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Revision of Manuscript Number: tc-2015-173 

 

 

In blue: Reviewer’s comments. To better identify the questions, we added reference symbols: R= 

Reviewer ; C = Comments;  

In black: Answers to reviewer 

(Page): the pages where modification to text were added 

In black and italic: Modification added to text. 

 

Reviewer #1 (Comments):  
 

This paper concerns the modeling of microwave radiation from snow with DMRT-ML, to 

quantify the simulation sensitivity to parameter uncertainty. This is the most complete 

study to date due to the consideration of the forest contribution as well as density, 

grain size, ice lens and soil roughness variability or uncertainty, with the latter effects 

providing no surprises based on other similar studies. In addition, to my knowledge, 

this is the first study to look at the effects of the bridging assumption between low and 

high density snow in the context of real data. The nominal simulations are considered 

to include a given grain scale factor, the density bridging assumption and appropriate 

treatment of ice lenses, before looking at other effects, which is a logical approach to 

take. 

 

R1-C1 : This study looks at 3 different sites within the Canadian sub-Arctic, which gives a 

range of snowpack properties, but makes the paper somewhat hard to read. Due to the 

wide range of measurement locations, a figure with the sites indicated on a vegetation 

map would be useful. 

 

We inserted a map of the 3 locations with the Land Cover of Canada 2005 (Latifovic et al., 2004) 

in background. 

 

R1-C2 : In the James Bay measurements, the mean snow density from January to February 

decreased, and with minimal increase in grain size. Is this expected for this site? Is 

this due to the influence of recent precipitation, or spatial variability in the measurement 

locations? Also, how is the mean grain radius calculated? 

 

The lower density in February is related to an error in density calculation. The snow density 

calculation was done considering the ice lenses. All the corrections were made (See also R2-C6) 

 

The mean grain radius is the mean Ropt per layer weighted by the snow layer thickness. It is now 

mentioned in the text: 

 

“During the JBJan campaign, 16 open area sites were measured where the mean ρsnow (weighted by 

snow layers thickness excluding ice lenses) of all snowpits was 295.5 kg m
-3

 and the mean Ropt 

(weighted by snow layers thickness excluding ice lenses) was 0.17 mm (Table 1).” 

 

R1-C3 : Constant soil parameters from a different study were used here (section 2.2.3). The 

authors must comment on the applicability of these parameters to the sites chosen 

for this study. The experiment presented in section 3.2.1 considers the effect of the 

roughness of the soil, but not the permittivity, which governs the Fresnel reflectivity and 
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is a more fundamental parameter. The authors note this limitation later in the section, 

but I do not agree with their statement (pg 5732, line 15) that this does not affect their 

main goal. It may do, as the variability in the permittivity may cause greater snow TB 

variability than is possible to simulate with adjustment of the roughness alone. The 

authors should justify why a particular constant value of permittivity derived elsewhere 

is an appropriate assumption here or base the sensitivity on permittivity rather than 

roughness variability. 

 

The parameters were inverted from independent angular measurement taken during the same 

campaign at James Bay. We thus clarify that point in Section 2.2.3: 

 

“The values of ε',  σ and β at 11, 19 and 37 GHz inverted by Montpetit et al. (2015) for frozen soil 

(Table 6) were used in this study. Montpetit et al. (2013) used independent snow free ground-

based radiometer angular measurements taken at James Bay site in 2013 (same campaign). The 

parameters were also validated over Umiujaq (same campaign) snow removal experiment.”  

 

Because we use minimal and maximal values of optimized σ the range of TB variability of frozen 

ground is well represented. Also, the permittivity used were retrieved at the same site: 

 

“However, one should be careful in interpreting these results as the optimization could also 

compensate for uncertainties in the permittivity of frozen ground. Nevertheless, because the 

minimal and maximal values of optimized σ are taken, this does not affect our main goal, which is 

to estimate the variability in snow-covered TB introduced by the soil in the model. Furthermore, 

as mentioned in Sect. 2.2.3, the permittivity used in this study were retrieved at the same site as 

this study.” 

 

R1-C4 : Pg 5730 line 9-11. This is really hard to see in the figure. There are multiple outliers 

that easily cover this range in the simulations, so this sentence should be more precise. 

 

We add a dotted line in the Fig. 6 to clarify the point. 

 

R1-C5 :  Figure 6, right doesn’t add much to the message of the paper and diverts attention 

as there are many figures in this paper. As it has already been summarised in a single 

sentence I would recommend removing the figure. 

 

We removed the figure and change the paragraph: 

 

“To test the bridging parameterization (see Sect 2.2.2), we used 13 tundra sites from the 

Churchill tundra database (Roy et al., 2013), 4 from Umiujaq and 2 from the James Bay 

snowpits. In each case, at least one snow layer with a snow density higher than 367 kg m
-3

 (ice 

fraction of 0.4: Dierking et al., 2012) is used. For each of the 19 sites studied, simulations at 37 

GHz (the most sensitive frequency to snow) with and without the bridging implementation were 

conducted (all input parameters kept the same). The bridging has a relatively modest impact on 

simulations with an improvement in the RMSE of between 2 and 4 K at tundra sites (Umijuaq and 

James Bay). The greatest improvements are found for deep drifted tundra snowpits where there is 

a very thick wind slab with high ρsnow and small rounded grains are present at the top of the 

snowpack.”  

 

R1-C6 : Section 3.2.4. How was the density of ice lenses measured in the field and what was 



 4 

the result (alternatively this comment may belong in the next section if ‘was attempted’ 

should be replaced with ‘was not attempted’). 

 

We replaced for “was not attempted”. 

 

Technical comments (R1): 

 

pg 5724 line 6. Make clear that the SSA is per unit mass rather than per unit volume. 

 

We clarified the units 

 

pg 5724 line 15 and onwards. JB may be a better, easier to read acronym than BJ. 

 

We changed all the acronyms. 

 

pg 5726 line 22. As a scaling factor of 3.3 has been applied following previous work, 

presumably non-sticky grains are assumed in the DMRT-ML simulations. This should 

be stated. 

 

We changes the sentence : 

 

“As such, a scaling factor of = 3.3 assuming non-sticky snow grains from Roy et al. (2013) for 

the seasonal snowpack is thus applied to get an effective radius in the microwave range (Reff)” 

 

pg 5727 line 21. In setting ice lens thickness to 1cm, how are the thicknesses of the 

adjoining layers adjusted, or is the overall depth of the profile in the simulations allowed 

to differ from the measured depth? 

 

We mentioned that in the text : 

 

“To keep the same total snow depth, the adjoining layers were adjusted by removing 0.5 cm of 

the layer above and below the ice layer.“ 

 

pg 5728 line 11. This should be > 350, not < 350. 

 

It was corrected 

 

pg 5729 line 20. The bridging implementation was tested for simulations based on 

snowpit data rather than tested on snowpits themselves. 

 

Done 

 

pg 5734 line 12. gains -> grains 

 

Done 

 

lg 5736 line 11. weaker -> less 

 

Done 
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Reviewer #2 (Comments):  

 

General comments The authors present a study assessing uncertainties in microwave 

emission modeling from snow covered ground, arising from uncertainties in assigning 

model inputs from in situ information. One model, the DMRT-ML by Picard et al. is 

applied for the purpose. A set of surface-based radiometer measurements is used 

as a reference to model predictions. While not very original, the paper contributes 

regardless to an important topic in snow remote sensing. The results of the paper 

should be useful especially in guiding data collections in future, large scale campaigns 

of snow cover using passive microwave radiometry. The paper is well written and 

clear. However, I have some questions regarding the methodology applied, and would 

suggest the authors revise some of their conclusions before publication. See detailed 

comments in the following. 

 

R2-C1 : Abstract, lines 42-43 and several places later on. Based on 

what is in the end a rather limited dataset, you draw conclusions that variations in 

the emission of frozen soil has only a small effect on brightness temperature of snow 

covered terrain. You alleviate this conclusion somewhat in the discussion (723-732), 

but it comes out very strongly in the abstract, which I feel is misleading. It is, for 

instance, unclear if the sites you had contained multiple soil types or not; the ‘frozen’ 

permittivity of clay rich soils, for example, will be quite different from that of mineral soil 

types, due to the ability to store free water even in sub-zero conditions. Organic soils 

represent yet another different scenario, as well as soils with a high saline content. You 

only have to look at e.g. SMOS data during winter to see that there are variabilities 

during the winter which clearly arise from soils with a different permittivity. It would be 

good to better bring out the limitations already in the abstract (i.e. your experimental 

findings apply only to a certain soil type), if you wish to raise this point at all 

 

We clarify the results in the abstract. : 

 

“A snow excavation experiment -- where snow was removed from the ground to measure the 

microwave emission of bare frozen ground -- shows that small-scale spatial variability (less than 

1 km) in the emission of frozen soil is small. Hence, in our case of boreal organic soil, variability 

in the emission of frozen soil has a small effect on snow-covered brightness temperature (TB).” 

 

We also clarify in the results section (the soil types were mentioned in Sect. 2.1.1) that the BJJan-

transect were made in an old gravel with mineral soil and, the other were made in organic boreal 

soil: 

 

“The analysis of small-scale soil variability in modeling the TB of snow-covered surfaces is 

conducted using the SEex from the transect during the JBJan (mineral soil) and JBFeb campaigns 

(organic soil).”  

 

“TB variations of 0.5 K and 1.3 K were observed at the JBJan-transect site where the soil properties 

were more homogeneous (mineral soil), while a variation of 0.7 K to 3.8 K was measured at the 

JBFeb site with organic soil (Table 8).” 

 

R2-C2 : Abstract, lines 51-52, also later on: it is bit of a no-brainer that downwelling emission 

from trees affects the measured Tb. This is well known and it would simply be a mistake 
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not to include the downwelling canopy contribution – thus is a bit awkward to bring this 

out here. The absolute value of the Tb contribution, will be highly dependent on tree 

type and canopy conditions (frozen/thawed, snow covered/bare), as well as snow and 

soil reflectivity, thus I would refrain from giving a value here. If you insist, you should 

at least make it clear that this finding applies only to your study, test sites and the local 

conditions that prevailed. 

 

From our knowledge, it is the first time that the contribution of forest emission reflected by the 

surface are quantified from ground-based radiometers. We think it is important to include in the 

abstract. We however mentioned in the abstract that the results are specific for our dataset: 

 

“The results also show that, in our study with the given boreal forest trees characteristics, forest 

emission reflected by the surface can increase the TB up to 40 K. The forest contribution also 

varies with vegetation characteristic and a relationship between TBdown and the proportion of 

pixels occupied by vegetation (trees) in fisheye pictures was found.” 

