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Abstract. Dry-snow slab avalanches are generally caused by
a sequence of fracture processes including (1) failure initi-
ation in a weak snow layer underlying a cohesive slab, (2)
crack propagation within the weak layer and (3) tensile frac-
ture through the slab which leads to its detachment. During5

the past decades, theoretical and experimental work has grad-
ually led to a better understanding of the fracture process
in snow involving the collapse of the structure in the weak
layer during fracture. This now allows us to better model fail-
ure initiation and the onset of crack propagation, i.e. to esti-10

mate the critical length required for crack propagation. On
the other hand, our understanding of dynamic crack prop-
agation and fracture arrest propensity is still very limited.
To shed more light on this issue, we performed numerical
propagation saw test (PST) experiments applying the dis-15

crete element (DE) method and compared the numerical re-
sults with field measurements based on particle tracking. The
goal is to investigate the influence of weak layer failure and
the mechanical properties of the slab on crack propagation
and fracture arrest propensity. Crack propagation speeds and20

distances before fracture arrest were derived from the DE
simulations for different snowpack configurations and me-
chanical properties. Then, in order to compare the numeri-
cal and experimental results, the slab mechanical properties
(Young’s modulus and strength) which are not measured in25

the field, were derived from density. The simulations nicely
reproduced the process of crack propagation observed in field
PSTs. Finally, the mechanical processes at play were anal-
ysed in depth which led to suggestions for minimum column
length in field PSTs.30

1 Introduction

Dry-snow slab avalanches result from the failure of a weak
snow layer underlying cohesive slab layers. The local dam-
age in the weak layer develops into a crack which can expand
if its size exceeds a critical length or if the load exceeds a crit-35

ical value. Finally, crack propagation leads to the tensile frac-
ture of the slab and ultimately, avalanche release (McClung,
1979; Schweizer et al., 2003). During the past decade, our
understanding of the fracture process in snow has gradually
evolved through the development of new theories as well as40

various field observations and experiments. The propagation
saw test (PST), concurrently developed in Canada (van Her-
wijnen and Jamieson, 2005; Gauthier and Jamieson, 2006)
and Switzerland (Sigrist and Schweizer, 2007), consists in
isolating a snow column and initiating a crack of increas-45

ing length in the weak layer with a snow saw until the onset
of rapid self-propagation of the crack. The PST allows ob-
servers to determine the critical crack length and evaluate
crack propagation propensity. This field method has high-
lighted the importance of slab bending (due to the collapsi-50

ble nature of weak snow layers) on crack propagation (e.g.
van Herwijnen et al., 2010; van Herwijnen and Birkeland,
2014). On the other hand, theoretical and numerical mod-
els, based on fracture mechanics or strength of material ap-
proaches, were developed to investigate crack propagation55

and avalanche release (McClung, 1979; Chiaia et al., 2008;
Heierli et al., 2008; Gaume et al., 2013, 2014b). While sub-
stantial progress has been made, application with regard to
avalanche forecasting or hazard mapping is still hindered
in part by our lack of understanding of the dynamic phase60

of crack propagation. For instance, based on practitioners’
experience, it is not uncommon to perform PST field mea-
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Figure 1: (a) Typical slab - weak layer configuration suitable
for avalanche release. The weak layer is composed of surface
hoar which is intact on the right and partially ruptured on the
left. © ASARC from Jamieson and Schweizer (2000). (b)
Zoom on a surface hoar crystal © ASARC.

surements with widespread crack propagation on one day,
while a few days later, with seemingly very little changes in
snowpack properties, cracks will no longer propagate (Gau-65

thier and Jamieson, 2008). Thus far, there is no clear the-
oretical framework to interpret such observations, and it is
not clear how and which snowpack properties affect dy-
namic crack propagation. This limitation is due to the com-
plex microstructure of snow and its highly porous character70

(Fig. 1) which are not taken into account in the continuous
approaches previously mentioned.

In this paper, numerical experiments of the propagation
saw test (PST) are performed by applying the discrete ele-
ment (DE) method which allows us to mimic the high poros-75

ity of snow. The goal is to investigate the influence of weak
layer failure and the mechanical properties of the slab on
crack propagation. In a first section, field data as well as
the proposed model are presented. Then, crack propagation
speed and distance before fracture arrest are derived from80

the DE simulations using the same method as for the field
experiments (particle tracking). In a parametric analysis, we
show the influence of single system parameters on the crack
propagation speed and distance. Finally, the interdependence
of snowpack properties is accounted for in order to compare85

numerical and experimental results and the mechanical pro-
cesses leading to fracture arrest are analysed.

2 Data and methods

2.1 PST field data

Since the winter of 2004-2005, we collected data from 12190

PST experiments at 46 different sites in Canada, USA and
Switzerland (van Herwijnen and Jamieson, 2005; van Her-
wijnen and Heierli, 2009; van Herwijnen et al., 2010; Bair
et al., 2012; van Herwijnen and Birkeland, 2014; Birkeland
et al., 2014). At each site, we collected a manual snow pro-95

file and conducted one or several PSTs according to the pro-
cedure outlined in Greene et al. (2004). In many cases we

Figure 2: Schematic drawing and picture of the propagation
saw test (PST). The black dots are markers used for particle
tracking in order to measure the displacement of the slab. The
column length is denoted L. Adapted from van Herwijnen
et al. (2010).

used longer (than standard) columns to allow us to better in-
vestigate crack propagation. After columns preparation, we
inserted black plastic markers into the pit wall and used a100

digital camera on a tripod to make a video recording of the
PST (Fig. 2). We used a particle tracking velocimetry (PTV)
algorithm to analyze the motion of the markers and thus the
displacement of the snow slab above the weak layer (Crocker
and Grier, 1996). In this way, the position of the markers in105

each video frame can be determined with a mean accuracy of
0.1 mm. The displacement of a marker is then defined as the
movement relative to its initial position, that is, the average
position of the marker prior to movement. For propagating
cracks, there is a delay between the vertical displacement of110

subsequent markers. A typical displacement time-evolution
for a propagating crack is shown in Fig. 3 for four slab mark-
ers. As explained in van Herwijnen and Jamieson (2005), the
time delay between the onset of movement between markers
is proportional to the distance between the markers and was115

used to calculate the propagation speed c of the fracture see
also Appendix A).

2.2 Discrete element model

2.2.1 Motivation and objectives

Discrete element (DE) modeling (Cundall and Strack, 1979)120

allows computing the motion of a large number of small
grains by solving dynamic equations for each and defining
a contact law between the grains. In addition, the DE method
allows assessing mechanical quantities such as stress, dis-
placement, deformation rate, porosity, etc. computed over125

representative elementary domains at each material point
within the sample. Experimentally, this would be an impos-
sible task. Hence, using DE, the mechanical and rheologi-
cal behavior of the material can be explored locally, regard-
less of the spatial heterogeneities possibly displayed by the130

structure of the material and its mechanical quantities. This
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Figure 3: Temporal evolution of the measured vertical dis-
placement ∆y for a slab density of ρ= 240 kg/m3 obtained
through PIV analysis of the marker’s displacement from a
field experiment. The different curves correspond to different
horizontal positions in the slab, from the left-end (x= 0.1 m)
to the right-end (x= 2.1 m).

method can thus help to better understand physical processes
at play in granular assemblies. The DE method has been
widely used to study the flow of granular materials within
industrial (e.g. Chaudhuri et al., 2006; Sarkar and Wassgren,135

2010) or environmental applications such as avalanche dy-
namics (e.g. Rognon et al., 2008; Faug et al., 2009). How-
ever, to our knowledge, discrete elements have never been
used to model crack propagation in layered systems or to de-
scribe slab avalanche release processes. The latter processes140

are generally modeled under a continuum mechanics frame-
work, using methods such as finite elements (Podolskiy et al.,
2013, and references therein). These methods can be used to
assess the stability of a layered snow cover, i.e. determine the
conditions of failure occurrence and the onset of crack prop-145

agation. However, they are less suited to study what occurs
after failure, i.e. during the dynamic phase of crack propaga-
tion, due to a lack in relevant constitutive models for the WL,
including softening which induces a loss of objectivity with
respect to the mesh in dynamic problems.150

The objective of the proposed approach is to use the dis-
crete element method (DE) to study the dynamic phase of
crack propagation in a weak snowpack layer below a cohe-
sive slab. The DE method is adequate for our purpose be-
cause: 1) no assumption needs to be made about where and155

how a crack forms and propagates, and 2) the model material
is inherently discontinuous and well adapted to dynamic is-
sues. We will show that, this method allows us to capture
all the main physical processes involved in the release of
dry-snow slab avalanches, namely the complex mechanical160

behavior of the weak layer and the interplay between basal
crack propagation, slab bending, and slab fracture.

However, an important preliminary issue to address con-
cerns the scale of the considered model. In the weak layer,
we intend to represent, through a simplified description, the165

particular collapsible and highly porous micro-structure of
the snow in order to be able to reproduce the main features
of the failure envelope of this material. As will be shown,
we achieve this by using triangular shapes of centimeter size.
To account for the possible breakage of these elements, they170

consist of small cohesive grains of size rwl. In the slab, on the
contrary, due to computational costs, it would be completely
unrealistic to try to account for the complete microstructure
of the snow at the scale of a real slope or even at the scale of a
field test such as the PST. The slab is thus modeled as a con-175

tinuous material with an elastic-brittle constitutive behavior.
Yet, similar to what is classically done for concrete (Meguro
and Hakuno, 1989; Kusano et al., 1992; Camborde et al.,
2000; Hentz et al., 2004), the response of this layer to the
dynamic propagation of failure in the WL is also computed180

with the DE method. In that case, however, the considered
elements (grains of size r) have no physical meaning and
should only be regarded as entities of discretization similar
to the mesh size in FE models. The contact parameters need
to be properly calibrated (through classical biaxial tests, for185

instance) in order to recover the correct macroscopic proper-
ties of the material. Other continuous methods, such as FE,
could have been used to simulate the slab, but – apart from
avoiding the non-trivial issue of coupling DE and FE regions
– the use of DE is well suited to represent the large deforma-190

tions involved in the bending of the slab and the spontaneous
formation of the tensile crack.

To summarize, we contend that, unlike in other DE appli-
cations which are at the scale of the microstructure (e.g. Cun-
dall (1989); Iwashita and Oda (2000) for frictional granular195

materials or Hagenmuller et al. (2015) for snow), the grains
involved in the DE model developed in this study should not
be regarded as snow grains, and that both rwl and r are only
discretization scales whose choice will result from a com-
promise between resolution and computational cost as clas-200

sically done to model concrete fracture (Hentz et al., 2004).
We consider here a meter-scale model where the advantage
of the DE method is its ability to mimic the poorly-known
mechanical response of the weak layer and to account for the
different modes of failure displayed by snow (shear, com-205

pression, tension). The only microstructural scale directly ac-
counted for is the size of the triangular elements in the weak
layer, which are on the same order as the weak layer thick-
ness, since it is a necessary ingredient for reproducing the
particular mechanical behavior of this layer.210

2.2.2 Formulation of the model

Software The discrete element simulations were performed
using the commercial software PFC2D (by Itasca), which
implements the original soft-contact algorithm described in
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Figure 4: (a) Simulated system of the Propagation Saw Test (PST) composed of a slab, a weak layer and a rigid (fixed)
substratum. The column is 2 m long. (b) Zoom on the weak layer structure. The blue lines represent the weak layer bonds.

kn (N/m) kn/ks µ e

1× 104 2 0.5 0.1

Table 1: Mechanical parameters used in the simulations for
the contact law. kn: normal contact stiffness; ks: tangential
contact stiffness; µ: intergranular friction; e: normal restitu-
tion coefficient.

Cundall and Strack (1979).215

Simulated system The simulated system (see Fig. 4a) is
two dimensional and is composed of a completely rigid
(fixed) basal layer, a WL of thickness Dwl and a slab of
thickness D which were varied in the simulations. The220

slab is composed of grains of radius r = 0.01 m with a
primitive square packing. The porosity of the slab is equal
to 21%. Hence the density of the slab ρ can be adjusted by
changing the grain density ρp,s (varied in the simulations).
The WL is composed of grains of radius rwl = r/2 with225

a complex packing of collapsible triangular forms (see
Fig. 4b) aimed at roughly representing the porous structure
of persistent WLs such as surface hoar or depth hoar.
The porosity of the WL is 70% and the density of the
WL grains is ρp,wl = 400 kg/m3, leading to a WL density230

ρwl = 120 kg/m3. The length of the system (column length)
is L= 2 m and the slope angle is denoted ψ. As mentioned
above, the numerical grains are not intended to represent
the real snow grains which are obviously smaller and have
a different density. Nevertheless, as will be shown, this set235

up allows to capture the main features observed in field PSTs.

