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Abstract. 31 
 32 
This study aims to better understand and quantify the uncertainties in microwave snow 33 
emission models using the Dense Media Radiative Theory-Multilayer model (DMRT-34 

ML) with in-situ measurements of snow properties. We use surface-based radiometric 35 
measurements at 10.67, 19 and 37 GHz in boreal forest and subarctic environments, and a 36 
new in situ dataset of measurements of snow properties (profiles of density, snow grain 37 
size and temperature, soil characterization and ice lens detection) acquired in the James 38 
Bay and Umiujaq regions of Northern Québec, Canada. A snow excavation experiment -- 39 

where snow was removed from the ground to measure the microwave emission of bare 40 
frozen ground -- shows that small-scale spatial variability (less than 1 km) in the emission 41 
of frozen soil is small. Hence, in our case of boreal organic soil, variability in the 42 

emission of frozen soil has a small effect on snow-covered brightness temperature (TB). 43 
Grain size and density measurement errors can explain the errors at 37 GHz, while the 44 
sensitivity of TB at 19 GHz to snow increases during the winter because of the snow grain 45 

growth that leads to scattering. Furthermore, the inclusion of observed ice lenses in 46 
DMRT-ML leads to significant improvements in the simulations at horizontal 47 

polarization (H-pol) for the three frequencies (up to 20 K of root mean square error). 48 
However, representation of the spatial variability of TB remains poor at 10.67 and 19 49 
GHz at H-pol given the spatial variability of ice lens characteristics and the difficulty in 50 

simulating snowpack stratigraphy related to the snow crust. The results also show that, in 51 
our study with the given forest characteristics, forest emission reflected by the snow-52 

covered surface can increase the TB up to 40 K. The forest contribution varies with 53 
vegetation characteristics and a relationship between the downwelling contribution of  54 
vegetation and the proportion of pixels occupied by vegetation (trees) in fisheye pictures 55 

was found. We perform a comprehensive analysis of the components that contribute to 56 

the snow-covered microwave signal, which will help to develop DMRT-ML and to 57 
improve the required field measurements. The analysis shows that a better consideration 58 
of ice lenses and snow crusts is essential to improve TB simulations in boreal forest and 59 

subarctic environments. 60 
 61 

Keywords: DMRT-ML, snow, vegetation, ice lenses, soil emissivity, microwave 62 

 63 

1. Introduction 64 
 65 
Seasonal snow cover plays an important role in the surface energy balance (Armstrong 66 
and Brun, 2008). Snow, with its low thermal conductivity, has an insulating effect on 67 

soils, which can greatly influence vegetation (Liston et al., 2002) and the development of 68 
active layers in permafrost (Gouttevin et al., 2012; Shurr et al., 2013). Snow water 69 
equivalent (SWE) is also a key variable in the high latitude water cycle (Déry et al., 70 

2009) and is important for dam management and hydroelectricity production (Roy et al., 71 
2010). Conventional in situ observations, such as from meteorological stations, are often 72 
inadequate to monitor seasonal snow evolution given the sparse distribution of stations in 73 
northern regions. Furthermore, point measurements are subject to local scale variability 74 
and may not represent the prevailing regional conditions. For these reasons, monitoring 75 
SWE from satellite passive microwave (PMW) observations has been the subject of 76 
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numerous studies for nearly three decades (e.g., Chang et al. 1987; Goodison et al., 1986; 77 
Derksen, 2008). The PMW are sensitive to SWE, but also have the advantage of 78 
providing observations at a synoptic scale in any weather conditions: images are available 79 
at least twice a day for the northern regions. However, estimation of SWE is not 80 

straightforward and existing empirical algorithms based on linear relationships between 81 
SWE and spectral TB are often inaccurate due to seasonal snow grain metamorphism 82 
(Rosenfeld and Grody, 2000). Vegetation contributions are also an important factor with 83 
large interannual variability (Roy et al., 2015), which is not captured by these algorithms. 84 
Hence, radiative transfer models (RTM) including microwave snow emission models 85 

(MSEM) can be used to take into account the different contributions to the microwave 86 
signal and the interannual variability of critical geophysical parameters. The GlobSnow2 87 
SWE retrieval algorithm (Takala et al., 2011) uses an assimilation scheme combining 88 