 

R2-C3 : Introduction, lines 105-107 and elsewhere: Here, you claim to “quantify the sources 

of uncertainty in the DMRT-ML model”. However, in the previous paragraph, you point 

out the two basic contributions to simulation (not model!) uncertainty: 1) model physics 

going wrong 2) insufficient or inaccurate input information. To me, the whole paper is 

about assessing point 2), as is in fact also pointed out in the discussion (line 740-741). 

This is an important distinction and you should be careful with the wording throughout 

the paper. In my view a better wording here would be something along the lines of: “we aim to 

quantify the relative importance of uncertainties of in situ information, when 

simulating microwave TB with the DMRT-ML model”. 

 

We clarify the main objective of the paper: 

 

“Hence, this paper aims to better quantify the relative importance of different geophysical 

parameters and small-scale spatial variability when simulating microwave TB with the Dense 

Media Radiative Theory-Multilayer model (DMRT-ML; Picard et al. 2013).” 

 

We also clarify that point in the first sentence of Sect. 4 : 

 

“This study presents a comprehensive analysis of the geophysical parameters contributing to 

uncertainty in DMRT-ML for snow-covered surfaces in boreal forest, subarctic and arctic 

environments.” 

 

R2-C4 : Lines 111-112: sentence a little bit incomplete. Add something like “: : : snow emission 

modeling: inaccuracies in quantifying snow grains, snow density” 

 

The proposed change was done 

 

R2-C5 : Section 2.1, lines 163-165. Measuring SSA may be robust, but being a definition 

for optical wavelengths, how well is SSA related to the propagation of microwaves in 

snow? I’m sure the authors are aware of this ongoing discussion. You do not have to 

delve deep into the problem here, but at least the question and the related discussion 

should be acknowledged by citing some recent work by e.g. Mätzler, also justifying 

why you use SSA regardless of the acknowledged limitations. 
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To our knowledge, SSA is the only robust and objective metric that can be measured in situ. We 

are now working on a paper showing that SSA is a better metric than Dmax. We developed in the 

discussion on the justification of the use of SSA with some limitation. 

 

“The error related to the physical simplifications in DMRT-ML was not investigated in this work, 

but our results suggest that the level of confidence of measurements is too low to test or 

significantly improve the DMRT-ML physics. In this study, SSA was used because it is a robust 

and objective metric that can be measured effectively on the field. However, the derived Ropt 

metric used in DMRT-ML is related to an optical definition (Grenfell and Warren, 1999) and 

might not represent the grain for microwave wavelength (see Mätzler, 2002). Further 

experiments on isolated snow layers as done by Wiesmann et al. (1998) but using new tools for 

snow microstructure parameterization could be applied to improve the physics of emission 

models. For example, more precise measurements of snow microstructure like X-ray tomography 

(Heggli et al., 2011) and the snow micro-penetrometer (SMP) (Schneebeli et al., 1999; Proksch et 

al., 2015) could be the next step to improve the understanding of the physics in DMRT-ML (e.g., 

Lowe and Picard, 2015).” 

 

R2-C6 : Tables 1-5: the STD values for snow density seem very high to me, especially for 

Tables 1&2. Can you check these? If the values are correct, do you have a reason for 

the high degree of variability? 

 

The average density and standard deviation of snow density calculation included the ice lenses. 

The values were recalculated without the ice lenses to give a better view of the snowpack 

characteristics. The values were corrected in the text as well (See also R1-C2). 

 

R2-C7 : Section 2.2.3, line 340: epsilon’ is the conventional symbol for the real part of the 

dielectric permittivity. The Fresnel reflectivity depends on < epsilon_r> = < epsilon’+ 

j* epsilon”>. Is your epsilon’ the real part of the soil permittivity (thus neglecting the 

imaginary part, a reasonable approximation for frozen soil), or the magnitude of the 

complex permittivity? 

 

We clarify in the text that it is the real part of the soil permittivity: 

 

“where Γf,p  is the rough soil reflectivity at a frequency f and polarization p (H-pol or V-pol) by 

its smooth Fresnel reflectivity in H-Pol (Γf,H), which depends on the incidence angle (θ) and the 

real part of the soil permittivity (ε’), weighted by an attenuation factor that depends on the 

standard deviation in height of the surface (soil roughness, σ), the measured wavenumber (k) and 

a polarization ratio dependency factor (β).” 

 

R2-C8 : Section 3.1.1., line 374-376: what is the fundamental reason for the simulation to go 

wrong, when the effect of ice lenses is not included? Is it not very informative to just 

state that “improved simulations” are achieved with ice lenses. In other words, what 

is the physical effect that the ice lenses manage to simulate, which was lacking in the 

original simulation? This should be explained.  

 

We clarify that the ice lenses inclusion allows taking into account its strong reflectivity: 

 

These results show that a simple ice lens implementation in DMRT-ML helps to simulate the 
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strong reflection component of ice lenses (decrease of snowpack emissivity), leading to improved 

simulations of TB.  

 

R2-C9 : Still on ice lenses: can you elaborate your statement on line 380: what, in your view, 

are the reasons for the limited range of simulated values versus observations, if this is 

related to ice lenses. Coherence effects not accounted for by DMRT? Or, can this be something 

different (the soil perhaps?). coherence is mentioned in the discussion, but 

something could be pointed out here. 

 

We chose not to elaborate on the reason for the limited range because it is well discussed in Sect. 

3.2.4 and Sect. 4. But after review we add some sentences to start the discussion on that point: 

 

“This feature suggests some limitations of ice lens and/or snow layering modeling in DMRT-ML 

that can be related to the fact that coherence effect is not taken into account. Note that this 

underestimation of TB spatial variability is not related to the soil as demonstrated in Sect. 3.2.1. 

The modeling uncertainties related to ice lenses will be discussed more specifically in Sect. 

3.2.4.”  

 

 

R2-C10 : Lines 417-418: rather than ‘5-10 K’ and ‘10-20 K’, give precise numbers. Note e.g. 

that RMSE at 11H exceeds 20 K, and RMSE for 19V lower than 5 K. 

 

The numbers were updated: 

 

“The RMSE values oscillate between 7.8 and 21.5 K at H-pol (Table 7). Since V-pol is less 

affected by layering in the snowpack at 11 GHz and 19 GHz, the RMSE are generally lower 

(between 3.5 and 14.4 K), while the RMSE at 37 GHz are similar at V-pol and H-pol.” 

 

R2-C11 : Figure8: error bars in scatterplot not very informative, they only make the symbols 

hard to read. I suggest to remove these 

 

We think that the error bars allow showing that the effect of soil emission small-scale spatial 

variability has a very low impact on TB. For this reason we think it worth to keep the error bars. 

 

R2-C12 : Section 3.2.2: summing of errors; is the 12% error in SSA considered random, 

or systematic? I think random? Then, you should rather perform a sum-of-squares 

addition of the errors, depending on how many measurements were used for a given 

snowpit [e.g. for three SSA measurements used in a sim: err_tot = sqrt(err_1ˆ2+ 

err_2ˆ2+ err_3ˆ2) = 0.21]. I suggest to redo the analysis (Fig9, Table 9) in this fashion. 

 

In our case, the error of 12% is added to the SSA of each layer of snowpack. Hence, the TB error 

account for the sum of the error of each layer. The error in TB resulting from the uncertainties in 

SSA measurements for each layer correspond to an integrated errors which are not independent 

from each other, since there are multiple scattering between the layers. In the Table 9, we show 

the extreme variations in TBs for the extreme cases where all the errors in SSA are in the same 

way (all positive + 12%, and all negative -12%). This gives the limit cases. In reality, one can 

assume a random error in SSA measurements between + and - 12% to calculate TB with a random 

error applied on SSA (TBsimrand). We assessed the average variation in TBs (TBsim - TBsimrand) 

resulting from 100 runs with random error (± 12) in SSA for each layers of every snowpits. The 
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Table R.1 below shows the results. As expected, the variation is significantly lower than those 

shown in Table 9 of the paper. This Table gives the lower limits , while the Table 9 gives the 

highest limit. 

 

Table R.1: TB variation (TBsim - TBsimrand) associated with random error (±12%) applied to each 

SSA measurements (average of 100 runs) 
 JBJan  JBFeb JBMar UMI 

11H 0.0 0.1 0.1 0.0 

11V 0.0 0.1 0.1 0.0 

19H 0.3 0.6 0.8 0.3 

19V 0.3 0.6 0.9 0.3 

37H 2.1 2.0 1.7 1.2 

37V 2.7 2.4 2.1 1.4 

 

We added the following sentence in the text: 

 

“We assessed average variation in TB resulting from 100 runs with random error between ± 12% 

applied to SSA for each layer and snowpit. As expected, the results show that the variations 

between initial simulation and simulation with random error on SSA are significantly lower than 

those shown in Table 9. With random error applied on SSA measurements, the variations are 

lower than 1 K at 11 and 19 GHz, and between 2 and 3 K at 37 GHz. These values give the lower 

limits of TB error related to SSA uncertainties, while values in Table 9 give the highest limit of the 

variation in TB.” 

 

R2-C13 : Line 595: I think you mean “was NOT attempted”. 

 

It was changed. 

 

R2-C14 : Conclusions, p26, lines 760-765. You could cite Derksen (2008) in the discussion 

here, who suggested the use of 11-19 GHz in place of 19-37 GHz for deep snow to 

alleviate saturation effects at 37 GHz. 