Loading The loading is applied by gravity and by advancing
a “saw” (in red on Fig. 4a) at a constant velocity vsaw = 2
m/s through the weak layer. This saw is composed by rigid240

walls and has approximately the same thickness as field
saws hsaw = 2 mm. The saw velocity was chosen relatively
high to decrease the computational time, but lower than the
lowest crack propagation speed observed in the field so as to
correctly distinguish crack propagation from saw movement.245

Contact law The cohesive contact law used in the simula-
tions is the PFC parallel bond model represented schemati-

kn (Pa/m) kn/ks σt (kPa) σt/σs

slab 1× 103 − 1.5× 106 2 0-20 2
WL 8× 105 2 0.6 2

Table 2: Mechanical parameters used in the simulations for
the cohesive law. kn: bond normal stiffness; ks: bond shear
stiffness. σt: macroscopic tensile strength; σs: macroscopic
shear strength.

cally in Fig. 5a. The cohesive part acts in parallel to the clas-
sical linear contact law (Radjai et al., 2011; Gaume et al.,250

2011). For the linear component (in grey in Fig. 5a), the nor-
mal force is the sum of a linear elastic and of a viscous con-
tribution (spring-dashpot model), and the tangential force is
linear elastic with a Coulombian friction threshold. The cor-
responding mechanical parameters, namely the normal and255

shear stiffness kn and ks (elasticity parameters), the resti-
tution coefficient e (viscous parameter) and the friction co-
efficient µ are summarized in Tab. 1. The value of the nor-
mal stiffness kn was chosen in such a way that the normal
interpenetration at contacts are kept small, i.e. to work in260

the quasi-rigid grain limit (da Cruz et al., 2005; Roux and
Combe, 2002). Concerning the normal restitution coefficient
e, we verified that the results presented below, and more
generally all the macroscopic mechanical quantities obtained
from the simulations, are actually independent of this param-265

eter (in the range 0.1 - 0.9). This is due to the presence of
the cohesive part of the contact law (see details below). In-
deed, the restitution coefficient might have a strong influence
for cases in which new contacts and collisions occur. In our
case, the results are mostly driven by bond breaking which270

explains why e has no influence on the results.
The cohesive component (in black in Fig. 5a) can be en-

visioned as a point of glue with constant normal and shear
stiffness kn and ks acting at the contact point. This bond has
a specified shear and tensile strength σbs and σbt . The maxi-275

mum tensile and shear stresses σmax and τmax at the bond
periphery are calculated via beam theory according to:

σmax =−Fn
A

+
||M ||rb
I

(1)
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Figure 5: (a) Schematic representation of the parallel bond contact model which is used. The bonded part is represented in
black while the unbonded part is represented in grey. (b) Bond normal force Fn as a function of normal interpenetration δn
between two grains. (c) Bond shear force ||Fs|| as a function of tangential interpenetration δs between two grains. (d) Bond
bending moment ||M || as a function of bending rotation θ between two grains.

τmax =
||Fs||
A

(2)280

where Fn and Fs are the bond normal and shear forces, M is
the bending moment, rb the bond radius, A= πr2b the bond
area and I = πr4b/4 its moment of inertia. If the tensile stress
exceeds the bond tensile strength, the bond breaks and both
the normal and shear contact forces are set to zero (Fig. 5b).285

If the shear stress exceeds the bond shear strength, the bond
also breaks (Fig. 5c) but the contact forces are not altered,
provided that the shear force does not exceed the friction
limit, and provided that the normal force is compressive. The
bond can also break if the bending moment exceeds σbt I/rb290

(Fig. 5d). The ranges of parameters used for the bond model
are summarized in Tab. 2.

As the two components are acting in parallel, the total stiff-
ness of the bonded contact is equal to the sum of the contact
stiffness kn and the bond stiffness kn:295

ktot = kn + kn. (3)

Finally, in our case of a square grain assembly, the Young’s
modulus can be derived analytically from kn and kn accord-
ing to:

E = 1
πrb

(
kn + kn

)
. (4)300

The contact stiffness kn was kept constant at 1× 104 N/m
and kn was varied between 1× 103 and 1.5× 106 N/m (for
the slab) leading to realistic values of the Young’s modulus
E between 0.35 and 50 MPa. It was verified from biaxial
tests that the macroscopic (bulk) Young’s modulus of the305

slab effectively follows this relationship due to the specific
(squared) structure of the slab.

Time step and elastic waves The time step was computed
classically as a function of the grain properties according to310

Figure 6: Failure envelope of the modelled WL obtained
from mixed-mode shear-compression loading tests. The an-
gle represented next to the data points is the slope angle, σWL

t

and σWL
c are the tensile and compressive strengths, respec-

tively.

∆t=
√
m/k ≈ r

√
ρ/E where m, ρ and r are the smallest

grain mass, density and radius and k and E the largest con-
tact/bond stiffness and Young’s modulus, respectively. The
choice of this time-step insures the stability of the algorithm
and that the crack propagation speed is lower than the speed315

of the elastic waves in the sample. The order of magnitude of
the speed of elastic waves in the sample is ce ≈

√
E/ρ.

2.2.3 Simulation protocol and illustration

First, the macroscopic properties of the slab have to be de-
termined as a function of the microscopic properties of the320

bond. For the slab, bi-axial tests were carried out which al-
lowed to validate that for a squared assembly, the macro-
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Figure 7: Snapshots of a PST numerical experiment. (a) Ini-
tial system t = 0.1 s, (b) onset of crack propagation t = 0.26
s, (c) dynamic propagation t = 0.28 s; (d) complete failure of
the WL t = 0.45 s.

scopic (bulk) Young’s modulus depends on bond stiffness ac-
cording to Eq. (4).

For the weak layer, similarly, simple loading tests were325

carried out to compute the macroscopic failure criterion
(mixed mode shear-compression) of the WL as a function
of the bonds of WL grains (Gaume et al., 2014a). The fail-
ure envelope of the WL is strongly anisotropic as shown in
Fig. 6. This failure envelope shows, for realistic values of330

the slope angle, a much lower strength in shear than in com-
pression as well as a decrease of the shear strength with in-
creasing normal stress. This type of behaviour is similar to
that reported in recent laboratory (Reiweger et al., 2015) and
field (Chandel et al., 2014) experiments on persistent weak335

snow layers. Hence, the chosen WL structure allows to have
different modes of failure (tension, shear, compression and
mixed-mode) such as observed in real weak layers and thus
has the essential characteristics to model the processes of
slab avalanche release.340

Then, PST simulations were performed. An illustration of
a simulation result highlighting the displacement wave of the
slab is shown in Fig. 7 and the associated vertical displace-
ment ∆y is represented in Fig. 8. The critical length is de-
noted ac and corresponds to the translation length of the saw345

required to obtain a self-propagating crack.
In order to determine the crack propagation speed, purely

elastic simulations (infinite tensile and shear strength of the
bonds between slab grains) were carried out. The propaga-
tion speed was computed using the same method as for field350

PSTs by analyzing the vertical displacement wave of the slab
(van Herwijnen and Jamieson, 2005). This procedure is pre-
sented in more detail in Appendix A.

Figure 8: Temporal evolution of the modeled vertical dis-
placement ∆y of the slab for a slab density ρ= 250
kg/m3.The different curves correspond to different horizon-
tal positions of the slab, from the left-end (x= 0 m) to the
right-end (x= 2 m).

Figure 9: Snapshot of a PST with fracture arrest due to tensile
crack opening in the slab induced by slab bending.

The propagation distance was computed by taking into ac-
count the possible failure of the slab by setting finite values to355

the tensile and shear strength of the slab (σt, σs). We define
the propagation distance as the distance between the left wall
of the system and the location where the tensile crack opens
at the slab surface, as shown in Fig. 9. This measure of the
propagation distance differs from that defined by Gauthier360

and Jamieson (2006) who defined it as the distance between
the point of onset of crack propagation in the WL and the
point of slab failure. However, we argue that the propagation
distance, as we define it, is a more suitable measure since
this is the one that influences the stresses in the slab and thus365

fracture arrest propensity. Similarly, for a real avalanche, the
important distance for the bending induced stress and for the
avalanche release size is the distance from the very first fail-
ure initiation point (whatever the nature of the initial trigger),
to the location of the slab tensile failure, and not from the370

crack tip at the moment of the onset of crack propagation.
For the parametric analysis (Sec. 3.2), we performed sim-

ulations for which only one system parameter was modified
while the other parameters were kept constant. The parame-
ters used are described in Tab. 3. However to apply these re-375

sults to slab avalanche release and in order to compare our re-
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sults to field data (Sec. 3.3), existing relations between snow-
pack properties were taken into account. Hence, simulations
were performed for different slab densities with the Young’s
modulus varying according to an empirical exponential fit to380

the data reported by Scapozza (2004):

E = 1.873× 105e0.0149ρ, (5)

and with a tensile strength varying according to a power-law
fit to the data reported by Sigrist (2006):

σt = 2.4× 105
(

ρ

ρice

)2.44

(6)385

with ρice = 917 kg/m3.

3 Results

3.1 Displacement of the slab

The evolution of the vertical displacement ∆y of the slab is
represented in Fig. 8. In this figure together with the illustra-390

tion of the displacement wave of the slab (Fig. 7), one can
clearly observe the different processes acting before, during
and after crack propagation. First, slab bending occurs prior
to the onset of crack propagation and the dynamic propaga-
tion phase. These distinct phases (stable bending of the slab395

and crack propagation) are also clearly visible in the verti-
cal displacement ∆y, as shown in Fig. 8 for four different
horizontal positions in the slab.

Between 0 and 0.1 s nothing happens, then as the saw
advances, the vertical displacement slowly increases. This400

phase corresponds to the bending of the under-cut part of the
slab. Then, for t= 0.25 s approximately, the critical length
ac was reached and the displacement increases abruptly, even
beyond the saw, corresponding to the dynamic crack propa-
gation phase. After t= 0.3 s, the slab has reached the broken405

WL at the left-end of the slab for x= 0 m. After 0.32 s, the
entire WL has collapsed leading to a constant vertical dis-
placement of the slab approximately equal to ∆y = 1.8 cm.
This displacement is not perfectly equal to the WL thick-
ness because of the grains remaining in the WL. The peak in410

the displacement around t= 0.38 s is an artefact associated
with the movement of the saw after the crack has propagated
which does not affect the results that we will present.

3.2 Parametric analysis

3.2.1 Crack propagation speed415

For all the simulations carried out, the crack propagation
speed varied between 5 and 60 m/s. Fig. 10a shows that
the crack propagation speed c strongly increases with the
Young’s modulus E of the slab, from less than 5 m/s for
very soft slabs (E < 1 MPa) to 40 m/s for an almost rigid420

Figure 10: Crack propagation speed c (continuous lines) and
speed of elastic waves in the slab ce/10 (dotted lines) as a
function of (a) the Young’s modulus of the slab E, (b) slab
thickness D and WL thickness Dwl, (c) slab density ρ, (d)
slope angle ψ and (e) WL compressive strength σWL

c . The
parameters used for these figures are given in Tab. 3.

slab (E ≈ 50 MPa) where the increase levels off. The propa-
gation speed c also strongly and linearly increases with the
thickness of the slab D (Fig. 10b), from almost zero for
a slab thickness lower than 10 cm to 60 m/s for a thick-
ness of 80 cm. Similar, to the thickness, the propagation425

speed increases almost linearly with the density of the slab
ρ (Fig. 10c) and the slope angle ψ (Fig. 10d). The propaga-
tion speed seems not to be influenced by the thickness of the
WL (Fig. 10b) as soon as the failure occurs under the same
conditions (same critical length). Furthermore, the propaga-430

tion speed decreases with increasing WL strength (Fig. 10e).
This suggests that the crack propagation speed is mostly in-
fluenced by the failure conditions (load due to the slab and
WL strength) rather than structural parameters such as the
WL thickness.435

Finally, the speed of the elastic waves in the slab (ce) is
always substantially higher than the crack propagation speed
(approximately 10 times lower, Fig. 10). In addition, we can
observe that the speed of the elastic waves in the slab is not
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ρ E σslab
t D Dwl ψ σWL

c

Fig. 10a 300 kg/m3 - Inf. 20 cm 4 cm 0◦ 750 Pa
Fig. 10b 100 kg/m3 4 MPa Inf. - / 20 cm 4 cm / - 0◦ 750 Pa / ∗
Fig. 10c - 4 MPa Inf. 20 cm 4 cm 0◦ 750 Pa
Fig. 10d 100 kg/m3 4 MPa Inf. 20 cm 4 cm - 750 Pa
Fig. 10e 300 kg/m3 4 MPa Inf. 20 cm 4 cm 0◦ -
Fig. 11a 300 kg/m3 - - 20 cm 4 cm 0◦ 750 Pa
Fig. 11b 300 kg/m3 4 MPa - 20 cm - 0◦ ∗
Fig. 11c 150 kg/m3 4 MPa - 20 cm 4 cm - 750 Pa
Fig. 11d - 4 MPa 2 kPa 20 cm 4 cm 0◦ 750 Pa
Fig. 11e 100 kg/m3 4 MPa 1.5 kPa - 4 cm 0◦ 750 Pa
Fig. 11f 300 kg/m3 4 MPa 2 kPa - 4 cm 0◦ -

Table 3: Table of the parameter values used for Figs. 10 and 11. The symbol ‘-’ means that the associated parameter was varied.
The symbol ∗ means that the WL failure envelope was calibrated to obtain a constant critical length ac = 15 cm.

Figure 11: Crack propagation distance l∗ as a function of the tensile strength σt and the Young’s modulus E of the slab (a1-a2),
the tensile strength σt and the WL thickness Dwl (b1-b2), the tensile strength σt and the slope angle ψ (c1-c2), slab density ρ
(d), slab thickness D (e) and WL compressive strength σWL

c (f). ac denotes the critical cut length for crack propagation. The
parameters used for these plots are given in Tab. 3.

a good proxy to explain the trends in the crack propagation440

speed as shown for instance by the opposite trends with den-
sity (Fig. 10c).