PMW observations constrained with kriged measurements of snow depth from 89 
meteorological stations. This method, however, has some limitations in remote areas 90 
where snow measurements are sparse, thus highlighting the need to improve MSEM 91 

performance in such a way that SWE retrievals can be achieved without in situ 92 
observations (Larue et al., 2015). 93 

 94 
At the satellite scale, PMW observations generally have a coarse spatial resolution (more 95 
than 10 km x 10 km). Nevertheless, spatial heterogeneity within PMW pixels becomes a 96 

limitation for the development and validation of MSEM because contributions from 97 
snow, vegetation and lakes are difficult to decouple. Therefore, surface-based 98 

radiometers (SBR) are used to better understand and isolate the contribution of snow-99 
covered surfaces. However, independently of MSEM used and seasonal snow type, the 100 
comparison between simulated TB and SBR observations leads to errors in the order of 10 101 

K (Roy et al., 2013; Montpetit et al., 2013; Derksen et al., 2012; Kontu and Pulliainen, 102 

2010; Lemmetyinen et al., 2010; Lemmetyinen et al., 2015; Durand et al., 2008). From 103 
SBR measurements, these errors can be explained by 1) MSEM physical simplification 104 
(Tedesco and Kim, 2006) and 2) small scale variability and uncertainty in measurements 105 

of geophysical parameters.  106 
 107 

Hence, this paper aims to better quantify the relative importance of different geophysical 108 
parameters and small-scale spatial variability when simulating microwave TB with the 109 

Dense Media Radiative Theory-Multilayer model (DMRT-ML; Picard et al. 2013). The 110 
study is based on a new and unique database including SBR measurements at three 111 
microwave frequencies (37, 19 and 10.67 GHz) in boreal and subarctic environments. 112 
The study assesses a wide range of contributions that could lead to uncertainties in 113 

ground-based microwave snow emission modeling: snow grains, snow density, soil 114 
roughness, ice lenses (IL) and vegetation. More specifically, the objectives of the study 115 
are:       116 

  117 
1. Validate the snow emission modeling, including recent improvements accounting for 118 
ice lenses (Montpetit et al., 2013) and snow density in the 367-550 kg m

-3
 range 119 

(Dierking et al., 2012). 120 
 121 
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2. Evaluate the different contributions to modeling uncertainty (snow grains, snow 122 
density, ice lenses, soil and vegetation measurements). 123 
 124 
3. Quantify the sensitivity of simulated TB to the measurement accuracy. 125 

 126 
2. Method 127 
 128 
2.1 Sites and Data 129 
 130 

Surface-based radiometer observations were acquired during the 2010 field campaign at 131 
the Churchill Northern Studies Center (Northern Manitoba) (see Roy et al., 2013 for a 132 
detailed description of the field campaign) and during four subsequent field campaigns in 133 

Northern Québec, Canada: three in James Bay (53°26’N; 76°46’W, 186 m a.s.l) in winter 134 
2013 and one campaign in Umiujaq (56°33’N, 76°30’W, 74 m a.s.l) in winter 2014 (Fig. 135 
1). All these campaign allow covering a wide range of environmental conditions from 136 

dense boreal forest to open tundra for a total of 51 snowpits (excluding the Churchill 137 
snowpits). 138 
 139 

 140 
Fig. 1. Location of field campaigns. Background: Land Cover of Canada (Latifovic et al., 141 
2004)  142 
 143 
TB measurements were acquired at 37, 19 and 10.67 GHz in both vertical (V-pol) and 144 

horizontal (H-pol) polarizations at a height of approximately 1.5 m above the ground and 145 
at an angle of 55° with the PR-series Surface-Based Radiometers from Radiometrics 146 
Corporation (Langlois, 2015) (hereinafter, the 10.67 GHz SBR is noted 11 GHz for 147 
simplicity). With a beam width of 6° for 37 and 19 GHz SBR, the footprint of the 148 
measurements at the snow surface was approximately 0.6 m x 0.6 m. The 11 GHz beam 149 
width is 8° with a footprint of about 0.8 x 0.8 m. In the worst case, the measurement error 150 
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for the calibration target was estimated at 2 K. The radiometers were calibrated before 151 
and after each field campaign using ambient (black body) and cold (liquid nitrogen) 152 
targets. 153 
 154 

Within the footprint of every SBR observation, profiles of snow temperature, snow 155 
density (ρsnow in kg m

