolution (see details in Section 2.2). The evolution of the

snow cover is a function of energy and mass transfer between the snowpack and the atmosphere and

the ground. The model simulates the major physical processes of snowpack evolution such as heat

conduction, light penetration, water percolation and refreezing, settlement and snow metamorphism.

Crocus has been run operationally at Météo-France in support of avalanche risk forecasting over125

the last 20 years (Durand et al., 1999). It has been also successfully used for various applications

such as climate studies or hydrology (e.g. Etchevers et al., 2001; Castebrunet et al., 2014). Recently,

Crocus has been integrated into the SURFEX externalized surface modeling system (Masson et al.,

2013) as one of the snow schemes within the Interactions between Soil, Biosphere and Atmosphere

(ISBA) land surface model (Noilhan and Planton, 1989). Thus the integrated system simulates the130

energy fluxes between the snow cover and the multilayer soil component of the land surface model

(ISBA-DIF, Boone and Etchevers (2001)).
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2.2 Layering

In Crocus, the snowpack is vertically discretized in order to realistically simulate the time evolution

of a stratified snowpack. The layering scheme is dynamical so as to preserve snowpack history and135

maintain the possible thin and weak snow layers within the snowpack. The number of layers ranges

from 0 (bare soil) to a maximum of 50, typically. Layering is updated at the beginning of each time

step. It consists in adding, removing, or merging layers depending on their physical properties and

thicknesses. The procedure basically follows this set of rules:

– For a snowfall on an existing snowpack, fresh snow is incorporated into the top layer if (i)140

snow microstructure characteristics are similar, (ii) the top layer is thinner than 1 cm and (iii)

the snowfall intensity is inferior to 0.03 kg m−2 h−1. If one of these criteria is not met or

change during the time step, a new top layer is created.

– A snowfall on bare soil forms a snowpack with a set of identical layers, the number of which

depends on the quantity of fallen snow.145

– In absence of snowfall, the model seeks first to merge two thin and adjacent layers with similar

microstructure characteristics, or inversely, split the thick ones. When the number of layers has

reached a maximum of 50, layers that are too small relative to a prescribed optimal vertical

profile are aggregated with adjacent ones. This idealized thickness profile depends on the

current snow depth and on the user-defined maximal number of layers. To reach the optimal150

vertical profile, the model first seeks to thin the top layers, most subject to the exchange of

energy, and then to keep an appropriate thickness ratio between adjacent snow layers to prevent

numerical instabilities in the resolution of the heat diffusion equation through the snowpack.

– Most of the time, compaction makes layers thinner without grid resizing.

Dynamical layering adds an extra challenge in the assimilation of observations with Crocus. Data155

assimilation methods commonly used in geophysics are well designed for fixed-grid models. For ex-

ample, the Ensemble Kalman filter involves the averaging of different snow profiles. This specificity

of Crocus largely determines our data assimilation method, as it will be discussed in Section 4.3.

2.3 Penetration of solar light in the snowpack

Given that satellite observations indirectly relate to the quantities of interest, an observation oper-160

ator is required to link the satellite observation and the model state variables (Reichle, 2008). This

operator transforms the model variables into diagnostic variables to allow a direct comparison with

satellite observations, preserving the physical consistency of the satellite signal with the snow model.

To this end, a new radiative transfer model was recently implemented in Crocus to calculate spec-

tral reflectances that can be used for the comparison and the assimilation of satellite data such165
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as MODIS. This model, named TARTES (Two-streAm Radiative TransfEr in Snow, Libois et al.,

2013, 2014), simulates the absorption of solar radiation within the stratified snowpack using the δ-

Eddington approximation, with a spectral resolution of 20nm. This contrasts with the original version

of Crocus, where albedo was computed for three large spectral bands only and from the properties

of the first two layers (Brun et al., 1992; Vionnet et al., 2012).170

TARTES is implemented as an optional module to be called instead of the original Crocus albedo

scheme. This implementation has no significant impact on the model structure but increases the

computation time of roughly a factor 10 depending on the number of snow layers and the snow depth.

TARTES makes use of four Crocus prognostic variables (specific surface area – SSA, density, snow

layer thickness, impurity content and shape parameters) and the angular and spectral characteristics175

of the incident radiance (e.g. the solar zenith angle and the presence of cloud cover). The computation

of SSA has recently been implemented by Carmagnola et al. (2014).

The use of a full radiative transfer model embedded within the snowpack model enables the as-

similation of the satellite reflectance data, therefore avoiding the introduction of uncertainties from

an external retrieval algorithm. And beyond its use for the assimilation of reflectances, TARTES also180

provides a more accurate calculation of light absorption parameters, leading to better simulations of

the snowpack.

2.4 Snow impurities

Snow surface reflectance in the visible spectrum depends on the content of light-absorbing impurities

in the snowpack (Warren, 1982). The impurity content can have a major impact on the snowpack185

simulations (Dumont et al., 2014). Despite efforts to improve the knowledge and the modeling of

impurities in snow (e.g Warren and Clarke, 1990; Domine et al., 2004; Painter et al., 2007; Doherty

et al., 2013), snow impurity deposition and evolution remain poorly quantified.

Currently implemented in a version of SURFEX/ISBA - Crocus, the radiative model TARTES

(introduced in Section 2.3) calculates the impurity content as an equivalent black carbon content190

(Doherty et al., 2013; Gabbi et al., 2015). This impurity content evolves according to (i) the impu-

rity content in fresh snow, c0, (ii) the time of exposure of the layer at the surface and (iii) the dry

deposition flux of impurity, τdry as described in the equation below.

c(t+ ∆t) = c(t) + ∆tτdrye
−D/href (1)

where c(t) is the impurity content at time t, D is the depth of the middle of the considered snow195

layer and href = 5 cm is the e-folding of the exponential decay rate for the deposition of snow

impurities ensuring that only the top layers are influenced by dry deposition.
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2.5 Atmospheric forcings

The snowpack evolution strongly depends on near-surface meteorological forcings. These forcings

are provided by the meteorological downscaling and analysis tool SAFRAN (Système d´Analyse200

Fournissant des Renseignements Atmosphériques à la Neige; Durand et al., 1993). SAFRAN is used

to drive snowpack simulations in the French mountains because it is designed to operate at the

geographical scale of meteorologically homogeneous mountain ranges, varying from 400 to 2000

k m2. The model combines vertical profile estimates from the ERA-40 re-analysis with observed

weather data from the automatic surface observations network at different elevations, the French205

Snow/Weather network, rain radars, and rain gauges. As outputs, SAFRAN provides meteorological

data to the snowpack model with an hourly time step for all slopes and aspects, and a 300 m-elevation

step.