3.2.2 Propagation distance

Fig. 11 shows propagation distance as a function of differ-
ent system parameters. Figs. 11a1, 11b1 and 11c1 show the445

increase of the propagation distance with increasing tensile
strength of the slab σt. This result was expected since a
stronger slab requires a larger tensile stress in order to break
and thus a larger propagation distance is required to obtain
sufficient tensile stresses in the slab (induced by bending or450

by the shear component of the the slab’s weight additionally
in case of ψ 6= 0).

The influence of the Young’s modulus E of the slab is
shown in Figs. 11a1 and 11a2. Overall, propagation dis-
tance decreases with increasing Young’s modulus. Hence, the455

softer the slab is, the lower is the fracture arrest propensity.
For a tensile strength of 2 kPa (Fig. 11a2), the propagation
distance l∗ sharply decreases from 2 m (column length) to
an approximately constant value l∗ = 0.5 m for E ≈ 2 MPa.
Also, Fig. 11a1 shows that for higher Young’s modulus,460

larger tensile strength values are required to obtain full prop-
agation. The critical length ac for crack propagation was also
represented in Fig. 11a2 to show that the tensile failure across
the slab always occurred (in this case) after the onset of crack
propagation.465

Then, the influence of WL thickness Dwl is shown in
Figs. 11b1 and 11b2. The WLs have different thickness but
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the same failure criterion and thus the same critical length ac
which is equal to 15 cm in this case. The propagation distance
l∗ decreases with increasing WL thickness. For low values470

of the tensile strength of the slab, the propagation distance is
small and almost independent of the WL thickness whereas
an important decrease is observed for larger values of the
tensile strength. In other words, thicker weak layers result in
more slab bending so that slab failure becomes more likely475

due to high tensile (bending) stress.
Figs. 11c1 and 11c2 show the influence of slope angle ψ on

propagation distance. Similarly to WL thickness, slope angle
seems to have no influence on the propagation distance for
low values of the tensile strength. However, for larger val-480

ues of σt (σt > 4 kPa), the propagation distance strongly in-
creases with increasing slope angle ψ. Hence, fracture arrest
propensity decreases with slope angle for large values of the
tensile strength of the slab, typically higher than 4 kPa. This
result is not trivial, since as the slope angle increases, there485

is a competition between the decreasing slab bending which
results in a decrease of the tensile stresses in the slab and an
increase of the tensile stresses due to the weight of the slab
in the slope parallel direction. Hence, this result suggests that
slab bending is the primary process influencing tensile failure490

of the slab (for homogeneous properties of the system).
Crack propagation distance slightly decreases with slab

density as shown in Fig. 11d. For very low slab densities,
the critical length ac is relatively high and thus the tensile
failure across the slab occurs before the critical length is495

reached. Then, as the density of the slab increases, the crit-
ical length decreases and the propagation distance stabilizes
around 0.4 m.

Whereas slab density ρ and slab thicknessD have a similar
influence on the stability of the system, on the crack propaga-500

tion speed (Figs. 10b and 10c) and on the onset of crack prop-
agation, as suggested by the decrease of the critical length
ac with both ρ and D (Figs. 11d and 11e), their influence on
fracture arrest propensity differs. Indeed, in contrast to the in-
fluence of slab density, the propagation distance strongly in-505

creases with increasing slab thickness (Fig. 11e). Hence, the
thicker the slab is, the lower is the fracture arrest propensity.
This results can be easily explained using beam theory (Tim-
oshenko and Goodier, 1970) to express the maximum tensile
stress in a bending slab which is inversely proportional to the510

slab thickness D (see Sec. 3.4 or Schweizer et al., 2014).
Finally, crack propagation distance decreases with WL

strength (Fig. 11f) for low WL strength values for which the
system is close the overall failure (the critical length is close
to zero). However, for higher values of the WL strength, the515

propagation distance is almost unaffected by this property of
the WL.

3.3 Comparison with field data

The results of the previous parametric analysis should be in-
terpreted with care since for snow, several of the system pa-520

ρ (kg/m3) 100 150 200 250 300
D (cm) 30 40 50 65 80

Table 4: Average slab thickness as a function of slab density
for PST field data.

rameters are inter-related leading to more complex interac-
tions. For instance, the result about the influence of Young’s
modulus on the propagation distance might seem contradic-
tory to avalanche observations. Indeed, taken as it is, this re-
sult would imply that it is easier to trigger a tensile failure525

in stiff and thus hard snow than in soft snow. Consequently,
harder slabs would result in smaller release areas than soft
slabs which is clearly in contradiction with avalanche obser-
vations (van Herwijnen and Jamieson, 2007). Hence, even if
the result behind Fig.11a2 is consistent, from a mechanical530

point of view, it cannot be directly applied to dry-snow slab
avalanche release. To do so, one should take into account the
relations between slab density ρ, Young’s modulus E and
tensile strength σt according to Eqs. (3) and (4). Simulations
were performed for slab densities ranging from 100 to 300535

kg/m3, corresponding to a Young’s modulus E of the slab
between 0.8 and 16 MPa [Eq. (3)] and a tensile strength σt
between 1 and 16 kPa [Eq.(4)].

In order to compare our numerical model to PST field data,
we selected two simulation cases to show the overall trend of540

the propagation speed and distance with density, rather than
simulating precisely each of the PSTs individually (which
are prone to some variability) by using the available initial
conditions from the field.

In the following, we distinguish two simulation cases:545

– Case #1 corresponds to simulations with a constant slab
thicknessD = 20 cm, slope angle ψ = 0◦ and WL prop-
erties (σWL

c = 750 Pa);

– Case #2 corresponds to a case with a slope angle ψ =
23◦ which is the average slope angle of our field PSTs550

and a slab thickness D which is also a function of den-
sity according to field data (Tab. 4). In addition, we cal-
ibrated the strength of the WL bonds in order to have
the same critical length for the different densities. This
ensured we observed crack propagation and avoid the555

global and simultaneous failure of the entire WL. In-
deed, as density increases, the critical length ac de-
creases and tends to zero (Fig. 11d) leading to the in-
stability of the system without cutting the WL.

A similar choice was made by Gaume et al. (2015) who560

computed the tensile failure probability for two cases (con-
stant depth or constant load) with similar trends in the results.

3.3.1 Displacement of the slab

Our numerical results (Fig. 8) obtained for a slab density ρ=
250 kg/m3 are in very good agreement with experimental re-565
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sults (Fig. 3) obtained for a similar density of ρ= 240 kg/m3.
Indeed, the same phases in the displacement curves, corre-
sponding to slab bending and crack propagation, were ob-
served in the measurements. Furthermore, the amount of
slope normal displacement prior to crack propagation as well570

as the fracture time, defined as the time it takes for the slab
to come into contact with the broken weak layer, were very
similar. Finally, we would like to point out that the total slope
normal displacement after crack propagation in our exper-
imental results was not the same for all markers (Fig. 3),575

which has often been observed in previous studies (van Her-
wijnen et al., 2010; Bair et al., 2014), whereas it is approx-
imately the same in the numerical simulations if no fracture
arrest occurred (Fig. 8). This difference is presumably due to
3D and edge effects such as wall friction at the right side of580

the column.

3.3.2 Crack propagation speed

The crack propagation speed c obtained in field PSTs and
from the simulated PSTs is represented as a function of slab
density in Fig. 12. Overall, the propagation speed obtained585

from field PSTs increases from 10 to 50 m/s as the density of
the slab increased from 140 to 300 kg/m3. The gray squares
represent the cases with fracture arrest due to tensile frac-
ture of the slab (SF) for which the crack propagation speed is
not very accurate and generally lower than the velocity mea-590

sured when the slab did not break (END: open squares for
full propagation).

Overall, both simulation cases #1 and #2 reproduce the
magnitude of the propagation speed c and the increasing
trend with increasing slab density ρ. The case #2 model (re-595

lation between slab density, Young’s modulus, thickness and
slope angle) slightly overestimates the average propagation
speed but provides good estimates for densities higher than
250 kg/m3. Furthermore, the simulations of case #2 were
done for the same conditions of failure initiation, i.e. the600

strength of the WL bonds was calibrated in order to have
the same critical length for the different densities. However,
for the experiments, the critical length generally increases
with increasing density due to the settlement which induces
an increase of Young’s modulus and a strengthening of the605

WL (Zeidler and Jamieson, 2006a, b; Szabo and Schneebeli,
2007; Podolskiy et al., 2014). In contrast, for case #1, a de-
crease in slab thickness and slope angle induces a decrease
in the crack propagation speed (Fig. 10), explaining why the
speeds for case #1 (ψ = 0◦ and D = 20 cm) are lower. In ad-610

dition, for case #1, the WL properties were kept constant,
which together with the increase of the Young’s modulus
(less bending) with density resulted in an increase of the crit-
ical length with density. This is in agreement with field ob-
servations which might explain the better quantitative agree-615

ment with the experiments.
Finally, for a low slab density ρ= 100 kg/m3 (E = 0.83

MPa), the speed of the elastic waves in the slab ce is about

Figure 12: (a) Boxplot of the propagation speed c versus slab
density for all field experiments. The data were grouped by
slab density classes of 50 kg/m3. The red line represents the
median value, the edges of the box are the 25th and 75th per-
centiles, the whiskers extend to the most extreme data points
without considering the outliers, and outliers are plotted in-
dividually as a cross. (b) Crack propagation speed c vs slab
density ρ. The open squares correspond to field PSTs with
full propagation (END) and the solid squares correspond to
PSTs with fracture arrest (SF). The black line corresponds
to the result of the DE model taking into account the rela-
tion between slab density, Young’s modulus for a slope an-
gle ψ = 0◦ and a slab thickness D = 20 cm (case #1). The
gray continuous line corresponds to the result of the DE
model taking into account the relation between slab density,
Young’s modulus and thickness for a slope angle ψ = 23◦

(case #2). The red lines represent the median values of the
density classes (same as in (a)). The data consist of N=121
PST experiments.

90 m/s, whereas the crack propagation speed is around
15 m/s. For a high density ρ= 300 kg/m3 (E = 16 MPa),620

ce ≈ 230 m/s, whereas the crack propagation speed is around
45 m/s.

3.3.3 Propagation distance

The proportion between the number of experiments for
which fracture arrest was observed NSF and the total num-625

ber of experiments NSF +NEND decreases with increasing
slab density ρ (Fig. 13a). This figure highlights the important
decrease of fracture arrest propensity with slab density. For
slab densities higher than 300 kg/m3 the number of experi-
ments with slab fracture is very small (NSF < 20%).630
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Figure 13: (a) Proportion between the number of experiments
with slab fracture NSF and the total number of experiments
NSF +NEND for different classes of density. (b) Propaga-
tion distance l∗ vs slab density ρ only for cases with fracture
arrest (SF). The red line corresponds to case #1 and the gray
line corresponds to case #2. The dashed line corresponds to
the column length L= 2 m in the PST simulations.

The crack propagation distance l∗ is represented as a func-
tion of slab density in Fig. 13b. Only cases with slab fracture
(SF) were represented. Overall, the propagation distance ob-
tained from field PSTs increased with slab density and varies
approximately from 0.4 to 2.1 m as the density increased635

from 140 to 300 kg/m3. This trend is well reproduced by
the discrete element simulations for both cases, but with a
better qualitative agreement for case #1. For case #1 and for
densities higher that about 300 kg/m3, no fracture arrest is
observed resulting in full propagation of the crack in the WL640

over the entire column length (END). For case #2, this tran-
sition occurs already for a density of about 200 kg/m3. Be-
sides, we would like to point out that field PSTs were not
made systematically for the same column lengths. However,
we checked numerically that, as soon as fracture arrest occurs645

within the column, the crack propagation distance is almost
independent of the column length. For instance, if a propa-
gation distance of 0.7 m is observed for a column length of
1.5 m, it will be the same for a column of 2.5 m. This is true
as soon as the column length is higher than the length over650

which edge effect are observed (length typically lower than
1 m, Gaume et al., 2013).

The experiments and the simulations confirm that dense
and hard snow slabs are more prone to wide-spread crack
propagation than soft slabs.655

3.4 Mechanical processes of fracture arrest

In order to better understand the underlying mechanical pro-
cesses of fracture arrest in the slab, the normal stresses in
the slab σxx have to be compared with its tensile strength σt.
The normal stresses in the slab were computed for each grain660

from contact forces using the classic Love homogeneization
formula (Cambou and Jean, 2001). A tensile crack in the slab
occurs when the maximum normal stress σmxx exceeds the
tensile strength. Hence, we analyzed the evolution of normal
stresses in the slab during the process of crack propagation665

for case #1 with a slab density ρ= 250 kg/m3 leading to a
tensile strength σt = 10 kPa [Eq. (4)]. First, before the onset
of crack propagation, an increase of tensile stress occurs at
the top of the slab close to the crack tip of the WL (Fig. 14).
The bottom of the slab is subjected to an increase in com-670

pression (σxx < 0). This increase of tensile stress is due to
the bending of the slab and increases with increasing crack
length (Timoshenko and Goodier, 1970).