-3
) and specific surface area (SSA in m

2
 kg

-1
) were taken at a 156 

vertical resolution between 3 and 5 cm. Visual stratigraphy assessment of the main snow 157 
layers/features, including ice lenses, was conducted. The density was measured using a 158 
185-cm

3
 density cutter, and samples were weighed with a 100-g Pesola light series scale 159 

with an accuracy of 0.5 g. The snow temperature and soil temperature were measured 160 
with a Traceable 2000 digital temperature probe (± 0.1 °C). The SSA was measured with 161 
the shortwave InfraRed Integrating Sphere (IRIS) system (Montpetit et al., 2012) at the 162 

James Bay site and using the Dual Frequency Integrating Sphere for Snow SSA 163 
measurement (DUFISSS: Gallet et al., 2009) in Umiujaq. Both instruments exploit the 164 
relationship between the SWIR snow reflectance and the SSA (Kokhanovsky and Zege, 165 

2004) based on the principle described in Gallet et al. (2009). From SSA measurements, 166 
the optical radius of the snow grain (Ropt) was calculated by: 167 

 168 

SSA
R

ice

opt


3
                    (1)  169 

 170 
where ρice is the ice density = 917 kg m

-3
.  The SSA is one of the most robust and 171 

objective approaches to measure a parameter related to the size of snow grains in the 172 

field. The error for SSA measurements was estimated to be 12% (Gallet et al., 2009).   173 

 174 

2.1.1 James Bay, Québec, Canada 175 
 176 

Three intensive measurement periods were conducted during the 2013 winter season in 177 
the James Bay area, Québec, in January (8

th
 to 12

th
: JBJan), February (12

th
 to 17

th
: JBFeb) 178 

and March (19
th

 to 23
th

: JBMar) (Tables 1, 2 and 3). The sites were in a typical boreal 179 
forest environment, but most of the measurements were conducted in clearings with 180 
minimal influence of the environment (topography, vegetation) on the measured TB. 181 
However, 15 measurements, spanning across the three campaigns, were conducted in 182 

forested areas and were treated separately to specifically investigate the contribution of 183 
vegetation on the ground-based measurements (Table 4). Several snow excavation 184 
experiments (denoted SEex) were also conducted where snow was removed to measure 185 

frozen ground emission. During SEex, large snowpits were dug (about 3 m x 3 m wide) 186 
and the snow walls removed to eliminate snow wall emission reflected on the ground. At 187 
all sites, the soil (described below) was frozen at least to a depth of 10 cm. 188 
 189 

During the JBJan campaign, 16 open area sites were measured where the mean ρsnow 190 
(weighted by snow layers thickness excluding ice lenses) of all snowpits was 218.3 kg m

-191 
3
 and the mean Ropt (weighted by snow layers thickness excluding ice lenses) was 0.17 192 

mm (Table 1). Snowpits JBJan-1 to JBJan-5 were located in forest clearings where the soil 193 
composition mainly consisted of organic matter. On January 9

th
, a transect of 11 snowpits 194 

(JBJan-6.1 to JBJan-6.11, each separated by 3 m) was conducted in an old gravel pit 195 
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(mostly mineral soil). Five SEex were also conducted in the 30 m transect. One to two ice 196 
lenses of about 0.5 to 1 cm were observed in all snowpits, buried at depths of 10 and 30 197 
cm. 198 
 199 

Table 1. Average snow property values with standard deviation (in parentheses) at James 200 
Bay (JB) sites in January. Values are provided for snow depth (SD m); mean snowpack 201 
temperature (Tsnow); bulk density (ρsnow); mean optical radius (Ropt); soil/snow temperature 202 
(Tsoil); number of observed ice lenses (IL); and ‘bridging’ (B) indicates the presence of a 203 
snow layer with a density within the bridging ice fraction limits (see Sect. 2.2.2). 204 

SP Type 
SD 

(cm) 
Tsnow (K) ρsnow (kg m

-3
) Ropt (mm) Tsoil (K) IL B Date 

JBan-1  

 Forest 

clearing 

Organic 

soil 

37 259.9 (4.8) 220.7 (37.4) 0.19 (0.09) 272.3 1  07-01-2013 

JBan-2 43 265.3 (3.4) 196.3 (40.4) 0.15 (0.07) 272.0 1  08-01-2013 

JBan-3 48 264.8 (4.2) 241.1 (37.2) 0.20 (0.10) 272.6 1  08-01-2013 

JBan-4 48 264.9 (3.6) 212.8 (48.5) 0.17 (0.09) 272.3 1  08-01-2013 

JBan-5 62 267.5 (1.8) 220.8 (45.9) 0.15 (0.08) 272.4 1  11-01-2013 

JBan-6.1 

 