3 Design of Crocus ensemble simulations

3.1 General strategy210

In view of assimilating observations to reduce snowpack simulation uncertainties, we first need to

represent them. As shown in Raleigh et al. (2015), the meteorological forcings are the major source

of uncertainty in snowpack simulations (when a meteorological model is used to drive the snow

model). In the present study, air temperature, wind speed, snowfall and rainfall rates, shortwave and

longwave radiative fluxes, and the deposition rate of impurities will thus be considered as the only215

sources of uncertainty. Snowpack model errors introduced by metamorphism and other parameteri-

zations of physical laws are not taken into account here. The characterization and representation of

these errors, notably in the perspective of real data assimilation, will be addressed in a future and

dedicated work. An identified option is to use multi-physics ensemble simulations.

We implement an ensemble method to represent the uncertainties in the forcings and their im-220

pact on snowpack simulations. An ensemble of possible realizations of the atmospheric forcings is

formed and used to compute an ensemble of snow profiles representing the probability distribution

of the model simulation. The following section describes the construction of the ensemble of mete-

orological forcings and the response of the model to this source of uncertainty, without assimilation.

3.2 Quantification of meteorological forcing uncertainties225

To quantify and calibrate the meteorological forcing uncertainties, we compare 18 years of surface

meteorology from SAFRAN reanalysis with in-situ observations at the CdP site. A long time-series

from 1993 to present (Morin et al., 2012) being available at this site, uncertainties in the SAFRAN

meteorological reanalysis can be estimated.
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Table 1 (left column) reports the bias and the standard deviation of the difference between SAFRAN230

and the observations carried out at the CdP site, for each meteorological variable (values in brack-

ets and the right column reports other data discussed later). The table reflects differences between

SAFRAN and in-situ observations, resulting, from the different spatial representativities of both

sources, the intrinsic errors of the analysis system and measurement errors.

As highlighted by Quintana Segui et al. (2008) who conducted an extended evaluation of SAFRAN235

reanalysis but over a shorter period (one year), the large discrepancies between the model and the

observations can be explained by local effects due to orography and vegetation and, for the pre-

cipitation and wind speed, by the time interpolation necessary to obtain hourly forcing fields from

the daily analysis. For example, the precipitation analysis is performed on a daily basis in order to

include in the analysis the numerous rain gauges observations. Radiation fluxes uncertainty might240

be attributed to biases in cloud coverage and altitude estimates, effects of vegetation and surround-

ing slopes that are not taken into account for longwave estimates. Finally, the shading mask for

shortwave radiation does not account for vegetation evolution that can also lead to shortwave flux

discrepancies. Durand et al. (2009) carried out, only on a limited set of variables, a more systematic

evaluation of SAFRAN for the 1958-2002 period using 43 sites in the French Alps. Averaged over245

all locations, the RMSE on air temperature are similar to the one computed in our study. However,

their results also highlight the spatial variability of SAFRAN performance (site RMSE ranges from

-0.8 to +1.5 °C). Nevertheless, this will not have a strong impact in this study since it is based on

twin experiments.

3.3 Building the ensemble of meteorological forcings250

The sample of meteorological forcings is formed by perturbing the original SAFRAN reanalysis

with a random noise commensurate with the actual uncertainty. We thus build an ensemble of me-

teorological forcings with a negligible bias with respect to the SAFRAN reanalysis and a standard

deviation close to the one computed from CdP statistics (Table 1, left column).

To keep the procedure simple and preserve physically consistent time variations of the forcings,255

the random perturbations are computed using a first-order autoregressive -AR(1)- model (Deodatis

and Shinozuka, 1988) for each variable:

Xt = ϕXt−1 + εt, (2)

with X being the perturbation value at time t and t− 1. ϕ is the AR(1) model parameter and can

be written ϕ= e
−∆t
τ , ∆t being the time step and τ the decorrelation time. Parameter τ is adjusted260

for each variable, so that the perturbed variable exhibits the same frequency of temporal variations

than the original variable (Fig. S1 bottom, in blue).
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The amplitudes of the meteorological uncertainties are introduced with εt, a white noise process

with zero mean and constant variance σ2. Variance σ2 is computed from each standard deviation of

the residuals between the reanalysis and observations at CdP ( σCdP : Table 1, left column) following265

this equation:

σ2 = σCdP × (1−ϕ2) (3)

Finally, for each meteorological variable, the selection of an additive or multiplicative perturbation

method is driven by (i) the nature of the variable (ii) the dependency of the model-measurement

difference to the measured values as detailed below.270

For precipitation rates, shortwave radiation and wind speed, the choice of a multiplicative method

is motivated by the following reasons:

– SAFRAN reanalysis captures well the occurrence of precipitation (since it assimilates surface

observation network) but are more subject to errors in the amount of precipitation;

– Regarding shortwave flux and wind speed, the model biases exhibit a linear dependency to the275

value of the variable (not shown). Consequently, a multiplicative method was selected.

For longwave radiation and air temperature, given that there is no dependency between the model

biases and the field values, an addition method is chosen.

At every time step the perturbation Xt is applied as follows:

For the additive method, variablet = variablet +Xt; For the multiplicative method, the pertur-280

bation is centered on 1 (Yt) before multiplying the variable.

Yt =Xt + 1

variablet = variablet×Yt

For the multiplicative method, the perturbations are bounded by 0.5 and 1.5 to avoid extreme285

values. The result from this perturbation method is illustrated by Fig. S1 which shows the snowfall

rates over a one week period, as described by SAFRAN reanalysis, a realization of the perturbed

analysis, and the full ensemble of perturbed analysis.

To maintain further physical consistency between the meteorological variables, snowfall is changed

to rainfall if air temperature is higher than 274.5 °K and the shortwave radiation is bounded to 200290

W m−2 in case of rain or snow fall due to the inherent cloud cover. This behavior is consistent with

the CdP statistics where over 18 years, during a precipitation period, the measured in situ shortwave

radiation rarely exceeds 200 W m−2 .

