
Dear Dr. Christian Haas, 
 
Thank you very much for revision of our manuscript and your positive 
feedback. We have accommodated all your suggestions; please find 
below the details on where the changes were made.  
 
Best Regards, 
Natalia Ivanova, Pierre Rampal and Sylvain Bouillon 
 
 
Changes made to the manuscript: 
 
1. Two new figures added (new Fig. 4 and Fig. 10) 
2. Eqs. 2 and 3 changed places because point-wise root mean square error 
is introduced earlier. 
3. More details provided in the Sect. 4.1.2. (accommodated from our 
answers to Reviewer 1). 
4. The scatterplots have R2 (correlation coefficient, squared) values 
added. Fig. 5 is now done in the same style as Fig. 10 (with statistics 
written on the plot and the regression line added). 
5. Fig. 10 is introduced and explained in the Sect. 5. 



 1 

Error assessment of satellite derived lead fraction in the 1 

Arctic 2 

 3 

N. Ivanova1, P. Rampal1, and S. Bouillon1  4 

[1]{Nansen Environmental and Remote Sensing Center, and Bjerknes Centre for Climate 5 

Research, Bergen, Norway} 6 

 7 

Correspondence to: N. Ivanova (natalia.ivanova@nersc.no) 8 

 9 

Abstract 10 

Leads within consolidated sea ice control heat exchange between the ocean and the 11 

atmosphere during winter thus constituting an important climate parameter. These narrow 12 

elongated features occur when sea ice is fracturing under the action of wind and currents, 13 

reducing the local mechanical strength of the ice cover, which in turn impact the sea ice drift 14 

pattern. This makes a high quality lead fraction (LF) dataset to be in demand for sea ice model 15 

evaluation, initialization and for assimilation of such data in regional models. In this context, 16 

available LF dataset retrieved from satellite passive microwave observations (Advanced 17 

Microwave Scanning Radiometer – Earth Observing System, AMSR-E) is of great value, 18 

providing pan-Arctic light- and cloud-independent daily coverage since 2002. In this study 19 

errors in this dataset are quantified using accurate LF estimates retrieved from Synthetic 20 

Aperture Radar (SAR) images employing a threshold technique. A consistent overestimation 21 

of LF by a factor of 2–4 is found in the AMSR-E LF product. It is shown that a simple 22 

adjustment of the upper tie point used in the method to estimate the LF can reduce the pixel-23 

wise error by a factor of 2 on average. Applying such adjustment to the full dataset may thus 24 

significantly increase the quality and value of the original dataset.  25 

 26 

1 Introduction 27 

In winter leads control heat transfer between the ocean and the atmosphere despite their 28 

relatively small areal coverage. For instance, sensible heat flux through leads can be of the 29 
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 2 

order of 600 W m-2, compared to an annual average of about 3 W m-2 over ice (Maykut, 1 

1978). This applies to leads represented by both open water and thin ice, but in winter the 2 

refreezing happens very quickly and open water leads exist only for a very short time (Weeks, 3 

2010). Open-water leads alone, even though covering only 1–2% of the central Arctic, 4 

contribute more than 70% to the upward heat fluxes (Marcq and Weiss, 2012). Model 5 

simulations showed that even 1% change in sea ice concentration due to the increase in areal 6 

lead fraction could lead to a 3.5 K difference in the near-surface atmospheric temperature 7 

(Lüpkes et al., 2008). Studying signatures of leads and surrounding ice in the images from 8 

Moderate Resolution Imaging Spectroradiometer (MODIS) Beitsch et al. (2014) showed that 9 

difference in ice surface temperature between thicker ice and a lead covered by thin ice could 10 

be as large as 15–20 K, while open water and thin ice in leads differed in temperature by up to 11 

10 K (Fig. 2 in Beitsch et al., 2014). This makes the surface energy budget very sensitive to 12 

the fraction of the surface covered by leads in the Arctic, where in recent years sea ice cover 13 

has become younger (Maslanik et al., 2007) and mechanically weaker (Rampal et al., 2009). 14 

Areal fraction of leads in the Arctic sea ice can be viewed as a parameter reflecting loss in 15 

mechanical strength of the ice pack and indicating the degree of surrounding sea ice mobility. 16 

Rampal et al. (2009) reported steady increase in sea ice deformation rate and drift during 17 

1979–2007 and argued for possible causal relation between the two. These trends still remain 18 

a challenge to capture for the current sea ice models, especially because they fail at simulating 19 

sea ice fracturing and lead opening with the correct properties. Accurate observations of lead 20 

fraction are thus of high importance for model evaluation and for being assimilated into 21 

models as initial conditions, or during a simulation. For example, Bouillon and Rampal 22 

(2015) and Rampal et al. (2015) presented recently a new sea ice model, which is able to use 23 

information on lead fraction to constrain the local mechanical response of sea ice to winds 24 

and currents, with a significant impact on performance with respect to e.g. simulated sea ice 25 

drift and deformation. In this context, using accurate estimates of lead fraction with their 26 

associated uncertainties is therefore crucial. 27 

A method for areal lead fraction (LF) retrieval from Advanced Microwave Scanning 28 

Radiometer – Earth Observing System (AMSR-E) was developed by Röhrs and Kaleschke 29 

(2012) (see also Röhrs et al., 2012) and allows to detect leads wider than 3 km. The method 30 

was able to detect 50% of leads when compared to a MODIS image and localize the leads 31 

correctly when qualitatively compared to Synthetic Aperture Radar (SAR) images and 32 
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 3 

CryoSat-2 tracks (Röhrs et al., 2012). A daily light- and cloud-independent pan-Arctic LF 1 

dataset (AMSR-E LF) for winter months November–April from 2002 to 2011 was obtained 2 

using this method and published at Integrated Climate Date Center – ICDC, University of 3 

Hamburg (http://icdc.zmaw.de/), and represents a unique and valuable dataset. It was then 4 

used to automatically obtain lead location and orientation with a success rate of 57% (Bröhan 5 

and Kaleschke, 2014). Preferred lead orientations were found typical for different regions of 6 

the Arctic.  7 

The AMSR-E LF method is essentially a thin ice concentration retrieval method, which was 8 

adapted to identify leads by using median filtering. This filtering enhances the leads’ features 9 

due to their narrow and elongated shape. Therefore, other thin ice retrieval methods based on 10 

passive microwave observations (e.g., Mäkynen and Similä, 2015, Naoki et al., 2008, 11 