 

We added a sentence on the possibility to use 11-19 instead of 19-37:  

 

“This could be of interest for the SWE retrieval approach, knowing that 19 GHz TB becomes 

sensitive to snow when snow grains become larger. As proposed in Derksen (2008) 11 and 19 

GHz frequencies could be usefull for SWE retrievals for deep snow to overcome the problem of 

saturation at 37 GHz (see Rosenfeld and Grody, 2000). At 11 GHz, snow is almost transparent 

throughout the winter demonstrating the utility of this band for monitoring soil conditions (phase, 

temperature) under the snow (Kohn and Royer, 2010). “ 

 

Editorial P11, line 333 delete “therefore” 

 

Done 
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Abstract. 31 

 32 
This study aims to better understand and quantify the uncertainties in microwave snow 33 

emission models using the Dense Media Radiative Theory-Multilayer model (DMRT-34 
ML) with in-situ measurements of snow properties. We use surface-based radiometric 35 

measurements at 10.67, 19 and 37 GHz in boreal forest and subarctic environments and a 36 

new in situ dataset of measurements of snow properties (profiles of density, snow grain 37 

size and temperature, soil characterization and ice lens detection) acquired in the James 38 
Bay and Umiujaq regions of Northern Québec, Canada. A snow excavation experiment -- 39 

where snow was removed from the ground to measure the microwave emission of bare 40 

frozen ground -- shows that small-scale spatial variability (less than 1 km) in the emission 41 
of frozen soil is small. Hence, in our case of boreal organic soil, variability in the 42 

emission of frozen soil has a small effect on snow-covered brightness temperature (TB). 43 
Grain size and density measurement errors can explain the errors at 37 GHz, while the 44 

sensitivity of TB at 19 GHz to snow increases during the winter because of the snow grain 45 
growth that leads to scattering. Furthermore, the inclusion of observed ice lenses in 46 

DMRT-ML leads to significant improvements in the simulations at horizontal 47 
polarization (H-pol) for the three frequencies (up to 20 K of root mean square error). 48 

However, the representation of the spatial variability of TB remains poor at 10.67 and 19 49 

GHz at H-pol given the spatial variability of ice lens characteristics and the difficulty in 50 
simulating snowpack stratigraphy related to the snow crust. The results also show that, in 51 

our study with the given forest characteristics, forest emission reflected by the surface 52 
can increase the TB up to 40 K. The forest contribution varies with vegetation 53 

characteristic and a relationship between the downwelling contribution of the vegetation 54 
and the proportion of pixels occupied by vegetation (trees) in fisheye pictures was found. 55 

We perform a comprehensive analysis of the components that contribute to the snow-56 
covered microwave signal, which will help to develop DMRT-ML and to improve the 57 

required field measurements. The analysis shows that a better consideration of ice lenses 58 
and snow crusts is essential to improve TB simulations in boreal forest and subarctic 59 

environments. 60 
 61 

Keywords: DMRT-ML, snow, vegetation, ice lenses, soil emissivity, microwave 62 

 63 

1. Introduction 64 

 65 
Seasonal snow cover plays an important role in the surface energy balance (Armstrong 66 

and Brun, 2008). Snow, with its low thermal conductivity, has an insulating effect on 67 

soils, which can greatly influence vegetation (Liston et al., 2002) and the development of 68 
active layers in permafrost (Gouttevin et al., 2012; Shurr et al., 2013). Snow water 69 

equivalent (SWE) is also a key variable in the high latitude water cycle (Déry et al., 70 

2009) and is important for dam management and hydroelectricity production (Roy et al., 71 
2010). Conventional in situ observations, such as from meteorological stations, are often 72 

inadequate to monitor seasonal snow evolution given the sparse distribution of stations in 73 

northern regions. Furthermore, point measurements are subject to local scale variability 74 

and may not represent the prevailing regional conditions. For these reasons, monitoring 75 

SWE from satellite passive microwave (PMW) observations has been the subject of 76 
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numerous studies for nearly three decades (e.g., Chang et al. 1987; Goodison et al., 1986; 77 

Derksen, 2008). The PMW are sensitive to SWE, but also have the advantage of 78 

providing observations at a synoptic scale in any weather conditions: images are available 79 

at least twice a day for the northern regions. However, estimation of SWE is not 80 
straightforward and existing empirical algorithms based on linear relationships between 81 

SWE and spectral TB are often inaccurate due to seasonal snow grain metamorphism 82 

(Rosenfeld and Grody, 2000). Vegetation contributions are also an important factor with 83 

large interannual variability (Roy et al., 2015), which is not captured by these algorithms. 84 
Hence, radiative transfer models (RTM) including microwave snow emission models 85 

(MSEM) can be used to take into account the different contributions to the microwave 86 

signal and the interannual variability of critical geophysical parameters. The GlobSnow2 87 
SWE retrieval algorithm (Takala et al., 2011) uses an assimilation scheme combining 88 

PMW observations constrained with kriged measurements of snow depth from 89 
meteorological stations. This method, however, has some limitations in remote areas 90 

where snow measurements are sparse, thus highlighting the need to improve MSEM 91 
performance in such a way that SWE retrievals can be achieved without in situ 92 

observations (Larue et al., 2015). 93 
 94 

At the satellite scale, PMW observations generally have a coarse spatial resolution (more 95 

than 10 km x 10 km). Nevertheless, spatial heterogeneity within PMW pixels becomes a 96 
limitation for the development and validation of MSEM because contributions from 97 

snow, vegetation and lakes are difficult to decouple. Therefore, surface-based 98 
radiometers (SBR) are used to better understand and isolate the contribution of snow-99 

covered surfaces. However, independently of MSEM used and seasonal snow type, the 100 
comparison between simulated TB and SBR observations leads to errors in the order of 10 101 

K (Roy et al., 2013; Montpetit et al., 2013; Derksen et al., 2012; Kontu and Pulliainen, 102 
2010; Lemmetyinen et al., 2010; Lemmetyinen et al., 2015; Durand et al., 2008). From 103 

SBR measurements, these errors can be explained by 1) MSEM physical simplification 104 
(Tedesco and Kim, 2006) and 2) small scale variability and uncertainty in measurements 105 

of geophysical parameters.  106 
 107 

Hence, this paper aims to better quantify the relative importance of different geophysical 108 
parameters and small-scale spatial variability when simulating microwave TB with the 109 

Dense Media Radiative Theory-Multilayer model (DMRT-ML; Picard et al. 2013). The 110 

study is based on a new and unique database including SBR measurements at three 111 

microwave frequencies (37, 19 and 10.67 GHz) in boreal and subarctic environments. 112 

The study assesses a wide range of contributions that could lead to uncertainties in 113 

ground-based microwave snow emission modeling: snow grains, snow density, soil 114 
roughness, ice lenses (IL) and vegetation. More specifically, the objectives of the study 115 

are:       116 

  117 
1. Validate the snow emission modeling, including recent improvements accounting for 118 

ice lenses (Montpetit et al., 2013) and snow density in the 367-550 kg m
-3

 range 119 

(Dierking et al., 2012). 120 

 121 
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2. Evaluate the different contributions to modeling uncertainty (snow grains, snow 122 

density, ice lenses, soil and vegetation measurements). 123 

 124 

3. Quantify the sensitivity of simulated TB to the measurement accuracy. 125 

 126 

2. Method 127 

 128 
2.1 Sites and Data 129 
 130 

Surface-based radiometer observations were acquired during the 2010 field campaign at 131 

the Churchill Northern Studies Center (Northern Manitoba) (see Roy et al., 2013 for a 132 
detailed description of the field campaign) and during four subsequent field campaigns in 133 

Northern Québec, Canada: three in James Bay (53°26’N; 76°46’W, 186 m a.s.l) in winter 134 
2013 and one campaign in Umiujaq (56°33’N, 76°30’W, 74 m a.s.l) in winter 2014 (Fig. 135 

1). All these campaign allow covering a wide range of environmental conditions from 136 
dense boreal forest to open tundra for a total of 51 snowpits (excluding the Churchill 137 

snowpits). 138 
 139 

 140 
Fig. 1. Location of field campaigns. Background: Land Cover of Canada (Latifovic et al., 141 

2004)  142 

 143 
TB measurements were acquired at 37, 19 and 10.67 GHz in both vertical (V-pol) and 144 

horizontal (H-pol) polarizations at a height of approximately 1.5 m above the ground and 145 

at an angle of 55° with the PR-series Surface-Based Radiometers from Radiometrics 146 

Corporation (Langlois, 2015) (hereinafter, the 10.67 GHz SBR is noted 11 GHz for 147 

simplicity). With a beam width of 6° for 37 and 19 GHz SBR, the footprint of the 148 
measurements at the snow surface was approximately 0.6 m x 0.6 m. The 11 GHz beam 149 

width is 8° with a footprint of about 0.8 x 0.8 m. In the worst case, the measurement error 150 

Comment [AR1]: New figure 
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for the calibration target was estimated at 2 K. The radiometers were calibrated before 151 

and after each field campaign using ambient (black body) and cold (liquid nitrogen) 152 

targets. 153 

 154 
Within the footprint of every SBR observation, profiles of snow temperature, snow 155 

density (ρsnow in kg m
-3

) and specific surface area (SSA in m
2
 kg

-1
) were taken at a 156 

vertical resolution between 3 and 5 cm. Visual stratigraphy assessment of the main snow 157 

layers/features, including ice lenses, was conducted. The density was measured using a 158 
185-cm

3
 density cutter, and samples were weighed with a 100-g Pesola light series scale 159 

with an accuracy of 0.5 g. The snow temperature and soil temperature were measured 160 

with a Traceable 2000 digital temperature probe (± 0.1 °C). The SSA was measured with 161 
the shortwave InfraRed Integrating Sphere (IRIS) system (Montpetit et al., 2012) at the 162 

James Bay site and using the Dual Frequency Integrating Sphere for Snow SSA 163 
measurement (DUFISSS: Gallet et al., 2009) in Umiujaq. Both instruments exploit the 164 

relationship between the SWIR snow reflectance and the SSA (Kokhanovsky and Zege, 165 
2004) based on the principle described in Gallet et al. (2009). From SSA measurements, 166 

the optical radius of the snow grain (Ropt) was calculated by: 167 
 168 

SSA
R

ice

opt


3
                    (1)  169 

 170 

where ρice is the ice density = 917 kg m
-3

.  The SSA is one of the most robust and 171 
objective approaches to measure a parameter related to the size of snow grains in the 172 

field. The error for SSA measurements was estimated to be 12% (Gallet et al., 2009).   173 
 174 

2.1.1 James Bay, Québec, Canada 175 
 176 

Three intensive measurement periods were conducted during the 2013 winter season in 177 
the James Bay area, Québec, in January (8

th
 to 12

th
: JBJan), February (12

th
 to 17

th
: JBFeb) 178 

and March (19
th

 to 23
th

: JBMar) (Tables 1, 2 and 3). The sites were in a typical boreal 179 
forest environment, but most of the measurements were conducted in clearings with 180 

minimal influence of the environment (topography, vegetation) on the measured TB. 181 
However, 15 measurements, spanning across the three campaigns, were conducted in 182 

forested areas and were treated separately to specifically investigate the contribution of 183 

vegetation on the ground-based measurements (Table 4). Several snow excavation 184 
experiments (denoted SEex) were also conducted where snow was removed to measure 185 

frozen ground emission. During SEex, large snowpits were dug (about 3 m x 3 m wide) 186 

and the snow walls removed to eliminate snow wall emission reflected on the ground. At 187 

all sites, the soil (described below) was frozen at least to a depth of 10 cm. 188 

 189 
During the JBJan campaign, 16 open area sites were measured where the mean ρsnow 190 

(weighted by snow layers thickness excluding ice lenses) of all snowpits was 218.3 kg m
-191 