Then, once the critical length is reached, the crack be-
comes self-propagating. The crack length increase leads to675

an increase of the tensile stresses in the slab. Note that the
maximum tensile stress σmxx is always located at the top sur-
face of the slab, not directly at the vertical of the crack tip but
slightly shifted to the right above the undamaged weak layer
(Fig. 14). At one point the maximum tensile stress meets the680

tensile strength of the slab (σt = 10 kPa) which leads to the
opening of a tensile crack and fracture arrest. This fracture
arrest leads to the unloading of the slab where the stresses
become close to zero everywhere, except at the position of
the saw where some small local bending effects still occur.685

In order to better understand why fracture arrest does not
occur anymore for high densities, as shown in Fig. 13, we
then analyzed the maximum tensile stress σmxx as a function
of slab density in the case of a purely elastic slab for which
the Young’s modulus was varied according to Eq. (3) (case690

#1). The DE results were then compared to those predicted
by the static beam theory. According to beam theory (Timo-
shenko and Goodier, 1970), the maximum theoretical tensile
stress in a beam of length l, thickness D embedded on its
right side and subjected to gravity, with an angle ψ (with re-695

gards to the horizontal) is equal to

σthxx = ρgl sinψ+
3ρg cosψl2

D
. (7)

As we have seen before in Fig. 14, the tensile stress in the
slab increases during propagation due to an increase of the
crack length. However, this length is limited by the amplitude700

of collapse hc of the WL (Fig. 15a). Indeed, once the left
part of the slab comes into contact with the broken WL, the
tensile stress reaches a maximum value and does not increase
anymore (see also Fig. 7c). The length l0 (already introduced
by Heierli et al., 2008) required to come into contact with the705

broken WL can be obtained analytically by computing the
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Figure 14: Evolution of the normal stress σxx in the slab during the process of crack propagation for a case #1 simulation and
a density of 250 kg/m3 with a tensile strength of 10 kPa. The normal stress σxx was calculated for each grain from contact
forces according the Love homogeneization formula and linearly interpolated between grains. The dashed lines represent the
position of the crack tip in the WL.

vertical displacement of the slab according to beam theory
and is equal to

l0 =

(
2ED2hc
3ρg cosψ

)1/4

. (8)

Hence, the overall maximum theoretical tensile stress710

σm,thxx = σthxx(l0) is found by replacing l by l0 in Eq. (7).
For low values of slab density (ρ < 175 kg/m3, Fig. 15b),

the maximum tensile stress increases with increasing den-
sity and the DE model results are very well reproduced by
beam theory. In addition, the maximum tensile stress is al-715

ways higher than the tensile strength of the slab, leading to
systematic fracture arrest for these low density values. How-
ever, for higher densities, beam theory predicts a strong in-
crease of the maximum tensile stress with density, so that
the stress would always be higher than the tensile strength of720

the slab. This would lead to systematic fracture arrest for any
value of the density which is in contrast to the results of both
field and numerical PSTs. The DE model results, in particu-
lar, show that for a slab density higher than about a threshold
density ρ′ = 180 kg/m3, the maximum tensile stress starts to725

decrease with increasing density. Ultimately, for a density of
approximately 280 kg/m3, the maximum tensile stress be-
comes lower than the strength, leading to full propagation of
the crack in the WL, in agreement with Fig. 13 (case #1).

This result highlights the limits of the static beam theory730

and thus the need to take into account dynamic effects when
addressing fracture arrest propensity issues. Indeed, we sup-

pose that the reason of this sudden decrease is due to the
crack propagation speed which becomes higher as slab den-
sity increases and induces a loss of support in the slab where735

stresses do not have time to establish. In other words, the dis-
placement of the slab due to gravity is too slow to establish
a mechanical equilibrium between bending and gravity. For
instance, if we assume that the crack would propagate at an
infinite speed, then the tensile stresses in the slab would not740

increase after reaching the critical length. The maximum ten-
sile stress in the slab would thus be the one obtained at the
moment of the onset of crack propagation. Obviously, the
propagation speed is not infinite but limits the establishment
of the stresses in the slab.745

Using the theoretical relationships for ρ < ρ′ (σmxx = σthxx)
and an empirical (exponential) fit to the data for ρ > ρ′

(σmxx = σdynxx ), one can compute the theoretical propagation
distance l∗th by solving

σmxx(l∗th) = σt. (9)750

The theoretical propagation distance l∗th was represented
in Fig. 15c for both zones (l∗th = l∗bt for ρ < ρ′ and l∗th = l∗dyn
ρ > ρ′) as well as the characteristic distance l0. Again the
beam theory reproduces the results for low densities well. For
these low densities, the tensile failure in the slab occurs even755

before the onset of crack propagation due to the low value
of the associated tensile strength. However, the important in-
crease of the propagation distance for densities higher than ρ′

is not reproduced by beam theory. On the other hand, using
the empirical relation (exponential fit of the maximum ten-760
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Figure 15: (a) Illustration of the characteristic length l0 required for the slab to be in contact with the broken WL. hc represents
the collapse height. (b) Maximum tensile stress σmxx as a function of slab density for the discrete element model σDEMxx , with a
purely elastic slab and case #1, according to beam theory σthxx(l0) and from an empirical (exponential) fit σdynxx (l0). The tensile
strength of the slab σt is also represented as a function of slab density σt. (c) Propagation distance for the same cases as in (b)
plus l0 as a function of slab density.

sile stress in Fig. 15b), the strong increase of the propagation
distance is well reproduced. After a certain value of the den-
sity ρEND = 280 kg/m3, the propagation distance l∗dyn be-
comes higher than l0 which is technically not possible since
the maximum tensile stress is obtained exactly for l = l0 and765

cannot increase above l0. Hence the only solution is that no
fracture arrest occurs for ρ > ρEND. In fact, for a density
of 300 kg/m3 no fracture arrest was observed using the DE
model (Fig. 13). For this simulation, we also tried with longer
column lengths L up to 10 m which did not affect the full770

propagation. The corresponding maximum propagation dis-
tance for this case is about 2.3 m (for l∗dyn = l0), in agreement
with field data for which the maximum propagation distance
recorded was l∗ = 2.15 m (Fig. 13b).

Obviously, the density ρEND which was 280 kg/m3 in our775

simulations, will vary depending on the geometry and ma-
terial properties of the snowpack. For the cases presented in
Figs. 15b and 15c, the Young’s modulus was derived from
density [Eq. (3)], the slab thickness D was constant equal to
20 cm, the slope angle ψ = 0◦ (case #1). This set of param-780

eters resulted in a density ρEND = 280 kg/m3. However, for
a slope angle of 23◦ and taking into account the dependence
of slab thickness with slab density (Tab. 4), ρEND would
be even less than 200 kg/m3, as shown in Fig. 13b (case
#2) since the transition between a regime of fracture arrest785

and full propagation is between 150 and 200 kg/m3. Further-
more, as the propagation distance is also strongly influenced
by the WL thickness Dwl (Fig. 11b), we assume that ρEND

increases with Dwl as the maximum tensile stress in the slab
increases with Dwl.790

4 Discussion

In this study, a numerical model based on the discrete el-
ement method was developed in order to perform numeri-
cal PST simulations and study the mechanical processes in-
volved. Despite the apparent simplicity of the proposed DE795

model and of the structure of the simulated WL, we were
able to quantitatively address the issue of the dynamic phase
of crack propagation as well as fracture arrest propensity and
to reproduce PST field data.

First, a parametric analysis was conducted to study the in-800

fluence of snowpack properties on crack propagation speed
and distance. It was shown that the propagation speed in-
creases with increasing slab density ρ, slab Young’s modu-
lus E, slab thickness D and slope angle ψ. The propagation
speed was almost not influenced by WL thickness. The in-805

crease of crack propagation speed with slab density is not
compatible with the expression for crack propagation speed
proposed by Heierli (2008) for which the speed decreases
with increasing slab density ρ (for a constant value of the
Young’s modulus of the slab), as for a crack in a homoge-810

neous material (Auld, 1973). However, this is obviously not
the case here, since the crack propagates through the under-
lying WL. Therefore, the propagation speed is likely to de-
crease with increasing WL density (and thus to increase with
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increasing WL porosity) but to increase with slab density, as815

shown by our results.
In addition, it was shown that the tensile fracture of the

slab always starts from the top surface of the slab. The prop-
agation distance l∗ increases with increasing tensile strength
of the slab σt, slab thickness D and slope angle ψ. The latter820

result suggests that slab bending is the primary process influ-
encing the tensile failure of the slab which corroborates the
conclusions of van Herwijnen et al. (2010). In contrast, the
propagation distance decreases with increasing slab Young’s
modulus E, slab density ρ and WL thickness Dwl. These re-825

sults are in agreement with Gaume et al. (2015) who showed
that the tensile failure probability (fracture arrest propensity)
decreased with increasing tensile strength σt of the slab, in-
creased with increasing Young’s modulus E of the slab and
decreased with increasing slab thicknessD. This latter model830

is based on the finite element method and takes into account
the weak layer strength heterogeneity, stress redistributions
by elasticity of the slab, the possible tensile failure of the
slab as well as dynamic effects. However, the weak layer was
modeled in their approach as an interface and the bending of835

the slab induced by the collapse of the weak layer was not
accounted for.

Furthermore, by accounting for the relation between the
mechanical properties of the snowpack, the increase of crack
propagation speed and distance with increasing slab density840

was well reproduced. The slight overestimation of the prop-
agation speed for low densities might be due to the fact that,
to compute the propagation speed, the slab was considered
as purely elastic and possible plastic effects in the slab that
might induce energy dissipation were disregarded. The in-845

depth analysis of the mechanical processes involved in frac-
ture arrest showed that after a certain slab density value ρ′,
the evolution of the maximum tensile stress in the slab with
slab density diverged from the static beam theory. This is due
to dynamic effects during crack propagation that induce a850

loss of support of the slab where the stresses do not have
time to establish. Ultimately, for a density ρEND, the max-
imum tensile stress in the slab decreases below its tensile
strength leading to full propagation without fracture arrest.
Consequently, for large densities, mechanical properties of855

the snowpack only marginally affect crack propagation dis-
tance. In that case, terrain characteristics and snowpack spa-
tial variability will play a crucial role in the definition of the
release area.

In addition, interestingly, in very few simulations both860

fracture arrest by tensile failure of the slab and full propa-
gation was observed. In these cases, a portion of the WL on
the right-side of the slab tensile crack was damaged over a
sufficient length to exceed the critical length leading again
to crack propagation. This process repeated itself until the865

end of the system leading to so-called “en-echelon” fractures
(Van Herwijnen, 2005; van Herwijnen et al., 2010; Gauthier
and Jamieson, 2010). This is likely to happen for very un-
stable conditions (very low critical length) but for a slab of

intermediate density, not too dense so fracture arrest can oc-870

cur and not too loose so that the crack can still propagate.
Concerning the limitations of the model, we recall that

the triangular shape of the WL structure is highly idealized
and that more complex and more realistic geometries might
have an influence on the presented results. In the future, the875

micro-structure of the WL could be derived from micro-
tomographic images (Hagenmuller et al., 2014) in order to
perform more realistic simulations. In addition, whereas we
applied our model for cases for which the bending of the slab
is important, our approach could still be used for cases with880

thinner weak layers and thus much lower amplitude of bend-
ing. Moreover, we would like to recall that the crack prop-
agation speed was computed from the vertical displacement
wave of the slab. However, for high values of the slope angle
ψ, the collapse only constitutes a secondary process and the885

tangential displacement during propagation becomes higher
than the vertical displacement. Typically, for ψ > 40◦, it is
not possible to compute the propagation speed using the pre-
sented approach as the height of collapse becomes too low.
An analysis of the tangential displacement revealed that the890

crack propagation speed on slopes where the shear compo-
nent of the slab weight is very important (ψ > 40◦) might
be significantly higher than the propagation speed on gen-
tle slopes. This analysis suggested propagation speeds up to
150 m/s, similar to those reported for real-scale avalanches895

by Hamre et al. (2014). However, they considered avalanches
triggered artificially by explosives leading to even more com-
plex interactions due to the propagation wave of the blast.

With regards to practical applications, the results of our
study can help to choose the size of the column length in900

field PSTs. Indeed, we showed that the maximum length for
which snowpack properties might affect the propagation dis-
tance is around 2 m, in agreement with the study of Bair
et al. (2014). However, this result does not mean that all PSTs
should be 2 m long. The chosen column length can be eval-905

uated from slab thickness and density. As shown by Figs. 11
and 13, slab Young’s modulus and tensile strength which are
related to slab density, as well as slab thickness strongly af-
fect the propagation distance. Hence, for soft and relatively
thin slabs, the standard column length of 1.2 m might be suf-910

ficient. However, for very strong and thick slabs, the column
length should not be lower than 2 m in order to be able to
still observe a possible arrest of the fracture due to slab ten-
sile failure. If slab fracture is not observed in a PST for a
column length of 2 m, fracture arrest is likely to be mainly915

driven by terrain and snowpack spatial variability and a 3D-
terrain model including the snowpack might be required to
evaluate where fracture arrest might occur (Veitinger et al.,
2014).
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5 Conclusions920

We proposed a new approach to characterize the dynamic
phase of crack propagation in weak snowpack layers as well
as fracture arrest propensity by means of numerical PST sim-
ulations based on the discrete element method with elastic-
brittle bonded grains.925

This model allowed us to compute crack propagation
speed from slab vertical displacement as a function of snow-
pack properties. Furthermore, crack propagation distance
was computed by taking into account the tensile strength of
the slab. A parametric analysis provided the crack propaga-930

tion speed and distance as a function of the different snow-
pack properties. We showed that the propagation speed in-
creases with increasing Young’s modulus of the slab, slab
depth, slab density and slope angle but decreases with in-
creasing weak layer strength. The propagation distance de-935

creases with increasing Young’s modulus of the slab, slab
density and weak layer thickness but increases with increas-
ing slab tensile strength, slab depth, weak layer strength and
slope angle.