Ensembles are generated with model errors coming from the statistics of the CdP site but as

explained previously, the assimilation framework is based on the CdL area. Some adjustments in the295

building of ensembles are also required to account differences between these two areas.
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In particular, the forest at CdP affects the local wind field and the radiative fluxes (Morin et al.,

2012), what explains a large part of the variability of SAFRAN errors at CdP. At CdL, an open

meadow area, such variability is unlikely. To limit the overspreading of the forcing ensemble, the

standard deviation used in the equation 3 for wind speed, short and longwave radiation are reduced300

to 0.6 m s−2, 70 and 7 W m−2, respectively, against 1.12 m s−2, 79 and 24.5 W m−2 (Table 1,

left column, values in brackets). As shown in Table 1, the standard deviations computed from the

generated ensemble (right column) are close to the ones prescribed to generate it (left column).

In the end, this stochastic method of perturbations makes possible the construction of an ensemble

of perturbed forcings which are required when using ensemble methods. The calibration of the per-305

turbations are based on the CdP statistics while their temporal correlation is ensured by the AR(1)

model. The perturbation method exhibits some obvious limitations. Inter-variable correlations are

indeed not taken into account in the ensemble except from the precipitation phase and the maximum

value of shortwave radiation in case of precipitation. Adjustments to CdL are somewhat subjective,

but this is not crucial in our twin experiment context since the considered truth will be simulated310

running Crocus with one forcing member drawn from this generated ensemble. A more physically

consistent ensemble will be required when real data assimilation is investigated.

3.4 Perturbation of impurity deposition rate

In this study, the deposition fluxes of impurities are also considered as a meteorological forcing

but unlike meteorological variables previously mentioned (Section 2.5), the deposition fluxes of315

impurities are not provided by the SAFRAN model. Instead, the impurity content in fresh snow c0

and the dry deposition flux τdry are perturbed online during a model run.

The parameters c0 and τdry are subject to multiplicative perturbations drawn from lognormal

distributions. The perturbations are constant in time, but are reinitialized at each observational update

when data assimilation is performed. For c0, the probability density function (pdf) parameters are320

σ=0.8 and µ=0. c0 is bounded at 0 and 500 ng g−1 and the mode value of the pdf is 100 ng g−1. As

for τdry, the pdf parameters are σ=1.2 and µ=0. τdry is bounded at 0 and 0.5 ng g−1s−1 with a mode

value of 0.015 ng g−1s−1. These values have been selected to obtain the same order of magnitude

of albedo decrease with snow age as in the original Crocus formulation (Brun et al., 1992).

3.5 Ensemble simulations325

To investigate the impact of the stochastic perturbations, an ensemble of 300 simulations of the

snowpack, forced by the 300 forcings of the meteorological ensemble, is run over the 2010/2011

hydrological season without data assimilation. Figure 1 presents the result of the ensemble simula-

tion with 300 members (represented by the black lines). The simulation forced by the unperturbed

reanalysis (red line) is included within the envelope of the ensemble. The spread of the ensemble330

10



reflects the consequences of possible overestimations and underestimations of meteorological data

by the reanalysis.

The spread of the SD and SWE ensembles (Fig. 1 (b)-(c)) is the largest at the end of the season,

leading to a range of 24 days from the first to the last member to fully melt. The maximum dis-

persion range of SWE (∆SWE≈300 kg m−2) occurs in early April. At this time, the snowpack in335

some ensemble members has just started to melt, while in other cases, the snowpack has already

disappeared.

Snowfalls reset all members to high reflectance values (at 640-nm, 0.98 for a significant event,

Fig. 1 (a)) and drastically reduce the spread of the reflectance ensemble. Concomitantly, the SD

and SWE ensemble spreads can increase due to the uncertainties in the precipitation rates. After a340

snowfall, impurity content and grain size increase along with the age of snow, decreasing the surface

reflectance. This evolution is also influenced by atmospheric forcings, which are slightly different

from one ensemble member to another, enlarging the spread of the ensemble. We can therefore

expect that the timing of the available reflectances will strongly affect the impact of their assimilation

on the snowpack ensemble simulations.345

3.6 Dispersion of the ensemble of Crocus simulations

Here we assess whether our ensemble represents a realistic spread of SD over time with respect to

previous evaluations of the model through a spread-skill plot.

Given that no SD measurements were systematically carried out at the CdL site, we were not able

to evaluate our ensemble spread from SAFRAN-Crocus simulations with a time series of in-situ350

measurements at this site. But, as demonstrated by Fortin et al. (2014), the ability of the ensemble

spread to depict the simulation error can be evaluated by the comparison of the RMSE and the

ensemble spread (Spd) with respect to the ensemble mean.

Firstly, using the method previously described, an ensemble of Crocus simulations was carried out

at the CdP site, with no adjustement on CdP statistics, to evaluate the relevance of our perturbation355

method by comparing the RMSE between SAFRAN-Crocus simulation and in situ measurements

with the Spd of the CdP ensemble. Then, we compare the Spd of our ensemble simulation at the CdL

site with a SAFRAN-Crocus RMSE computed from the difference between SD Crocus estimates

with in situ SD measurements across multiple stations (at the same elevation than CdL). We used

roughly 60 daily snow depth measurements stations from the Météo-France observation stations360

network (only stations within the same altitude range as the CdL site (1800 - 2200m a.s.l.).

The multiple station RMSE and Spd terms are defined as follows, for a variable X ,

Spd(X) =

(
1

M

M∑
t=1

1

Ne

Ne∑
n=1

(
Xt,n− X̄t

)2)1/2

, (4)
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RMSE(X) =

(
1

M

M∑
t=1

1

Nk

Nk∑
k=1

(
Xmodel

t,k −X in situ
t,k

)2)1/2

, (5)

where M represents the number of time steps, Ne the size of the ensemble and Nk the number of365

in situ measurements. The SD value of the ensemble member n at the date t is Xt,n and X̄t is the

mean of the ensemble at the date t. The value from SAFRAN-Crocus simulation at the measurement

site k and at the date t is given by Xmodel
t,k , and X in situ

t,k is the value from the in situ SD measurement.