3
 and the mean Ropt (weighted by snow layers thickness excluding ice lenses) was 0.17 192 

mm (Table 1). Snowpits JBJan-1 to JBJan-5 were located in forest clearings where the soil 193 

composition mainly consisted of organic matter. On January 9
th

, a transect of 11 snowpits 194 

(JBJan-6.1 to JBJan-6.11, each separated by 3 m) was conducted in an old gravel pit 195 
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(mostly mineral soil). Five SEex were also conducted in the 30 m transect. One to two ice 196 

lenses of about 0.5 to 1 cm were observed in all snowpits, buried at depths of 10 and 30 197 

cm. 198 

 199 
Table 1. Average snow property values with standard deviation (in parentheses) at James 200 

Bay (JB) sites in January. Values are provided for snow depth (SD m); mean snowpack 201 

temperature (Tsnow); bulk density (ρsnow); mean optical radius (Ropt); soil/snow temperature 202 

(Tsoil); number of observed ice lenses (IL); and ‘bridging’ (B) indicates the presence of a 203 
snow layer with a density within the bridging ice fraction limits (see Sect. 2.2.2). 204 

SP Type 
SD 

(cm) 
Tsnow (K) ρsnow (kg m

-3
) Ropt (mm) Tsoil (K) IL B Date 

JBan-1  

 Forest 

clearing 

Organic 

soil 

37 259.9 (4.8) 220.7 (37.4) 0.19 (0.09) 272.3 1  07-01-2013 

JBan-2 43 265.3 (3.4) 196.3 (40.4) 0.15 (0.07) 272.0 1  08-01-2013 

JBan-3 48 264.8 (4.2) 241.1 (37.2) 0.20 (0.10) 272.6 1  08-01-2013 

JBan-4 48 264.9 (3.6) 212.8 (48.5) 0.17 (0.09) 272.3 1  08-01-2013 

JBan-5 62 267.5 (1.8) 220.8 (45.9) 0.15 (0.08) 272.4 1  11-01-2013 

JBan-6.1 

 

Old gravel 

pit 

Mineral 

soil 

JBan-transect 

51 266.8 (2.4) 223.4 (39.6) 0.17 (0.08) 271.5 1  09-01-2013 

JBan-6.2 52 267.4 (2.4) 240.1 (42.5) 0.18 (0.08) 271.5 1  09-01-2013 

JBan-6.3 43 266.5 (1.4) 212.8 (34.9) 0.17 (0.08) 271.3 1  09-01-2013 

JBan-6.4 45 268.0 (2.3) 204.3 (37.8) 0.18 (0.09) 272.1 1  09-01-2013 

JBan-6.5 53 267.2 (2.6) 244.5 (40.4) 0.16 (0.09) 272.6 1  09-01-2013 

JBan-6.6 51 267.0 (2.2) 224.4 (38.5) 0.18 (009) 272.0 1  09-01-2013 

JBan-6.7 47 267.2 (2.0) 220.1 (34.5) 0.16 (0.10) 271.6 2  09-01-2013 

JBan-6.8 47 267.5 (2.3) 205.4 (36.5) 0.14 (0.08) 271.8 2  09-01-2013 

JBan-6.9 46 267.1 (1.8) 209.4 (32.0) 0.16 (0.10) 271.1 2  09-01-2013 

JBan-6.10 45 266.7 (1.5) 202.6 (23.8) 0.14 (0.07) 270.3 1  09-01-2013 

JBan-6.11 40 266.8 (1.2) 214.7 (24.2) 0.17 (0.10) 269.6 1  09-01-2013 

 205 
Nine snowpits were dug during the February campaign (Table 2), with a mean ρsnow of 206 

225.2 kg m
-3 

and a mean Ropt of 0.18 mm. All snowpits were conducted in clearings with 207 
frozen organic soil. On the 15

th
 of February, for a transect of seven snowpits, a complete 208 

set of measurements was taken for each snowpit (SP). An ice lens at a depth of 30 cm 209 

was observed at each SP. In addition to SP measurements, two SEex were conducted in 210 
the transect and two others in JBFeb-1 and JBFeb-2.  211 

 212 
Table 2. Same as Table 1, but for James Bay sites in February (JBFeb). 213 

SP Type 
SD 

(cm) 
Tsnow (K) 

ρsnow  

(kg m
-3

) 
Ropt (mm) Tsoil (K) IL B Date 

JBFeb-1 

 Forest 

clearing 

Organic 

soil 

 

62 266.9 (2.3) 240.1 (26.2) 0.21 (0.12) 272.8 1  12-02-2013 

JBFeb-2 66 265.8 (5.0) 194.7 (37.8) 0.24 (0.10) 273.1 1  13-02-2013 

JBFeb-3.1 66 265.3 (3.2) 250.7 (90.7) 0.18 (0.09) 270.8 1 x 15-02-2013 

JBFeb-3.2 66 265.6 (3.3) 215.9 (57.8) 0.18 (0.09) 270.5 1  15-02-2013 

JBFeb-3.3 65 265.9 (3.0) 228.9 (56.5) 0.11 (0.05) 270.5 1  15-02-2013 

JBFeb-3.4 68 266.6 (2.6) 228.1 (54.9) 0.17 (0.09) 271.3 1  15-02-2013 

JBFeb-3.5 65 264.0 (4.0) 235.4 (66.0) 0.17 (0.10) 271.0 1 x 15-02-2013 

JBFeb-3.6 65 266.5 (4.7) 223.6 (65.8) 0.20 (0.11) 271.3 1  15-02-2013 

JBFeb-3.7 64 266.0 (3.2) 209.0 (61.4) 0.18 (0.11) 270.8 1  15-02-2013 
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 214 
During the March campaign, five snowpits with a mean ρsnow of 278 kg m

-3
 and mean 215 

Ropt of 0.26 mm were dug (Table 3). There is a clear increase (70%) of grain size in 216 

March, linked to a strong temperature gradient metamorphism regime typical of such 217 
environments. On March 22

nd
, a transect of three snowpits was conducted in a clearing 218 

with frozen organic soil.   219 

 220 
Table 3. Same as Table 1, but for James Bay sites in March (JBMar). 221 

SP Type 
SD 

(cm) 
Tsnow (K) 

ρsnow        

(kg m
-3

) 
Ropt (mm) Tsoil (K) IL B Date 

JBMar-1  Forest 

clearing 

Organic 

soil 

83 268.2 (3.2) 261.4 (41.0) 0.25 (0.10) 272.0 1  19-03-2013 

JBMar-2 67 267.5 (2.4) 265.2 (38.2) 0.25 (0.07) 270.9 1  20-03-2013 

JBMar-3.1 Transect 

in Forest 

clearing 

Organic 

soil 

 

 

63 269.3 (0.8) 266.1 (34.9) 0.28 (0.11) 270.5 1  22-03-2013 

JBMar-3.2 69 271.0 (1.0) 303.1 (28.1) 0.26 (0.09) 272.5 1  22-03-2013 

JBMar-3.3 67 270.9 (0.8) 294.2 (28.1) 0.25 (0.10) 272.1 1  22-03-2013 

 222 

Measurements were also conducted in a forested area (Table 4), where the emission of 223 
the trees that is reflected on the ground contributes to the measured TB (Roy et al., 2012). 224 

For these reasons, these snowpits were treated separately and used to better understand 225 

the influence of tree emission on ground-based radiometric measurements. On January 226 
10

th
, a transect of eight snowpits was conducted in a forested area as well as transects of 227 

three snowpits on February 14
th

 and March 21
st
. In addition to the usual snowpit 228 

observations, fisheye pictures (Fig. 2) were taken during the January and February 229 

campaigns to quantify vegetation density. The pictures were binarized to distinguish sky 230 
pixels from tree pixels allowing the estimation of the proportion of pixels (fraction) 231 

occupied by vegetation (χveg).  232 
 233 

Table 4. Same as Table 1, but for James Bay sites, all in forested areas (JBveg). 234 

SP Type 
SD 

(cm) 
Tsnow (K) ρsnow (kg m

-3
) Ropt (mm) Tsoil (K) IL Date 

JBveg-1  62 267.6 (1.8) 222.5 (44.5) 0.14 (0.08) 272.4 1 11-01-2013 

JBveg-2.1 

First 

transect  

of 30 m 

64 267.4 (2.7) 202.6 (43.3) 0.18 (0.09) 273.3 1 10-01-2013 

JBveg-2.2 67 269.0 (2.3) 211.6 (49.9) 0.15 (0.09) 273.3 1 10-01-2013 

JBveg-2.3 60 268.3 (3.1) 201.4 (58.5) 0.16 (0.09) 273.4 1 10-01-2013 

JBveg-2.4 60 267.6 (2.1) 197.2 (40.0) 0.19 (0.10) 272.4 1 10-01-2013 

JBveg-2.5 65 267.1 (2.5) 200.7 (48.9) 0.15 (0.08) 272.8 1 10-01-2013 

JBveg-2.6 60 266.3 (2.0) 195.5 (59.8) 0.15 (0.08) 271.9 1 10-01-2013 

JBveg-2.7 56 268.4 (2.5) 199.4 (36.5) 0.15 (0.09) 272.9 1 10-01-2013 

JBveg-2.8 68 268.1 (2.9) 205.4 (45.2) 0.14 (0.08) 273.1 1 10-01-2013 

JBveg-3.1 Second 

transect 

of 6 m 

78 267.0 (2.8) 231.6 (44.1) 0.19 (0.10) 272.4 2 14-02-2013 

JBveg-3.2 78 267.4 (2.4) 217.0 (55.8) 0.19 (0.10) 272.6 2 14-02-2013 

JBveg-3.3 75 267.5 (2.2) 222.0 (62.1) 0.19 (0.12) 272.4 1 14-02-2013 

JBveg-4.1 Third 88 268.1 (1.5) 281.4 (55.3) 0.20 (0.11) 271.9 3 21-03-2013 
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JBveg-4.2 transect 

of 6 m 
88 269.9 (1.5) 283.2 (42.8) 0.22 (0.12) 272.9 3 21-03-2013 

JBveg-4.3 87 271.5 (1.0) 288.8 (43.7) 0.28 (0.12) 272.9 3 21-03-2013 

 235 
 236 

 237 
Fig. 2. Fisheye pictures for JBveg-3.3 (left) and JBveg-2.2 (right) sites, showing the sky 238 
view proportion around the SBR site measurements. 239 

 240 

2.1.2 Umiujaq 241 
 242 
An intensive measurement campaign was conducted in January 2014 (21

st
 to 28

th
) in the 243 

region of Umiujaq. All the measurements were conducted in a tundra environment except 244 
for the Umi-3 site, which was located in a clearing (Table 5). The tundra sites were 245 

characterized by typical dense snow drift layers near the surface that fall into the bridging 246 

limits of 0.4 and 0.6 for the ice fraction as defined by Dierking et al. (2012) (see Sect. 247 
2.2.2). Furthermore, one to two ice lenses were observed at the UMI-1, UMI-2 and UMI-248 