Then, the existing relationship between slab thickness,940

Young’s modulus and tensile strength with density was im-
plemented. Accounting for this relationship, modeled prop-
agation speed and distances were found in good agreement
with those obtained from field measurements with the propa-
gation saw test. In particular, for densities ranging from 100945

to 300 kg/m3, the propagation speed increased from approx.
10 to 50 m/s and the propagation distance was found to in-
crease from approx. 0.4 m to 2 m (column length). Concern-
ing the mechanical processes, the static beam theory predicts
an increase of the maximum tensile stress with increasing950

density. However, we show that dynamic effects of crack
propagation induce a loss of support of the slab which in-
creases with increasing crack propagation speed and thus
slab density. This produces a decrease of the maximum stress
with density which ultimately becomes lower than the tensile955

strength of the slab for a critical density ρEND leading to the
absence of slab tensile fracture and thus wide-spread crack
propagation. According to our simulations, this critical den-
sity depends mostly on slab and WL thicknesses and slope
angle. It decreases with slab depth and slope angle but in-960

creases with WL thickness.
For slab layers denser than ρEND, the slab tensile fracture

in the field and thus the potential release area will mostly
be controlled by topographical and morphological features
of the path such as ridges, rocks, trees, terrain breaks, etc.965

but also by the spatial heterogeneity of the snow cover. In
addition, we showed that the maximum propagation distance
associated with the density ρEND was around 2 m, justifying
why the column length of a propagation saw test should not
be lower than 2 m for hard snow slabs, in order to be able to970

observe fracture arrest. This result is in agreement with the
recent study of Bair et al. (2014) about PST edge effects.

In the future, an in-depth analysis of crack propagation
speeds for large slope angles will be carried out in order to
distinguish the speed associated with the collapse wave of975

the slab and the speed associated to its tangential displace-
ment. Finally, different and more complex structures for the
WL will also be implemented with the long-term objective
to model the structure of the WL directly from segmented
micro-tomographic images (Hagenmuller et al., 2013).980

Appendix A: Evaluation of the crack propagation speed

The method to derive the crack propagation speed from the
evolution of the vertical displacement of the slab in field and
simulated PSTs is the same as that described in van Herwi-
jnen and Jamieson (2005). This appendix provides details985

about this procedure and its application for two simulation
and one experiment examples. The first example is a simula-
tion for a density ρ= 250 kg/m3 and a Young’s modulusE =
4 MPa (Fig. A1a) and the second example is a simulation for
the same density but with a Young’s modulus derived from990

density according to Scapozza (2004), E = 7.8 MPa (Fig.
A1b) corresponding to the displacement evolution shown in
Figure 6. The third case (Fig. A1c) corresponds to an ex-
periment with a density ρ= 240 kg/m3. In detail, for each
simulation or experiment, a vertical displacement threshold995

s is defined that allows to evaluate the position x of the crack
tip as a function of time (see insets of Fig. A1). A linear fit
to these curves allows to evaluate the propagation speed as a
function of the vertical displacement threshold s (Fig. A1).
Then, the crack propagation speed is taken as the average1000

propagation speed (over the displacement threshold s) during
the dynamic propagation phase where the propagation speed
appears to be stable with the displacement threshold (average
between s1 and s3). Note that different methods could have
been used to compute the propagation speed but we wanted1005

to have exactly the same procedure for both the experiments
and the numerical simulations for the sake of the comparison.
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Reply to Referee #1

We thank Pascal Hagenmuller for his very interesting and constructive comments that helped us to signifi-
cantly improve the quality of our paper.

We revised our paper in order to account for his remarks and we provide below detailed answers to the
various issues raised by the reviewer.

Comment M1). The abstract is written as an introduction and contains almost the same information as the
introduction of the paper. Please consider significantly reducing the introduction part of the abstract (p610
l1-15) and adding method description and the key results.
Answer to comment M1). The abstract will be rewritten. In particular, the sentences between “For instance
... affect dynamic crack propagation” will be removed from the abstract leading to a reduction of 20%.

Comment M2). The way the propagation speed is computed from field and numerical PST should be ex-
plicitly presented. This is described in the quoted reference (van Herwijnen and Jamieson, 2005). However,
Figure 6 shows the temporal evolution of the computed vertical displacements and does not clearly reveal a
”time delay between the onset of movement between markers proportional to the distance between the mark-
ers” (p613, l2-3). Consider adding some clarifications. If the definition of c is somehow ambiguous, it would
be appropriate to focus only on l∗, which is, in my opinion, much more important in the context of avalanche
forecasting and already discussed deeper in the paper.
Answer to comment M2). As stated by the reviewer, the method to derive the propagation speed from field
PSTs is explicitly and clearly described in van Herwijnen and Jamieson (2005). We used exactly the same
procedure to derive the propagation speed from our numerical simulations. However, we agree that the appli-
cation of this procedure to our simulations would benefit from further clarifications. Hence, we will provide an
appendix showing the detailed procedure for the evaluation of the crack propagation speed and its application
for two simulation examples. The first example is a simulation for a density ρ = 250 kg/m3 and a Young’s
modulus E = 4 MPa (Fig. 1a) and the second example is a simulation for the same density but with a Young’s
modulus derived from density according to Scapozza (2004), E = 7.8 MPa (Fig. 1b) corresponding to Figure
6 of the paper. The third case (Fig. 1c) corresponds to an experiment for a density ρ = 240 kg/m3. In detail, for
each simulation or experiment, a vertical displacement threshold s is defined that allows to evaluate the position
x of the crack tip as a function of time (see insets of Fig. 1).

Figure 1: Propagation speed as a function of the vertical displacement threshold s. The insets represent the
crack position as a function of time for 3 vertical displacement thresholds. The lines correspond to a linear
fit. (a) simulation for ρ = 250 kg/m3, E = 4 MPa; (b) simulation for ρ = 250 kg/m3, E = 7.8 MPa, (c)
experiment for a density ρ = 240 kg/m3.

A linear fit to these curves allows to evaluate the propagation speed as a function of the vertical displacement
threshold s (Fig. 1). In some cases (e.g. inset of Fig. 1a), the increase of the crack position with time is
perfectly linear. However, in a few cases (e.g. inset of Fig. 1b), this linearity is not perfect, especially at the
moment of the onset and at the end of the propagation. Hence, the “time delay between the onset of movement
between markers is proportional to the distance between the markers” only during the dynamic phase of crack



propagation but not during the transient phases of the onset and the end of propagation. Then, the crack
propagation speed is taken as the average propagation speed (over the displacement threshold s) during the
dynamic propagation phase where the propagation speed appears to be stable with the displacement threshold
(average between s1 and s3). Note that different methods could have been used to compute the propagation
speed but we wanted to have exactly the same procedure for both the experiments and the numerical simulations
for the sake of the comparison.

Concerning the second comment of the reviewer about the relevance of the propagation speed to avalanche
forecasting and his suggestion to focus on the propagation distance, we believe it is very important to also
present and discuss the results about the propagation speed for two reasons:
− the propagation speed of a crack is deeply discussed in the avalanche community (Truman, 1973; Bohren

and Beschta, 1974; Johnson et al., 2004; McClung, 2005, 2007; van Herwijnen et al., 2010; Hamre et al.,
2014) but also more generally in the fracture mechanics community (e.g. Kanninen, 1968; Belytschko
et al., 2003; Hsieh and Wang, 2004; Song et al., 2006; Lengliné et al., 2011). Our approach is the first one to
compute the propagation speed of a crack in a multi-layered system from discrete element simulations and
is thus highly scientifically relevant;

− the propagation distance was shown to depend strongly on dynamic effects and thus on the propagation
speed of the crack. It is thus important to study the propagation speed to better understand fracture arrest
propensity.

Comment M3). p616, l4-9. The link between microscopic contact law parameters and macroscopic mechan-
ical parameters is missing. The DE model is, for instance, described in terms of kn, kbn and the results are
described in terms of E. Note that this correspondence can be derived analytically without bi-axial tests. The
reference to one non-reviewed proceeding is not sufficient.
Answer to comment M3). The link between the contact properties (contact and bond stiffnesses kn and kn)
and macroscopic mechanical quantities (Young’s modulus E) will be presented as well as more details about
the contact model which is used also according to the reviewer’s minor comment (11). In detail, the model
which is used is a parallel bond model. It is represented schematically on Fig. 2 which will be added to the
paper.

Figure 2: (a) Schematic representation of the parallel contact bond model which is used. The bonded part is
represented in black while the unbonded part is represented in grey. (b) Bond normal force Fn as a function
of normal interpenetration δn between two grains. (c) Bond shear force ||Fs|| as a function of tangential
interpenetration δs between two grains. (d) Bond bending moment ||M || as a function of bending rotation θb
between two grains.

Hence, the total stiffness of the bonded contact is equal to the sum of the contact stiffness kn and the bond
stiffness kn:

ktot = kn + kn

where kn = kbnA where kbn is the bond normal stiffness per unit area and A the bond area. The dimension of
kn and kn is N/m while the dimension of kbn is Pa/m. As mentioned by the reviewer in the minor comments
(11), the presentation of the model in terms of kn (contact stiffness) and kbn (bond stiffness per unit area) might
disrupt the reader. Since the contact area A was kept constant in the simulations, we decided to present the
results in terms of kn and kn which have the same dimensions.



Finally, in our case of a square grain assembly, the Young’s modulus can be derived analytically from kn
and kn according to:

E =
1

πR

(
kn + kn

)
.

The contact stiffness kn was kept constant at 1 × 104 N/m and kn was varied between 1 × 103 and 1.5 ×
106 N/m (for the slab) leading to realistic values of the Young’s modulus E between 0.35 and 50 MPa. It
was verified from biaxial tests that the macroscopic (bulk) Young’s modulus of the slab effectively follows this
relationship due to the specific (squared) structure of the slab.

All these new elements were added to the paper in section 2.2.2 Formulation of the model.

Comment M4). section 3.2. The parametric study is done by changing a single variable. The complete
parametric study by the authors is very interesting. As described by the authors, some parameters have the same
effects on the computed PST. If possible, a parametric study with a few dimensionless numbers derived from a
dimensional analysis would be welcome. With this method, the competition between the different mechanisms
would appear clearly. If not possible, consider formulating explicitly the key results of this parametric analysis
in conclusion, which is now missing. Explain why the parametric study does not consider the influence of the
weak layer strength. Indeed, the authors suggest that the propagation speed is ”mostly influenced by the load
due to the slab and WL strength” (p618, l24-25).
Answer to comment M4). We already tried to perform a dimensionless analysis with the results of the avail-
able simulations but it seems that the processes involved are very complex since no “simple” characteristic
number could be highlighted. This will be however the focus of the future years’ investigations in our group by
performing more numerical simulations.

As suggested by the reviewer, the key results of the parametric study will be added to the conclusion of our
paper.

Finally, concerning WL strength, we decided to focus in a first step on the influence of slab properties and
WL thickness (which influences the amplitude of bending of the slab) on crack propagation speed and distance
(this is already a lot of parameters to vary). However, as suggested by the reviewer and also to be consistent with
the following statement in our manuscript “(...) mostly influenced by the load due to the slab and WL strength”
we extended the parametric analysis to the WL strength (influence on propagation speed and on propagation
distance) by adding two new graphs in Figs. 8 and 9 of the paper, as well as a paragraph of description in the
text. However, the “strength” of the weak layer is vague since the weak layer has a complete failure envelope
(see answer to comment M2 of Reviewer 2 as well as the new Figure 6 in the reply) with tensile, shear and
compressive strengths (which are linked). We decided to present our results in terms of compressive strength
σWL
c . The two new figures are provided below (Figures 3 and 4).

Comment M5). Dynamic effects are shown to induce a transient loss of support of the slab. These dynamic
effects might be sensible to the chosen time step and discretization scale (sphere radius). It is important to
provide the order of magnitude of the speed of elastic waves (dependent on r) in the sample and to compare it to
the crack propagation speed. The time step used in the DE simulation is also missing. Moreover, the parametric
analysis do not include a sensitivity analysis to the sphere radius r. If r does not affect the simulation results,
add this information briefly in the text (as it is done for the restitution coefficient, p615, l9-12).
Answer to comment M5). Thanks for this suggestion. The time step ∆t was computed as a function of grain
properties according to

∆t =
√
m/k ≈ r

√
ρ/E

where m and ρ are the smallest grain mass and density and k and E the largest contact/bond stiffness and
Young’s modulus, respectively. The choice of this time-step insures that the crack propagation speed is lower
than the speed of the elastic waves in the sample. The order of magnitude of the speed of elastic waves in
the sample is ce ≈

√
E/ρ. For a low slab density ρ = 100 kg/m3 and a Young’s modulus E = 0.83 MPa

chosen according to Scapozza (2004), ce ≈ 90 m/s whereas the crack propagation speed is around 15 m/s. For
a high density ρ = 300 kg/m3 and a Young’s modulus E = 16 MPa chosen according to Scapozza (2004),
ce ≈ 230 m/s whereas the crack propagation speed is around 45 m/s.



Figure 3: Crack propagation speed c (continuous lines) and speed of elastic waves in the slab ce/10 (dotted
lines) as a function of (a) the Young’s modulus of the slab E, (b) slab and WL thicknesses D and Dwl, (c) slab
density ρ, (d) slope angle ψ and (e) WL compressive strength σWL

c . The parameters used for these figures are
given in Tab. 3.