Cavalieri, 1994) cannot be used directly for LF retrieval. Sea ice concentration algorithm ASI 12 

(Svendsen et al., 1987, Kaleschke et al., 2001, Spreen et al., 2008) was able to identify leads 13 

(Beitsch et al. 2014) when implemented at 89 GHz frequency of AMSR2 on-board the Global 14 

Change Observation Mission–Water satellite with resolution of 3.125 km. However, this 15 

approach is limited in time coverage because AMSR2 started to deliver the data only in 2012 16 

(http://suzaku.eorc.jaxa.jp). Also quantitative validation work may be still needed because 17 

only qualitative assessment using MODIS images was presented in Beitsch et al. (2014).  18 

A lead detection method based on MODIS ice surface temperature was developed by Willmes 19 

and Heinemann (2015). The method classifies a scene into leads and artefacts, where for the 20 

first class (leads) the success rate is as large as 95%. However, in the class of artefacts, which 21 

are mostly caused by ambiguity in cloud identification, there is a 50% chance of it being 22 

either a lead or an artefact. Combined retrieval error from the two classes for a daily map, 23 

obtained by averaging, is estimated to be 28%. The method gives daily lead occurrence maps 24 

at 1 km2 resolution. 25 

A number of classifiers applied to CryoSat-2 were tested for lead detection potential, and the 26 

most promising one identified and used to derive LF and lead width distribution (Wernecke 27 

and Kaleschke, 2015). The selected classifier was able to detect ~68% of leads correctly, and 28 

only ~3% of ice measurements were falsely identified as leads. Despite such good capability 29 

and fine resolution of 250 m, LF retrievals from CryoSat-2 are limited spatially, because the 30 

measurements are conducted by tracks making daily pan-Arctic coverage impossible; and 31 

temporally, the satellite being launched in 2010. Suggested approaches using laser altimeter 32 
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for lead detection (e.g., Farrell et al., 2009 with the Ice, Cloud and land Elevation Satellite, 1 

ICESat) have similar limitation. 2 

Lindsay and Rothrock (1995) suggested a method for retrieval of lead widths and LF from 3 

thermal and reflected solar channels on the advanced very high resolution radiometer 4 

(AVHRR). The nominal resolution of the instrument is 1.1 km, and it is also able to resolve 5 

subpixel-sized leads due to strong contrast caused by leads and their network-like pattern. 6 

However, an AVHRR-retrieved LF dataset would be limited to cloud-free areas, and its 7 

quality would depend on the quality of cloud masking defining these areas.  8 

Automatic classification of leads from SAR is difficult, because radar backscatter signature of 9 

leads in SAR images can be ambiguous. This is due to wind roughening of the open water in 10 

the leads and occasional presence of frost flowers when new ice has just formed in a lead 11 

(Röhrs et al., 2012). To the authors’ knowledge, no method has so far been presented in 12 

literature addressing automatic LF retrievals from SAR. Existing sea ice classification 13 

methods (Berg and Eriksson, 2012; Karvonen, 2012; Karvonen, 2014; Leigh et al., 2014; Liu 14 

et al., 2015) could potentially be adapted and tested for this purpose. However, the task of 15 

identifying such narrow elongated features as leads is different from sea ice classification. For 16 

example, Korosov et al. (2015) demonstrated that these features could not be distinguished 17 

using a support vector machine (SVM) approach applied to SAR subsets (windows), while 18 

such a technique was good enough for ice/water separation in general. Also this study showed 19 

that even applying this method to segments, which significantly improved its feature-20 

resolving capacity, was not satisfactory, and that the SVM would need to be trained 21 

specifically targeting leads. 22 

As it is outlined above, there are a variety of available promising methods to detect leads and 23 

retrieve LF from satellites. They all have their advantages and disadvantages and, depending 24 

on these, can be used for achieving different purposes. The topic of this study is a dataset 25 

meeting the following criteria: retrieving LF (note the difference with lead occurrence), daily 26 

coverage, pan-Arctic, cloud- and light-independent, covering longest possible time period. 27 

The AMSR-E LF appears to be the only suitable dataset in this context, and therefore we find 28 

it necessary to provide quantitative error estimations of this dataset, which has not been done 29 

before. Based on analysis of the errors, we suggest a possible improvement of the AMSR-E 30 

based method. In order to achieve the goal of this study, a simple method for LF retrieval 31 

from SAR is suggested. Currently the method is specifically adapted for the purposes of this 32 

Natalia� 11/2/2016 15:06
Deleted:  (33 
Natalia� 11/2/2016 15:06
Deleted: )34 

Natalia� 11/2/2016 14:32
Deleted: not only 35 
Natalia� 11/2/2016 15:09
Deleted: , location or orientation36 
Natalia� 10/2/2016 12:59
Deleted: introduce a correction factor for the 37 
existing dataset and 38 
Natalia� 10/2/2016 13:00
Deleted: n39 
Natalia� 10/2/2016 12:59
Deleted:  itsel40 
Natalia� 10/2/2016 12:59
Deleted: f.41 
Natalia Ivanova� 11/2/2016 18:49
Deleted: SAR-based 42 



 5 

study, but further development can give a universal approach for areal LF retrieval from SAR, 1 

which would be highly valuable. 2 

Following the Introduction, Sect. 2 of the paper describes the data used for the study, and 3 

Sect. 3 explains the SAR-based method. The results are presented in Sect. 4 and 5 followed 4 

by Discussion and Conclusions. 5 

 6 

2 Data 7 

2.1 The AMSR-E LF dataset 8 

The daily gridded AMSR-E LF dataset for the time period of November 2003–April 2011 was 9 

used (downloaded in February 2015, http://icdc.zmaw.de/1/daten/cryosphere/lead-area-10 

fraction-amsre.html). It covers winter months of November through April and is provided on 11 

a polar-stereographic grid with 6.25 km resolution distributed by National Snow and Ice Data 12 

Center (NSIDC). LF is expressed as the percentage of a grid cell covered by leads, which are 13 

represented by either open water or thin ice. Since openings refreeze very quickly in winter, 14 

the majority of the data entries are thin ice concentrations. Following the original paper of 15 