4 sites. 249 
 250 

Table 5. Same as Table 1, but for Umiujaq sites (UMI). 251 

SP Type 
SD 

(cm) 
Tsnow (K) 

ρsnow (kg m
-

3
) 

Ropt (mm) Tsoil (K) IC B Date 

UMI-1 
Tundra 

35 253.9 (2.6) 361.8 (54.4) 0.15 (0.12) 258.4 2 x 22-01-2014 

UMI-2 70 256.2 (4.6) 379.0 (40.5) 0.18 (0.09) 265.2 2 x 23-01-2014 

UMI-3 
Forest 

clearing 
132 263.5 (5.8) 

319.0 (51.2) 
0.18 (0.08) 271.8 0 x 24-01-2014 

UMI-4 
Tundra 

57 256.9 (4.2) 280.7 (46.5) 0.23 (0.11) 264.4 1  25-01-2014 

UMI-5 93 254.0 (3.9) 350.6 (42.3) 0.19 (0.09) 261.6 0 x 26-01-2014 

 252 

2.2 Models 253 
 254 

The study uses the DMRT-ML model to simulate the microwave emission of snow-255 

covered surfaces (Brucker et al. 2011; Picard et al., 2013). It is a multilayer 256 
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electromagnetic model based on the DMRT theory (Tsang and Kong, 2001). The theory 257 

assumes that a snow layer is composed of ice spheres where the effective permittivity is 258 

calculated using the first-order quasi-crystalline approximation and the Percus-Yevick 259 

approximation. The propagation of energy between the different layers is calculated with 260 
the Discrete Ordinate Radiative transfer (DISORT) method as described in Jin et al. 261 

(1994). In this paper, the propagation of electromagnetic radiation was calculated for 64 262 

streams.  263 

 264 
The snowpit measurements (snow, Tsnow, Tsoil and Ropt) were integrated as input to the 265 

model to simulate snow microwave emission. However it was shown in previous studies 266 

(Brucker et al. 2011; Roy et al., 2013; Picard et al. 2014) that using Ropt was inadequate 267 

as input to DMRT-ML. As such, a scaling factor of = 3.3 assuming non-sticky snow 268 
grains from Roy et al. (2013) for the seasonal snowpack is thus applied to get an effective 269 

radius in the microwave range (Reff):  270 

 271 

 opteff RR                                                                                                                      (2) 272 

 273 
Roy et al. (2013) shows that the need for a scaling factor in DMRT-ML could be related 274 

to the grain size distribution of snow and the stickiness between grains, which leads to an 275 
increase of the Reff.  276 

 277 
The atmospheric downwelling TB that is reflected by the snow surface to the radiometer 278 

was modeled using the millimeter-wave propagation model (Liebe et al., 1989) 279 
implemented in the Helsinki University of Technology (HUT) snow emission model 280 

(Pulliainenet al., 1999). The atmospheric model was driven with the air temperature and 281 
air moisture of the atmospheric layer above the surface from the 29 North American 282 

Regional Reanalysis (Mesinger et al., 2006) atmospheric layers. 283 
 284 

2.2.1 Ice lenses 285 
 286 
The microwave signal is very sensitive to ice lens formation within a snowpack at H-pol 287 

(Montpetit et al., 2013; Rees et al., 2010; Lemmetyinen et al., 2010). To simulate the ice 288 

lenses present in this study’s database (see Tables 1 to 5) using DMRT-ML, snow layers 289 

with a high density of 900 kg m
-3

 close to the density of pure ice (917 kg m
-3

) and a null 290 

snow grain size were integrated into the snowpack input file where ice lenses were 291 

observed. The value of 900 kg m
-3

 was chosen because only pure ice lenses were 292 

observed. To keep the same total snow depth, the adjoining layers were adjusted by 293 

removing 0.5 cm of the layer above and below the ice layer. However, an analysis of the 294 

effect of ice lens density on TB simulations will be conducted in Sect. 3.2.4. Because 295 

coherence is neglected in DMRT-ML (Matzler, 1987), the ice lens thickness has a 296 

negligible effect on simulated TB. Hence, because no precise measurements of ice lens 297 

thickness were performed in the field, ice lens thickness was set to 1 cm in DMRT-ML.  298 

 299 
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 300 

2.2.2 Bridging 301 
 302 

It has been shown that DMRT theory is in agreement with numerical solutions of the 3-D 303 
Maxwell equations up to a density of 275 kg m

-3
 (ice fraction of 0 - 0.3) (Tsang et al., 304 

2008), which is a relatively low density for snow. Although most of the applications of 305 

DMRT theory concern snow, DMRT can be applied to other dense media such as bubbly 306 

ice (Dupont et al., 2014). In this case, the background is pure ice, and the scatterers are 307 
air spheres to represent bubbles. To the best of our knowledge, no validity tests have been 308 

done in this configuration; but if we assume a similar range of validity in terms of volume 309 

fraction of scatterers, the DMRT theory would be valid in the range 0.7 – 1 for the ice 310 
fraction, that is 642 - 917 kg m

-3
. Even in this case, a large range of intermediate densities 311 

remains for which the absorption and scattering coefficients might not be accurate. 312 
Following Dierking et al. (2012), an empirical extrapolation of these coefficients from a 313 

spline fitted in both validity ranges was implemented to calculate coefficients for a layer 314 
with an ice fraction between 0.4 (snow = 367 kg m

-3
) and 0.6 (snow = 550 kg m

-3
)  (Fig. 3). 315 

As an example, the bridging leads to a decrease of TB at 37 GHz for high snow density (> 316 
350 kg m

-3
) related to the increase of scattering (Fig. 4). In the following, this approach is 317 

denoted as ‘bridging’ and the limits will be set at 0.4 and 0.6 for the ice fraction 318 

following the study of Dierking et al. (2012). 319 
 320 

 321 
Fig. 3. Absorption (red) and scattering (blue) coefficients as a function of ρsnow at 37 GHz 322 
(Tsnow = 260 K, Tsoil = 270 K, SD = 1.0 m and Reff = 0.3 mm). The dotted lines show the 323 

bridging implementation for an ice fraction between 0.4 and 0.6.  324 
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 325 

 326 
Fig. 4. TB without (left) and with the bridging implementation (right) at 37 GHz (V-pol) 327 

for different Reff (Tsnow = 260 K, Tsoil = 270 K and SD = 1.0 m). 328 

 329 
The implementation of the bridging was evaluated with James Bay and Umiujaq snowpit 330 

data that include at least one snow layer with an ice fraction of more than 0.4 (Tables 2 331 
and 5). Because ρsnow is relatively low in boreal regions due to weakening of the wind by 332 

trees, we also evaluated this approximation using a tundra dataset to increase the number 333 
of high density snow layers for the specific validation of the bridging. The database 334 

acquired at the Churchill Northern Studies Center (58°44’N, 93°49’W) (Roy et al., 2013; 335 
Derksen et al., 2012) from the winter 2010 campaign is composed of 13 sites with at least 336 

one layer in the bridging range.    337 
 338 

2.2.3 Soil model 339 
 340 

Soil reflectivity models are included in DMRT-ML to account for the soil contribution to 341 

the measured TB. In this paper, the Wegmüller and Mätzler (1999) soil reflectivity model 342 

improved for frozen soil by Montpetit et al. (2015) is used. The Wegmüller and Mätzler 343 

(1999) model for incidence angles lower than 60° is described by: 344 

))(exp( cos1.0

,,

 

  kFresnel

HfpolHf                           (3) 345 

 346 
cos,, HfpolVf                               (4) 347 

 348 

where Γf,p  is the rough soil reflectivity at a frequency f and polarization p (H-pol or V-349 

pol) by its smooth Fresnel reflectivity in H-Pol (Γf,H), which depends on the incidence 350 
angle (θ) and the real part of the soil permittivity (ε’), weighted by an attenuation factor 351 

that depends on the standard deviation in height of the surface (soil roughness, σ), the 352 

measured wavenumber (k) and a polarization ratio dependency factor (β). The values of 353 

ε',  σ and β at 11, 19 and 37 GHz inverted by Montpetit et al. (2015) for frozen soil (Table 354 
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6) were used in this study. Montpetit et al. (2013) used independent snow free ground-355 

based radiometer angular measurements taken at James Bay site in 2013 (same 356 

campaign). The parameters were also validated over Umiujaq (same campaign) from 357 

snow removal experiment.  358 
 359 

Table 6. Main parameters used in DMRT-ML 360 
Frequency (GHz) ε' β  fluxes σ (cm) θ (°) 

11 3.197 1.077 

3.3 64 0.193 55 19 3.452 0.721 

37 4.531 0.452 

 361 
3. Results 362 
 363 

In this section, the impact of model improvements (ice lenses and bridging) is first 364 

presented. Afterward, the evaluation of the effect of the different sources (soil, snow 365 

grain size, snow density, ice lenses and vegetation) on TB is shown. 366 

 367 

3.1 Model validation and improvement 368 
 369 

Initial simulations ignoring the presence of ice lenses and bridging show a clear 370 
overestimation of TB mostly at H-pol. The observed root mean square error (RMSE) is 371 

greater than 35 K at 11 and 19 GHz and greater than 20 K at 37 GHz (Fig. 5). There is 372 
also a positive bias for TB at 11 and 19 GHz at V-pol.  In this section, the effect of ice 373 

lenses on TB is evaluated, while the bridging implementation was tested on snowpits data. 374 
 375 



13  

 376 
Fig. 5. TB simulated without ice lenses in DMRT-ML and bridging. RMSE (K) between 377 
measured and simulated TB are given in parentheses. The symbol types correspond to the 378 

frequency and colors to the sites: Red = JBJan-transect; Green = JBJan-others; Blue = JBFeb; 379 
Yellow = JBMar; Magenta = UMI.  380 

 381 

3.1.1 Ice lenses 382 
 383 
Simulations including observed ice lenses were conducted on all snowpits (Fig. 6) 384 
leading to a strong decrease in simulated TB H-pol (up to 40 K). At H-pol, the RMSE are 385 

thus improved by 15.4, 23.4 and 9.3 K at 11, 19 (initially > 35 K) and 37 GHz (initially > 386 

20 K) respectively. The ice lenses also slightly decrease the bias measured at V-pol for all 387 

frequencies leading to a RMSE improvement of 3 to 4 K. These results show that a 388 

simple ice lens implementation in DMRT-ML helps to simulate the strong reflection 389 
component of ice lenses (decrease of snowpack emissivity), leading to improved 390 

simulations of TB.  391 

 392 
However, a large variability (190 to 245 K) in TB observations at H-pol at 11 and 19 GHz 393 

is not reproduced by the simulations (dotted black line in Fig. 6). This feature suggests 394 

some limitations of ice lens and/or snow layering modeling in DMRT-ML that can be 395 

related to the fact that coherence effect is not taken into account. Note that this 396 

underestimation of TB spatial variability is not related to the soil as it is demonstrated in 397 

