
Manuscript prepared for The Cryosphere
with version 2014/05/22 6.83 Copernicus papers of the LATEX class coperni-
cus.cls.
Date: 8 June 2015

Modeling of crack propagation in weak snowpack layers using the
discrete element method
Johan Gaume1, Alec van Herwijnen1, Guillaume Chambon2,3, Karl W. Birkeland4, and Jürg Schweizer1

1WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
2Irstea, UR ETGR, Grenoble, France
3Université Grenoble Alpes, Grenoble, France
4USDA Forest Service National Avalanche Center, Bozeman, MT, USA

Correspondence to: Johan Gaume (gaume@slf.ch)

Abstract. Dry-snow slab avalanches are generally caused by
a sequence of fracture processes including (1) failure initi-
ation in a weak snow layer underlying a cohesive slab, (2)
crack propagation within the weak layer and (3) tensile frac-
ture through the slab which leads to its detachment. During5

the past decades, theoretical and experimental work has grad-
ually led to a better understanding of the fracture process
in snow involving the collapse of the structure in the weak
layer during fracture. This now allows us to better model fail-
ure initiation and the onset of crack propagation, i.e. to esti-10

mate the critical length required for crack propagation. On
the other hand, our understanding of dynamic crack prop-
agation and fracture arrest propensity is still very limited.
To shed more light on this issue, we performed numerical
propagation saw test (PST) experiments applying the dis-15

crete element (DE) method and compared the numerical re-
sults with field measurements based on particle tracking. The
goal is to investigate the influence of weak layer failure and
the mechanical properties of the slab on crack propagation
and fracture arrest propensity. Crack propagation speeds and20

distances before fracture arrest were derived from the DE
simulations for different snowpack configurations and me-
chanical properties. Then, in order to compare the numeri-
cal and experimental results, the slab mechanical properties
(Young’s modulus and strength) which are not measured in25

the field, were derived from density. The simulations nicely
reproduced the process of crack propagation observed in field
PSTs. Finally, the mechanical processes at play were anal-
ysed in depth which led to suggestions for minimum column
length in field PSTs.30

1 Introduction

Dry-snow slab avalanches result from the failure of a weak
snow layer underlying cohesive slab layers. The local dam-
age in the weak layer develops into a crack which can expand
if its size exceeds a critical length or if the load exceeds a crit-35

ical value. Finally, crack propagation leads to the tensile frac-
ture of the slab and ultimately, avalanche release (McClung,
1979; Schweizer et al., 2003). During the past decade, our
understanding of the fracture process in snow has gradually
evolved through the development of new theories as well as40

various field observations and experiments. The propagation
saw test (PST), concurrently developed in Canada (van Her-
wijnen and Jamieson, 2005; Gauthier and Jamieson, 2006)
and Switzerland (Sigrist and Schweizer, 2007), consists in
isolating a snow column and initiating a crack of increas-45

ing length in the weak layer with a snow saw until the onset
of rapid self-propagation of the crack. The PST allows ob-
servers to determine the critical crack length and evaluate
crack propagation propensity. This field method has high-
lighted the importance of slab bending (due to the collapsi-50

ble nature of weak snow layers) on crack propagation (e.g.
van Herwijnen et al., 2010; van Herwijnen and Birkeland,
2014). On the other hand, theoretical and numerical mod-
els, based on fracture mechanics or strength of material ap-
proaches, were developed to investigate crack propagation55

and avalanche release (McClung, 1979; Chiaia et al., 2008;
Heierli et al., 2008; Gaume et al., 2013, 2014b). While sub-
stantial progress has been made, application with regard to
avalanche forecasting or hazard mapping is still hindered
in part by our lack of understanding of the dynamic phase60

of crack propagation. For instance, based on practitioners’
experience, it is not uncommon to perform PST field mea-
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Figure 1: (a) Typical slab - weak layer configuration suitable
for avalanche release. The weak layer is composed of surface
hoar which is intact on the right and partially ruptured on the
left. © ASARC from Jamieson and Schweizer (2000). (b)
Zoom on a surface hoar crystal © ASARC.

surements with widespread crack propagation on one day,
while a few days later, with seemingly very little changes in
snowpack properties, cracks will no longer propagate (Gau-65

thier and Jamieson, 2008). Thus far, there is no clear the-
oretical framework to interpret such observations, and it is
not clear how and which snowpack properties affect dy-
namic crack propagation. This limitation is due to the com-
plex microstructure of snow and its highly porous character70

(Fig. 1) which are not taken into account in the continuous
approaches previously mentioned.

In this paper, numerical experiments of the propagation
saw test (PST) are performed by applying the discrete ele-
ment (DE) method which allows us to mimic the high poros-75

ity of snow. The goal is to investigate the influence of weak
layer failure and the mechanical properties of the slab on
crack propagation. In a first section, field data as well as
the proposed model are presented. Then, crack propagation
speed and distance before fracture arrest are derived from80

the DE simulations using the same method as for the field
experiments (particle tracking). In a parametric analysis, we
show the influence of single system parameters on the crack
propagation speed and distance. Finally, the interdependence
of snowpack properties is accounted for in order to compare85

numerical and experimental results and the mechanical pro-
cesses leading to fracture arrest are analysed.

2 Data and methods

2.1 PST field data

Since the winter of 2004-2005, we collected data from 12190

PST experiments at 46 different sites in Canada, USA and
Switzerland (van Herwijnen and Jamieson, 2005; van Her-
wijnen and Heierli, 2009; van Herwijnen et al., 2010; Bair
et al., 2012; van Herwijnen and Birkeland, 2014; Birkeland
et al., 2014). At each site, we collected a manual snow pro-95

file and conducted one or several PSTs according to the pro-
cedure outlined in Greene et al. (2004). In many cases we

Figure 2: Schematic drawing and picture of the propagation
saw test (PST). The black dots are markers used for particle
tracking in order to measure the displacement of the slab. The
column length is denoted L. Adapted from van Herwijnen
et al. (2010).

used longer (than standard) columns to allow us to better in-
vestigate crack propagation. After columns preparation, we
inserted black plastic markers into the pit wall and used a100

digital camera on a tripod to make a video recording of the
PST (Fig. 2). We used a particle tracking velocimetry (PTV)
algorithm to analyze the motion of the markers and thus the
displacement of the snow slab above the weak layer (Crocker
and Grier, 1996). In this way, the position of the markers in105

each video frame can be determined with a mean accuracy of
0.1 mm. The displacement of a marker is then defined as the
movement relative to its initial position, that is, the average
position of the marker prior to movement. For propagating
cracks, there is a delay between the vertical displacement of110

subsequent markers. A typical displacement time-evolution
for a propagating crack is shown in Fig. 3 for four slab mark-
ers. As explained in van Herwijnen and Jamieson (2005), the
time delay between the onset of movement between markers
is proportional to the distance between the markers and was115

used to calculate the propagation speed c of the fracture see
also Appendix A).