RMSE and Spd are computed at observation times. For comparisons based on only one point, the

RMSE equation for a variable X becomes:370

RMSE(X) =

(
1

M

M∑
t=1

(Xmodel
t −X in situ

t )
2

)1/2

, (6)

Figure 2 (a) shows that at the CdP site the SD dispersion (Spd) of the ensemble is consistent with

the RMSE between SAFRAN-Crocus simulation with respect to in situ measurements at this site.

This suggests that our perturbation method is able to represent the forcing uncertainties on snow-

pack simulations. Nevertheless, concerning the CdL area over the 2010/2011 season, the SAFRAN-375

Crocus RMSE is roughly two times higher than the SD dispersion (Spd) of our ensemble (Fig. 2 (b)).

This means that our ensemble is under-dispersive in terms of SD. This may be partly explained by

the calibration of perturbations, based on statistics at a location (CdP) which is not highly affected

by wind erosion/accumulation in contrast to many other measurement sites. In addition, only mete-

orological errors are considered in our ensemble whereas the other model errors also contribute to380

the simulation error.

Nonetheless, given that experiments in the present work are twin and that the observations are

selected within the ensemble (synthetic observations), the impact of this under dispersion is not

crucial, but will be considered when using real data.

4 Data assimilation setup385

This section describes the assimilation framework and the assimilation strategies designed for this

study prior to presenting results of assimilation experiments (Section 5 and 6). First of all, the exper-

imental setup and diagnostics applied in this study are detailed before describing the two synthetic

observational datasets used for assimilation. An overview of the SIR filter is given at the end of this

section and further details are provided in the appendix A.390

4.1 General settings and diagnostics

The assimilation experiments are twin, meaning that the observations are synthetics and come from

a single model simulation. They are performed over five winter seasons at the CdL area.
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A synthetic truth simulation is first obtained by running Crocus forced by one perturbed meteo-

rological forcing, as detailed in Section 3.3. The synthetic observations used in all the assimilation395

experiments reported in Sections 5 and 6 are extracted from this synthetic truth simulation. The syn-

thetic truth simulation is also considered as the truth to evaluate the performance of data assimilation.

Data assimilation performances are evaluated by comparing RMSE for ensembles with and with-

out assimilation, and by comparing the synthetic true simulation to the 33rd, 50th, and 67th quantiles

from the ensembles with assimilation.400

For a variable X , the ensemble RMSE is defined as:

RMSE(X) =

(
1

Ne

Ne∑
n=1

(Xn−X truth)
2

)1/2

, (7)

where Ne represents the size of the ensemble, Xn the value from the ensemble member n, and

X truth the value from the synthetic truth. RMSEs are computed at observation times. The uncertainty

on the melt-out date is quantified as the difference (in days) between the first and the latest full405

melted member.

4.2 Nature of the assimilated observations

The first set of synthetic observations is composed of surface reflectances of the first seven bands of

MODIS (central wavelengths : 460, 560, 640, 860, 1240, 1640, 2120 nm; Hall and Riggs, 2007). In

twin context, these synthetic observations are provided from the synthetic truth simulation running410

Crocus with its radiative TARTES model. Snow surface reflectances in the visible and near-infrared

spectra are sensitive to the properties of the first millimeters to the first centimeters of the snowpack

for a given wavelength (Li et al., 2001). They mainly vary with snow microstructure (near-infrared

part) and impurity content (visible part) (Warren, 1982). The reflectance observations error variances,

necessary for the assimilation, are defined according to Wright et al. (2014). They are prescribed415

to 7.1 10−4, 4.6 10−4, 5.610−4, 5.610−4, 2.010−3, 1.510−3 and 7.810−4, for the seven bands,

respectively. In the framework of our twin experiments, the covariance matrix of observation errors

is diagonal. Note that the TARTES model calculates bi-hemispherical reflectances while the satellite

measurements provide directly hemispherical-conical top of atmosphere reflectances (Dumont et al.,

2012).420

The second set of observations is composed of synthetic snow depth (SD) observations. Previous

studies have indeed reported that the assimilation of snowpack bulk variables such as SD greatly im-

prove snow estimations (Morin, 2014; Liu et al., 2013). However, SD observations are only available

at one point. In our study, the observation error variance of SD is taken to be 0.003 m (corresponding

to a standard deviation of about 5 cm). The impact of synthetic SD assimilation is detailed in Section425

6.3.

The setup designed in our study (one point, twin experiments) allows relevant comparisons of

the benefits of assimilating separately or jointly the two above mentioned types of observations.
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For future works assimilating real data, the difference in the geometrical configuration between the

simulated TARTES reflectances and satellite observations will be addressed.430

4.3 Assimilation method: The particle filter

The data assimilation method has been chosen after considering the requirements and the possible

degrees of freedom that our problem imposes or offers.

Firstly, we require that the method quantifies uncertainties. This plays in favor of ensemble meth-

ods (e.g. Blayo et al., 2014). Secondly, we prefer an already existing and well tested method. This435

argues for the Ensemble Kalman Filter (EnKF, Evensen, 2009) or the particle filter (Van Leeuwen,

2009, 2014). Thirdly, the method should not rely on assumptions about the physical system, such

as linearity or weak nonlinearity, because the physics of our model are nonlinear. This draws us to-

ward the particle filter. Fourthly, the method should be easy to implement for this first study. Abaza

et al. (2015) assessed the effectiveness assimilating streamflow data using an EnKF sequential pro-440

cedure but implemented in a simpler snow scheme than Crocus. The fact that the EnKF involves

state-averaging operations, to which Crocus hardly complies due to its varying number of snowpack

layers, argues in favor of the particle filter. Note that Dechant and Moradkhani (2011) also chose the

SIR filter for the assimilation of microwave radiances in a snowpack model. The major drawback of

the particle filter is that it is not applicable to high-dimensional systems (Snyder et al., 2008) because445

it quickly degenerates (all ensemble members converge toward a unique and spurious model trajec-

tory). But our model, with hardly more than a few hundreds of variables, is not high-dimensional.

Our experiments show it indeed does not degenerate if a well-tested resampling method is used, with

ensembles of a few hundreds of members only. Thus, we choose the Sequential Importance Resam-

pling (SIR) filter (Gordon et al., 1993), which is a particular type of the particle filter. Our ensembles450

are composed of 300 members.