Sect. 3.2.1. The modeling uncertainties related to ice lenses will be discussed more 398 
specifically in Sect. 3.2.4.  399 

 400 
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 401 

402 
Fig. 6. TB simulated with ice lenses included in DMRT-ML, but without bridging. The 403 
symbol types correspond to the frequency and colors to the sites: Red = JBJan-transect; 404 

Green = JBJan-others; Blue = JBFeb; Yellow = JBMar; Magenta = UMI. The dotted black line 405 
represents the TB where the simulations underestimated the spatial variability at 11 and 406 

19 GHz H-pol. 407 
 408 

3.1.2 Bridging 409 
 410 

To test the bridging parameterization (see Sect 2.2.2), we used 13 tundra sites from the 411 

Churchill tundra database (Roy et al., 2013), 4 from Umiujaq and 2 from the James Bay 412 
snowpits. In each case, at least one snow layer with a snow density higher than 367 kg m

-
413 

3
 (ice fraction of 0.4: Dierking et al., 2012) is used. For each of the 19 sites studied, 414 

simulations at 37 GHz (the most sensitive frequency to snow) with and without the 415 

bridging implementation were conducted (all input parameters kept the same). The 416 
bridging has a relatively modest impact on simulations with an improvement in the 417 

RMSE of between 2 and 4 K at tundra sites (Umiujaq and James Bay). The greatest 418 

improvements are found for deep drifted tundra snowpits where there is a very thick wind 419 

slab with high ρsnow and small rounded grains are present at the top of the snowpack.  420 

 421 

3.2 Signal contributions and modeling uncertainties 422 

 423 

Comment [AR2]: The dotted line 
was added 

Comment [AR3]: The old Fig. 6 was 
removed (bridging scatterplot) 
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In the following, all DMRT-ML simulations consider the bridging implementation and 424 

include the observed ice lenses. Table 7 shows the overall RMSE for all campaigns that 425 

are described in Sect. 3.3.1 to 3.3.4. The RMSE values oscillate between 7.8 and 21.5 K 426 

at H-pol (Table 7). Since V-pol is less affected by layering in the snowpack at 11 GHz 427 
and 19 GHz, the RMSE are generally lower (between 3.5 and 14.4 K), while the RMSE 428 

at 37 GHz are similar at V-pol and H-pol. This is due to the higher sensitivity of higher 429 

frequencies to snow grain scattering when compared to the lower frequencies that are less 430 

affected by stratigraphy. Table 7 also suggests that the inclusion of bridging only 431 
decreases the RMSE by 0.5 K and 0.3 K at 37 GHz at H-pol and V-pol respectively (see 432 

Fig. 5). These RMSE will thus be used as a reference to quantify the effect of spatial 433 

variability and uncertainty in measurements on the TB simulations. 434 
 435 

Table 7: Overall RMSE (K) between measured and simulated TB for all sites considering 436 
ice lenses and bridging in DMRT-ML. 437 
 JBJan  JBFeb JBMar UMI All 

11H 21.5 13.6 18.2 14.3 18.8 

11V 6.4 5.5 6.3 9.8 7.2 

19H 11.7 8.7 19.8 11.2 12.7 

19V 3.5 5.7 9.2 13.4 8.0 

37H 12.1 15.1 9.7 9.7 11.5 

37V 7.8 15.3 14.4 16.8 12.3 

  438 
 439 

3.2.1 Soil roughness 440 

 441 
The analysis of small-scale soil variability in modeling the TB of snow-covered surfaces 442 

is conducted using the SEex from the transect during the JBJan (mineral soil) and JBFeb 443 
campaigns (organic soil). The JBJan SEex data represent the variability within a 30 m 444 

transect in a relatively homogeneous mineral soil area (quarry). The JBFeb SEex were 445 
conducted at four different locations in clearings with organic soil and within about 1 km 446 

from each other. The strategy behind the evaluation of the small-scale spatial variability 447 
on snow-covered TB is to first calculate the soil emission variability (optimization of σ) 448 

from SEex measurements. This variability is then introduced in the simulations with 449 
snow-covered surfaces to evaluate the sensitivity of TB to variability in the emission of 450 

frozen soil. 451 

 452 

For each SEex measurement, the surface roughness parameter σ was optimized using the 453 

three frequencies and both polarizations for bare soil measurements. The σ value was 454 

changed by increments of 0.01 cm, up to 1 cm (Eq. 3 and 4) and the associated RMSEσ 455 
was calculated as a function of the measured TB (TBmes) and simulated TB (TBsim) in V-pol 456 

and H-pol as follows: 457 
 458 
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 460 

where j corresponds to the frequencies (j=1,2,3 respectively for 11, 19 and 37 GHz) and i 461 

corresponds to the sites. The optimal σ was determined by the lowest RMSEσ (Eq. 5) 462 

value for all sites at JBJan and JBFeb. 463 
 464 

The optimization was also done for each site individually to estimate the spatial 465 

variability in σ. The results presented in Fig. 7 show that a clear minimum in the RMSEσ 466 

can be found at every site. Fig 7 (right) shows that the optimal σ at JBJan-transect values are 467 
located between 0.22 and 0.54 cm, while 0.31 is found for all 5 sites. The variability can 468 

be explained by the variation of the gravel size that affects the surface roughness. For 469 

JBFeb, the observed spatial variability is more significant with variations ranging between 470 
0.195 cm and 1.987 cm with an optimized σ = 0.411 cm for all 4 sites (Fig. 7 left). 471 

However, one should be careful in interpreting these results as the optimization could 472 
also compensate for uncertainties in the permittivity of frozen ground. Nevertheless, 473 

because the minimal and maximal values of optimized σ are taken, this does not affect 474 
our main goal, which is to estimate the variability in snow-covered TB introduced by the 475 

soil in the model. Furthermore, as mentioned in Sect. 2.2.3, the permittivity used in this 476 
study were retrieved at the same site as this study.  477 
 478 

 479 
Fig. 7. RMSEσ for bare frozen soil sites (snow excavation experiment, SEex) as a 480 

function of soil roughness (σ) for (left) JBJan-transect and (right) JBFeb. The optimized σ for 481 

each site is given in parentheses. 482 
 483 

We evaluated the small-scale spatial variability of soil emissivity resulting from the 484 

observed roughness variability. For the sites with observations taken with snow on the 485 
ground (Tables 1, 2, 3 and 5, for both campaigns), we simulated the TB with DMRT-ML 486 

considering the lowest and highest optimized σ (see Fig. 7). Note that we have not used 487 

the standard deviation of σ that would have led to negative values. Fig. 8 (left) shows that 488 

the TB sensitivity to the variation of soil roughness is very weak. TB variations of 0.5 K 489 

and 1.3 K were observed at the JBJan-transect site where the soil properties were more 490 
homogeneous (mineral soil), while a variation of 0.7 K to 3.8 K was measured at the 491 

JBFeb site with organic soil (Table 8). The sensitivity is higher at 11 and 19 GHz because 492 

the soil emission is less attenuated by snow grain scattering. We also performed the same 493 
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calculation without the ice lens implementation where results are similar (less than 1 K 494 

change) suggesting that  despite a potential low transmissivity, ice lenses are not 495 

responsible for the attenuation of the soil upwelling emission.  496 
 497 

 498 
Fig. 8. Sensitivity of snow-covered surface TB to the variation of soil roughness (σ) for 499 
(left) JBJan-transect and (right) JBFeb. The error bars show the variation of TB for maximum 500 

and minimum optimized σ derived from SEex during both campaign (Fig. 7). The RMSE 501 
(K) values correspond to the retrievals using the initial (Table 6) σ value. 502 

 503 
Table 8: TB sensitivity (∆TB) (K) associated with the small-scale variability of soil 504 

roughness (σ). 505 
 JBJan-transect  JBFeb 

11H 1.3 3.8 

11V 1.3 3.8 

19H 1.2 3.2 

19V 1.4 3.5 

37H 0.5 0.7 

37V 0.6 0.7 

 506 

The results show that the soil small-scale spatial variability is much lower than the RMSE 507 
for most of the frequencies and polarizations (Tables 7 and 8). However, for 11 and 19 508 

GHz at V-pol, the soil-induced variability calculated during JBFeb campaign leads to ∆TB 509 

values (Table 8) similar to the measured RMSE (Table 7). Hence, the modeling error 510 
cannot be solely explained by small-scale variability in the emissivity of frozen soil, 511 

except possibly for 11 and 19 GHz at V-pol. However, these conclusions are only valid 512 

for frozen soils, but the higher dielectric contrast of thawed soil would have a greater 513 

impact on the emissivity of snow-covered surfaces.     514 

 515 

3.2.2 Snow grain size 516 
 517 

To test the sensitivity of the simulations to the grain size (SSA) measurement errors, the 518 
simulations considered an error of 12% in SSA when using the shortwave infrared 519 

reflection measurement approach as reported in Gallet et al. (2009). Hence two 520 

simulations were conducted: one with all SSA data along the profile increased by 12% 521 
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(TBSSA+12%), and one with all SSA data decreased by 12% (TBSSA-12%). From these two 522 

simulations, the variation of TB related to SSA errors (∆TBSSA: TBSSA+12% - TBSSA-12%) was 523 

calculated, keeping in mind that this should be the maximum ∆TB error, since the 524 

variations in SSA are all in the same direction for the whole profile. The soil 525 
parameterization is kept the same for all sites (see Table 6). 526 

 527 

Figure 9 shows the error bars related to a variation of + 12% in SSA (upper bars: higher 528 

SSA leads to smaller grains and less scattering) and - 12 % (lower bars: lower SSA leads 529 
to larger grains and more scattering). The results show that 37 GHz is the most sensitive 530 

to the grain size with variations between 16.2 K and 27.4 K (Table 9). The variations are 531 

generally higher at V-pol, which has a higher penetration depth with less sensitivity to 532 
stratification and ice lenses. As such, 37 GHz is more influenced by large depth hoar 533 

grains at the bottom of the snowpack. Hence, because the relationship between the 534 
scattering and the particle size reaches a maximum sensitivity within the particle range 535 

(Picard et al. 2013), the variation of 12% for depth hoar SSA will cause a higher increase 536 
of ∆TBSSA. In all cases, ∆TBSSA are higher than the RMSE (Table 7) suggesting that grain 537 

size can explain the uncertainty in the TB simulations.  538 
 539 

At 19 GHz, there is an increase in ∆TBSSA of about 7 K at V-pol and H-pol during the 540 

three James Bay campaigns. This increase of ∆TBSSA is linked to snow grain 541 
metamorphism (Colbeck, 1983) that tends to increase the particle size through the winter 542 