Figure 4: Crack propagation distance l∗ as a function of the tensile strength σt and the Young’s modulus E of
the slab (a1-a2), the tensile strength σt and the WL thickness Dwl (b1-b2), the tensile strength σt and the slope
angle ψ (c1-c2), slab density ρ (d), slab thickness D (e) and WL compressive strength σWL

c (f). The parameters
used for these plots are given in Tab. 3.



This information will be added to the manuscript in the “Formulation of the model” section (time-step), in
the Results/Crack propagation speed section (the speed of the elastic waves will also be added inside Fig. 8 of
our paper as you can see in Fig. 3 of the reply) as well as in the discussion (comparison of the crack propagation
speed to the speed of the elastic waves in the sample).

The slab grains radius r has no influence on the results provided that it is small enough so that no size
effects occur in order to obtain the correct Young’s modulus of the slab. However, changing the WL grain
radius rwl for a constant WL thickness would change its structure and would affect its strength. Hence, rwl was
kept constant. As suggested, this information was briefly added to the formulation of the model section.

Comment M6). Comparison with field PST. The choices made to compare the numerical and experimental
PST (Section 3.3, first paragraph) are unclear to me. I dont understand why two cases are distinguished.
The size of the PST block, the slope angle, the slab density and weak layer thickness are variables which are
certainly measured during the field experiments (”manual snow profile”, p612, l15-17). The only missing
parameter is the weak layer strength. But this variable can be derived from the measured critical length, as
done by the authors in case 2. So all input parameters of the DE model, E and σt being function of ρ, seem to
be available. I dont understand the choices made in case 1 and case 2. The point of the authors is not clear
and requires major clarifications.
Answer to comment M6). The comparison between the numerical results and the experiments is a very
important step of the paper. Hence we will significantly clarify the choices we made as it appeared unclear
for the reviewer. Specifically, the reviewer is right when saying that we have access to all the mechanical and
structural quantities from the PSTs except for the WL strength that can be derived from the critical length.
However, the main issue is not the strength of the WL but its thickness which has been chosen constant for the
comparison (nevertheless 6 different thicknesses were modeled for the parametric analysis). It is not possible at
this stage and with the proposed discretization of the system (size of the slab grains) to model WLs of thickness
lower than 1 cm, due to geometrical issues (placement of the triangles). It would be possible to model any WL
thickness by reducing the size of the grains of the slab and substratum but would also be very time-consuming.

In addition, the results of the PSTs are prone to some variability (cf Figs. 10 and 11 of the paper) and we
found it much more preferable to provide an overall trend of the propagation distance with density for two cases
(constant depth or increase of depth with density) that could explain the general trend of the data. A similar
choice was made by ? where the tensile failure probability was computed for two cases (constant depth or
constant load) with similar trends in the results (see also comment 7).

Finally, it would be very time-consuming to simulate each field PST (121 PSTs).

Comment M7). A few months ago, some of the authors have published an article in The Cryosphere Dis-
cussions entitled ”Influence of weak layer heterogeneity and slab properties on slab failure propensity and
avalanche release area” (December 2014). On contrary to the present paper, no dynamic effects and weak
layer normal collapse are considered in the mechanical model (tell me if I am wrong). As noted (p628, l24-28),
some of the numerical results in the two papers are in good agreement. I think it would be valuable if the
authors could comment on this agreement, even the underlying implemented mechanisms are very different.
Answer to comment M7). In our other paper now published in The Cryosphere (”Influence of weak layer
heterogeneity and slab properties on slab failure propensity and avalanche release area”), the weak layer normal
collapse was indeed not accounted for. However dynamic effects were also taken into account (see Gaume et
al., 2013 for more details) in the finite element model. The good qualitative agreement between the results of
these two different models (effect ofE, ρ andD) was already discussed in the third paragraph of the discussion.
Nevertheless, this part of the discussion will be expanded and detailed as suggested.

Minor comments

Comment m1). p610, l15: all ”ff” appears in a strange way on my printed version of the paper. Check with
editing service whether it is normal.
Answer to comment m1). It appears correctly in the online version our PC. Nevertheless, we will ask the
editing service to check if it works correctly on every computers (linux, mac and PC).



Comment m2). p610, l19-24, ”Then, the relation ... in PSTs”. Awkward sentence. Reword. For instance,
”In order to compare the numerical and experimental results, the slab mechanical properties (Youngs modulus
and strength) which are not measured in the field, were derived from slab density. The simulations are shown
to fairly reproduce the field PSTs.”
Answer to comment m2). Thanks. We will reword as suggested.

Comment m3). p611, l4, ”if its size exceeds a critical length or if the load exceeds a critical value”. The
critical length already depends the applied load, doesnit?
Answer to comment m3). Yes but for a constant load, crack propagation requires the crack size to reach a
critical length (which effectively depends on the load) and for a constant crack size (independent of the load),
the load needs to exceed a critical value for the onset of crack propagation.

Comment m4). p611, introduction. A brief description of the PST would be welcome in introduction.
Answer to comment m4). This will be done.

Comment m5). p611, l19-21: ”For instance, it is not uncommon to perform PST field measurements with
widespread crack propagation on one day, while a few days later, with seemingly very little changes in snowpack
properties, cracks will no longer propagate.”. Quote appropriately.
Answer to comment m5). This sentence will be reworded: For instance, based on practitioners’ experience,
it is not uncommon to perform PST field measurements with widespread crack propagation on one day, while
a few days later, with seemingly very little changes in snowpack properties, cracks will no longer propagate
(Gauthier and Jamieson, 2008).

Comment m6). p613, subsection 2.2.1. This subsection should be incorporated to the global introduction
Answer to comment m6). We would like to keep this section here as it would increase significantly the size
of the introduction and this paragraph justifies and motivates the use of our method (DEM) that we describe
just in the next paragraph. We believe it would be too early to go into these arguments in the Introduction.

Comment m7). p614, l10: ”completely rigid”. Do you mean ”fixed”?
Answer to comment m7). Yes, we mean that the substratum is fixed with completely rigid grains. This will
be amended.

Comment m8). p614, l10: ”simulations” − > ”simulations (see Figure 4a)”
Answer to comment m8). This will be done.

Comment m9). p614, l12: ”cubic” − > ”square”
Answer to comment m9). Thanks. This will be changed.

Comment m10). p614, l15: ”triangular form”. It is impossible from the provided figures to see the exact
form of the weak layer elements (nb spheres, angle). Moreover, it is unclear how the thickness of the weak layer
is changed in the parametric study. I suggest deleting Figure 4b, which is useless in this form, and to replace it
with a zoom on the weak layer structure.
Answer to comment m10). We will do exactly as suggested and provide a better figure (see new figure 5
below).

Comment m11). p615: I dont understand the role of the kn and kbn . If the bond is cohesive does the spring
between grains play a role? Or is it a serie of linear springs? Why is the value of kn in N/m while kbn is in
Pa/m?.
Answer to comment m11). The parallel bond model we used will be precisely detailed as suggested by the
review (see answer to comment M3 and the new figure of the contact model for more details).



Figure 5: Simulated system of a Propagation Saw Test (PST) composed of a slab, a weak layer and a rigid
substratum. The column is 2 m long. (b) Zoom on the weal layer structure. The blue lines represent the weak
layer bonds.

Comment m12). p616,l18-20: ”The only difference with the procedure for field measurements is that with
DE we do not need markers since we have access to the displacement of every grain of the system.”. Delete.
Answer to comment m12). This will be done.

Comment m13). p618, l16 ”from almost zero”. Give value.
Answer to comment m13). The sentence will be reworded. “from less than 5 m/s for very soft slabs (E <
1 MPa)”.

Comment m14). p620,l1: ”Hence, fracture arrest propensity decreases with slope angle.”. From Figures
9c1, 9c2, this conclusion does not appear as clear as stated. Be more precise on the cases where this conclusion
applies.
Answer to comment m14). We will describe that the cases in which fracture arrest propensity decreases with
slope angle correspond to high values of the tensile strength of the slab, typically higher than 4 kPa.

Comment m15). p620, l6-8: ”This interpretation is supported by the observation that the tensile opening of
the crack always starts from the top surface of the slab in both DE simulations (Fig. 7) and in field PSTs.”. I
do not agree. This observation only confirms that tension is due to slab weight projected along the slope AND
bending. But it does not tell which mechanism is the more important.
Answer to comment m15). We agree and the sentence will be removed as well as in the Discussion p628
where this interpretation was recalled.

Comment m16). p621, l21-23: I dont understand why different densities (240 and 250 kg/m3) are used? It
is not very important for the comparison but it would make the presentation clearer. The comparison between
Figure 3 and 6 would be also easier if the computed and measured displacements would be plotted on the same
figure with the exact same marker position.
Answer to comment m16). As already stated in the answer to comment M6, we do not want to reproduce
exactly each PST, since the results are prone to some variability, but rather give some overall trends of the
results. Here, this is the same, we do not pretend to be able to reproduce exactly the displacement of each
individual experiment but rather show a good general agreement. We performed simulations for density steps
of 50 kg/m3 thus we compared a simulation of a density of 250 kg/m3 to the closest density we had in the
experiments (240 kg/m3). The agreement is already remarkable. Showing figures 3 and 6 on the same graph,
would be, according to us, misleading, since even if there is a good general agreement, there are some local
differences between these two figures which would make the figures quite complex to understand.

Comment m17). p622, l19-22 ”The slight overestimation for low densities might be due to the fact that, to
compute the propagation speed, the slab was considered as purely elastic and possible plastic effects in the slab
that might induce energy dissipation were disregarded.”. I suggest to keep this idea for the discussion section.
Answer to comment m17). This will be moved to the discussion section.



Comment m18). p622, l25-28 ”This is not the case for the experiments for which the critical length generally
increases with increasing density due to the associated increase of Youngs modulus and a strengthening of the
WL (Zeidler and Jamieson, 2006a, b; Szabo and Schneebeli,2007; Podolskiy et al., 2014)”. I dont understand
what you mean.
Answer to comment m18). We mean that during the season, for a given weak layer, the density of the
overlying slab is increasing due to settlement. This induces not only a change in the Young’s modulus (which
was taken into account in the model), but also in general a strengthening of the weak layer (which was not
accounted for). A higher strength leads to a higher critical length. This is in agreement with field measurements
(citations above) which show an increase of the critical length with density. This sentence will be reworded and
clarified.

Comment m19). p623, l3-6 ”Furthermore, for case 1,..., the better quantitative agreement with the experi-
ments.”. Awkward sentence. Reword.
Answer to comment m19). This will be reworded.

Comment m20). p623, l22-24 ”However, we argue that, as soon as fracture arrest occurs within the beam,
the crack propagation distance is almost independent of the beam length.”. I agree with your assumption. Since
one of your conclusion (see abstract) is about column length, I suggest that you rapidly check your assumption
with the model which is directly designed to do so.
Answer to comment m20). We already checked that for full propagation cases as stated p627 l10-12 (full
propagation independent of the columns length) but we also checked numerically the independence of the
propagation distance to the beam length as well by doing simulations for longer beams to be sure that no size
effects occur. This comment will be added to the paper.

Comment m21). p624, l5: σxx is not necessary tension. Moreover, indicate how the stress tensor is calcu-
lated from microscopic contact forces.
Answer to comment m21). We agree. Tensile stress will be replaced by normal stress throughout the text.
The stress tensor was computed from contact forces using the classic Love homogeneization formula (Cambou
and Jean, 2001). This information will be added to the text.

Comment m22). p624, l18: ”right side” − > ”above the undamaged weak layer (right side in Figure 12).
Answer to comment m22). This will be changed as suggested.

Comment m23). p626, l3: ”strength leading” − > ”strength, leading”
Answer to comment m23). This will be changed.

Comment m24). p626, l9: ”where stresses do not have time to establish”. Do you mean that the displace-
ment of the slab due to gravity is too slow to establish a mechanical equilibrium between bending and gravity?
Answer to comment m24). Yes this interpretation is more or less the same as what we wanted to highlight.
This will also be added to the text as a clarification.

Comment m25). p626, l14-28: In my opinion, the fit of the maximum tensile stress for density above 180
kg/m3 is not necessary and does not give additional information on the underlying mechanism. Delete and
reword section appropriately.
Answer to comment m25). We agree. The equation of the fit will be removed as well as the associated text.

Comment m26). Figure 2. Add scale in the figure on the right.
Answer to comment m26). The scale is already given by the width of the beam which is equal to 30 cm.

Comment m27). Figure 4. Replace subfigure 4b by a zoom on the WL structure
Answer to comment m27). Done. See our new figure 5 above.



Comment m28). Figure 8. m/s − > m s−1, kg/m3 − > kg m3

Answer to comment m28). This will be done.

Comment m29). Figure 9. Explain what is ac in the caption of the figure
Answer to comment m29). We will add in the caption that ac represents the critical length for crack propa-
gation.

Comment m30). Figure 10. a) Explain to what correspond the boxplot (max, 75%, median, ... ??) b) Report
the median value on the subfigure.
Answer to comment m30). We will explain which quantities the boxplot represents. The median will also
be added to Fig. 10b.

Comment m30). Figure 12. Explain that σxx was linearly (?) interpolated between grains. The tensile
stresses before failure appears to be very large (500 kPa 10 kPa) ???
Answer to comment m30). Yes this is a simple linear interpolation between grains. This will be added to the
caption. However, concerning the second remark, as explained to the second reviewer (comment M9), there is
just a little mistake by us. The scale is of course not ×105 but ×103. We are sorry for this little mistake. The
slab effectively breaks in tension for a stress σxx = σt = 10 kPa as predicted by Eq. 4. This will be corrected
and thanks for pointing this out.