The SIR filter seeks to represent the probability density function (pdf) of the model state by a

discrete set (an ensemble) of states commonly called particles. The propagation over time of all par-

ticles, through the nonlinear model equations, describes the evolution of the model pdf. When ob-

servations are available, the ensemble is updated following two steps: (i) the particles are weigthed455

according to their respective distances from the observations, and (ii) the pdf defined by the newly

weighted particles is resampled by ruling out particles with negligible weights, and duplicating par-

ticles with large weights, so that the updated pdf is again represented by an ensemble of equally-

weighted particles. The new ensemble is then ready to be propagated in time by the model. As long

as a particle is not removed, it keeps its original perturbed forcing to be propagated. Inversely, a460

new perturbed forcing is assigned to a duplicated particle for propagation to the next analysis. The

governing equations of the data assimilation scheme are given in the Appendix A and more details

are presented in Van Leeuwen (2009) and Van Leeuwen (2014).
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5 Assimilation of MODIS-like reflectances

In this section, we assess to what extent the assimilation of the available MODIS-like reflectance465

observations allows the accurate estimation of snowpack properties throughout the season. This

experiment will be considered as our baseline experiment.

Data assimilation results for the 640-nm and 1240-nm reflectance (first and fifth MODIS bands)

and for SD and SWE over the hydrological season 2010/2011 are shown in Fig. 3. To mimic real

cloud conditions, reflectances are assimilated at 34 clear sky days of the season. We define a clear470

sky date according to the real cloud mask from MODIS data computed with the method of Sirguey

et al. (2009). The corresponding 640-nm and 1240-nm synthetic reflectance observations are shown

by the red dots in Fig. 3 (a) and (b). The control simulation (from which the synthetic observations

are drawn) is shown by the red lines.

Throughout the season, the envelopes of SD and SWE ensembles for the baseline experiment (Fig.475

3, blue envelopes) include the control simulation, which is a prerequisite for the good behavior of

the assimilation. Overall, the assimilation of reflectance observations reduces the uncertainties in the

estimation of the snowpack characteristics throughout the season. This is observed in Fig. 3, where

the baseline experiment envelopes (blue shading) are narrower than those of the ensemble without

assimilation (grey shading). In particular, the snow melt-out date is estimated much more accurately480

with the assimilation of reflectances: the uncertainty range drops from 24 days without assimilation

to 9 days with assimilation.

Figure 4 shows the time evolution of the RMSE with assimilation at every observation time, at

the end of the forecast step (blue solid line) and just after the filter analysis (blue dotted line). These

results are compared to the RMSE without assimilation (grey lines). The RMSE of the ensemble485

with assimilation is always lower than the RMSE without assimilation. Averaged over the season, a

reduction of 46% was obtained for SD and 44% for SWE, (Table 2: seasonal RMSE for SD: 0.07 m;

SWE: 19.7 kg m−2 compared to 0.13 m and 35.4 kg m−2 from the ensemble without assimilation).

These results indicate the usefulness of using spectral optical radiance rather than albedo data since

Dumont et al. (2012) obtained an improvement in SD estimate of only 14% when assimilating albedo490

retrievals from MODIS sensor. It is remarkable that, despite the significant RMSE reduction in our

experiment, there is most of the time no strong reduction of the RMSE from a single analysis. The

reduced RMSEs with assimilation are consequently due to the successive observations throughout

the season, highlighting the role of model dynamics.

The strongest RMSE reductions occur right after extended periods without precipitation and495

without available observations, when the reflectance ensemble spread is particularly pronounced

(e.g. Fig. 3 (a)). During these periods (e.g. from 07/12/2010 to 14/12/2010, or from 11/01/2011 to

21/01/2011), the ensemble uncertainties on reflectances, SD and SWE grow under the influence of

the perturbed forcings including the perturbed impurity deposition rate. Observations of reflectances

have a large impact when they are used. However, since reflectance observations are not very sensi-500
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tive to the inner snowpack hidden by recent snowfalls, the uncertainties on SD and SWE accumulated

earlier and not corrected by past analysis remain, which ultimately results in limited corrections on

SD and SWE (Fig. 3, for example, on 28/01/2011), and sustained ensemble spreads and RMSE

throughout the season.

After a significant snowfall, the uncertainties in SD and SWE may increase, and the assimilation505

of reflectances generally has a very small impact on these two variables. Indeed, the uncertainty in

the amount of snowfall (translated here in perturbations on the snowfall rate) tends to increase the

ensemble spread and RMSE on SD and SWE. Moreover, whether it be in the visible range of wave-

lengths sensitive to the impurity content or in the infrared part where changes on the microstructure

dominates, a snowfall resets all ensemble members to the same set of reflectance values. This makes510

the discrimination between members using reflectances alone impossible, and the subsequent analy-

sis provides a rather small uncertainty reduction for SD and SWE. This is illustrated on Fig. 3 on 10

November and on 1 December 2010, for example.

The remarks stated above for the season 2010/2011 hold for the other seasons. Figure 5 reports the

time evolution of the SD and SWE RMSEs for all the selected seasons, in the experiments without515

assimilation (red lines) and with assimilation of reflectances (blue line; the experiments shown in

green and black are discussed in the next section). On average, SD and SWE RMSEs are reduced

by 45% and 48%, respectively. This is comparable with results of Che et al. (2014), who assimilate

radiances in the microwave spectrum from AMSR-E, and reduce the SD RMSE by 50%. However,

passive microwave observations are very sensitive to liquid water. Consequently, the performance520

of the assimilation during the melting period is reduced (Che et al. (2014) reduce the SD RMSE up

to 61% from January to March, during only the dry snow period). In contrast, our results show a

well-marked reduction of errors near the end of the seasons (Fig. 2, grey lines and blue dotted lines).

Our results are also consistent with those from Liu et al. (2013) assimilating MODIS-derived Snow

Cover Fractions (SCF), after a processing of the retrieval to improve accuracy of cloud coverage525

and snow mapping. Without this processing, the performance of SCF assimilation falls, with a SWE

RMSE reduction near 10-20%, similarly to (Andreadis and Lettenmaier, 2006).