Röhrs et al. (2012), thin ice is defined as new ice, nilas, and pancake ice, according to the 16 

classification of the World Meteorological Organization (WMO, 1989). The dataset is limited 17 

to areas where sea ice concentration is above 90%, as retrieved by the ASI algorithm. 18 

The method used to retrieve LF from AMSR-E (Röhrs et al., 2012) relies on the unique 19 

signature of thin ice and open water defined by brightness temperature ratio in the 89 GHz 20 

and 19 GHz vertically polarized channels of the radiometer. Further, median filtering is 21 

applied to exclude the part of the signal coming form the atmosphere and enhance the features 22 

of leads due to their narrow and elongated shape so different from the more homogeneous 23 

background.  24 

The AMSR-E LF dataset is shown in Fig. 1 by the number of measurements in each bin 25 

expressed in % of the total number of measurements (relative frequency), where each bin has 26 

a width of 5% except the first one, which excludes LF < 1%. These very small values of LF in 27 

the dataset appeared rather random on the daily maps and therefore were excluded assuming 28 

the method’s precision would not have allowed resolving them anyway. All the grid cells 29 

close to land were also removed (2 grid cells away from land) because these areas contained 30 
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 6 

large amount of near 100% LF values, which may be caused by either real presence of the 1 

coastal polynyas/leads or an artefact due to the vicinity of land. Fig. 1 shows the full dataset 2 

covering all the winters from November 2003 through April 2011 (~26 millions 3 

measurements) by blue bars, and each month from November 2008 to April 2009 (varying 4 

from ~430 to ~600 thousands measurements) by different colours. The histograms for these 5 

months reflect the tendency observed in the full dataset, thus allowing us to limit the analyses 6 

presented in this paper to only this one winter. The last bin (LF 95–100%), characterised by 7 

significant amount of measurements in comparison to the other bins with high LF values, will 8 

be addressed in later sections. 9 

For the validation by SAR images the AMSR-E LF dataset was re-projected on the domain 10 

defined in Sect. 2.2 using Nansat – an open source Python toolbox for processing 2D satellite 11 

earth observation data (Korosov et al., 2015, Korosov et al., 2016).  12 

2.2 The SAR images 13 

ENVISAT ASAR WSM (advanced SAR wide swath mode) images at HH-polarisation 14 

acquired during the winter of November 2008–April 2009 were used in this study. The area of 15 

interest is defined by the geographical coordinates (83N, 20W), (87N, 36W), (87N, 34E), 16 

(83N, 15E) and is shown in Fig. 2 by the red rectangle. This area located north of Fram Strait 17 

was chosen due to relatively large amount of leads occurring in this particular region (see e.g. 18 

Bröhan and Kaleschke, 2014) so that sufficient amount of AMSR-E LF retrievals would be 19 

available for validation, and because this region is well covered by SAR data. The SAR 20 

images originally provided at spatial resolution of 150 m × 150 m (pixel spacing: 75 m × 75 21 

m), were re-projected using the Nansat toolbox onto a polar stereographic projection with 22 

nominal resolution of 100 m × 100 m with latitude of origin and central meridian defined by 23 

the central coordinates of the selected area. Calibrated surface backscattering coefficient 24 

(ASAR Product Handbook, 2007) normalized over ice was used for this study (we will refer 25 

to this value as backscatter). The procedure of normalization represents compensation for 26 

incidence angle variation, established empirically, and is described in more detail in 27 

Zakhvatkina et al. (2013). 28 

 29 
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3 SAR-based threshold technique 1 

A threshold technique similar to the one developed for lead detection from MODIS-derived 2 

ice surface temperature (Willmes and Heinemann, 2015) is suggested for automatic lead 3 

identification in SAR scenes. Visual inspection of SAR images shows that leads, in most 4 

cases, have lower backscatter than surrounding thicker ice. The transition is defined by a 5 

threshold, which is not constant from one image to another, as we find from automatic lead 6 

detection tests conducted on a number of SAR images. Therefore, we use characteristics of 7 

backscatter distributions for each SAR scene instead. Before the threshold can be applied to a 8 

SAR scene (a subset is shown in Fig. 3a and respective distribution in Fig. 3d, beige bars) the 9 

image is undergone median filtering with a window size of 5×5 pixels (found experimentally), 10 

corresponding to spatial scale of 500 m × 500 m, which reduces the noise while preserving 11 

the edges of the features. One such filtered subset of a SAR image is shown in Fig. 3b 12 

(distribution in Fig. 3d, blue bars), where dark blue areas correspond to leads. Comparison of 13 

distributions before filtering (wider) and after shows the noise-reducing effect of the median 14 

filtering. After applying the threshold, so that all the backscatter values below its value are 15 

classified as leads and the rest – as ice, a binary map (Fig. 3c) is retrieved. The threshold (σ 0
t ) 16 

is defined as 17 

σ 0
t =σ 0

P − nδ ⋅δ ,                                                                                                    (1) 18 

where σ 0
P  is the backscatter value at the peak of the distribution (blue line in Fig. 3d), δ  is 19 

the standard deviation of the distribution, and nδ  is a number of standard deviations to move 20 

away from the peak, that enables automatic identification of leads. The threshold was first 21 

tried with nδ =1  and nδ = 2  (dashed red lines), but it was found that an intermediate value 22 

nδ =1.5  (solid red line) worked better and therefore was chosen. This was established by 23 

visual comparison of the lead fraction retrievals with different threshold values. The mean of 24 

the distribution is shown by dashed grey line for reference.  25 

Next, SAR-based LF is calculated for each AMSR-E grid cell where LF value is above 1%. 26 

All the pixels classified as lead by SAR within such grid cell are added together and divided 27 

by the total number of SAR-pixels in it, which gives a percentage after multiplying it by 100.   28 

Natalia� 11/2/2016 14:34
Deleted: five29 

Natalia� 11/2/2016 12:29
Comment [1]: Please note change in the 
equation 

Natalia� 11/2/2016 15:37
Deleted: For reference 30 
Natalia� 11/2/2016 15:37
Deleted: t31 
Natalia� 11/2/2016 15:37
Deleted: 0.32 



 8 

Suggested approach is rather simplistic, but it is sufficient for our purpose (more details in the 1 