2.2 Discrete element model

2.2.1 Motivation and objectives

Discrete element (DE) modeling (Cundall and Strack, 1979)120

allows computing the motion of a large number of small
grains by solving dynamic equations for each and defining
a contact law between the grains. In addition, the DE method
allows assessing mechanical quantities such as stress, dis-
placement, deformation rate, porosity, etc. computed over125

representative elementary domains at each material point
within the sample. Experimentally, this would be an impos-
sible task. Hence, using DE, the mechanical and rheologi-
cal behavior of the material can be explored locally, regard-
less of the spatial heterogeneities possibly displayed by the130

structure of the material and its mechanical quantities. This
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Figure 3: Temporal evolution of the measured vertical dis-
placement ∆y for a slab density of ρ= 240 kg/m3 obtained
through PIV analysis of the marker’s displacement from a
field experiment. The different curves correspond to different
horizontal positions in the slab, from the left-end (x= 0.1 m)
to the right-end (x= 2.1 m).

method can thus help to better understand physical processes
at play in granular assemblies. The DE method has been
widely used to study the flow of granular materials within
industrial (e.g. Chaudhuri et al., 2006; Sarkar and Wassgren,135

2010) or environmental applications such as avalanche dy-
namics (e.g. Rognon et al., 2008; Faug et al., 2009). How-
ever, to our knowledge, discrete elements have never been
used to model crack propagation in layered systems or to de-
scribe slab avalanche release processes. The latter processes140

are generally modeled under a continuum mechanics frame-
work, using methods such as finite elements (Podolskiy et al.,
2013, and references therein). These methods can be used to
assess the stability of a layered snow cover, i.e. determine the
conditions of failure occurrence and the onset of crack prop-145

agation. However, they are less suited to study what occurs
after failure, i.e. during the dynamic phase of crack propaga-
tion, due to a lack in relevant constitutive models for the WL,
including softening which induces a loss of objectivity with
respect to the mesh in dynamic problems.150

The objective of the proposed approach is to use the dis-
crete element method (DE) to study the dynamic phase of
crack propagation in a weak snowpack layer below a cohe-
sive slab. The DE method is adequate for our purpose be-
cause: 1) no assumption needs to be made about where and155

how a crack forms and propagates, and 2) the model material
is inherently discontinuous and well adapted to dynamic is-
sues. We will show that, this method allows us to capture
all the main physical processes involved in the release of
dry-snow slab avalanches, namely the complex mechanical160

behavior of the weak layer and the interplay between basal
crack propagation, slab bending, and slab fracture.

However, an important preliminary issue to address con-
cerns the scale of the considered model. In the weak layer,
we intend to represent, through a simplified description, the165

particular collapsible and highly porous micro-structure of
the snow in order to be able to reproduce the main features
of the failure envelope of this material. As will be shown,
we achieve this by using triangular shapes of centimeter size.
To account for the possible breakage of these elements, they170

consist of small cohesive grains of size rwl. In the slab, on the
contrary, due to computational costs, it would be completely
unrealistic to try to account for the complete microstructure
of the snow at the scale of a real slope or even at the scale of a
field test such as the PST. The slab is thus modeled as a con-175

tinuous material with an elastic-brittle constitutive behavior.
Yet, similar to what is classically done for concrete (Meguro
and Hakuno, 1989; Kusano et al., 1992; Camborde et al.,
2000; Hentz et al., 2004), the response of this layer to the
dynamic propagation of failure in the WL is also computed180

with the DE method. In that case, however, the considered
elements (grains of size r) have no physical meaning and
should only be regarded as entities of discretization similar
to the mesh size in FE models. The contact parameters need
to be properly calibrated (through classical biaxial tests, for185

instance) in order to recover the correct macroscopic proper-
ties of the material. Other continuous methods, such as FE,
could have been used to simulate the slab, but – apart from
avoiding the non-trivial issue of coupling DE and FE regions
– the use of DE is well suited to represent the large deforma-190

tions involved in the bending of the slab and the spontaneous
formation of the tensile crack.

To summarize, we contend that, unlike in other DE appli-
cations which are at the scale of the microstructure (e.g. Cun-
dall (1989); Iwashita and Oda (2000) for frictional granular195

materials or Hagenmuller et al. (2015) for snow), the grains
involved in the DE model developed in this study should not
be regarded as snow grains, and that both rwl and r are only
discretization scales whose choice will result from a com-
promise between resolution and computational cost as clas-200

sically done to model concrete fracture (Hentz et al., 2004).
We consider here a meter-scale model where the advantage
of the DE method is its ability to mimic the poorly-known
mechanical response of the weak layer and to account for the
different modes of failure displayed by snow (shear, com-205

pression, tension). The only microstructural scale directly ac-
counted for is the size of the triangular elements in the weak
layer, which are on the same order as the weak layer thick-
ness, since it is a necessary ingredient for reproducing the
particular mechanical behavior of this layer.210

2.2.2 Formulation of the model

Software The discrete element simulations were performed
using the commercial software PFC2D (by Itasca), which
implements the original soft-contact algorithm described in
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Figure 4: (a) Simulated system of the Propagation Saw Test (PST) composed of a slab, a weak layer and a rigid (fixed)
substratum. The column is 2 m long. (b) Zoom on the weak layer structure. The blue lines represent the weak layer bonds.

kn (N/m) kn/ks µ e

1× 104 2 0.5 0.1

Table 1: Mechanical parameters used in the simulations for
the contact law. kn: normal contact stiffness; ks: tangential
contact stiffness; µ: intergranular friction; e: normal restitu-
tion coefficient.

Cundall and Strack (1979).215

Simulated system The simulated system (see Fig. 4a) is
two dimensional and is composed of a completely rigid
(fixed) basal layer, a WL of thickness Dwl and a slab of
thickness D which were varied in the simulations. The220

slab is composed of grains of radius r = 0.01 m with a
primitive square packing. The porosity of the slab is equal
to 21%. Hence the density of the slab ρ can be adjusted by
changing the grain density ρp,s (varied in the simulations).
The WL is composed of grains of radius rwl = r/2 with225

a complex packing of collapsible triangular forms (see
Fig. 4b) aimed at roughly representing the porous structure
of persistent WLs such as surface hoar or depth hoar.
The porosity of the WL is 70% and the density of the
WL grains is ρp,wl = 400 kg/m3, leading to a WL density230

ρwl = 120 kg/m3. The length of the system (column length)
is L= 2 m and the slope angle is denoted ψ. As mentioned
above, the numerical grains are not intended to represent
the real snow grains which are obviously smaller and have
a different density. Nevertheless, as will be shown, this set235

up allows to capture the main features observed in field PSTs.