(see Table 1, 2 and 3). With a higher sensitivity on the particle range and the dependence 543 
of scattering to the particle size, the variation of large grains will increase ∆TBSSA. This 544 

phenomenon shows that at 19 GHz, the effect of SSA measurement uncertainty on TB 545 
depends on the type of grains. For small snow grains in January, the error in SSA is small 546 

compared to the RMSE, which is not the case in March where the error is closest to the 547 
RMSE in the presence of larger grains. A very small increase of ∆TBSSA is also seen at 11 548 

GHz, but with much lower ∆TBSSA (less than 1 K). These results show that scattering is 549 
negligible at 11 GHz for seasonal snow, even with large grains such as depth hoar.  550 

 551 
We assessed average variation in TB resulting from 100 runs with random error between 552 

± 12% applied to SSA for each layer and snowpit. As expected, the results show that the 553 
variations between initial simulation and simulation with random error on SSA are 554 

significantly lower than those shown in Table 9. With random error applied on SSA 555 

measurements, the variations are lower than 1 K at 11 and 19 GHz, and between 2 and 3 556 

K at 37 GHz. These values give the lower limits of TB error related to SSA uncertainties, 557 

while values in Table 9 give the highest limit of the variation in TB. 558 

 559 
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 560 
Fig. 9. TB sensitivity associated to the error of SSA measurements (12%) for the James 561 

Bay (three dates) and Umiujaq sites.  562 
 563 

Table 9: TB sensitivity (∆TBSSA: TBSSA+12% - TBSSA-12%) (K) associated with the error of 564 
SSA measurements 565 
 JBJan  JBFeb JBMar UMI 

11H 0.3 0.7 1 0.5 

11V 0.3 0.7 1.1 0.5 

19H 2.8 6.5 10 4.5 

19V 3.3 6.9 11.1 4.5 

37H 21.2 21.6 22.5 16.2 

37V 27.4 26.7 25.9 18.6 

 566 

3.2.3 Snow density 567 
 568 

A similar analysis was conducted to evaluate the TB sensitivity to an error in ρsnow of +/-569 
10% (TBρsnow+10% and TBρsnow-10%). The ice lens density was left at 900 kg m

-3
 and the 570 

variations in TB related to the ρsnow error (∆TBρsnow: TBρsnow+10% - TBρsnow-10%) were 571 

calculated.  572 

 573 
The highest sensitivity to ρsnow is seen at 37 GHz (Fig. 10). The ∆TBρsnow are about 13 K 574 

during the JBJan campaign and increase to 20 K for JBMar (Table 10). Again, this increase 575 

is explained by the growth in snow grain size due to snow metamorphism that leads to 576 

lower density values. In the given range of sphere sizes and ρsnow at 37 GHz, the impact 577 
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of ρsnow on TB increases with a larger grain size (Fig. 3). These results show that the effect 578 

of ρsnow at 37 GHz on DMRT-ML simulations depends on grain size and evolves 579 

throughout the winter due to snow metamorphism. It should, however, be noted that if the 580 

ice fraction limits of the bridging (Sect. 3.1.2) were extended to a lower ice fraction 581 
density, the impact for high ρsnow would be lower or even the opposite, because of the 582 

increase in scattering due to bridging. Table 10 shows that ∆TBρsnow are of the same 583 

magnitude as RMSE. Hence, depending on the grain size, ρsnow can explain part of the 584 

error in the simulations.  585 
 586 

At 11 and 19 GHz, the highest ∆TBρsnow are found at H-pol with values around 7 K 587 

(Table 10). These highest values are related to the change in the permittivity discontinuity 588 
between layers, mostly at interfaces around the ice lenses leading to a change in the 589 

reflectivity at the different interfaces (Montpetit et al., 2013). Because V-pol is less 590 
affected by horizontal layering, the effect is smaller. Hence, the effect of ρsnow uncertainty 591 

on TB is lower than the measured RMSE at 11 and 19 GHz, but has a significant impact 592 
on TB at H-pol. These results are in agreement with studies that show that the microwave 593 

polarization ratio (H-pol/V-pol) can potentially be used for snow density retrievals 594 
(Champollion et al., 2013; Lemmetyinen et al., submitted).          595 
 596 

 597 
Fig. 10. TB sensitivity associated with the error in snow density measurements (±10%). 598 

The ice lens density remains at 900 kg m
-3

. 599 
 600 
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Table 10. TB sensitivity (∆TBρsnow : TBρsnow+10% - TBρsnow-10%) (K) associated with the error 601 

in snow density measurements 602 
 JBJan  JBFeb JBMar UMI 

11H 7.6 7.5 5.6 6.1 

11V 1.4 1.4 2.1 1.9 

19H 8 8.8 8.3 6.2 

19V 2.4 3.2 6.7 3.6 

37H 13.5 16.5 18.4 11.6 

37V 12.6 15.3 21.4 13.4 

 603 
 604 

3.2.4 Ice lenses 605 

 606 
While including ice lenses in DMRT-ML significantly reduces the RMSE (section 3.1.1), 607 

the underestimation of TB variability remains strong at 11 and 19 GHz. Given that the 608 
remaining bias cannot be explained by the soil, grain size or ρsnow (Sect. 3.3.1, 3.3.2 and 609 

3.3.3), we further explore here the role of ice lenses. The ice lens density (ρIL) variations 610 

can explain part of the variability as the density of ice influences the internal reflection 611 
(Durand et al., 2008; Rutter et al., 2013). In fact, ice lenses can be snow crusts with a 612 

density as low as 630 kg m
-3

 (Marsh and Woo, 1984). However, measuring the density of 613 
such layers is challenging and it was not attempted during our campaigns. The sensitivity 614 

was evaluated for a range of ice density between 700 kg m
-3

 (TBρIL700) and 917 kg m
-3

 615 
(TBρIL917) for all snowpits with ice lenses. The variation of TB related to ρIL uncertainties 616 

(∆TBρIL: TBρIL917 – TBρil700) was then calculated (all other parameters being constant).  617 
 618 

Figure 11 shows that ρIL variations have a significant impact on H-pol TB mostly at 11 619 
and 19 GHz. The low ∆TBρIL at 37 GHz (Table 11) is not related to the insensitivity of 37 620 

GHz to ice lenses, but rather to the attenuation owing to snow grains dominating the 621 
effect of ice lenses. In fact, Table 11 shows that the effect of the variation of ice lens 622 

density decreases throughout the winter at James Bay because of increasing attenuation 623 
related to grain size metamorphism. It should be noted that no scattering occurs in these 624 

layers in the model because the Reff was kept null. Hence, ρIL can only explain the 625 
underestimation of TB, not the overestimation. Part of the error could be explained by the 626 

coherence that is not taken into account in DMRT-ML. The coherence is caused by 627 

multiple reflections within a thin layer and associated interference when the thickness of 628 

the ice lenses is less than a quarter of the wavelength (λ/4) (Mätzler et al., 1987; 629 
Montpetit et al., 2013). Since DMRT-ML does not take into account the coherence, the 630 

thickness of the ice layer has a negligible impact on TB and was kept at 1 cm. However, 631 

simulations with MEMLS accounting for coherence have shown that variation in the ice 632 
lens thickness can change TB by up to 100 K at H-pol at 19 and 37 GHz (Montpetit et al., 633 

2013). Also, in this study, only the main ice lenses were noted and inserted in DMRT-634 

ML. Many other melt/refreeze thin snow crusts were present but not recorded, and they 635 

can have a large impact on TB observations (see Rutter et al., 2013). These thin crusts 636 

(less than 2 mm) with a high density (over 600 kg m
-3

) can also have significant 637 
coherence effects (less than λ/4).    638 

 639 
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During the JBJan campaign, at the transect, two ice lenses were observed at three 640 

consecutive snowpits (JBJan-6.7, JBJan-6.8 and JBJan-6.9). The simulations at these sites 641 

show the three lowest simulated TB at 11 GHz and 19 GHz at H-pol (Fig. 11). The second 642 

observed ice lens inserted in DMRT-ML significantly decreases the simulated TB. 643 
Including the second observed ice lens allows an improvement in the TB simulation at 644 

JBJan-6.8 (Table 1), while the accuracy decreases for the two other snowpits, especially at 645 

11 GHz. These results show the importance of small-scale spatial variability in the 646 

distribution of ice lenses. In this case, since the SBR footprint is not exactly where the 647 
snowpit was dug, the 11 GHz measured the two ice lenses at JBJan-6.8, but not at JBJan-648 

6.7 and JBJan-6.9. Rutter et al. (2013) showed that such small-scale discontinuities in ice 649 

lenses have a strong impact on TB.  650 
 651 

 652 
Fig. 11. TB sensitivity associated with the ρIL variation (700 to 917 kg m

-3
). 653 

 654 

Table 11. TB sensitivity (∆TBρIL: TBρIL917 – TBρil700) (K) associated with the ρIL variation 655 
(700 to 917 kg m

-3
) 656 

 JBJan  JBFeb JBMar UMI 

11H 17 15.9 11.9 13.4 

11V 3.7 3.1 2.6 3.5 

19H 15.4 14.3 9.2 12.1 

19V 3.2 2.4 1.8 3.1 

37H 6.4 5.7 1.2 6.1 

37V 0.8 1.5 1.7 1.1 

 657 
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 658 

3.2.5 Surrounding vegetation effects 659 
 660 

In a forested area, tree emission reflected by the snowpack can significantly contribute to 661 
the measured TB on the ground (Roy et al., 2012). An analysis was conducted on 18 site 662 

measurements taken in a forest during the three James Bay campaigns (Table 4) to 663 

quantify the forest contributions to measured TB using DMRT-ML. A first simulation, 664 

neglecting the emission coming from the trees in the downwelling TB (TBdown) reflected 665 
by the surface was conducted. Figure 12 shows a clear underestimation (biases ≈ 40 K at 666 

H-pol) of simulated TB at all frequencies, except for 11 and 19 GHz at V-pol. Table 12 667 

shows that these biases are much greater than the uncertainties induced by the snow cover 668 
in open areas, showing that the tree emission reflected by the surface significantly 669 

increased the measured TB. The low influence of vegetation (low biasforest: Table 12) at 11 670 
and 19 GHz V-pol is explained by the fact that the reflectivity of the surface at these 671 

frequencies is very low because the volume scattering is weak and the reflectivity at the 672 
interfaces is close to zero near the Brewster angle.     673 
 674 

 675 
Fig. 12. Simulated TB in forested sites neglecting the vegetation contribution (TBdown). 676 

 677 

Table 12. Comparison between the calculated biases in an open area and in a forested 678 

area 679 
 Biasopen Biasforest 

11H 4.7 -41.7 

11V -4.0 -1.1 
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19H -4.0 -35.9 