Reply to Referee #2

We thank Referee #2 for some valuable comments that helped us to improve our paper.
We revised our paper in order to account for some of the remarks but also provide arguments against some

criticisms that were raised by the reviewer. In general, we argue that there is an important misunderstanding by
the reviewer who believes that the properties that have been considered in this paper are the grain-grain contact
properties and not the macroscopic (or “bulk” to use the term of the reviewer) ones. This is not the case. We
clearly stated in the manuscript in section 2.2.3 that the contact properties have been calibrated to obtain the
correct macroscopic (bulk) properties. If the reviewer might have been misled on this point, the substantial
changes we made to the “Formulation of the model” section according to the comments of reviewer # 1 (better
description of the contact law and of the link between contact and macroscopic properties) will clarify this
point. In addition, a new paragraph will be written at the end of the “2.2.1 Motivation and objectives” section
to make our point even clearer and precisely state the scale at which our model has to be considered. This new
paragraph is provided in the Appendix of this reply.

We provide below detailed answers to the various issues raised by the reviewer.

Main comments

Comment M1). The experimental design is questionable, however, and little attention is paid to the assump-
tions and motivations behind the particular numerical setup chosen.
Answer to comment M1). The Propagation Saw Test (PST) is a very well-known and well-defined field
test which is widely used in the avalanche community. The PST was concurrently developed by Gauthier and
Jamieson (2006) and Sigrist and Schweizer (2007) and allows to determine crack propagation and fracture
arrest propensity. As we wanted to evaluate the propagation speed and distance, the PST is very clearly the
best existing set-up for our purpose as we can compare our numerical results to field data (the other possible
set-up being the Extended Column Test which requires hand taping whose loading conditions are not well-
controlled and whose results depend on the person conducting the test). In addition, note that, since the PST
was invented, 8 years ago, more than 90 scientific publications (Google scholar) refer to this test. Actually, the
main “questionable” parameter of the PST is the column length, which is discussed in this paper.

Comment M2). Very little mention is made of the physical snow properties that govern actual avalanches
or even the stability test (Propagation Saw Test or PST) that is being modeled. For example, it is well known
that thick persistent weak layers are strongly anisotropic, with much weaker shear strength than compressive
strength (Reiweger and Schweizer , 2010, 2013).
Answer to comment M2). We do not agree. In fact, we describe the effect of snowpack properties (slab
Young’s modulus E, slab tensile strength σt slab thickness D, slab density ρ, slope angle ψ, WL thickness
DWL) on PST results (propagation speed and distance) and by extension on avalanche release through a very
detailed parametric analysis (Sec. 3.2) and we even go further by taking into account the link between snowpack
properties (Sec 3.3). Concerning, the anisotropy, our modeled weak layer has obviously a strong anisotropic
shape leading also to a strongly anisotropic failure envelope. Furthermore, we clearly state in Sec. 2.2.3 that
we carried out mixed mode shear compression loading tests in Gaume et al. (2014) of the WL to assess its
failure envelope. Its failure envelope is strongly anisotropic with effectively much weak shear strength than
compressive strength as shown in Gaume et al. (2014).

In order to make this point even clearer, we will add a new figure (see Fig. 6 below) to clearly show the
anisotropic failure envelope of the modeled WL. In addition, we will refer to “anisotropic” in the context of the
failure envelope in this section.

Comment M3). It is also well known that there is very often a distinct difference in both hardness and grain
size between the slab and the weak layer (e.g. Schweizer and Jamieson, 2007; DeVito et al., 2013), with the
weak layer often having larger grainsthe opposite of what was modeled. These important physical foundations
of the avalanche problem seem to have not been considered in the numerical study, though they could have and
indeed should have for such a discrete modeling exercise.



Figure 6: Failure envelope of the modelled WL obtained from mixed-mode shear-compression loading tests.

Answer to comment M3). The grain size of the slab has no importance on the simulation. It was chosen large
enough for computational reasons and small enough to not cause size-effects. The only important parameters
for the slab are the resulting macroscopic (or bulk as the reviewer says) Young’s modulusE and tensile strength
σt. Similarly, for the weak layer, we could have achieved the same macroscopic (or bulk) failure envelope with
different grain sizes by adapting the bond strength. Please, see also our new paragraph in Section 2.2.1 provided
in the Appendix (see below).

Comment M4). No mention is made of why the particular triangular stacking scheme for building the weak
layer was chosen, nor for whether this gives the weak layer any anisotropy. Indeed, the word anisotropy does
not appear even once in the manuscript, yet this is a fundamental characteristic of avalanche weak layers.
Answer to comment M4). It is clearly stated in our manuscript that the “WL is composed of (..) a complex
packing of collapsible triangular forms aimed at roughly representing the porous structure of persistent WLs
such as surface hoar or depth hoar”. Such a structure has a strongly anisotropic failure envelope. However,
as stated above, a new figure (Fig. 6) will be added to clearly show this anisotropy and a small paragraph
will be also added to even better justify the choices made with regard to field and laboratory experiments on
the failure of weak snow layers. Indeed, it was recently observed in field and laboratory experiments that the
shear strength decreases with increasing compressive stress (Reiweger et al., 2015; Chandel et al., 2015). This
very important feature can be reproduced with the used WL structure. The chosen WL structure allows to have
different modes of failures (tension, shear, compression and mixed-mode) such as real weak snow layers and
thus has the essential characteristics to model slab avalanche release. In addition, the word “anisotropy” will
also be added to characterize the failure envelope which is weaker in shear than in compression.

Comment M5). I am not convinced that any of the physical insights gleaned from the numerical sensitivity
study are meaningful because little attention was given to the physical foundation of the model setup.
Answer to comment M5). We do not agree. In contrary, most of the essential physical ingredients relevant
to dry-snow slab avalanche release have been considered (elasticity of the slab, possible tensile failure of the
slab, collapsible and anisotropic nature of the WL with a failure envelope allowing different failure modes). We
do not see any other model that accounts for so many of the relevant ingredients as well as dynamic effects on
the same time. This model is the first to reproduce not only qualitatively but also quantitatively the propagation
speed and distance of field PST with such a good accuracy without any fitting of the model parameters (we
recall that the contact properties have been calibrated in order to obtain the proper macroscopic/bulk properties,
see also our new paragraph 2.2.1 provided in Appendix). We strongly contend that the underlying processes and
physics of avalanche release are extremely well reproduced by our model as also shown by the good agreement
between model and experimental results.

Comment M6). Regarding the model formulation (Section 2.2.2.): the spherical grains used in the slab (1
cm) are about an order of magnitude larger than the typical snow grains in a natural snow slab. Although you
can tune the density in the model to match the bulk density that you are interested in, this is only relevant for



getting the overall gravitational loading correct. This completely ignores the number and strength of bonds and
contacts in the discrete slab assembly, which is what is actually important from the perspective of slab stiffness,
bulk strength, and the ability to propagate a stress wave.
Answer to comment M6). There seems to be, as stated in the very beginning of our reply, a misunder-
standing by the reviewer on this part. In contrast to what the reviewer thought, we did not only get the over-
all gravitational loading correct, but also the stiffness (Young’s modulus) and the macroscopic (bulk) tensile
strength. Indeed, we performed numerically classic biaxial tests to derive the macroscopic (bulk) quantities
from the grain-grain contact properties and validate the analytical relationship. The quantities that are pre-
sented throughout the paper (density ρ, Young’s modulus E and tensile strength σt) are the macroscopic (bulk)
quantities which were derived from the microscopic ones. This was already clearly stated in the manuscript
in section 2.2.3 (Quote from our paper: “First, the macroscopic properties of the slab have to be determined
as a function of the microscopic properties of the bond. Hence, bi-axial tests were carried out and allowed to
determine the macroscopic Youngs modulus of the slab as a function of the bond stiffness”). Besides, we recall
that the size of the slab grains has no physical meaning, it is an entity of discretization. It was chosen large
enough for computational reasons and small enough to avoid size effects. The slab should be seen, contrary to
the weak layer, as a continuous material, discretized using the DEM and whose important parameters are the
resulting macroscopic (bulk) Young’s modulus and tensile strength. The method is commonly used to study
the fracture of concrete under high loading rates (e.g. Hentz et al., 2004). Please, see also our new paragraph in
Section 2.2.1 provided in the Appendix.

Comment M7). Instead of focusing solely on getting the bulk density correct, and then assuming that the
model is valid, there are a number of other ways that you could set up and validate such a model. As mentioned
above, a numerical hardness test should give similar values as in a real slab. Since you’re interested in slab
fracture as a mechanism of fracture arrest, then you should also conduct some bulk strength tests to confirm
that the tensile strength of the slab as a whole (not the individual bonds) corresponds with published strength
values (e.g. the actual scale of beam experiments such as Sigrist et al. (2005) could be simulated to validate
your model).
Answer to comment M7). We actually performed classical bulk tests which are way more informative from a
mechanical point of view than the ones (hardness and bulk strength tests) the reviewer suggests. We did biaxial
tests which are the most classical (triaxial in 3D) tests to derive macroscopic (bulk) quantities such as Young’s
modulus and strength from contact properties. This well defined test (biaxial) is one of the basic tests in soil
mechanics but not very well-known in the snow and avalanche community.

Comment M8). Although widely used, the density is not an appropriate proxy for the strength and mi-
crostructure of snow, a fact that has been recognized for decades (Mellor , 1975; Shapiro et al., 1997). It’s a
shame not to recognize this given that this sort of discrete model setup holds such promise for moving beyond
the limitations of density as the sole and predominant proxy measure in snow mechanics.
Answer to comment M8). We recall once again that our model is not meant to reproduce the full microstruc-
ture of the slab (impossible at the scale of a PST), which is viewed here as a continuous material. We thus
need to use proxys to evaluate the strength of this layer. For slab layers that are rather uniform, it has been
shown that the density was an excellent proxy for Young’s modulus and tensile strength as shown in McClung
(1979); Jamieson and Johnston (1990); Scapozza (2004); Sigrist (2006). Furthermore, recently, Hagenmuller
et al. (2015) showed, using microstructure-based discrete element modeling that the microstructure (snow type)
had very little influence on the compressive behaviour of snow and that density was the best proxy.

Comment M9). Figure 12 makes my point here. You are modeling a slab with a bulk density of 250 kg/m3, for
which Eq. 4 suggests you should have a tensile strength of around 10 kPa. Of course, this equation came from
bulk snow strength measurements from beam bending experiments, but you are using it for an ice grain contact
law. In any case, the tensile fracture in your experiment, which originates at the top of the beam somewhere
between the 5th and 6th panel in the figure, occurs when the tensile stress at the top of the beam is on the order
of 100 kPa. So your bulk slab strength is an order of magnitude too high. You should be constructing the model
such that your bulk model results agree with bulk snow measurements, which is not the approach you have
taken here.



Answer to comment M9). Actually, for this point, the reviewer was misled by a mistake we made in Fig.
12. This mistake was also noticed by the first reviewer. The scale is of course not ×105 but ×103. We are
sorry for this mistake but this answers the reviewer’s concern since the slab effectively breaks in tension for a
stress σxx = σt = 10 kPa as predicted by Eq. 4. We recall here that the tensile strength values reported in our
study are the macroscopic (bulk) values. The correction of this error in Fig. 12 plus the many amendments that
will be made to our paper according also to comments by reviewer #1 will clarify this issue of the link between
microscopic (contact) and macroscopic (bulk) properties.

Comment M10). In the absence of any such rigorous validation exercise, the results of the present study
amount to the use of a highly tunable model to reproduce a particular phenomenon, but not necessarily for the
right physical reasons
Answer to comment M10). As stated above, none of the model parameters were “tuned” to get a good agree-
ment with field data. The proper bulk properties of the slab (Young’s modulus E, tensile strength σt, density ρ)
and of the WL (failure envelope) were obtained by calibrating the contact bond properties as classically done
to model concrete fracture (e.g. Hentz et al., 2004).

Specific comments

Comment m1). A distinction should be made between thick, collapsible weak layers of the type considered in
this study and weak interfaces between adjacent layers, that may not be collapsible beyond grain scale effects
that are relatively unimportant in the energy balance. The latter type is also responsible for slab avalanche
activity, and this type of weakness is usually not amenable to performing the PST. The results of the present
study, and any conclusions you attempt to draw about avalanches in general from this sort of exercise, are
limited to the former case. This should be explicitly stated.
Answer to comment m1). We do not see the point of distinguishing these different layers. A perfect interface
does not exist in reality. The local breaking of bonds will always induce locally a volumetric response. It is not
because you don’t see it that it does not exist. The only reason why a PST could not be performed is that the
thickness of the weak layer is lower than the thickness of the saw but this should not be a reason to distinguish
between these layers. If we focused our paper on cases for which the bending of the slab is important, our
approach could still be used in cases with much lower amplitudes of bending. This information will however
be added to our paper in the discussion.

Comment m2). Why the focus on crack speed and propagation distance in the paper? I don’t understand
the motivation for choosing these two metrics. What about the cut length? The cut length is the primary
measurement in the field test, so why not more discussion of this in the model? Especially important would be
any slope angle dependence on the cut length
Answer to comment m2). We focused on the dynamic phase of crack propagation and our motivations are
clearly stated in the abstract and introduction (the dynamic phase is not very well documented and understood).
Of course our model also allows to obtains the conditions for the onset of crack propagation i.e. to obtain the
critical length but this will be the subject of a further paper, focused only on the onset phase. We presented
these results in the last European Geoscience Union (Gaume et al., 2015) and the paper is in preparation.