Loading The loading is applied by gravity and by advancing
a “saw” (in red on Fig. 4a) at a constant velocity vsaw = 2
m/s through the weak layer. This saw is composed by rigid240

walls and has approximately the same thickness as field
saws hsaw = 2 mm. The saw velocity was chosen relatively
high to decrease the computational time, but lower than the
lowest crack propagation speed observed in the field so as to
correctly distinguish crack propagation from saw movement.245

Contact law The cohesive contact law used in the simula-
tions is the PFC parallel bond model represented schemati-

kn (Pa/m) kn/ks σt (kPa) σt/σs

slab 1× 103 − 1.5× 106 2 0-20 2
WL 8× 105 2 0.6 2

Table 2: Mechanical parameters used in the simulations for
the cohesive law. kn: bond normal stiffness; ks: bond shear
stiffness. σt: macroscopic tensile strength; σs: macroscopic
shear strength.

cally in Fig. 5a. The cohesive part acts in parallel to the clas-
sical linear contact law (Radjai et al., 2011; Gaume et al.,250

2011). For the linear component (in grey in Fig. 5a), the nor-
mal force is the sum of a linear elastic and of a viscous con-
tribution (spring-dashpot model), and the tangential force is
linear elastic with a Coulombian friction threshold. The cor-
responding mechanical parameters, namely the normal and255

shear stiffness kn and ks (elasticity parameters), the resti-
tution coefficient e (viscous parameter) and the friction co-
efficient µ are summarized in Tab. 1. The value of the nor-
mal stiffness kn was chosen in such a way that the normal
interpenetration at contacts are kept small, i.e. to work in260

the quasi-rigid grain limit (da Cruz et al., 2005; Roux and
Combe, 2002). Concerning the normal restitution coefficient
e, we verified that the results presented below, and more
generally all the macroscopic mechanical quantities obtained
from the simulations, are actually independent of this param-265

eter (in the range 0.1 - 0.9). This is due to the presence of
the cohesive part of the contact law (see details below). In-
deed, the restitution coefficient might have a strong influence
for cases in which new contacts and collisions occur. In our
case, the results are mostly driven by bond breaking which270

explains why e has no influence on the results.
The cohesive component (in black in Fig. 5a) can be en-

visioned as a point of glue with constant normal and shear
stiffness kn and ks acting at the contact point. This bond has
a specified shear and tensile strength σbs and σbt . The maxi-275

mum tensile and shear stresses σmax and τmax at the bond
periphery are calculated via beam theory according to:

σmax =−Fn
A

+
||M ||rb
I

(1)
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Figure 5: (a) Schematic representation of the parallel bond contact model which is used. The bonded part is represented in
black while the unbonded part is represented in grey. (b) Bond normal force Fn as a function of normal interpenetration δn
between two grains. (c) Bond shear force ||Fs|| as a function of tangential interpenetration δs between two grains. (d) Bond
bending moment ||M || as a function of bending rotation θ between two grains.

τmax =
||Fs||
A

(2)280

where Fn and Fs are the bond normal and shear forces, M is
the bending moment, rb the bond radius, A= πr2b the bond
area and I = πr4b/4 its moment of inertia. If the tensile stress
exceeds the bond tensile strength, the bond breaks and both
the normal and shear contact forces are set to zero (Fig. 5b).285

If the shear stress exceeds the bond shear strength, the bond
also breaks (Fig. 5c) but the contact forces are not altered,
provided that the shear force does not exceed the friction
limit, and provided that the normal force is compressive. The
bond can also break if the bending moment exceeds σbt I/rb290

(Fig. 5d). The ranges of parameters used for the bond model
are summarized in Tab. 2.

As the two components are acting in parallel, the total stiff-
ness of the bonded contact is equal to the sum of the contact
stiffness kn and the bond stiffness kn:295

ktot = kn + kn. (3)

Finally, in our case of a square grain assembly, the Young’s
modulus can be derived analytically from kn and kn accord-
ing to:

E = 1
πrb

(
kn + kn

)
. (4)300

The contact stiffness kn was kept constant at 1× 104 N/m
and kn was varied between 1× 103 and 1.5× 106 N/m (for
the slab) leading to realistic values of the Young’s modulus
E between 0.35 and 50 MPa. It was verified from biaxial
tests that the macroscopic (bulk) Young’s modulus of the305

slab effectively follows this relationship due to the specific
(squared) structure of the slab.

Time step and elastic waves The time step was computed
classically as a function of the grain properties according to310

Figure 6: Failure envelope of the modelled WL obtained
from mixed-mode shear-compression loading tests. The an-
gle represented next to the data points is the slope angle, σWL

t

and σWL
c are the tensile and compressive strengths, respec-

tively.

∆t=
√
m/k ≈ r

√
ρ/E where m, ρ and r are the smallest

grain mass, density and radius and k and E the largest con-
tact/bond stiffness and Young’s modulus, respectively. The
choice of this time-step insures the stability of the algorithm
and that the crack propagation speed is lower than the speed315

of the elastic waves in the sample. The order of magnitude of
the speed of elastic waves in the sample is ce ≈

√
E/ρ.

2.2.3 Simulation protocol and illustration

First, the macroscopic properties of the slab have to be de-
termined as a function of the microscopic properties of the320

bond. For the slab, bi-axial tests were carried out which al-
lowed to validate that for a squared assembly, the macro-
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Figure 7: Snapshots of a PST numerical experiment. (a) Ini-
tial system t = 0.1 s, (b) onset of crack propagation t = 0.26
s, (c) dynamic propagation t = 0.28 s; (d) complete failure of
the WL t = 0.45 s.

scopic (bulk) Young’s modulus depends on bond stiffness ac-
cording to Eq. (4).

For the weak layer, similarly, simple loading tests were325

carried out to compute the macroscopic failure criterion
(mixed mode shear-compression) of the WL as a function
of the bonds of WL grains (Gaume et al., 2014a). The fail-
ure envelope of the WL is strongly anisotropic as shown in
Fig. 6. This failure envelope shows, for realistic values of330

the slope angle, a much lower strength in shear than in com-
pression as well as a decrease of the shear strength with in-
creasing normal stress. This type of behaviour is similar to
that reported in recent laboratory (Reiweger et al., 2015) and
field (Chandel et al., 2014) experiments on persistent weak335

snow layers. Hence, the chosen WL structure allows to have
different modes of failure (tension, shear, compression and
mixed-mode) such as observed in real weak layers and thus
has the essential characteristics to model the processes of
slab avalanche release.340

Then, PST simulations were performed. An illustration of
a simulation result highlighting the displacement wave of the
slab is shown in Fig. 7 and the associated vertical displace-
ment ∆y is represented in Fig. 8. The critical length is de-
noted ac and corresponds to the translation length of the saw345

required to obtain a self-propagating crack.
In order to determine the crack propagation speed, purely

elastic simulations (infinite tensile and shear strength of the
bonds between slab grains) were carried out. The propaga-
tion speed was computed using the same method as for field350

PSTs by analyzing the vertical displacement wave of the slab
(van Herwijnen and Jamieson, 2005). This procedure is pre-
sented in more detail in Appendix A.

Figure 8: Temporal evolution of the modeled vertical dis-
placement ∆y of the slab for a slab density ρ= 250
kg/m3.The different curves correspond to different horizon-
tal positions of the slab, from the left-end (x= 0 m) to the
right-end (x= 2 m).

Figure 9: Snapshot of a PST with fracture arrest due to tensile
crack opening in the slab induced by slab bending.

The propagation distance was computed by taking into ac-
count the possible failure of the slab by setting finite values to355

the tensile and shear strength of the slab (σt, σs). We define
the propagation distance as the distance between the left wall
of the system and the location where the tensile crack opens
at the slab surface, as shown in Fig. 9. This measure of the
propagation distance differs from that defined by Gauthier360

and Jamieson (2006) who defined it as the distance between
the point of onset of crack propagation in the WL and the
point of slab failure. However, we argue that the propagation
distance, as we define it, is a more suitable measure since
this is the one that influences the stresses in the slab and thus365

fracture arrest propensity. Similarly, for a real avalanche, the
important distance for the bending induced stress and for the
avalanche release size is the distance from the very first fail-
ure initiation point (whatever the nature of the initial trigger),
to the location of the slab tensile failure, and not from the370

crack tip at the moment of the onset of crack propagation.
For the parametric analysis (Sec. 3.2), we performed sim-

ulations for which only one system parameter was modified
while the other parameters were kept constant. The parame-
ters used are described in Tab. 3. However to apply these re-375

sults to slab avalanche release and in order to compare our re-



Gaume: Modeling of crack propagation 7

sults to field data (Sec. 3.3), existing relations between snow-
pack properties were taken into account. Hence, simulations
were performed for different slab densities with the Young’s
modulus varying according to an empirical exponential fit to380

the data reported by Scapozza (2004):

E = 1.873× 105e0.0149ρ, (5)

and with a tensile strength varying according to a power-law
fit to the data reported by Sigrist (2006):

σt = 2.4× 105
(

ρ

ρice

)2.44

(6)385

with ρice = 917 kg/m3.