Sect. 4.1.2 and 4.3), while for a wider application one must consider the limitations addressed 2 

in the Discussion section.  3 

 4 

4 Results 5 

4.1 Reference Lead Fraction Datasets Retrieved from SAR 6 

Using the approach described in Sect. 3, we produced two SAR-based reference datasets: one 7 

with manual quality control of each SAR subset of 1000×1000 pixels (MQC SAR LF) and 8 

one based on automatic threshold where quality control is done by discarding images with 9 

obviously unsuccessful LF retrievals (SAR LF). 10 

4.1.1 MQC SAR LF  11 

This high-quality dataset was produced in order to verify the larger SAR LF dataset (Sect. 12 

4.1.2). Significantly larger amount of measurements in the SAR LF allows robust statistical 13 

analysis, but visual quality control of each image, given that leads are numerous small 14 

features, is hardly achievable. For the MQC SAR LF two criteria need to be verified: 1) 15 

whether the classification is successful and 2) whether leads are identified in exactly the same 16 

locations in the SAR- and AMSR-E-derived datasets. The latter was mostly the case, however 17 

sometimes a lead in AMSR-E LF was misplaced by a distance large enough so that the two 18 

datasets mismatch. We believe this misplacement is caused by cases of relatively fast sea ice 19 

drift in the area. If we consider an AMSR-E grid cell of 6.25 km × 6.25 km size, a SAR image 20 

is taken at a certain time of the day in this grid cell, while ASMR-E LF is a gridded daily 21 

product and thus provides an average over all the swaths covering this grid cell collected 22 

during 24 hours.  During a few hours the lead could have moved fast enough to disappear 23 

from the given grid cell. From visual analysis of the images we could say that this situation 24 

did not happen very often, however a quantitative estimate of how much it affects the 25 

validation was needed. Thus, we make an assumption that if the distribution of SAR LF is 26 

similar to that of MQC SAR LF, where we made sure every lead was located correctly, the 27 

misplacements were indeed seldom the case also in the SAR LF dataset. 28 

To produce the MQC SAR LF, 5 SAR scenes acquired in March 2009 with sufficient amount 29 

of easily distinguishable leads were selected. It was found that the quality of LF retrieval 30 

Natalia� 10/2/2016 14:38
Deleted: This method is developed strictly 31 
for the purpose of the AMSR-E LF dataset 32 
validation and therefore does not represent an 33 
independent LF retrieval method from SAR. 34 
Its limitations and potential of further 35 
development for wider applications are 36 
addressed in the Discussion section.37 

Natalia Ivanova� 11/2/2016 19:01
Deleted: validation 38 

Natalia Ivanova� 11/2/2016 19:03
Deleted: located 39 
Natalia Ivanova� 11/2/2016 19:03
Deleted: places 40 
Natalia Ivanova� 11/2/2016 19:03
Deleted: both 41 
Natalia Ivanova� 11/2/2016 19:03
Deleted: retrieved 42 
Natalia Ivanova� 11/2/2016 19:04
Deleted: LF43 

Natalia Ivanova� 11/2/2016 19:06
Deleted: Therefore44 

Natalia� 11/2/2016 15:47
Deleted: five 45 



 9 

increases when dividing SAR scenes into subsets, and the subset size of 1000×1000 pixels 1 

showed to be sufficient. Using such small subsets rather than a full SAR image provides more 2 

accurate thresholds because it limits possible variability in conditions within the subset. Such 3 

conditions can be wind speed or ice surface properties (wet or dry ice, for example). Defining 4 

a threshold locally not only eliminates significance of these effects, but it takes advantage also 5 

of smaller variety of surfaces in general. For example, presence of open water, land, 6 

consolidated ice, wet ice, dry ice, and marinal ice zone in one image will make it difficult to 7 

find a threshold that will only identify leads. Using a smaller subset, on the other hand, where 8 

only consolidated ice with leads is present, will give clearer threshold.   9 

The threshold was thus calculated individually for each 1000×1000 pixels subset using Eq. (1) 10 

with nδ  selected manually, and used to calculate LF in corresponding AMSR-E grid cells. 11 

The classification in each subset was then inspected visually, comparing the two collocated 12 

maps: backscatter and MQC SAR LF, in order to make sure it was successful. This procedure 13 

gave 1645 high-quality MQC SAR LF retrievals, which were then used to verify the findings 14 

based on a larger SAR LF dataset. 15 

4.1.2 SAR LF  16 

To produce this dataset, SAR subsets of 3500×3500 pixels each (on average) were used: the 17 

full SAR images were cut to match the region of interest (Fig. 2). The quality control of this 18 

validation dataset was done by visual inspection of every classified subset together with the 19 

original SAR subset (backscatter) as demonstrated in Fig. 4 (a subset of 875×875 pixels is 20 

shown). Panel a) shows the original SAR image, panel b) shows the lead identification by the 21 

SAR-based method, where the red colour corresponds to the identified leads, and the panel c) 22 

shows the SAR image overlaid by AMSR-E lead fraction original product (in %) with the 23 

colour scale to the right. We rely on the combination of the fine resolution of SAR (pixel 24 

spacing of original product: 75 m × 75 m, geometric resolution: 150 m × 150 m) and its 25 

capability to separate smooth surfaces such as open water or thin ice in leads (appear darker 26 

than the background) from the rough surfaces (surrounding thicker ice). In addition, leads 27 

have a characteristic shape: they are narrow elongated features. These three factors put 28 

together make it possible to visually recognize the leads in SAR images. The features that 29 

were missed by SAR were relatively small, and were usually not captured by the coarse-30 

resolution AMSR-E either (Fig. 4c). Note also that the AMSR-E based method was found to 31 

identify only leads wider than 3 km (Röhrs et al., 2012), and such features were normally 32 
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 10 

identified successfully by SAR in our study. We have also performed a visual comparison of a 1 