Old gravel 

pit 

Mineral 

soil 

JBan-transect 

51 266.8 (2.4) 223.4 (39.6) 0.17 (0.08) 271.5 1  09-01-2013 

JBan-6.2 52 267.4 (2.4) 240.1 (42.5) 0.18 (0.08) 271.5 1  09-01-2013 

JBan-6.3 43 266.5 (1.4) 212.8 (34.9) 0.17 (0.08) 271.3 1  09-01-2013 

JBan-6.4 45 268.0 (2.3) 204.3 (37.8) 0.18 (0.09) 272.1 1  09-01-2013 

JBan-6.5 53 267.2 (2.6) 244.5 (40.4) 0.16 (0.09) 272.6 1  09-01-2013 

JBan-6.6 51 267.0 (2.2) 224.4 (38.5) 0.18 (009) 272.0 1  09-01-2013 

JBan-6.7 47 267.2 (2.0) 220.1 (34.5) 0.16 (0.10) 271.6 2  09-01-2013 

JBan-6.8 47 267.5 (2.3) 205.4 (36.5) 0.14 (0.08) 271.8 2  09-01-2013 

JBan-6.9 46 267.1 (1.8) 209.4 (32.0) 0.16 (0.10) 271.1 2  09-01-2013 

JBan-6.10 45 266.7 (1.5) 202.6 (23.8) 0.14 (0.07) 270.3 1  09-01-2013 

JBan-6.11 40 266.8 (1.2) 214.7 (24.2) 0.17 (0.10) 269.6 1  09-01-2013 

 205 
Nine snowpits were dug during the February campaign (Table 2), with a mean ρsnow of 206 

225.2 kg m
-3 

and a mean Ropt of 0.18 mm. All snowpits were conducted in clearings with 207 
frozen organic soil. On the 15

th
 of February, for a transect of seven snowpits, a complete 208 

set of measurements was taken for each snowpit (SP). An ice lens at a depth of 30 cm 209 
was observed at each SP. In addition to SP measurements, two SEex were conducted in 210 
the transect and two others in JBFeb-1 and JBFeb-2.  211 

 212 
Table 2. Same as Table 1, but for James Bay sites in February (JBFeb). 213 

SP Type 
SD 

(cm) 
Tsnow (K) 

ρsnow  

(kg m
-3

) 
Ropt (mm) Tsoil (K) IL B Date 

JBFeb-1 

 Forest 

clearing 

Organic 

soil 

 

62 266.9 (2.3) 240.1 (26.2) 0.21 (0.12) 272.8 1  12-02-2013 

JBFeb-2 66 265.8 (5.0) 194.7 (37.8) 0.24 (0.10) 273.1 1  13-02-2013 

JBFeb-3.1 66 265.3 (3.2) 250.7 (90.7) 0.18 (0.09) 270.8 1 x 15-02-2013 

JBFeb-3.2 66 265.6 (3.3) 215.9 (57.8) 0.18 (0.09) 270.5 1  15-02-2013 

JBFeb-3.3 65 265.9 (3.0) 228.9 (56.5) 0.11 (0.05) 270.5 1  15-02-2013 

JBFeb-3.4 68 266.6 (2.6) 228.1 (54.9) 0.17 (0.09) 271.3 1  15-02-2013 

JBFeb-3.5 65 264.0 (4.0) 235.4 (66.0) 0.17 (0.10) 271.0 1 x 15-02-2013 

JBFeb-3.6 65 266.5 (4.7) 223.6 (65.8) 0.20 (0.11) 271.3 1  15-02-2013 

JBFeb-3.7 64 266.0 (3.2) 209.0 (61.4) 0.18 (0.11) 270.8 1  15-02-2013 
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 214 
During the March campaign, five snowpits with a mean ρsnow of 278 kg m