Consequently, our ability to control the seasonal evolution of the snowpack with the assimila-

tion of reflectances is demonstrated, though it exhibits limitations. In particular, the reduction of the

snowpack SD and SWE ensemble spread greatly depends on the timing of the assimilated observa-530

tions.

6 Sensitivity to the nature and the timing of observations

6.1 Impact of cloud coverage on the experiment

The presence of cloud coverage strongly reduces the number of optical data available for assimila-

tion. To investigate impact of limiting the number of available observations, an experiment similar535
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to the baseline experiment (see Section 5) is carried out, but assimilation is performed every day,

(134 days) instead of 34 days in the baseline experiment. Figure S2 presents the results with the blue

shading representing the envelopes of the ensemble assimilating daily MODIS-like observations and

the grey shadding the envelopes of the baseline experiment, reported from Fig. 3.

Obviously, in this second experiment, concerning the 640-nm reflectance variable, the spread of540

the ensemble is greatly reduced, well fitting the observations (red dots) and its envelope does not

show any extended periods with a large range of reflectance values anymore (Fig. S2 (a)). Compared

to the baseline experiment (grey envelopes), the uncertainty in the snow melt-out date is also reduced

to 3 days. However during the major part of the winter, the SD and SWE ensemble spreads (Fig. S2

(b)-(c): blue envelopes) are comparable to the spreads obtained in the baseline experiment (Fig. S2545

(b)-(c): grey envelopes). This is also reflected in Table 2: The seasonal RMSEs on SD and SWE are

0.05 m and 14.4 kg m−2, respectively, against 0.07 m and 19.7 kg m−2 in the baseline experiment.

This shows that assimilating a limited number data due to realistic cloud conditions is not neces-

sarily harmful to the estimation of the snowpack state. Note that this conclusion holds here for bulk

variables such as SD and SWE. The estimation of other physical properties of the snowpack will be550

addressed in a future work using real observations.

6.2 On the timing of observations

The baseline experiment suggests that the timing of observations may largely determine the quality

of the assimilation process. To explore the role of the timing, four additional assimilation tests are

designed for which MODIS-like reflectances are assimilated (i) only at the beginning of the season555

(before 31/12/2010, Fig. S3: Accu), (ii) only in the second part of the snow season (after 31/12/2010,

Fig. S4: Melt), (iii) only after several day-long periods without precipitation (Fig. S5: Before Snowf)

and (iv) only right after snowfall events (Fig. S6: After Snowf).

In case (i: Accu), results show that even if the SD and SWE spreads are reduced during the

assimilation period, the assimilation has almost no effect on the snow estimates during the snow560

melt period. The ensemble spread at the end of the season returns to almost the same value than the

experiment without assimilation. The uncertainty of the snow melt-out date is reduced to 22 days

only, in comparison with 24 days without assimilation. As for case (ii: Melt), the spread reduction

becomes quite discernible roughly 2 months after the first assimilation date and never reaches the

value of the baseline experiment. The uncertainty of the snow melt-out date is however reduced565

to 11 days. This demonstrates that it is essential to assimilate reflectances over the entire season

to compensate the fast growth of the snowpack ensemble in response to the uncertainties in the

meteorological forcing.

In both cases (iii: Before Snowf) and (iv: After Snowf), reflectances are assimilated at only 7 dates

of the season. Case (iii: Before Snowf) exhibits a more pronounced SD and SWE spreads reduction570

compared to case (iv: After Snowf). The uncertainty on the snow melt-out date drops to 9 days in case
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(iii: Before Snowf) while it stays at 23 days in case (iv: After Snowf). In absence of precipitation,

the snow surface is aging, leading to a decrease of reflectance values and a spread of the reflectance

ensemble (Fig. S5 (a)). Therefore, an observation after such a period provides a significant amount

of information and produces an efficient analysis. On the contrary, solid precipitation resets the575

reflectance to high values and limits the spread of the reflectance ensemble (Fig. S6 (a)) leading to

a limited efficiency of the ensemble analysis. Assimilating only a few synthetic observations well

distributed in time nearly leads to the same uncertainty of SD and SWE estimates as the baseline

experiment assimilating 34 observations (Table 2 - Before Snowf: seasonal RMSE SD: 0.07 m;

SWE: 21.8 kg m−2 compared to baseline experiment 0.07 m and 19.7 kg m−2, respectively) .580

Consequently, the time distribution of the observation turns out to be a key element in the expected

success of the assimilation of reflectance observations. The end of an extended period without pre-

cipitation, when the surface snow layer is aging, is the best time to assimilate reflectances.

6.3 Assimilation of snow depths

To better evaluate the impact of the reflectance assimilation, we here compare the baseline experi-585

ment to an experiment assimilating synthetic SD observations keeping the same time distribution of

the observations. Apart from the different nature of the observations, the assimilation setup is the

same as the one described in Section 5 including the time frequency of observations. The results are

displayed in Fig. S7.

The assimilation of synthetic SD observations greatly improves the estimates of SD and SWE590

(Fig. S7 (b)-(c)). The spread reduction is much stronger than with the assimilation of reflectance

observations (Table 2: the seasonal RMSE on SD and SWE are 0.03 m and 7.4 kg m−2, respectively,

against 0.07 m and 19.7 kg m−2 in the baseline experiment) and is maintained throughout the season.

The uncertainty range on the snow melt-out date is decreased to 8 days compared to 9 assimilating

MODIS-like reflectances and 24 days without assimilation for the 2010/2011 season. Note that the595

spread reduction of the reflectance ensemble is very limited compared to the baseline experiment.

This is consistent with the fact that while SD and SWE are better estimated in the case of SD

simulation, the surface and inner physical properties of the snowpack are less impacted than in the

case of assimilating reflectance observations.

Figure S7 shows that, at the beginning of the snow season (before 16/11/2010) and for a thin600

snowpack (less than 20 cm), SD assimilation seems to have less impact than reflectance assimilation.

Indeed, with a thin snowpack, visible wavelengths penetrate down to the ground, and reflectance

contains information on the whole snowpack. In this case, reflectance contains more information

than SD. This could explain the better performance of the baseline experiment.