3 Results

3.1 Displacement of the slab

The evolution of the vertical displacement ∆y of the slab is
represented in Fig. 8. In this figure together with the illustra-390

tion of the displacement wave of the slab (Fig. 7), one can
clearly observe the different processes acting before, during
and after crack propagation. First, slab bending occurs prior
to the onset of crack propagation and the dynamic propaga-
tion phase. These distinct phases (stable bending of the slab395

and crack propagation) are also clearly visible in the verti-
cal displacement ∆y, as shown in Fig. 8 for four different
horizontal positions in the slab.

Between 0 and 0.1 s nothing happens, then as the saw
advances, the vertical displacement slowly increases. This400

phase corresponds to the bending of the under-cut part of the
slab. Then, for t= 0.25 s approximately, the critical length
ac was reached and the displacement increases abruptly, even
beyond the saw, corresponding to the dynamic crack propa-
gation phase. After t= 0.3 s, the slab has reached the broken405

WL at the left-end of the slab for x= 0 m. After 0.32 s, the
entire WL has collapsed leading to a constant vertical dis-
placement of the slab approximately equal to ∆y = 1.8 cm.
This displacement is not perfectly equal to the WL thick-
ness because of the grains remaining in the WL. The peak in410

the displacement around t= 0.38 s is an artefact associated
with the movement of the saw after the crack has propagated
which does not affect the results that we will present.

3.2 Parametric analysis

3.2.1 Crack propagation speed415

For all the simulations carried out, the crack propagation
speed varied between 5 and 60 m/s. Fig. 10a shows that
the crack propagation speed c strongly increases with the
Young’s modulus E of the slab, from less than 5 m/s for
very soft slabs (E < 1 MPa) to 40 m/s for an almost rigid420

Figure 10: Crack propagation speed c (continuous lines) and
speed of elastic waves in the slab ce/10 (dotted lines) as a
function of (a) the Young’s modulus of the slab E, (b) slab
thickness D and WL thickness Dwl, (c) slab density ρ, (d)
slope angle ψ and (e) WL compressive strength σWL

c . The
parameters used for these figures are given in Tab. 3.

slab (E ≈ 50 MPa) where the increase levels off. The propa-
gation speed c also strongly and linearly increases with the
thickness of the slab D (Fig. 10b), from almost zero for
a slab thickness lower than 10 cm to 60 m/s for a thick-
ness of 80 cm. Similar, to the thickness, the propagation425

speed increases almost linearly with the density of the slab
ρ (Fig. 10c) and the slope angle ψ (Fig. 10d). The propaga-
tion speed seems not to be influenced by the thickness of the
WL (Fig. 10b) as soon as the failure occurs under the same
conditions (same critical length). Furthermore, the propaga-430

tion speed decreases with increasing WL strength (Fig. 10e).
This suggests that the crack propagation speed is mostly in-
fluenced by the failure conditions (load due to the slab and
WL strength) rather than structural parameters such as the
WL thickness.435

Finally, the speed of the elastic waves in the slab (ce) is
always substantially higher than the crack propagation speed
(approximately 10 times lower, Fig. 10). In addition, we can
observe that the speed of the elastic waves in the slab is not
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ρ E σslab
t D Dwl ψ σWL

c

Fig. 10a 300 kg/m3 - Inf. 20 cm 4 cm 0◦ 750 Pa
Fig. 10b 100 kg/m3 4 MPa Inf. - / 20 cm 4 cm / - 0◦ 750 Pa / ∗
Fig. 10c - 4 MPa Inf. 20 cm 4 cm 0◦ 750 Pa
Fig. 10d 100 kg/m3 4 MPa Inf. 20 cm 4 cm - 750 Pa
Fig. 10e 300 kg/m3 4 MPa Inf. 20 cm 4 cm 0◦ -
Fig. 11a 300 kg/m3 - - 20 cm 4 cm 0◦ 750 Pa
Fig. 11b 300 kg/m3 4 MPa - 20 cm - 0◦ ∗
Fig. 11c 150 kg/m3 4 MPa - 20 cm 4 cm - 750 Pa
Fig. 11d - 4 MPa 2 kPa 20 cm 4 cm 0◦ 750 Pa
Fig. 11e 100 kg/m3 4 MPa 1.5 kPa - 4 cm 0◦ 750 Pa
Fig. 11f 300 kg/m3 4 MPa 2 kPa - 4 cm 0◦ -

Table 3: Table of the parameter values used for Figs. 10 and 11. The symbol ‘-’ means that the associated parameter was varied.
The symbol ∗ means that the WL failure envelope was calibrated to obtain a constant critical length ac = 15 cm.

Figure 11: Crack propagation distance l∗ as a function of the tensile strength σt and the Young’s modulus E of the slab (a1-a2),
the tensile strength σt and the WL thickness Dwl (b1-b2), the tensile strength σt and the slope angle ψ (c1-c2), slab density ρ
(d), slab thickness D (e) and WL compressive strength σWL

c (f). ac denotes the critical cut length for crack propagation. The
parameters used for these plots are given in Tab. 3.

a good proxy to explain the trends in the crack propagation440

speed as shown for instance by the opposite trends with den-
sity (Fig. 10c).

3.2.2 Propagation distance

Fig. 11 shows propagation distance as a function of differ-
ent system parameters. Figs. 11a1, 11b1 and 11c1 show the445

increase of the propagation distance with increasing tensile
strength of the slab σt. This result was expected since a
stronger slab requires a larger tensile stress in order to break
and thus a larger propagation distance is required to obtain
sufficient tensile stresses in the slab (induced by bending or450

by the shear component of the the slab’s weight additionally
in case of ψ 6= 0).