SAR dataset sample to a MODIS image (2500×2500 pixels at 250 m resolution), and saw that 2 

the SAR method captured the majority of features correctly.  3 

In this process images were discarded in cases of unsuccessful lead identification, which is 4 

when features that appear like leads were missed by the method in significant amount. This 5 

was of particular importance in cases when AMSR-E LF identified a feature in the respective 6 

location, to secure proper error estimation for the AMSR-E LF product.  7 

The majority of subsets contained leads represented by signatures darker than the surrounding 8 

background, while subsets containing large amount of leads with brighter signature were 9 

discarded. This means that the majority of the leads in the selected subsets were either 10 

composed by thin ice or calm open water. Therefore, the wind speed is not taken into account 11 

in this study, but for a more general application this would have been necessary to account for 12 

wind roughening of the open water areas in leads. As a result we obtained a dataset for the 13 

period of November 2008–April 2009, made of 21–47 subsets (3500×3500 pixels each) per 14 

month, with number of measurements varying from about 8 000 to 19 500 (Table 1) 15 

depending on the month. 16 

4.2 Comparison of the AMSR-E LF and MQC SAR LF 17 

Before any analysis of the AMSR-E LF and MQC SAR LF datasets could be performed, they 18 

were filtered so that only those AMSR-E grid cells (6.25 km by 6.25 km size) were used, 19 

which had LF value > 1% and where the SAR LF for this grid cell returned a value of LF > 20 

1% too. Thus, we only analyse the non-zero values of the AMSR-E LF dataset, and exclude 21 

all the leads that the SAR method has eventually missed. The same applies to the next section, 22 

where AMSR-E LF is compared to SAR LF. 23 

The AMSR-E LF and MQC SAR LF datasets are shown in Fig. 5 as a scatterplot (left) and 24 

histograms (right). The scatterplot shows that the majority of the points are located below the 25 

1-to-1 line (dashed grey line), which means that in most cases AMSR-E LF overestimates the 26 

LF as compared to the SAR retrievals. The linear regression line (red) has a slope of 0.2. Note 27 

that for the value of AMSR-E LF 100% there is wide range of MQC SAR LF values covering 28 

almost the full scale from 0% to 100%. The point-wise root mean square error 29 
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RMSE = 1
n

LFAMSRE i − LFSAR i( )
2

i=1

n

∑ ,                                                                                  (2) 1 

where n  is the total number of measurements (1645 in this case), is equal to 33%. The 2 

determination coefficient R2 , retrieved as squared correlation coefficient and expressed in 3 

percent, is 13% (significant). The right panel of Fig. 5 shows histograms of the two datasets 4 

representing number of measurements per each 5%-bin expressed in % of total number of 5 

measurements. The distributions of the two datasets look principally different, characterized 6 

by steep decrease in number of cases with increasing LF for SAR and wide distribution of 7 

values in the AMSR LF. Thus, for LF>20% AMSR LF seems to overestimate largely the 8 

number of cases and underestimate this number for lower LF values. Similarly to the full 9 

AMSR-E LF dataset (Fig 1.) the near 100% bin contains relatively large amount of 10 

measurements. In fact, about 94% of all the data in this bin in the full AMSR-E dataset are 11 

above 99.9%. In order to understand the origin of such large amount of LF near 100% we 12 

compare spatial maps of LF obtained from AMSR-E and SAR. As an example of such 13 

analysis, Fig. 6 shows part of a SAR image overlaid by collocated AMSR-E LF product, 14 

where one can see general overestimation of LF by AMSR-E (larger grid cells shown as 15 

percentage by different colours). But in particular it is clear for the LF 100% cases (red grid 16 

cells): these often correspond to a smaller amount of water/thin ice in the SAR image. Four 17 

neighbouring AMSR-E grid cells are shown in a close-up inset, where three of them have a 18 

LF value of 100% (the fourth one has no value), while the SAR image in the background 19 

clearly contains one lead that covers only about 25% of the right grid cell, 40% of the upper 20 

grid cell and about 60% of the left one, where also smaller cracks are present.  21 

4.3 Error estimations of the AMSR-E LF based on SAR LF 22 

Same procedure as in Sect. 4.2 is now applied using the large SAR LF dataset. Histograms for 23 

collocated datasets AMSR-E LF and SAR LF are produced for each month of the considered 24 

period (Fig. 7). They show the same tendency as when using the shorter high-quality dataset. 25 

The distributions here are much smoother because of the significantly larger number of 26 

measurements. The similarity of the distributions coming from high-quality MQC SAR LF 27 

and SAR LF allow us to base our conclusions on the larger dataset (SAR LF) thus providing 28 

more accurate estimates of errors. 29 

Natalia� 29/2/2016 16:26
Deleted: 4 30 

Natalia� 1/3/2016 09:52
Deleted:  (1645 in this case)31 

Natalia� 11/2/2016 15:52
Deleted: largely 32 

Natalia� 10/2/2016 11:54
Deleted: From Fig. 1 one could assume that 33 
the amount of measurements in this bin should 34 
be smaller than in the previous bin following 35 
the gradual decline of the distribution 36 
(accordingly to the power-law distributions 37 
suggested by Wernecke and Kaleschke, 2015 38 
and Marcq and Weiss, 2012), so that there is a 39 
much larger amount of smaller leads as 40 
compared to large ones. 41 
Natalia� 29/2/2016 16:26
Deleted: 5 42 

Natalia� 29/2/2016 16:26
Deleted: 643 



 12 

Having this significant amount of collocated SAR and AMSR-E retrievals of LF we can 1 

confirm that the peak in AMSR-E LF dataset near 100% represents an artefact. This is also 2 

supported by the visual analysis of overlay of every image pair: AMSR-E LF and SAR LF. 3 

AMSR-E LF had relatively large amount of observations close to 100%, while in SAR images 4 

the area covered by leads in such grid cells was obviously smaller in almost all the cases. The 5 

cases where one lead width would take the full AMSR-E grid cell or even more (lead width 6 

larger than one grid cell) were extremely rare in our selection. We believe that this grouping 7 

of large amount of measurements near the value of 100% is a result of the assumption lying 8 

behind the AMSR-E method for LF retrieval. The method is based on the ratio of the 9 

brightness temperatures ( r ) in 89 GHz and 19 GHz channels (Röhrs et al., 2012). The 10 

assumption is that all the values of this ratio above a certain constant value (a tie point) will 11 

give LF 100%. All the other values are linearly interpolated between a tie point for LF 0% 12 