Comment m3). It would actually be possible, and very interesting, to characterize the hardness of the discrete
slab and weak layer assemblies by performing proxy numerical measures of cone (Johnson and Schneebeli ,
1999; Schneebeli et al., 1999, e.g.) or blade penetration (Borstad and McClung, 2011) resistance. This seems
obvious to me since you are essentially performing the same kind of experiment by indenting your weak layer
with a numerical saw. Can you report the reaction force encountered by this saw in the model? This sort of
metric would help to test and calibrate the method of choosing the discrete grain size and contact/cohesive law
parameters.



Answer to comment m3). As already stated in the main comments, we performed more powerful tests than
cone penetration tests to characterize the hardness of our assemblies (biaxial tests). However, we agree, that, in
the future, modelling for example a Snow Micro Pen (SMP) in a discrete assembly would surely help to better
interpret SMP field results. This will be a part of our future modelling efforts. However, for this purpose, the
microstructure of the snow will have to be reconstructed from microtomographic images such as in Hagenmuller
et al. (2015) since the physical processes at play leading to the SMP signal result from different and much
smaller scales than those presented in this study.

Comment m4). In the PST, slab fractures and the associated arrest are almost always within several slab
thicknesses ahead of the saw, which is precisely the location of the maximum tensile stress at the surface of
the slab (which can be shown via the same beam theories that you reference, but you see the same thing in
Figure 7). This indicates that the fracture arrest is rather a structural arrest caused by the bending induced by
the saw cut, that in turn fractures the slab. In other words, it is an artefact of the test itself, and may not be
fundamental in actual avalanches (the en-echelon style of fracturing may be a specialized exception). This is
also important because the collapse occurs after the propagation of the initial localized fracture (Reiweger et
al., 2015; McClung and Borstad, 2012). For these reasons I think it is important to also report the propagation
distance beyond the end of the saw, instead of (or in addition to) your new definition of propagation distance.
Answer to comment m4). Actually, except in very few cases in which the slab fracture is directly caused by
the bending induced by the saw cut (e.g. for very low slab densities in Fig. 9d and/or very low slab depth in
Fig. 9e), the slab fracture occurs during the dynamic crack propagation which is uninfluenced by the saw (the
onset of crack propagation could be induced by a skier for instance). In addition, even for an actual avalanche,
similarly the important distance for bending induced stress and for the avalanche size will be the distance from
the very first failure initiation point (whatever the nature of the initial trigger), to the location of the slab tensile
failure and not from the crack tip at the moment of the onset of crack propagation. We will consider this
interesting point by adding a new paragraph in the Discussion section. In addition, the distance between the
onset or crack propagation and slab tensile failure can be easily derived from the propagation distance which is
reported in our paper, since the critical length is also provided (Fig. 9). Adding this other distance to the graphs
would thus be redundant and would affect their clarity.

Comment m5). p 613, line 19: these do not appear to be snow dynamics references, yet are mentioned as
such
Answer to comment m5). The word “Snow” will be removed.

Comment m6). p 614, line 5: were the tests actually performed, or will they be in the future? confusing use
of tense here
Answer to comment m6). Thanks, the Discrete Element propagation saw tests have of course been performed
and the tense will be changed in this paragraph to clarify this.

Comment m7). a better schematic diagram is needed for the contact and cohesive law used in the model
Answer to comment m7). Done. See answer to reviewer # 1.

Comment m8). p 615, line 12: does this mean viscous effects are minimal? The discussion of the restitution
coeffcient, and the lack of sensitivity, are a bit confusing. If indeed this has to do with the influence of viscous
effects on the timescale of the simulated/actual PST, then this should probably be discussed further.
Answer to comment m8). The coefficient of restitution and globally viscous terms have no effects in our case
due to the presence of the cohesive part of the contact law. These effects are generally important for studies in
which new contacts/collisions occur. In our case, the results are mostly driven by bond breaking which explains
why the coefficient of restitution has no influence on the presented results. This will be clarified.



Comment m9). Section 2.2.3, first paragraph: this is not a very clear description, and the reference to
the protocol is not peer reviewed. Perhaps some of this addresses my concerns about model setup, but this
cannot be judged from this short and confusing paragraph. The rest of the paragraph discusses how various
parameters are determined for the model (tensile strength, Young’s modulus), but the references are for bulk
snow measurements, whereas it seems that a discrete model that explicitly simulates ice bonds should be using
parameters for pure ice.
Answer to comment m9). We completely agree that this section might be the one that has been misleading
for the reviewer about the link between macroscopic (bulk) and contact (bond) properties and thus might need
clarifications. This paragraph will be more detailed. We will add, as stated before more details about the mixed-
mode shear-compression loading tests performed to obtain the failure envelope of the WL and we will add a
figure describing it (Fig. 6 of the reply). However, we do not think that it is worth adding more details about
the biaxial test protocol since it is a classic test which allows to obtain the macroscopic (bulk) properties of a
material. In addition, to answer the last comment, we would have to use pure ice parameters for the grain if the
snow was reconstructed directly from its microstructure, similarly to what Hagenmuller et al. (2015) did. In
our case, as we work at a larger scale (see new paragraph in Appendix), we rather cared about getting the bulk
properties correct.

Comment m10). p 620, lines 20-22: the stress in a bending slab or beam depends on where within the beam
you are interested. I understand from the context that you are interested in the maximum tensile stress at the
tensile face of the beam, but you need to explicitly state this for the reader.
Answer to comment m10). This will be stated more explicitly.

Comment m11). p 629, 3rd paragraph: this is far too late in the paper to introduce the weak layer structure
used in the model. This should come in the model description/setup, along with a justifcation for how and why
you build the granular weak layer as you do.
Answer to comment m11). The WL structure was already described in the “Formulation of the model”
paragraph (p. 614, l. 14). However, the WL structure will be described in more detail as also suggested by
reviewer # 1 by showing a zoom on the WL, instead of Fig. 4b (the contact will be describe more precisely by
the new figure showing the contact model, see comment 3) by reviewer #1).

Comment m12). p 630, line 2: if the analysis is preliminary and incomplete, then leave it out.
Answer to comment m12). We remove “preliminary” and “still incomplete” as now our first results on
the subject are quite clear. We prefer to leave this in the Discussion as it clearly informs the reader that the
propagation speed we get from the simulations and the experiments is the propagation speed of the collapse
wave but may be different from the “real” propagation speed. This is very important to consider for future
research in this field.

Comment m13). Table 2: it seems that a DEM setup should use ice parameters for strength and stiffness
rather than bulk snow values, such that the bulk model setup should reproduce the bulk snow parameters.
Putting in bulk snow values for the ice bonds and trusting the bulk response of the model seems like a backward
approach. Finally, how can you specify the tensile strength of the weak layer (1.6 kPa to such precision? This
seems arbitrarily precise. How sensitive is the model to this parameter?
Answer to comment m13). As stated before and explained in our new paragraph (see the Appendix), we did
not use either the bulk ice or the bulk snow parameters for the DEM setup (contact parameters). The contact
parameters were calibrated to get the correct macroscopic parameters. This approach is commonly followed to
model fracture of concrete (Hentz et al., 2004). In addition, as also stated before and as stated in the text, we
performed mixed-mode shear-compression loading tests to get the failure envelope of the weak layer. To get
the tensile strength, we performed a test for a loading angle of 180 degrees (pure tension test). However, there
was a small misprint in the value of the WL tensile strength which is 0.6 kPa and not 1.6 kPa, as shown by the
new figure (Fig. 6, tensile strength corresponding to the strength for a zero shear strength and a loading angle
of 180 degrees). This global amplitude of the failure envelope was chosen such as that the WL did not fail in
compression under the self weight of the slab ρgD ∈ [200 Pa; 700 Pa] (compressive strength = 750 Pa, see the



new figure of the failure envelope for a zero shear stress and and a zero loading angle.) and that it allows crack
propagation. This information will also be added to the paper to clarify this point. Concerning the sensitivity
of the model to this parameter and more generally to the failure envelope, please see the last paragraph of the
answer to comment 4) of reviewer #1.

Comment m14). Table 3: which tensile strength is varied in the sensitivity analysis? Slab or weak layer, or
both?
Answer to comment m14). Thanks for this remark. This is the slab tensile strength. It will be added to the
table caption.

Comment m15). Figure 1: this figure has been published already many times. Are there not any other surface
hoar pictures available?
Answer to comment m15). This picture is the best we found to justify our simplified structure for the weak
layer.

Comment m16). Figure 3: this is for an actual PST measurement in the field? This is not clear from the
caption. More descriptive detail is needed.
Answer to comment m16). Thanks for this remark. We agree this was not clear. This is for the field PST.
More details will be added to the caption.

Comment m17). Figure 4: the contact bond model schematic needs explanation. What is A and B? Are you
really using spheres of different size? If not, this is misleading. What is the shaded area, and the dashed lines?
Answer to comment m17). This figure will be removed and replaced by a more detailed figure of the contact
law as suggested by both reviewers. Instead, we will add a zoom on the weak layer structure.

Comment m18). What are the properties of the foundation below the weak layer? A completely rigid founda-
tion should lead to different response than a deformable foundation. This could also be explored in a sensitivity
analysis, and might be revealing.
Answer to comment m18). The substratum is completely rigid as clearly stated in section 2.2.2 line 10 as
well as in the caption of Figure 4. We agree that it could also be interesting to study the effect of the elasticity
of the substratum but we think - given the present breadth of our paper - this is beyond the scope. Furthermore,
PST field measurement show (van Herwijnen et al., 2010) that the deformation is mainly located in the slab and
in the WL. Almost no displacements were recorded in the substratum which justifies our assumption.

Comment m19). Figure 12: what are the dashed vertical lines and tick marks in the panels? These are not
labelled or explained, yet presumably they represent something...
Answer to comment m19). Thanks for this remark. The dashed lines represent the position of the crack tip
and the schematic of the crack represent the slab tensile failure. This will be added to the figure caption.

Appendix: new paragraph in section Motivation and objectives

The new parts of the paragraph are highlighted in blue.

(...) The latter processes are generally modeled under a continuum mechanics frame work, using methods
such as finite elements (Podolskiy et al., 2013, and references therein). While these methods can be used to
assess the stability of a layered snow cover, i.e. determine the conditions of failure occurrence and the onset of
crack propagation, they are less suited to study what occurs after failure, i.e. during the dynamic phase of crack
propagation, due to a lack in relevant constitutive models for the WL, including softening, and thus a loss of
objectivity with respect to the mesh in dynamic problems.



The objective of the proposed approach is to use the discrete element method (DE) to study the dynamic
phase of crack propagation in a weak snowpack layer below a cohesive slab. The DE method is adequate for
our purpose because: 1) no assumption is made about where and how a crack can be formed and propagate,
and 2) the material is naturally discontinuous and well adapted to dynamic issues. We will show that, this
method allows us to capture all the main physical processes involved in the release of dry slab avalanches,
namely the complex mechanical behavior of the weak layer and the interplay between basal crack propagation,
slab bending, and slab fracture. However, an important preliminary issue to address, concerns the scale of the
considered model. In the weak layer, we intend to represent, through a simplified description, the particular
collapsible and highly porous micro-structure of the snow in order to be able to reproduce the main features of
the failure envelope of this material. As will be shown, we achieve this by using triangular-shaped elements of
centimeter size. To account for the possible breakage of these elements, they consist of small cohesive grains
of size rwl. In the slab, on the contrary, due to computational costs, it would be completely unrealistic to try to
account for the complete microstructure of the snow at the scale of a real slope or even at the scale of a field test
such as the PST. The slab is thus modeled as a continuous material with an elastic-brittle constitutive behavior.
Yet, similar to what is classically done for concrete (Meguro and Hakuno, 1989; Kusano et al., 1992; Camborde
et al., 2000; Hentz et al., 2004), for instance, the response of this layer to the dynamic propagation of failure in
the WL is also computed with the DE method. In that case, however, the considered elements (grains of size r)
have no physical meaning and should only be regarded as entities of discretization similar to the mesh size in
FE models. The contact parameters need to be properly calibrated (through classical biaxial tests, for instance)
in order to recover the correct macroscopic properties of the material. Other continuous methods, such as FE,
could have been used to simulate the slab, but - apart from avoiding the non-trivial issue of coupling DE and
FE regions - the use of DE is well suited to represent the large deformations involved in the bending of the slab
and the spontaneous formation of the tensile fracture.

To summarize, we contend that, unlike in other DE applications which are at the scale of the microstructure
(e.g. Cundall (1989); Iwashita and Oda (2000) for frictional granular materials or Hagenmuller et al. (2015)
for snow), the grains involved in the DE model developed in this study should not be regarded as snow grains,
and that both rwl and r are only discretization scales whose choice will result from a compromise between
resolution and computational cost as classically done to model concrete fracture (Hentz et al., 2004). We
consider here a meter-scale model where the advantage of the DE method is its ability to mimic the poorly-
known mechanical response of the weak layer and to account for the different modes of failure displayed by
snow (shear, compression, tension). The only microstructural scale directly accounted for is the size of the
triangular elements in the weak layer, which are on the same order as the weak layer thickness, since it is a
necessary ingredient for reproducing the particular mechanical behavior of this layer.
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