-3
 and mean 215 

Ropt of 0.26 mm were dug (Table 3). There is a clear increase (70%) of grain size in 216 
March, linked to a strong temperature gradient metamorphism regime typical of such 217 

environments. On March 22
nd

, a transect of three snowpits was conducted in a clearing 218 
with frozen organic soil.   219 

 220 
Table 3. Same as Table 1, but for James Bay sites in March (JBMar). 221 

SP Type 
SD 

(cm) 
Tsnow (K) 

ρsnow        

(kg m
-3

) 
Ropt (mm) Tsoil (K) IL B Date 

JBMar-1  Forest 

clearing 

Organic 

soil 

83 268.2 (3.2) 261.4 (41.0) 0.25 (0.10) 272.0 1  19-03-2013 

JBMar-2 67 267.5 (2.4) 265.2 (38.2) 0.25 (0.07) 270.9 1  20-03-2013 

JBMar-3.1 Transect 

in Forest 

clearing 

Organic 

soil 

 

 

63 269.3 (0.8) 266.1 (34.9) 0.28 (0.11) 270.5 1  22-03-2013 

JBMar-3.2 69 271.0 (1.0) 303.1 (28.1) 0.26 (0.09) 272.5 1  22-03-2013 

JBMar-3.3 67 270.9 (0.8) 294.2 (28.1) 0.25 (0.10) 272.1 1  22-03-2013 

 222 
Measurements were also conducted in a forested area (Table 4), where the emission of 223 

the trees that is reflected on the ground contributes to the measured TB (Roy et al., 2012). 224 
For these reasons, these snowpits were treated separately and used to better understand 225 

the influence of tree emission on ground-based radiometric measurements. On January 226 
10

th
, a transect of eight snowpits was conducted in a forested area as well as transects of 227 

three snowpits on February 14
th

 and March 21
st
. In addition to the usual snowpit 228 

observations, fisheye pictures (Fig. 2) were taken during the January and February 229 
campaigns to quantify vegetation density. The pictures were binarized to distinguish sky 230 

pixels from tree pixels allowing the estimation of the proportion of pixels (fraction) 231 
occupied by vegetation (χveg).  232 

 233 
Table 4. Same as Table 1, but for James Bay sites, all in forested areas (JBveg). 234 

SP Type 
SD 

(cm) 
Tsnow (K) ρsnow (kg m

-3
) Ropt (mm) Tsoil (K) IL Date 

JBveg-1  62 267.6 (1.8) 222.5 (44.5) 0.14 (0.08) 272.4 1 11-01-2013 

JBveg-2.1 

First 

transect  

of 30 m 

64 267.4 (2.7) 202.6 (43.3) 0.18 (0.09) 273.3 1 10-01-2013 

JBveg-2.2 67 269.0 (2.3) 211.6 (49.9) 0.15 (0.09) 273.3 1 10-01-2013 

JBveg-2.3 60 268.3 (3.1) 201.4 (58.5) 0.16 (0.09) 273.4 1 10-01-2013 

JBveg-2.4 60 267.6 (2.1) 197.2 (40.0) 0.19 (0.10) 272.4 1 10-01-2013 

JBveg-2.5 65 267.1 (2.5) 200.7 (48.9) 0.15 (0.08) 272.8 1 10-01-2013 

JBveg-2.6 60 266.3 (2.0) 195.5 (59.8) 0.15 (0.08) 271.9 1 10-01-2013 

JBveg-2.7 56 268.4 (2.5) 199.4 (36.5) 0.15 (0.09) 272.9 1 10-01-2013 

JBveg-2.8 68 268.1 (2.9) 205.4 (45.2) 0.14 (0.08) 273.1 1 10-01-2013 

JBveg-3.1 Second 

transect 

of 6 m 

78 267.0 (2.8) 231.6 (44.1) 0.19 (0.10) 272.4 2 14-02-2013 

JBveg-3.2 78 267.4 (2.4) 217.0 (55.8) 0.19 (0.10) 272.6 2 14-02-2013 

JBveg-3.3 75 267.5 (2.2) 222.0 (62.1) 0.19 (0.12) 272.4 1 14-02-2013 

JBveg-4.1 Third 88 268.1 (1.5) 281.4 (55.3) 0.20 (0.11) 271.9 3 21-03-2013 
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JBveg-4.2 transect 