The influence of the Young’s modulus E of the slab is
shown in Figs. 11a1 and 11a2. Overall, propagation dis-
tance decreases with increasing Young’s modulus. Hence, the455

softer the slab is, the lower is the fracture arrest propensity.
For a tensile strength of 2 kPa (Fig. 11a2), the propagation
distance l∗ sharply decreases from 2 m (column length) to
an approximately constant value l∗ = 0.5 m for E ≈ 2 MPa.
Also, Fig. 11a1 shows that for higher Young’s modulus,460

larger tensile strength values are required to obtain full prop-
agation. The critical length ac for crack propagation was also
represented in Fig. 11a2 to show that the tensile failure across
the slab always occurred (in this case) after the onset of crack
propagation.465

Then, the influence of WL thickness Dwl is shown in
Figs. 11b1 and 11b2. The WLs have different thickness but
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the same failure criterion and thus the same critical length ac
which is equal to 15 cm in this case. The propagation distance
l∗ decreases with increasing WL thickness. For low values470

of the tensile strength of the slab, the propagation distance is
small and almost independent of the WL thickness whereas
an important decrease is observed for larger values of the
tensile strength. In other words, thicker weak layers result in
more slab bending so that slab failure becomes more likely475

due to high tensile (bending) stress.
Figs. 11c1 and 11c2 show the influence of slope angle ψ on

propagation distance. Similarly to WL thickness, slope angle
seems to have no influence on the propagation distance for
low values of the tensile strength. However, for larger val-480

ues of σt (σt > 4 kPa), the propagation distance strongly in-
creases with increasing slope angle ψ. Hence, fracture arrest
propensity decreases with slope angle for large values of the
tensile strength of the slab, typically higher than 4 kPa. This
result is not trivial, since as the slope angle increases, there485

is a competition between the decreasing slab bending which
results in a decrease of the tensile stresses in the slab and an
increase of the tensile stresses due to the weight of the slab
in the slope parallel direction. Hence, this result suggests that
slab bending is the primary process influencing tensile failure490

of the slab (for homogeneous properties of the system).
Crack propagation distance slightly decreases with slab

density as shown in Fig. 11d. For very low slab densities,
the critical length ac is relatively high and thus the tensile
failure across the slab occurs before the critical length is495

reached. Then, as the density of the slab increases, the crit-
ical length decreases and the propagation distance stabilizes
around 0.4 m.

Whereas slab density ρ and slab thicknessD have a similar
influence on the stability of the system, on the crack propaga-500

tion speed (Figs. 10b and 10c) and on the onset of crack prop-
agation, as suggested by the decrease of the critical length
ac with both ρ and D (Figs. 11d and 11e), their influence on
fracture arrest propensity differs. Indeed, in contrast to the in-
fluence of slab density, the propagation distance strongly in-505

creases with increasing slab thickness (Fig. 11e). Hence, the
thicker the slab is, the lower is the fracture arrest propensity.
This results can be easily explained using beam theory (Tim-
oshenko and Goodier, 1970) to express the maximum tensile
stress in a bending slab which is inversely proportional to the510

slab thickness D (see Sec. 3.4 or Schweizer et al., 2014).
Finally, crack propagation distance decreases with WL

strength (Fig. 11f) for low WL strength values for which the
system is close the overall failure (the critical length is close
to zero). However, for higher values of the WL strength, the515

propagation distance is almost unaffected by this property of
the WL.

3.3 Comparison with field data

The results of the previous parametric analysis should be in-
terpreted with care since for snow, several of the system pa-520

ρ (kg/m3) 100 150 200 250 300
D (cm) 30 40 50 65 80

Table 4: Average slab thickness as a function of slab density
for PST field data.

rameters are inter-related leading to more complex interac-
tions. For instance, the result about the influence of Young’s
modulus on the propagation distance might seem contradic-
tory to avalanche observations. Indeed, taken as it is, this re-
sult would imply that it is easier to trigger a tensile failure525

in stiff and thus hard snow than in soft snow. Consequently,
harder slabs would result in smaller release areas than soft
slabs which is clearly in contradiction with avalanche obser-
vations (van Herwijnen and Jamieson, 2007). Hence, even if
the result behind Fig.11a2 is consistent, from a mechanical530

point of view, it cannot be directly applied to dry-snow slab
avalanche release. To do so, one should take into account the
relations between slab density ρ, Young’s modulus E and
tensile strength σt according to Eqs. (3) and (4). Simulations
were performed for slab densities ranging from 100 to 300535

kg/m3, corresponding to a Young’s modulus E of the slab
between 0.8 and 16 MPa [Eq. (3)] and a tensile strength σt
between 1 and 16 kPa [Eq.(4)].

In order to compare our numerical model to PST field data,
we selected two simulation cases to show the overall trend of540

the propagation speed and distance with density, rather than
simulating precisely each of the PSTs individually (which
are prone to some variability) by using the available initial
conditions from the field.

In the following, we distinguish two simulation cases:545

– Case #1 corresponds to simulations with a constant slab
thicknessD = 20 cm, slope angle ψ = 0◦ and WL prop-
erties (σWL

c = 750 Pa);

– Case #2 corresponds to a case with a slope angle ψ =
23◦ which is the average slope angle of our field PSTs550

and a slab thickness D which is also a function of den-
sity according to field data (Tab. 4). In addition, we cal-
ibrated the strength of the WL bonds in order to have
the same critical length for the different densities. This
ensured we observed crack propagation and avoid the555

global and simultaneous failure of the entire WL. In-
deed, as density increases, the critical length ac de-
creases and tends to zero (Fig. 11d) leading to the in-
stability of the system without cutting the WL.

A similar choice was made by Gaume et al. (2015) who560

computed the tensile failure probability for two cases (con-
stant depth or constant load) with similar trends in the results.

3.3.1 Displacement of the slab

Our numerical results (Fig. 8) obtained for a slab density ρ=
250 kg/m3 are in very good agreement with experimental re-565
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sults (Fig. 3) obtained for a similar density of ρ= 240 kg/m3.
Indeed, the same phases in the displacement curves, corre-
sponding to slab bending and crack propagation, were ob-
served in the measurements. Furthermore, the amount of
slope normal displacement prior to crack propagation as well570

as the fracture time, defined as the time it takes for the slab
to come into contact with the broken weak layer, were very
similar. Finally, we would like to point out that the total slope
normal displacement after crack propagation in our exper-
imental results was not the same for all markers (Fig. 3),575

which has often been observed in previous studies (van Her-
wijnen et al., 2010; Bair et al., 2014), whereas it is approx-
imately the same in the numerical simulations if no fracture
arrest occurred (Fig. 8). This difference is presumably due to
3D and edge effects such as wall friction at the right side of580

the column.

3.3.2 Crack propagation speed

The crack propagation speed c obtained in field PSTs and
from the simulated PSTs is represented as a function of slab
density in Fig. 12. Overall, the propagation speed obtained585

from field PSTs increases from 10 to 50 m/s as the density of
the slab increased from 140 to 300 kg/m3. The gray squares
represent the cases with fracture arrest due to tensile frac-
ture of the slab (SF) for which the crack propagation speed is
not very accurate and generally lower than the velocity mea-590

sured when the slab did not break (END: open squares for
full propagation).