An additional experiment (not shown here) was also conducted assimilating daily synthetic SD605

observations because such measurements are usually daily available at about 60 different stations in

the French Alps. This shows that on the contrary to reflectance assimilation, for SD assimilation, the
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more frequent the observations, the greater the spread reduction (seasonal RMSE SD: 0.02 m; SWE:

4.7 kg m−2).

Except for thin snow cover, the assimilation of SD observations outperforms reflectance assim-610

ilation in terms of SWE and SD estimates and seems to be less affected by the time distribution

of the observations. When assimilating reflectance data, the ensemble needs to sufficiently spread

(from an extended period without precipitation) to observe an impact of the assimilation (Fig. 3 (a)).

Inversely, and even if that may be very small, every SD observations assimilation reduces the SD

ensemble independently of the precipitation events (Fig. S7, excepted for thin snow cover).615

Figure 5 also shows that, all these findings obtained for the 2010/2011 season are also verified

for the five studied seasons. All assimilation experiments of synthetic SD observations reduce the

RMSE with respect to both the model run without assimilation (red lines) and the experiments as-

similation synthetic reflectances data (blue lines). However, in case of shallow snowpack, the better

performance is obtained using reflectance data.620

6.4 Combining reflectance and snow depth assimilation

Though the assimilation of synthetic SD observations generally outperforms MODIS-like reflectance

assimilation, spatially distributed SD measurements are rarely available over large areas on a daily

basis. In-situ SD observations give information only at the measurement point and many studies

attest to the strong spatial variability of the snow cover (e.g. López-Moreno et al., 2011; Veitinger625

et al., 2014; Bühler et al., 2015). Airborne LiDAR or ground based laser LiDAR provide accurate

SD measurements with fine resolution, but their low temporal frequency limits their utility for opera-

tional applications. So, one can imagine that over a mountain range, SD measurements are available

at several locations for only a few dates in the season (e.g. occasional snow course, crowd-sourcing,

ski resorts observations, ...). This scenario motivates the set-up of the following experiment. The630

experimental setup is the same as the baseline reflectance assimilation scheme previously described

with an extra synthetic SD the 10th of each month. Results are shown in Fig. S8 and compared to

the previous experiments in Fig. 5.

Combining the assimilation of MODIS-like reflectances with the assimilation of synthetic SD

observations provides a benefit compared to assimilating reflectance only (Fig. 5, black and blue635

lines respectively). (i) In presence of a thin snow cover, the SD and SWE RMSEs of the combined

reflectances and SD ensembles are reduced as the ones from the assimilation of the reflectance only.

(ii) Almost all along the season, SD and SWE RMSEs remain below the reflectance assimilation

RMSE thanks to SD assimilation. The combined assimilation leads to SWE seasonal RMSE of 9.6

kg m−2 to be compared to 7.4 kg m−2 for the experiment assimilating synthetic SD observations and640

19.7 kg m−2 for the baseline reflectances assimilation experiment (Table 2).

These results indicate the usefulness of combining these two datasets in operational applications.

Liu et al. (2013) reached a similar conclusion by combining the assimilation of SCF and SD (with an
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SWE RMSE reduction up to 72%; up to 74% in our study). However, given the strong spatial vari-

ability of the snow cover, the spatial representativity of punctual SD measurements may make their645

assimilation questionable. This issue should be addressed with experiments over two-dimensional,

realistic domains.

7 Conclusions

This study investigates the assimilation of MODIS-like reflectances from visible to near-infrared

(the first seven bands) into the multilayer snowpack model Crocus. The direct use of reflectance650

data instead of higher level snow products limits the introduction of uncertainties due to retrieval

algorithms. For the assimilation, we implement a particle filter. A particle filter is chosen because

(i) it is an ensemble method providing uncertainty estimates, and (ii) it is easily implemented (in

comparison with other assimilation methods) with Crocus model, characterized by strong nonlin-

earities and its lagrangian representation of the snowpack layering. Given that the major source of655

error in snowpack simulations can be attributed to meteorological forcings, a stochastic perturbation

method is designed to generate an ensemble of possible meteorological variables. This algorithm

uses a first-order autoregressive model to account for the temporal correlations in the meteorological

forcing uncertainties. This ensemble of meteorological forcings is then applied to generate the en-

semble of snowpack simulations for the assimilation. Twin experiments are conducted at one point660

in the French Alps, the Col du Lautaret, over five hydrological years. The assimilated reflectance

data corresponds to the first seven spectral bands of the MODIS sensors.

Reflectance assimilation using only data from clear-sky days reduces the SD and SWE seasonal

RMSE by a factor close to 2. The uncertainty range on the snow melt-out date drops to 9 days com-

pared to 24 without assimilation. Additional assimilation tests using different time distributions of665

the observations show that (i) reflectance assimilation greatly improves snowpack estimates if the

observation comes after an extended period without precipitation, (ii) the assimilation has almost

no impact if it comes right after a snowfall, and (iii) using only a few observations with the appro-

priate timing, i.e. after extended periods without precipitation, reduces RMSE almost as much as

assimilating reflectances on a daily basis.670

The assimilation of synthetic SD observations leads to a decrease of SD and SWE RMSE by

a factor of more than 4. The uncertainty range on the snow melt-out date is reduced to 8 days.

The assimilation of SD observations generally outperforms reflectance assimilation except for thin

snowpacks, typically less than 20 cm. However, whereas optical reflectance maps can be obtained

daily thanks to spaceborne sensors such as MODIS or VIIRS, SD measurements are rarely available675

either over large areas or at the same time frequency. Combining reflectance assimilation with SD

assimilation at 4 dates during the snow season leads to a decrease of SD and SWE RMSE by a factor

close to 3.
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This study provides a general theoretical framework to test the efficiency of several kinds of data

assimilation in a snowpack model and highlights the benefit of using remotely sensed optical surface680

reflectance in the assimilation scheme to provide significant improvements of the snowpack SD and

SWE estimates. Even if the assimilation of SD outperforms the assimilation using reflectance data,

the sparsity of in-situ measurements in space and/or time strongly reduces their utility in real data

assimilation systems. Nevertheless, given their complementary features, combining remotely sensed

reflectances and SD data, when available, would definitely improve snowpack simulations.685

This study presents a first attempt to assimilate snow observations into the Crocus snowpack

model with the overarching objective of improving operational snowpack forecasting. The next steps

to proceed toward operational applications must include the assimilation of actual satellite data and

the spatialization of the assimilation on larger domains. These steps include several challenges such

as the increased calculation costs and degrees of freedom, and the need for a physically consistent690

2D meteorological ensemble, which will be addressed in future work.
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Appendix A: PARTICLE FILTER AND SEQUENTIAL IMPORTANCE RESAMPLING,

DEFINITIONS (Gordon et al., 1993; Van Leeuwen, 2009, 2014)

In a discrete-time space model, the state of a system evolves according to:

xk = fk(xk−1,vk−1), (A1)695

where xk is the state vector of the system at time k, vk−1 is the state noise vector and fk is the

non-linear and time-dependent function describing the evolution of the state vector.