of 6 m 
88 269.9 (1.5) 283.2 (42.8) 0.22 (0.12) 272.9 3 21-03-2013 

JBveg-4.3 87 271.5 (1.0) 288.8 (43.7) 0.28 (0.12) 272.9 3 21-03-2013 

 235 

 236 

 237 
Fig. 2. Fisheye pictures for JBveg-3.3 (left) and JBveg-2.2 (right) sites, showing the sky 238 

view proportion around the SBR site measurements. 239 
 240 

2.1.2 Umiujaq 241 
 242 

An intensive measurement campaign was conducted in January 2014 (21
st
 to 28

th
) in the 243 

region of Umiujaq. All the measurements were conducted in a tundra environment except 244 

for the Umi-3 site, which was located in a clearing (Table 5). The tundra sites were 245 
characterized by typical dense snow drift layers near the surface that fall into the bridging 246 
limits of 0.4 and 0.6 for the ice fraction as defined by Dierking et al. (2012) (see Sect. 247 

2.2.2). Furthermore, one to two ice lenses were observed at the UMI-1, UMI-2 and UMI-248 
4 sites. 249 

 250 
Table 5. Same as Table 1, but for Umiujaq sites (UMI). 251 

SP Type 
SD 

(cm) 
Tsnow (K) 

ρsnow (kg m
-

3
) 

Ropt (mm) Tsoil (K) IC B Date 

UMI-1 
Tundra 

35 253.9 (2.6) 361.8 (54.4) 0.15 (0.12) 258.4 2 x 22-01-2014 

UMI-2 70 256.2 (4.6) 379.0 (40.5) 0.18 (0.09) 265.2 2 x 23-01-2014 

UMI-3 
Forest 

clearing 
132 263.5 (5.8) 

319.0 (51.2) 
0.18 (0.08) 271.8 0 x 24-01-2014 

UMI-4 
Tundra 

57 256.9 (4.2) 280.7 (46.5) 0.23 (0.11) 264.4 1  25-01-2014 

UMI-5 93 254.0 (3.9) 350.6 (42.3) 0.19 (0.09) 261.6 0 x 26-01-2014 

 252 

2.2 Models 253 
 254 
The study uses the DMRT-ML model to simulate the microwave emission of snow-255 
covered surfaces (Brucker et al. 2011; Picard et al., 2013). It is a multilayer 256 
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electromagnetic model based on the DMRT theory (Tsang and Kong, 2001). The theory 257 
assumes that a snow layer is composed of ice spheres where the effective permittivity is 258 
calculated using the first-order quasi-crystalline approximation and the Percus-Yevick 259 
approximation. The propagation of energy between the different layers is calculated with 260 

the Discrete Ordinate Radiative transfer (DISORT) method as described in Jin et al. 261 
(1994). In this paper, the propagation of electromagnetic radiation was calculated for 64 262 
streams.  263 
 264 
The snowpit measurements (snow, Tsnow, Tsoil and Ropt) were integrated as input to the 265 

model to simulate snow microwave emission. However it was shown in previous studies 266 
(Brucker et al. 2011; Roy et al., 2013; Picard et al. 2014) that using Ropt was inadequate 267 

as input to DMRT-ML. As such, a scaling factor of = 3.3 assuming non-sticky snow 268 
grains from Roy et al. (2013) for the seasonal snowpack is thus applied to get an effective 269 

radius in the microwave range (Reff):  270 
 271 

 opteff RR                                                                                                                      (2) 272 

 273 
Roy et al. (2013) shows that the need for a scaling factor in DMRT-ML could be related 274 
to the grain size distribution of snow and the stickiness between grains, which leads to an 275 

increase of the Reff.  276 
 277 

The atmospheric downwelling TB that is reflected by the snow surface to the radiometer 278 
was modeled using the millimeter-wave propagation model (Liebe et al., 1989) 279 
implemented in the Helsinki University of Technology (HUT) snow emission model 280 

(Pulliainenet al., 1999). The atmospheric model was driven with the air temperature and 281 

air moisture of the atmospheric layer above the surface from the 29 North American 282 
Regional Reanalysis (Mesinger et al., 2006) atmospheric layers. 283 
 284 