Overall, both simulation cases #1 and #2 reproduce the
magnitude of the propagation speed c and the increasing
trend with increasing slab density ρ. The case #2 model (re-595

lation between slab density, Young’s modulus, thickness and
slope angle) slightly overestimates the average propagation
speed but provides good estimates for densities higher than
250 kg/m3. Furthermore, the simulations of case #2 were
done for the same conditions of failure initiation, i.e. the600

strength of the WL bonds was calibrated in order to have
the same critical length for the different densities. However,
for the experiments, the critical length generally increases
with increasing density due to the settlement which induces
an increase of Young’s modulus and a strengthening of the605

WL (Zeidler and Jamieson, 2006a, b; Szabo and Schneebeli,
2007; Podolskiy et al., 2014). In contrast, for case #1, a de-
crease in slab thickness and slope angle induces a decrease
in the crack propagation speed (Fig. 10), explaining why the
speeds for case #1 (ψ = 0◦ and D = 20 cm) are lower. In ad-610

dition, for case #1, the WL properties were kept constant,
which together with the increase of the Young’s modulus
(less bending) with density resulted in an increase of the crit-
ical length with density. This is in agreement with field ob-
servations which might explain the better quantitative agree-615

ment with the experiments.
Finally, for a low slab density ρ= 100 kg/m3 (E = 0.83

MPa), the speed of the elastic waves in the slab ce is about

Figure 12: (a) Boxplot of the propagation speed c versus slab
density for all field experiments. The data were grouped by
slab density classes of 50 kg/m3. The red line represents the
median value, the edges of the box are the 25th and 75th per-
centiles, the whiskers extend to the most extreme data points
without considering the outliers, and outliers are plotted in-
dividually as a cross. (b) Crack propagation speed c vs slab
density ρ. The open squares correspond to field PSTs with
full propagation (END) and the solid squares correspond to
PSTs with fracture arrest (SF). The black line corresponds
to the result of the DE model taking into account the rela-
tion between slab density, Young’s modulus for a slope an-
gle ψ = 0◦ and a slab thickness D = 20 cm (case #1). The
gray continuous line corresponds to the result of the DE
model taking into account the relation between slab density,
Young’s modulus and thickness for a slope angle ψ = 23◦

(case #2). The red lines represent the median values of the
density classes (same as in (a)). The data consist of N=121
PST experiments.

90 m/s, whereas the crack propagation speed is around
15 m/s. For a high density ρ= 300 kg/m3 (E = 16 MPa),620

ce ≈ 230 m/s, whereas the crack propagation speed is around
45 m/s.

3.3.3 Propagation distance

The proportion between the number of experiments for
which fracture arrest was observed NSF and the total num-625

ber of experiments NSF +NEND decreases with increasing
slab density ρ (Fig. 13a). This figure highlights the important
decrease of fracture arrest propensity with slab density. For
slab densities higher than 300 kg/m3 the number of experi-
ments with slab fracture is very small (NSF < 20%).630
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Figure 13: (a) Proportion between the number of experiments
with slab fracture NSF and the total number of experiments
NSF +NEND for different classes of density. (b) Propaga-
tion distance l∗ vs slab density ρ only for cases with fracture
arrest (SF). The red line corresponds to case #1 and the gray
line corresponds to case #2. The dashed line corresponds to
the column length L= 2 m in the PST simulations.

The crack propagation distance l∗ is represented as a func-
tion of slab density in Fig. 13b. Only cases with slab fracture
(SF) were represented. Overall, the propagation distance ob-
tained from field PSTs increased with slab density and varies
approximately from 0.4 to 2.1 m as the density increased635

from 140 to 300 kg/m3. This trend is well reproduced by
the discrete element simulations for both cases, but with a
better qualitative agreement for case #1. For case #1 and for
densities higher that about 300 kg/m3, no fracture arrest is
observed resulting in full propagation of the crack in the WL640

over the entire column length (END). For case #2, this tran-
sition occurs already for a density of about 200 kg/m3. Be-
sides, we would like to point out that field PSTs were not
made systematically for the same column lengths. However,
we checked numerically that, as soon as fracture arrest occurs645

within the column, the crack propagation distance is almost
independent of the column length. For instance, if a propa-
gation distance of 0.7 m is observed for a column length of
1.5 m, it will be the same for a column of 2.5 m. This is true
as soon as the column length is higher than the length over650

which edge effect are observed (length typically lower than
1 m, Gaume et al., 2013).

The experiments and the simulations confirm that dense
and hard snow slabs are more prone to wide-spread crack
propagation than soft slabs.655

3.4 Mechanical processes of fracture arrest

In order to better understand the underlying mechanical pro-
cesses of fracture arrest in the slab, the normal stresses in
the slab σxx have to be compared with its tensile strength σt.
The normal stresses in the slab were computed for each grain660

from contact forces using the classic Love homogeneization
formula (Cambou and Jean, 2001). A tensile crack in the slab
occurs when the maximum normal stress σmxx exceeds the
tensile strength. Hence, we analyzed the evolution of normal
stresses in the slab during the process of crack propagation665

for case #1 with a slab density ρ= 250 kg/m3 leading to a
tensile strength σt = 10 kPa [Eq. (4)]. First, before the onset
of crack propagation, an increase of tensile stress occurs at
the top of the slab close to the crack tip of the WL (Fig. 14).
The bottom of the slab is subjected to an increase in com-670

pression (σxx < 0). This increase of tensile stress is due to
the bending of the slab and increases with increasing crack
length (Timoshenko and Goodier, 1970).

Then, once the critical length is reached, the crack be-
comes self-propagating. The crack length increase leads to675

an increase of the tensile stresses in the slab. Note that the
maximum tensile stress σmxx is always located at the top sur-
face of the slab, not directly at the vertical of the crack tip but
slightly shifted to the right above the undamaged weak layer
(Fig. 14). At one point the maximum tensile stress meets the680

tensile strength of the slab (σt = 10 kPa) which leads to the
opening of a tensile crack and fracture arrest. This fracture
arrest leads to the unloading of the slab where the stresses
become close to zero everywhere, except at the position of
the saw where some small local bending effects still occur.685

In order to better understand why fracture arrest does not
occur anymore for high densities, as shown in Fig. 13, we
then analyzed the maximum tensile stress σmxx as a function
of slab density in the case of a purely elastic slab for which
the Young’s modulus was varied according to Eq. (3) (case690

#1). The DE results were then compared to those predicted
by the static beam theory. According to beam theory (Timo-
shenko and Goodier, 1970), the maximum theoretical tensile
stress in a beam of length l, thickness D embedded on its
right side and subjected to gravity, with an angle ψ (with re-695

gards to the horizontal) is equal to

σthxx = ρgl sinψ+
3ρg cosψl2

D
. (7)

As we have seen before in Fig. 14, the tensile stress in the
slab increases during propagation due to an increase of the
crack length. However, this length is limited by the amplitude700

of collapse hc of the WL (Fig. 15a). Indeed, once the left
part of the slab comes into contact with the broken WL, the
tensile stress reaches a maximum value and does not increase
anymore (see also Fig. 7c). The length l0 (already introduced
by Heierli et al., 2008) required to come into contact with the705

broken WL can be obtained analytically by computing the
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Figure 14: Evolution of the normal stress σxx in the slab during the process of crack propagation for a case #1 simulation and
a density of 250 kg/m3 with a tensile strength of 10 kPa. The normal stress σxx was calculated for each grain from contact
forces according the Love homogeneization formula and linearly interpolated between grains. The dashed lines represent the
position of the crack tip in the WL.

vertical displacement of the slab according to beam theory
and is equal to

l0 =

(
2ED2hc
3ρg cosψ

)1/4

. (8)

Hence, the overall maximum theoretical tensile stress710

σm,thxx = σthxx(l0) is found by replacing l by l0 in Eq. (7).
For low values of slab density (ρ < 175 kg/m3, Fig. 15b),

the maximum tensile stress increases with increasing den-
sity and the DE model results are very well reproduced by
beam theory. In addition, the maximum tensile stress is al-715

ways higher than the tensile strength of the slab, leading to
systematic fracture arrest for these low density values. How-
ever, for higher densities, beam theory predicts a strong in-
crease of the maximum tensile stress with density, so that
the stress would always be higher than the tensile strength of720

the slab. This would lead to systematic fracture arrest for any
value of the density which is in contrast to the results of both
field and numerical PSTs. The DE model results, in particu-
lar, show that for a slab density higher than about a threshold
density ρ′ = 180 kg/m3, the maximum tensile stress starts to725

decrease with increasing density. Ultimately, for a density of
approximately 280 kg/m3, the maximum tensile stress be-
comes lower than the strength, leading to full propagation of
the crack in the WL, in agreement with Fig. 13 (case #1).