( r0 ) and a tie point for LF 100% ( r100 ). If the upper tie point r100  is too low, a significant 13 

amount of LF values assigned to a value of 100% by this cut-off may actually correspond to a 14 

variety of LF much lower than 100%. This is reflected in Fig. 5 (left) and Fig. 6, where values 15 

of LF 100% in AMSR-E dataset correspond to variety of values from SAR dataset. Ideally, an 16 

improvement of ASMR-E LF method is needed, for example, by adjusting the upper tie point 17 

so that the full range of LF values are covered. We address this further in the Sect. 5. 18 

Since production of a new improved AMSR-E LF dataset is out of scope of this study, we 19 

suggest imitating the same problem with the SAR LF dataset instead. Introduction of a new 20 

upper tie point r '100  would be equivalent to dividing of all the AMSR-E LF values by a 21 

certain factor, defined as f = (r '100− r0) / (r100− r0) , because the method is based on linear 22 

interpolation of all the values between the limits of the range. Since the LF values in the near 23 

100% bin for AMSR LF are unknown, we suggest multiplying the SAR LF dataset by such 24 

factor instead. In order to define the value of f  (also referred to as AMSR-E factor) we vary 25 

its value from 1 to 5 and calculate respective RMSE as a measure of difference between the 26 

histograms of AMSR-E LF and SAR LF datasets for each month (Fig 7.):  27 

RMSEh =
1
nb

RFAMSRE i − RFSAR i( )
2

i=1

nb

∑ ,                                                                               (3) 28 

where RF stands for relative frequency in each bin, and nb is the number of bins. Obtained 29 

RMSEh  is plotted as a function of f  in Fig. 8 (left), where each month is assigned different 30 
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colour and March 2009 is highlighted by bold line to illustrate the principle. By minimizing 1 

RMSEh  we find optimal f  value for each month, which amounts to 3.3, 2.5, 2.8, 3.7, 2.8, and 2 

2.7 for the months from November 2008 to April 2009 respectively. Multiplying the SAR LF 3 

dataset for each month by respective factor gives a histogram with similar issue at 100% as 4 

the AMSR-E LF dataset has (yellow bars in Fig. 8, right). The values in other bins also 5 

redistribute in a way that is similar to the AMSR-E LF dataset. Original histograms of 6 

AMSR-E LF and SAR LF (same as Fig. 7, but for the full winter) are also shown for 7 

reference.  8 

The systematic overestimation of AMSR-E LF data also affects the mean value of the 9 

distribution. For winter 2009, the mean value of AMSRE LF ( LFAMSRE ) is equal to 31%, 10 

whereas it is equal to 13% for the SAR LF ( LFSAR ). The absolute relative difference 11 

100× LFAMSRE − LFSAR( ) LFSAR  decreases from 140% with no correction to 17% when using 12 

the correction factors found here.  13 

Finally the agreement between SAR LF and AMSR-E LF datasets can be estimated by the 14 

point-wise RMSE of LF for the whole winter 2009 as defined by the Eq. (2), the total number 15 

of measurements n  being 64 063 here. Here LFSAR i  are the LF values obtained when 16 

multiplying by the correction factor, so that point-wise RMSE is relatively independent of the 17 

systematic bias in AMSR-E LF. The point-wise RMSE is equal to 43% and is an estimate of 18 

the standard deviation of the difference between AMSRE-E LF and SAR LF. However, 19 

similar computation of RMSE using LFSAR i  without correction gives a value of 33%, 20 

suggesting the need for a more physically justified approach, e.g. by improving the AMSR-E 21 

based method.  22 

5  Suggested improvement of the AMSR-E-based method 23 

In the Sect. 4.3 we made an assumption that the upper tie point in the AMSR-E-based method 24 

should be increased in order to cover the full range of LF values. To test this assumption we 25 

implement the method according to Röhrs et al. (2012) and calculate LF from the AMSR-E 26 

brightness temperatures on the 8 March 2009 with the original tie points (a subset is shown in 27 

Fig. 9, upper left), i.e. with the upper tie point r100 = 0.05 . Such calculations give similar 28 

distribution of LF values (Fig. 9, upper right) as was found in the full AMSR-E LF dataset 29 

(Fig. 1). Using the linear relationship between r100  and f , and the optimal value of f  for 30 
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March 2009 ( f = 2.8 ), we calculate that r100  should be increased to 0.113 ( r '100 ). This new 1 

tie point value gives a distribution closer to that of the SAR LF dataset (Fig. 9, bottom right) – 2 

the value of RMSEh (Eq. (3)) decreasing from 5.4% (corresponding to f =1  in Fig. 8, left) to 3 

0.9%. The close-up insets similar to the one in Fig. 6 show that the leads are identified in the 4 

same locations as before, but the LF values are lower (Fig. 9, bottom left). Fig. 10 (left) shows 5 

similar scatterplot to Fig. 5 (left), but for this one-day example. The right panel of Fig. 10 6 

compares the AMSR-E lead fraction obtained with the new tie-point to that of the reference 7 

SAR LF dataset. The tie-point adjustment made the AMSR-E and SAR datasets agree 8 

significantly better: the point-wise RMSE (Eq. (2)) for this one-day dataset of 750 collocated 9 

LF measurements decreased from 37% to 15% and the slope of the regression line became 10 

closer to 1 (increased from 0.2 to 0.5). The determination coefficient R2  showed also slight 11 

improvement increasing from 27% to 33% (both coefficients are significant). 12 

We thus believe that implementation of such an adjustment to the full AMSR-E LF dataset 13 

will lead to a much better agreement with the SAR LF dataset. The new tie point r '100  14 

retrieved for the other months amounts to 0.131, 0.103, 0.113, 0.145 for November 2008 – 15 

February 2009 respectively, and 0.110 for April 2009. The average value of the new tie point 16 

r '100  weighted by the number of observations for each month is 0.117 and is therefore our 17 

best estimate for winter 2008–2009. 18 

6 Discussion 19 

A method to retrieve LF from SAR backscattering coefficient is introduced. This simple 20 

threshold technique is only suitable for the purposes of this study, and is thus not universal. 21 