2.2.1 Ice lenses 285 
 286 
The microwave signal is very sensitive to ice lens formation within a snowpack at H-pol 287 

(Montpetit et al., 2013; Rees et al., 2010; Lemmetyinen et al., 2010). To simulate the ice 288 

lenses present in this study’s database (see Tables 1 to 5) using DMRT-ML, snow layers 289 

with a high density of 900 kg m
-3

 close to the density of pure ice (917 kg m
-3

) and a null 290 

snow grain size were integrated into the snowpack input file where ice lenses were 291 

observed. The value of 900 kg m
-3

 was chosen because only pure ice lenses were 292 

observed. To keep the same total snow depth, the adjoining layers were adjusted by 293 

removing 0.5 cm of the layer above and below the ice layer. However, an analysis of the 294 

effect of ice lens density on TB simulations will be conducted in Sect. 3.2.4. Because 295 

coherence is neglected in DMRT-ML (Matzler, 1987), the ice lens thickness has a 296 

negligible effect on simulated TB. Hence, because no precise measurements of ice lens 297 

thickness were performed in the field, ice lens thickness was set to 1 cm in DMRT-ML.  298 

 299 
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 300 

2.2.2 Bridging 301 
 302 
It has been shown that DMRT theory is in agreement with numerical solutions of the 3-D 303 

Maxwell equations up to a density of 275 kg m
-3

 (ice fraction of 0 - 0.3) (Tsang et al., 304 
2008), which is a relatively low density for snow. Although most of the applications of 305 
DMRT theory concern snow, DMRT can be applied to other dense media such as bubbly 306 
ice (Dupont et al., 2014). In this case, the background is pure ice, and the scatterers are 307 
air spheres to represent bubbles. To the best of our knowledge, no validity tests have been 308 

done in this configuration; but if we assume a similar range of validity in terms of volume 309 
fraction of scatterers, the DMRT theory would be valid in the range 0.7 – 1 for the ice 310 
fraction, that is 642 - 917 kg m

-3
. Even in this case, a large range of intermediate densities 311 

remains for which the absorption and scattering coefficients might not be accurate. 312 
Following Dierking et al. (2012), an empirical extrapolation of these coefficients from a 313 
spline fitted in both validity ranges was implemented to calculate coefficients for a layer 314 

with an ice fraction between 0.4 (snow = 367 kg m
-3

) and 0.6 (snow = 550 kg m
-3

)  (Fig. 3). 315 
As an example, the bridging leads to a decrease of TB at 37 GHz for high snow density (> 316 

350 kg m
-3

) related to the increase of scattering (Fig. 4). In the following, this approach is 317 
denoted as ‘bridging’ and the limits will be set at 0.4 and 0.6 for the ice fraction 318 
following the study of Dierking et al. (2012). 319 

 320 

 321 
Fig. 3. Absorption (red) and scattering (blue) coefficients as a function of ρsnow at 37 GHz 322 
(Tsnow = 260 K, Tsoil = 270 K, SD = 1.0 m and Reff = 0.3 mm). The dotted lines show the 323 
bridging implementation for an ice fraction between 0.4 and 0.6.  324 
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 325 

 326 
Fig. 4. TB without (left) and with the bridging implementation (right) at 37 GHz (V-pol) 327 
for different Reff (Tsnow = 260 K, Tsoil = 270 K and SD = 1.0 m). 328 

 329 
The implementation of the bridging was evaluated with James Bay and Umiujaq snowpit 330 
data that include at least one snow layer with an ice fraction of more than 0.4 (Tables 2 331 

and 5). Because ρsnow is relatively low in boreal regions due to weakening of the wind by 332 
trees, we also evaluated this approximation using a tundra dataset to increase the number 333 

of high density snow layers for the specific validation of the bridging. The database 334 
acquired at the Churchill Northern Studies Center (58°44’N, 93°49’W) (Roy et al., 2013; 335 
Derksen et al., 2012) from the winter 2010 campaign is composed of 13 sites with at least 336 

one layer in the bridging range.    337 
 338 

2.2.3 Soil model 339 
 340 

Soil reflectivity models are included in DMRT-ML to account for the soil contribution to 341 

the measured TB. In this paper, the Wegmüller and Mätzler (1999) soil reflectivity model 342 

improved for frozen soil by Montpetit et al. (2015) is used. The Wegmüller and Mätzler 343 