This result highlights the limits of the static beam theory730

and thus the need to take into account dynamic effects when
addressing fracture arrest propensity issues. Indeed, we sup-

pose that the reason of this sudden decrease is due to the
crack propagation speed which becomes higher as slab den-
sity increases and induces a loss of support in the slab where735

stresses do not have time to establish. In other words, the dis-
placement of the slab due to gravity is too slow to establish
a mechanical equilibrium between bending and gravity. For
instance, if we assume that the crack would propagate at an
infinite speed, then the tensile stresses in the slab would not740

increase after reaching the critical length. The maximum ten-
sile stress in the slab would thus be the one obtained at the
moment of the onset of crack propagation. Obviously, the
propagation speed is not infinite but limits the establishment
of the stresses in the slab.745

Using the theoretical relationships for ρ < ρ′ (σmxx = σthxx)
and an empirical (exponential) fit to the data for ρ > ρ′

(σmxx = σdynxx ), one can compute the theoretical propagation
distance l∗th by solving

σmxx(l∗th) = σt. (9)750

The theoretical propagation distance l∗th was represented
in Fig. 15c for both zones (l∗th = l∗bt for ρ < ρ′ and l∗th = l∗dyn
ρ > ρ′) as well as the characteristic distance l0. Again the
beam theory reproduces the results for low densities well. For
these low densities, the tensile failure in the slab occurs even755

before the onset of crack propagation due to the low value
of the associated tensile strength. However, the important in-
crease of the propagation distance for densities higher than ρ′

is not reproduced by beam theory. On the other hand, using
the empirical relation (exponential fit of the maximum ten-760
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Figure 15: (a) Illustration of the characteristic length l0 required for the slab to be in contact with the broken WL. hc represents
the collapse height. (b) Maximum tensile stress σmxx as a function of slab density for the discrete element model σDEMxx , with a
purely elastic slab and case #1, according to beam theory σthxx(l0) and from an empirical (exponential) fit σdynxx (l0). The tensile
strength of the slab σt is also represented as a function of slab density σt. (c) Propagation distance for the same cases as in (b)
plus l0 as a function of slab density.

sile stress in Fig. 15b), the strong increase of the propagation
distance is well reproduced. After a certain value of the den-
sity ρEND = 280 kg/m3, the propagation distance l∗dyn be-
comes higher than l0 which is technically not possible since
the maximum tensile stress is obtained exactly for l = l0 and765

cannot increase above l0. Hence the only solution is that no
fracture arrest occurs for ρ > ρEND. In fact, for a density
of 300 kg/m3 no fracture arrest was observed using the DE
model (Fig. 13). For this simulation, we also tried with longer
column lengths L up to 10 m which did not affect the full770

propagation. The corresponding maximum propagation dis-
tance for this case is about 2.3 m (for l∗dyn = l0), in agreement
with field data for which the maximum propagation distance
recorded was l∗ = 2.15 m (Fig. 13b).

Obviously, the density ρEND which was 280 kg/m3 in our775

simulations, will vary depending on the geometry and ma-
terial properties of the snowpack. For the cases presented in
Figs. 15b and 15c, the Young’s modulus was derived from
density [Eq. (3)], the slab thickness D was constant equal to
20 cm, the slope angle ψ = 0◦ (case #1). This set of param-780

eters resulted in a density ρEND = 280 kg/m3. However, for
a slope angle of 23◦ and taking into account the dependence
of slab thickness with slab density (Tab. 4), ρEND would
be even less than 200 kg/m3, as shown in Fig. 13b (case
#2) since the transition between a regime of fracture arrest785

and full propagation is between 150 and 200 kg/m3. Further-
more, as the propagation distance is also strongly influenced
by the WL thickness Dwl (Fig. 11b), we assume that ρEND

increases with Dwl as the maximum tensile stress in the slab
increases with Dwl.790

4 Discussion

In this study, a numerical model based on the discrete el-
ement method was developed in order to perform numeri-
cal PST simulations and study the mechanical processes in-
volved. Despite the apparent simplicity of the proposed DE795

model and of the structure of the simulated WL, we were
able to quantitatively address the issue of the dynamic phase
of crack propagation as well as fracture arrest propensity and
to reproduce PST field data.

First, a parametric analysis was conducted to study the in-800

fluence of snowpack properties on crack propagation speed
and distance. It was shown that the propagation speed in-
creases with increasing slab density ρ, slab Young’s modu-
lus E, slab thickness D and slope angle ψ. The propagation
speed was almost not influenced by WL thickness. The in-805

crease of crack propagation speed with slab density is not
compatible with the expression for crack propagation speed
proposed by Heierli (2008) for which the speed decreases
with increasing slab density ρ (for a constant value of the
Young’s modulus of the slab), as for a crack in a homoge-810

neous material (Auld, 1973). However, this is obviously not
the case here, since the crack propagates through the under-
lying WL. Therefore, the propagation speed is likely to de-
crease with increasing WL density (and thus to increase with
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increasing WL porosity) but to increase with slab density, as815

shown by our results.
In addition, it was shown that the tensile fracture of the

slab always starts from the top surface of the slab. The prop-
agation distance l∗ increases with increasing tensile strength
of the slab σt, slab thickness D and slope angle ψ. The latter820

result suggests that slab bending is the primary process influ-
encing the tensile failure of the slab which corroborates the
conclusions of van Herwijnen et al. (2010). In contrast, the
propagation distance decreases with increasing slab Young’s
modulus E, slab density ρ and WL thickness Dwl. These re-825

sults are in agreement with Gaume et al. (2015) who showed
that the tensile failure probability (fracture arrest propensity)
decreased with increasing tensile strength σt of the slab, in-
creased with increasing Young’s modulus E of the slab and
decreased with increasing slab thicknessD. This latter model830

is based on the finite element method and takes into account
the weak layer strength heterogeneity, stress redistributions
by elasticity of the slab, the possible tensile failure of the
slab as well as dynamic effects. However, the weak layer was
modeled in their approach as an interface and the bending of835

the slab induced by the collapse of the weak layer was not
accounted for.

Furthermore, by accounting for the relation between the
mechanical properties of the snowpack, the increase of crack
propagation speed and distance with increasing slab density840

was well reproduced. The slight overestimation of the prop-
agation speed for low densities might be due to the fact that,
to compute the propagation speed, the slab was considered
as purely elastic and possible plastic effects in the slab that
might induce energy dissipation were disregarded. The in-845

depth analysis of the mechanical processes involved in frac-
ture arrest showed that after a certain slab density value ρ′,
the evolution of the maximum tensile stress in the slab with
slab density diverged from the static beam theory. This is due
to dynamic effects during crack propagation that induce a850

loss of support of the slab where the stresses do not have
time to establish. Ultimately, for a density ρEND, the max-
imum tensile stress in the slab decreases below its tensile
strength leading to full propagation without fracture arrest.
Consequently, for large densities, mechanical properties of855

the snowpack only marginally affect crack propagation dis-
tance. In that case, terrain characteristics and snowpack spa-
tial variability will play a crucial role in the definition of the
release area.