Information about xk is obtained through noisy measurements, yk, which are governed by the

observation operator equation:

yk = hk(xk,nk), (A2)700

where hk is a possibly non-linear and time-dependent function linking the state vector to the obser-

vation (observation operator) and nk is the measurement noise vector.

The filtering problem is to estimate sequentially the values of xk, given the observed values

y0,...,yk, at any time step k. In a Bayesian setting, this problem can be formalized as the compu-

tation of the distribution p(xk|y1:k), which can be done recursively in two steps:705

Prediction step:

p(xk|y1:k−1) =

∫
p(xk−1|yk−1)p(xk|xk−1)dxk−1. (A3)

Updating step to estimate p(xk|y1:k) using Bayes’ rule:

p(xk|y1:k)∝ p(yk|xk)p(xk|y1:k−1). (A4)

In the particle filter, the prior pdf is represented by equally-weighted delta functions centered on710

the ensemble members or particles:

p(xk−1|y1:k−1) =
1

N

N∑
i=1

δ(xk−1−xik−1), (A5)

where N is the ensemble size. With this representation, the propagation step A3 provides:

p(xk|y1:k−1) =
1

N

N∑
i=1

δ
(
xk −xik

)
, (A6)

where xik = f(xik−1,v
i
k−1); vik−1 is a realization of the noise vk−1. Then the analysis step follows715

with:

p(xk|y1:k) =

N∑
i=1

wi
kδ(xk −xik), (A7)

where the wi
k are the particle weights, normalized to sum up to 1, and given by:

wi
k ∝ p(yk|xik). (A8)
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To compute the weights, the error nk of the observation operator hk (Eq. A2) is often considered720

additive and Gaussian with mean 0 and covariance matrixRk, so that the likelihood p(yk|xik) writes:

p(yk|xik)∝ exp
(
−1

2
(yk −h(xik))T R−1(yk −h(xik))

)
. (A9)

After the computation of the weights, the ensemble is resampled: particles with zero or negligible

weights are ruled out; particles with large weights are duplicated a number of times commensurate725

with their weights. Several algorithms exist for this resampling step; we use the one of Kitagawa

(Kitagawa, 1996).
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FIGURES:

Figure 1. Ensemble simulation with 300 members at the Col du Lautaret site over the 2010/2011 hydrological

season. (a) Reflectance at 640 nm (center of band 1 of MODIS), (b) SD, and (c) SWE. On each graph, the

red solid line is the simulation forced by the unperturbed SAFRAN analysis. The blue patterns represent the

envelopes including the 300 members which are shown by the black lines.
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Figure 2. Time evolution over the 2010/2011 season of (in red) the SD ensemble Spd with respect to the

ensemble mean and (in blue) the SD RMSE between SAFRAN-Crocus estimates and in-situ observations. (a)

for the the CdP site and (b) for the CdL ensemble compared to the multiple Alps stations at the same elevation

than CdL.
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Figure 3. Evolution of the ensemble over the 2010/2011 season. (a) and (b) Reflectance at 640 nm and 1240 nm

(first and fifth MODIS band, respectively), (c) SD and (d) SWE. The blue shading represent the envelopes of

the ensemble assimilating MODIS-like reflectances and the grey patterns the envelopes of the ensemble without

assimilation. The red lines represent the control simulation (synthetic truth). On graph (a) and (b), the red dots

show the assimilated observations. On both (c) and (d), the black solid line shows the 50% quantiles (median

of the ensemble) and the black dotted lines the 33% and 67% quantiles for the baseline experiment.
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Figure 4. Time evolution of the ensemble RMSEs on (a) Reflectance at 640 nm, (b) reflectance at 1240 nm,

(c) SD and (d) SWE, over the 2010/2011 season, for the run without assimilation (grey lines), and the baseline

assimilation experiment (Blue solid line: forecast; blue dotted line: analysis). Dots indicate analysis steps.
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Figure 5. Time evolution of ensemble RMSEs on SD (left) and SWE (right) for the five seasons under study,

for the run without assimilation (red lines), the baseline experiment (assimilating reflectances, blue lines), the

experiment assimilating SD data (green lines) and the experiment assimilating combined reflectances and SD

data (black lines). Crosses indicate analysis steps. Seasonal averages are displayed in the upper left corner

of each graph. The model control simulation is represented by the grey lines, scaled by the "Synthetic truth"

y-axes.
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TABLES:

CdP: Reanalysis - Observations CdL: Reanalysis - Ensemble

Variables Bias std: σCdP Bias std: σCdL

Air temperature (C) 0.28 1.08 5.0 e-03 1.07

Wind speed (m s−1) 0.2 1.12 (0.6) 4.0 e-04 0.4

Shortwave radiation (W m−2) 22.4 79 (70) -3.1 e-03 58.3

Longwave radiation (W m−2) -14.0 24.5 (7) 2.0 e-02 7.0

Snowfall rate (kg m−2 h−1) -2.0 e-02 0.4 5.0 e-03 0.1

Rainfall rate (kg m−2 h−1) 7.2 e-03 0.5 -5.0 e-03 0.1

Table 1. Bias and standard deviations (std) of the differences between SAFRAN reanalysis and in-situ obser-

vations (left) and the differences between SAFRAN reanalysis and the ensemble built up in the present study

(right), for the perturbed meteorological forcings. The first set of statistics is derived from 18 years (1993-2011)

of observations and reanalysis at the CdP and the second set is derived from our 300-members ensemble over

the 2010/2011 hydrological season. The values in brackets correspond to the adjusted standard deviation used

to generate the ensemble at CdL site.
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