19V -5.7 -3.4 

37H 2.2 -37.4 

37V 3.3 -21.4 

 680 

To quantify the forest contribution, the TBdown was inverted with DMRT-ML. From the 681 

simulated TB neglecting the forest contribution (Fig. 12), an iteration process was 682 

performed to find the TBdown value that minimized the RMSEveg between simulated and 683 

measured TB at V-pol and H-pol for each frequency independently: 684 
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 687 
where f is the frequency. 688 

 689 
Table 13 shows that the averaged optimized TBdown are 147 K, 120 K and 110 K 690 

respectively at 11, 19 and 37 GHz. The optimized TBdown, however, decrease with 691 
frequency, which is opposite to what was shown in other studies (Kruopis et al., 1999; 692 

Roy et al., 2012; Roy et al., 2014). This is probably related to the inherent error in the 693 
snow surface TB simulation in DMRT-ML (Table 7), which induces error in the 694 

calculation of the reflectivity of the snow-covered surface.  695 
   696 

Table 13. Average optimized TBdown and standard deviation (in parentheses) (K) 697 

 11 GHz 19 GHz 37 GHz 

TBdown (K) 147 (±64) 120 (±74) 110 (±43) 

 698 

Table 13 also shows that there are large variations between the different snowpits with a 699 
standard deviation between 43 K and 74 K. The average TBdown of the three frequencies 700 

was calculated for each site and compared with χveg obtained from fisheye pictures taken 701 

at the twelve JBveg sites in January and February (fisheye pictures were not taken in 702 

March). Figure 13 shows that there is a good correlation (R
2
 = 0.75) between averaged 703 

TBdown (mean for the three frequencies) and χveg. These results confirm that the optimized 704 
TBdown are related to the tree emission reflected by the surface (see an example of 705 

variations in Fig. 1). For comparison, the calculated atmospheric downwelling 706 
contributions were around 6 K at 11 GHz and 25 K at 37 GHz. It also shows the potential 707 

of using fisheye pictures to quantify tree microwave emission in boreal forests. However, 708 

further considerations are necessary to improve the method. Because of the non-709 

Lambertian component of the snow reflection and the non-homogeneity of the trees 710 

surrounding the site measurements, the direction (azimuth) in which the SBR is pointing 711 
has an important influence on the signal (Courtemanche et al., 2015). DMRT-ML 712 

assumed that the TBdown is isotropic, and does not take into account these specular 713 

components. For example, the TB will be higher if the SBR is pointing in the direction of 714 

a large trunk close to the snowpit instead of pointing in the direction of a forest opening.  715 



25  

 716 
Fig. 13. Relationship between the average TBdown of the three frequencies  and the 717 

proportion of pixels occupied by vegetation (trees) in the fisheye pictures (χveg) for the 12 718 
JBveg sites in January and February. 719 

 720 

4. Discussion / conclusion 721 

 722 
This study presents a comprehensive analysis of the geophysical parameters contributing 723 

to uncertainty in DMRT-ML for snow-covered surfaces in boreal forest, subarctic and 724 
arctic environments. A unique in situ database, including key information on the 725 
snowpack temporal winter evolution, allowed the assessment of the impact of spatial 726 

variability of 1) soil emission, 2) errors in snow grains and 3) density measurements, 4) 727 

ice lenses and 5) vegetation emission reflected from the surface on DMRT-ML 728 
simulations.   729 

 730 

The implementation in DMRT-ML of the bridging aiming at filling the gap between low 731 

and high snow density ranges where the theory is invalid has been tested. Bridging leads 732 

to a small improvement for tundra snow where wind slabs are present. These 733 
improvements are modest and could compensate for the measurement uncertainties or 734 

other limitations related to the use of the model such as stickiness and grain size 735 

distribution (Roy et al., 2013). Based on the work of Dierking et al. (2012), the range of 736 
the ice fraction where bridging was applied was limited to 0.4 - 0.6, but could be 737 

extended and lead to a stronger impact of bridging on the results (Tsang et al., 2008). But 738 

as shown in this study, the uncertainties in measurements make it difficult to make sure 739 
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that any optimization of the bridging range does not compensate for other uncertainties. 740 

In practice, this new version of DMRT-ML with bridging facilitates simulation of snow 741 

and/or ice without identification of the snow layer state.  742 

 743 
Based on several snow removal experiments, the study shows that small-scale variability 744 

in soil emissivity in a boreal forest has a second order effect on the snow-covered surface 745 

TB when the soil is frozen, even for lower frequencies that are more transparent to the 746 

snowpack (11 and 19 GHz). In practice, this implies that the use of constant soil 747 
parameters for frozen soil emission modeling for a given environment is adequate for 748 

snow emission studies. This result is surprising since soil roughness, soil wetness, 749 

freeze/thaw state and stratigraphy are usually difficult to measure in boreal conditions. 750 
However, further experiments should be done to validate this aspect for other types of 751 

environments. Exploring larger scales could help to determine at what scale soil 752 
emissivity has an influence on snow-covered TB.  753 

 754 
This study shows the strong sensitivity of DMRT-ML to snow grain size and density at 755 

37 GHz, and that the error related to the measurements can explain most of the RMSE at 756 
this frequency and probably at higher frequencies. These results are in agreement with 757 

studies using MEMLS (Durand et al., 2008) and HUT (Rutter et al., 2013; Lemmetyinen 758 

et al., 2015). It remains difficult to distinguish the sources of error related to DMRT-ML 759 
simulations at 37 GHz. The study, however, underlines that measurement error limits the 760 

accuracy of the simulations. The error related to the physical simplifications in DMRT-761 
ML was not investigated in this work, but our results suggest that the level of confidence 762 

of measurements is too low to test or significantly improve the DMRT-ML physics. In 763 
this study, SSA was used because it is a robust and objective metric that can be measured 764 

effectively on the field. However, the derived Ropt metric used in DMRT-ML is related to 765 
an optical definition (Grenfell and Warren, 1999) and might not represent the grain for 766 

microwave wavelength (Mätzler, 2002). Further experiments on isolated snow layers as 767 
done by Wiesmann et al. (1998) but using new tools for snow microstructure 768 

parameterization could be applied to improve the physics of emission models. For 769 
example, more precise measurements of snow microstructure like X-ray tomography 770 

(Heggli et al., 2011) and the snow micro-penetrometer (SMP) (Schneebeli et al., 1999; 771 
Proksch et al., 2015) could be the next step to improve the understanding of the physics 772 

in DMRT-ML (e.g., Lowe and Picard, 2015). However, each snow microstructure 773 

measurement method has its own limitations. Combining the different information could 774 

be an avenue to better quantify the snow scattering mechanism in DMRT-ML.  775 

This analysis confirms that the scaling factor (= 3.3) proposed by Roy et al. (2013) is a 776 
general value as it yields accurate results with the new data set presented in this paper. 777 

We do not pretend that this value exactly applies to other environments as Picard et al. 778 

(2014) found a lower value (2.3) for Antarctica with a SSA measurement technique that 779 

was inter-calibrated with ours. The temporal analysis during the three campaigns in 780 
James Bay, however, shows that the sensitivity to snow measurement uncertainties 781 

evolve during winter due to snow metamorphism. This sensitivity change is also 782 

important at 19 GHz. Although snow is almost transparent at this frequency at the 783 

beginning of winter when the grains are small, TB at 19 GHz becomes sensitive to snow 784 

in March because of snow grain growth. This could be of interest for the SWE retrieval 785 
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approach, knowing that 19 GHz TB becomes sensitive to snow when snow grains become 786 

larger. As proposed in Derksen (2008) 11 and 19 GHz frequencies could be usefull for 787 

SWE retrievals for deep snow to overcome the problem of saturation at 37 GHz (see 788 

Rosenfeld and Grody, 2000). At 11 GHz, snow is almost transparent throughout the 789 
winter demonstrating the utility of this band for monitoring soil conditions (phase, 790 

temperature) under the snow (Kohn and Royer, 2010).  791 

 792 

The inclusion of ice lenses in DMRT-ML significantly improves the simulations at H-793 
pol. However, the model is not able to reproduce the observed spatial variability at 11 794 

and 19 GHz at H-pol, which was shown to be related to snowpack stratigraphy 795 

inaccuracies, mostly related to ice lenses and strong variations in snow density (for 796 
example, thin snow crust). The large spatial variability of ice lenses and snow crusts at 797 

the meter scale (Rutter et al., 2013) can lead to the strong spatial variability of observed 798 
TB. This ice lenses and snow crust spatial variability raise the need to develop efficient 799 

and practical methods to effectively characterize ice lenses and thin snow crusts, 800 
especially their density (Marsh and Woo, 1984). Using short-wave infrared photography 801 

(Montpetit et al., 2012) or SMP profiles (Proksch et al., 2015) are possible options. The 802 
coherence, which is not taken into account in DMRT-ML, is responsible for a large 803 

sensitivity of TB to ice lens thickness and can explain the observed TB variability at 19 804 

and 11 GHz at H-pol. The implementation of the coherence in DMRT-ML is not difficult, 805 
but collecting the input variables in the field remains the major challenge.  806 

 807 
In boreal forest areas, our analysis shows that the vegetation emission reflected by the 808 

snow-covered surface can contribute more than 200 K and that neglecting the reflection 809 
of the signal on the snow surface can lead to a bias of up to 40 K, mostly at H-pol where 810 

the surface reflectivity is the highest. This bias is coupled to the snow state, depending on 811 
the snow reflectivity. These results clearly show the importance of the vegetation 812 

contribution and avoiding this contribution in measurements imply to operate in clearings 813 
with minimal forest cover mostly on the opposite side of the measurements (specular 814 

contributions). However, some promising results on the use of fisheye photographs to 815 
quantify that vegetation contribution were shown. The use of a Lambertian microwave 816 

surface for retrieving the downwelling contribution in ground-based radiometric 817 
measurements (Courtemanche et al., 2015) may also be a promising avenue.  818 

 819 

To the best of our knowledge, this is the first time that an analysis has been carried out of 820 

all the elements (soil, grain size, snow density, ice lenses, and vegetation) that contribute 821 

to the microwave signal at three frequencies (36.5, 18.7 and 10.65 GHz) in a boreal 822 

forest. The study sheds light on DMRT-ML uncertainties related to small-scale variability 823 
and measurement errors in different environments and for different periods in the winter. 824 

Some limitations were raised on the accuracy of DMRT-ML to simulate the TB of snow-825 

covered surfaces, and this analysis will help to design future studies to improve the 826 
ability of DMRT-ML and other MESM to model the radiative transfer processes of snow-827 

covered surfaces. 828 
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