In addition, interestingly, in very few simulations both860

fracture arrest by tensile failure of the slab and full propa-
gation was observed. In these cases, a portion of the WL on
the right-side of the slab tensile crack was damaged over a
sufficient length to exceed the critical length leading again
to crack propagation. This process repeated itself until the865

end of the system leading to so-called “en-echelon” fractures
(Van Herwijnen, 2005; van Herwijnen et al., 2010; Gauthier
and Jamieson, 2010). This is likely to happen for very un-
stable conditions (very low critical length) but for a slab of

intermediate density, not too dense so fracture arrest can oc-870

cur and not too loose so that the crack can still propagate.
Concerning the limitations of the model, we recall that

the triangular shape of the WL structure is highly idealized
and that more complex and more realistic geometries might
have an influence on the presented results. In the future, the875

micro-structure of the WL could be derived from micro-
tomographic images (Hagenmuller et al., 2014) in order to
perform more realistic simulations. In addition, whereas we
applied our model for cases for which the bending of the slab
is important, our approach could still be used for cases with880

thinner weak layers and thus much lower amplitude of bend-
ing. Moreover, we would like to recall that the crack prop-
agation speed was computed from the vertical displacement
wave of the slab. However, for high values of the slope angle
ψ, the collapse only constitutes a secondary process and the885

tangential displacement during propagation becomes higher
than the vertical displacement. Typically, for ψ > 40◦, it is
not possible to compute the propagation speed using the pre-
sented approach as the height of collapse becomes too low.
An analysis of the tangential displacement revealed that the890

crack propagation speed on slopes where the shear compo-
nent of the slab weight is very important (ψ > 40◦) might
be significantly higher than the propagation speed on gen-
tle slopes. This analysis suggested propagation speeds up to
150 m/s, similar to those reported for real-scale avalanches895

by Hamre et al. (2014). However, they considered avalanches
triggered artificially by explosives leading to even more com-
plex interactions due to the propagation wave of the blast.

With regards to practical applications, the results of our
study can help to choose the size of the column length in900

field PSTs. Indeed, we showed that the maximum length for
which snowpack properties might affect the propagation dis-
tance is around 2 m, in agreement with the study of Bair
et al. (2014). However, this result does not mean that all PSTs
should be 2 m long. The chosen column length can be eval-905

uated from slab thickness and density. As shown by Figs. 11
and 13, slab Young’s modulus and tensile strength which are
related to slab density, as well as slab thickness strongly af-
fect the propagation distance. Hence, for soft and relatively
thin slabs, the standard column length of 1.2 m might be suf-910

ficient. However, for very strong and thick slabs, the column
length should not be lower than 2 m in order to be able to
still observe a possible arrest of the fracture due to slab ten-
sile failure. If slab fracture is not observed in a PST for a
column length of 2 m, fracture arrest is likely to be mainly915

driven by terrain and snowpack spatial variability and a 3D-
terrain model including the snowpack might be required to
evaluate where fracture arrest might occur (Veitinger et al.,
2014).
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5 Conclusions920

We proposed a new approach to characterize the dynamic
phase of crack propagation in weak snowpack layers as well
as fracture arrest propensity by means of numerical PST sim-
ulations based on the discrete element method with elastic-
brittle bonded grains.925

This model allowed us to compute crack propagation
speed from slab vertical displacement as a function of snow-
pack properties. Furthermore, crack propagation distance
was computed by taking into account the tensile strength of
the slab. A parametric analysis provided the crack propaga-930

tion speed and distance as a function of the different snow-
pack properties. We showed that the propagation speed in-
creases with increasing Young’s modulus of the slab, slab
depth, slab density and slope angle but decreases with in-
creasing weak layer strength. The propagation distance de-935

creases with increasing Young’s modulus of the slab, slab
density and weak layer thickness but increases with increas-
ing slab tensile strength, slab depth, weak layer strength and
slope angle.

Then, the existing relationship between slab thickness,940

Young’s modulus and tensile strength with density was im-
plemented. Accounting for this relationship, modeled prop-
agation speed and distances were found in good agreement
with those obtained from field measurements with the propa-
gation saw test. In particular, for densities ranging from 100945

to 300 kg/m3, the propagation speed increased from approx.
10 to 50 m/s and the propagation distance was found to in-
crease from approx. 0.4 m to 2 m (column length). Concern-
ing the mechanical processes, the static beam theory predicts
an increase of the maximum tensile stress with increasing950

density. However, we show that dynamic effects of crack
propagation induce a loss of support of the slab which in-
creases with increasing crack propagation speed and thus
slab density. This produces a decrease of the maximum stress
with density which ultimately becomes lower than the tensile955

strength of the slab for a critical density ρEND leading to the
absence of slab tensile fracture and thus wide-spread crack
propagation. According to our simulations, this critical den-
sity depends mostly on slab and WL thicknesses and slope
angle. It decreases with slab depth and slope angle but in-960

creases with WL thickness.
For slab layers denser than ρEND, the slab tensile fracture

in the field and thus the potential release area will mostly
be controlled by topographical and morphological features
of the path such as ridges, rocks, trees, terrain breaks, etc.965

but also by the spatial heterogeneity of the snow cover. In
addition, we showed that the maximum propagation distance
associated with the density ρEND was around 2 m, justifying
why the column length of a propagation saw test should not
be lower than 2 m for hard snow slabs, in order to be able to970

observe fracture arrest. This result is in agreement with the
recent study of Bair et al. (2014) about PST edge effects.

In the future, an in-depth analysis of crack propagation
speeds for large slope angles will be carried out in order to
distinguish the speed associated with the collapse wave of975

the slab and the speed associated to its tangential displace-
ment. Finally, different and more complex structures for the
WL will also be implemented with the long-term objective
to model the structure of the WL directly from segmented
micro-tomographic images (Hagenmuller et al., 2013).980

Appendix A: Evaluation of the crack propagation speed

The method to derive the crack propagation speed from the
evolution of the vertical displacement of the slab in field and
simulated PSTs is the same as that described in van Herwi-
jnen and Jamieson (2005). This appendix provides details985

about this procedure and its application for two simulation
and one experiment examples. The first example is a simula-
tion for a density ρ= 250 kg/m3 and a Young’s modulusE =
4 MPa (Fig. A1a) and the second example is a simulation for
the same density but with a Young’s modulus derived from990

density according to Scapozza (2004), E = 7.8 MPa (Fig.
A1b) corresponding to the displacement evolution shown in
Figure 6. The third case (Fig. A1c) corresponds to an ex-
periment with a density ρ= 240 kg/m3. In detail, for each
simulation or experiment, a vertical displacement threshold995

s is defined that allows to evaluate the position x of the crack
tip as a function of time (see insets of Fig. A1). A linear fit
to these curves allows to evaluate the propagation speed as a
function of the vertical displacement threshold s (Fig. A1).
Then, the crack propagation speed is taken as the average1000

propagation speed (over the displacement threshold s) during
the dynamic propagation phase where the propagation speed
appears to be stable with the displacement threshold (average
between s1 and s3). Note that different methods could have
been used to compute the propagation speed but we wanted1005

to have exactly the same procedure for both the experiments
and the numerical simulations for the sake of the comparison.
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