However, its potential is shown, and the limitations are identified allowing further 22 

developments of such a method, which is out of scope of this study.  23 

One of the limitations is ambiguity of SAR signatures corresponding to leads. When a lead is 24 

represented by calm open water or thin ice, it has lower backscatter values than surrounding 25 

thicker ice and therefore can be identified by a threshold. However, in cases when wind is 26 

roughening the open water surface in the lead, its signature becomes brighter. Another case of 27 

such ambiguity is presence of frost flowers on the newly refrozen lead, which also causes 28 

brighter signatures (Röhrs et al., 2012). Such leads with brighter signature than the 29 

background are not identified by the presented SAR method, but are sometimes (but not 30 

always) identified by the AMSR-E method. These cases did not occur much in the considered 31 
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examples and were discarded from the analysis thus not affecting the conclusions. For a more 1 

universal SAR-based method such cases can be included by introducing two thresholds – one 2 

for the leads appearing darker than the background and one for the ones appearing brighter. In 3 

that case two different sides of the backscatter distribution will be used independently.  4 

Another limitation of the approach used here is presence of areas with presumably wet 5 

snow/ice, which appear rather dark on a SAR image and therefore are classified as leads by 6 

the threshold method. These cases did not occur often in our selection, and they did not 7 

influence the comparison because AMSR-E LF usually does not identify leads in such areas, 8 

and we only included the grid cells where AMSR-E LF dataset had any value above 1%. The 9 

threshold is also sensitive to the sea ice thickness. At a given threshold only leads with ice 10 

thin enough will be identified as leads. Since we do not know how thick the ice is, it adds to 11 

the ambiguity of such method. In other words, by selecting a threshold we indirectly set the 12 

sea ice thickness limit. When the distribution is bimodal (one mode for leads and one for 13 

thicker ice), a value between the peaks can be used as threshold, as suggested by Lindsay and 14 

Rothrock (1995) for distributions of temperature or brightness. However, such cases were so 15 

rare in the selected SAR images that this approach was discarded. To achieve bimodal 16 

distribution, the LF calculation procedure can be applied to SAR scenes divided into sub-17 

scenes (size of approximately 1000×1000 pixels), which will demand more processing time. 18 

Such definition of threshold could serve as a more robust approach when developing an 19 

independent method for automatic SAR LF retrieval. For the purposes of this study the 20 

quality of the suggested simple threshold method was considered sufficient because of the 21 

quality control steps that were undertaken. Firstly, visual inspection of every SAR LF subset 22 

was performed; it indicated that we detected most of the leads. Secondly, the ambiguous cases 23 

were excluded. And finally, the analysis was limited to only those AMSR-E LF grid cells 24 

where both datasets give a non-zero value of LF. 25 

Analysing the results of the comparison between AMSR-E and SAR one should keep in mind 26 

that the surface parameters these two instruments are sensitive to are not exactly the same. 27 

The mechanisms that form the signal from an area with leads, represented by either open 28 

water or thin ice, are substantially different for SAR (sensitive to roughness) and AMSR-E 29 

(sensitive to emitted brightness). In addition, they have different resolution: 150 m ×150 m for 30 

SAR and 6 km × 4 km for AMSR-E (the footprint size of the 89 GHz channel). Thus, SAR is 31 

capable of identifying the leads in accurate locations and resolving their limits correctly (this 32 
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was concluded from visual inspection of SAR retrievals, including comparison to a MODIS 1 

image). For AMSR-E the signal is an aggregated effect of all the surfaces present in the grid 2 

cell: open water, thin ice and thicker ice, from which the percentage of open water/thin ice per 3 

grid cell needs to be deduced. 4 

It should be noted that even an improved AMSR-E LF method would still have its limitations. 5 

For example, it would not be able to capture leads narrower than 3 km due to its resolution, 6 

while leads as narrow as a few meters transmit turbulent heat more than two times as efficient 7 

as the ones hundreds of meters wide (Marcq and Weiss 2012). For studies like e.g. assessing 8 

the integrated heat fluxes through leads in wintertime, the AMSR-E LF dataset alone will thus 9 

not be sufficient and other methods should be used in addition. Another limitation of such a 10 

method would be retrieval of LF in summer, when interpretation of passive microwave 11 

observations is challenging. 12 

 13 

 14 

7 Conclusions 15 

This work was partly motivated by the need of an accurate pan-Arctic lead fraction (LF) 16 

dataset for initialisation and evaluation of regional sea ice models. One such dataset was 17 

identified as having good potential for the purpose – daily pan-Arctic LF retrieved from 18 

Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E), a passive 19 

microwave instrument independent of cloud cover and light conditions. In this study we set a 20 

goal to evaluate the AMSR-E LF dataset and provide quantitative estimate of eventual errors. 21 

These can serve as a measure of uncertainty of the product and background for a correction. 22 

After analysis of the AMSR-E LF dataset and comparison to LF retrievals from Synthetic 23 

Aperture Radar (SAR) we identified an issue with the near 100% LF values in this dataset. 24 

More specifically, we concluded that the tie points used in the AMSR-E method were located 25 

too closely to each other, which caused a truncation of the real LF range. This means that LF 26 

values obtained with such tie points represent a range of values erroneously stretched over 27 

larger range (e.g., 0–250%) and are cut off at 100%, where all the values above 100% are 28 

converted to 100% thus causing the loss of all the values above. A larger distance between the 29 

tie points would accommodate all the real LF values and give the correct range of 0–100% as 30 

output. Such an adjustment of tie points is equivalent to dividing of AMSR-E LF by a certain 31 
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factor. Since the information about LF>100% is lost in the AMSR-E LF dataset, we imitated 1 

the issue by multiplying SAR LF by this factor instead. In this manner we found that the 2 

current AMSR-E LF dataset overestimated LF by a factor of ~2–4 over the winter 2008-2009 3 

depending on the month considered. The absolute relative difference between the datasets 4 

expressed by 100× LFAMSRE − LFSAR( ) LFSAR  decreased from 140% with no correction to 17% 5 

when using this correction factor. However, this approach is not suitable for correction of 6 

local values, but rather reflects statistical characteristics of the dataset over the whole Arctic 7 

(e.g., mean), which is confirmed by increase in the point-wise root mean square error (RMSE) 8 

between the AMSR-E LF and the SAR LF dataset with correction from 33% to 43%. 9 

We argued that an adjustment of the AMSR-E LF method needed to be done before more 10 

accurate error estimation could be retrieved. We therefore tried out such an adjustment by 11 

implementing the AMSR-E-based method using higher value of the upper tie point, and found 12 

that indeed the AMSR-E LF distribution became similar to that of SAR LF. The RMSEh  used 13 

as measure of difference between the two histograms decreased from 5.4% to 0.9%, while the 14 

point-wise RMSE for this one-day test dataset of 750 collocated LF measurements decreased 15 

from 37% to 15%, or by a factor of ~2. We observed that leads were still placed in the same 16 

locations, while the LF values became lower, which corresponded to what we observed from 17 

the SAR LF dataset. We estimated the new upper tie point for each months of the winter of 18 

2008–2009 and found the values in the range from 0.103 to 0.145, or 0.117 for the full winter 19 

as an average weighted by the number of measurements for each month. We believe that 20 

similar simple adjustment applied to the full AMSR-E LF dataset will lead to significantly 21 

lower errors when evaluated using SAR, making this dataset more valuable for e.g. 22 

assimilation into models or model evaluation.    23 
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Month Subsets Measurements 

Nov 2008 27 8 097 

Dec 2008 34 9 392 

Jan 2009 47 10 672 

Feb 2009 29 7 528 

Mar 2009 47 19 460 

Apr 2009 21 8 914 

Total 205 64 063 

 1 

 2 

3 
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  1 
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Figure 1. Histograms for AMSR-E lead fraction (LF) dataset shown as the number of 3 

measurements per each LF bin of 5% width expressed in % of the total amount of 4 

measurements (relative frequency). The blue bars show the full dataset, while each month of 5 

the winter 2008–2009 is shown by other colours (see the legend). 6 
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 2 

 3 

Figure 2. Area of interest is included within the red rectangle. The background map shows 4 

AMSR-E lead fraction in % (the numbers on the colour scale to the right), obtained on the 8 5 

March 2009, and is used here only to demonstrate a sample from the product. 6 

 7 
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 1 

Figure 3. Threshold technique used to calculate lead fraction from SAR images: a) a subset of 2 

680×680 pixels showing backscatter values; b) same as a) but after median filter has been 3 

applied; c) the resulting lead detection (1 – lead, 0 – ice); d) histogram of an example SAR 4 

scene taken on the 1 March 2009 (blue) with lines showing the peak (blue), threshold defined 5 

as peak minus 1.5 standard deviation (red), other thresholds (when 1 standard deviation and 2 6 

standard deviations are used, dashed red), and mean is shown in grey dashed line. The beige 7 

histogram is for the unfiltered signal.  8 
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 10 
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 1 

Figure 4. a) A subset of the original SAR image (backscatter) on the 8 March 2009, b) 2 

respective classified SAR-image (red – lead, blue – ice) with a) as background, c) AMSR-E 3 

lead fraction in % with a) as background. 4 
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 6 

 7 

 8 

 9 
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 1 

Figure 5. A comparison of AMSR-E lead fraction (LF) and SAR LF with manual quality 2 

control (MQC), the total amount of measurements is 1645. Left: scatterplot of MQC SAR LF 3 

versus AMSR-E LF (%). The 1-to-1 line is the dashed grey line, and the linear regression is 4 

shown by the red line and the slope value. Root mean square error (RMSE) and the 5 

coefficient of determination (R2) are shown at the top of the plot. Right: histograms for the 6 

two datasets shown as percentage of measurements per each bin of 5% width (relative 7 

frequency). 8 

 9 

Natalia� 29/2/2016 17:48

Deleted: 10 
Natalia� 29/2/2016 16:48
Deleted: 411 

Natalia� 29/2/2016 17:49
Deleted: shown in12 
Natalia� 29/2/2016 17:49
Deleted: dark red13 



 28 

 1 

Figure 6. Subset of a SAR image taken on the 8 March 2009 overlaid by collocated AMSR-E 2 

lead fraction (LF) product, where red grid cells correspond to LF 100% (for the other values 3 

see the colour scale on the right).  The zoom-in inset shows four grid cells where three of 4 

them have AMSR-E LF 100% and one has LF 0%.  5 
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 1 

Figure 7. Histograms of the AMSR-E lead fraction (LF) and SAR LF datasets for every 2 

month from November 2008 to April 2009 shown as percentage of measurements per each 3 

bin of 5% width (relative frequency). Total amount of measurements amounts to 64 063 in 4 

205 subsets size of 3500×3500 pixels each, and is given for each month in Table 1.  5 
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 1 

Figure 8. Left: Root mean square error (RMSEh , %, Eq. (3)) as a measure of difference 2 

between the histograms of AMSR-E lead fraction (LF) and SAR LF multiplied by different 3 

values of f  (AMSR-E factor). To demonstrate the principle March 2009 is highlighted by 4 

bold blue line with minimum factor of 2.8. Right: Original histograms of AMSR-E LF and 5 

SAR LF for the full winter November 2008 – April 2009, and SAR LF multiplied by 6 

respective factor for each month (yellow bars).  7 
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 1 

Figure 9. Adjustment of upper tie point ( r100 ) of the AMSR-E-based method. Upper panels: 2 

a subset of lead fraction (LF) values located in the area of interest (Fig. 2) (left) and 3 

distribution calculated from the full LF map (entire Arctic) on the 8 March 2009 (right, blue 4 

bars). The original r100  value is used. The orange bars show SAR LF distribution for the 5 

whole month of March 2009 for reference. Bottom panels: same, but for the adjusted r '100 . 6 
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 1 

Figure 10. Left: scatterplot of SAR LF and AMSR-E LF using the original method of Röhrs et 2 

al. (2012). Right: same but using the adjusted AMSR-E method (new tie point). The 1-to-1 3 

lines are the dashed grey lines, and the linear regressions are shown by the red lines and the 4 

values of slope. Root mean square error (RMSE) and the coefficient of determination (R2 ) 5 

are shown at the top of the plots. 6 



Page 13: [1] Deleted Natalia 01/03/16 09:58 

: 

RMSE = 1
n

LFAMSRE i − LFSAR i( )
2

i=1

n

∑ ,                                                                                  

(3) 

where n  is  

 

 


	Reply_Editor.pdf
	tc-2015-180_manuscript_revised_marked_up_v2.pdf
	tc-2015-180_manuscript_revised_marked_up_v2.2.pdf