(1999) model for incidence angles lower than 60° is described by: 344 

))(exp( cos1.0

,,

 

  kFresnel

HfpolHf                           (3) 345 

 346 
cos,, HfpolVf                               (4) 347 

 348 

where Γf,p  is the rough soil reflectivity at a frequency f and polarization p (H-pol or V-349 
pol) by its smooth Fresnel reflectivity in H-Pol (Γf,H), which depends on the incidence 350 
angle (θ) and the real part of the soil permittivity(ε’), weighted by an attenuation factor 351 
that depends on the standard deviation in height of the surface (soil roughness, σ), the 352 
measured wavenumber (k) and a polarization ratio dependency factor (β). The values of 353 
ε',  σ and β at 11, 19 and 37 GHz inverted by Montpetit et al. (2015) for frozen soil (Table 354 
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6) were used in this study. Montpetit et al. (2013) used independent snow free ground-355 
based radiometer angular measurements taken at James Bay site in 2013 (same 356 
campaign). The parameters were also validated over Umiujaq (same campaign) from 357 
snow removal experiment.  358 
 359 

Table 6. Main parameters used in DMRT-ML 360 
Frequency (GHz) ε' β  fluxes σ (cm) θ (°) 

11 3.197 1.077 

3.3 64 0.193 55 19 3.452 0.721 

37 4.531 0.452 

 361 
3. Results 362 
 363 

In this section, the impact of model improvements (ice lenses and bridging) is first 364 
presented. Afterward, the evaluation of the effect of the different sources (soil, snow 365 
grain size, snow density, ice lenses and vegetation) on TB is shown. 366 

 367 

3.1 Model validation and improvement 368 
 369 
Initial simulations ignoring the presence of ice lenses and bridging show a clear 370 
overestimation of TB mostly at H-pol. The observed root mean square error (RMSE) is 371 

greater than 35 K at 11 and 19 GHz and greater than 20 K at 37 GHz (Fig. 5). There is 372 
also a positive bias for TB at 11 and 19 GHz at V-pol.  In this section, the effect of ice 373 

lenses on TB is evaluated, while the bridging implementation was tested on snowpits data. 374 
 375 
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 376 
Fig. 5. TB simulated without ice lenses in DMRT-ML and bridging. RMSE (K) between 377 

measured and simulated TB are given in parentheses. The symbol types correspond to the 378 

frequency and colors to the sites: Red = JBJan-transect; Green = JBJan-others; Blue = JBFeb; 379 
Yellow = JBMar; Magenta = UMI.  380 
 381 

3.1.1 Ice lenses 382 
 383 

Simulations including observed ice lenses were conducted on all snowpits (Fig. 6) 384 
leading to a strong decrease in simulated TB H-pol (up to 40 K). At H-pol, the RMSE are 385 
thus improved by 15.4, 23.4 and 9.3 K at 11, 19 (initially > 35 K) and 37 GHz (initially > 386 

20 K) respectively. The ice lenses also slightly decrease the bias measured at V-pol for all 387 
frequencies leading to a RMSE improvement of 3 to 4 K. These results show that a 388 

simple ice lens implementation in DMRT-ML helps to simulate the strong reflection 389 
component of ice lenses (decrease of snowpack emissivity), leading to improved 390 

simulations of TB.  391 
 392 
However, a large variability (190 to 245 K) in TB observations at H-pol at 11 and 19 GHz 393 
is not reproduced by the simulations (dotted black line in Fig. 6). This feature suggests 394 
some limitations of ice lens and/or snow layering modeling in DMRT-ML that can be 395 

related to the fact that coherence effect is not taken into account. Note that this 396 
underestimation of TB spatial variability is not related to the soil as it is demonstrated in 397 
Sect. 3.2.1. The modeling uncertainties related to ice lenses will be discussed more 398 
specifically in Sect. 3.2.4.  399 
 400 
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 401 

402 
Fig. 6. TB simulated with ice lenses included in DMRT-ML, but without bridging. The 403 

symbol types correspond to the frequency and colors to the sites: Red = JBJan-transect; 404 
Green = JBJan-others; Blue = JBFeb; Yellow = JBMar; Magenta = UMI. The dotted black line 405 

represents the TB where the simulations underestimated the spatial variability at 11 and 406 
19 GHz H-pol. 407 
 408 

3.1.2 Bridging 409 
 410 

To test the bridging parameterization (see Sect 2.2.2), we used 13 tundra sites from the 411 
Churchill tundra database (Roy et al., 2013), 4 from Umiujaq and 2 from the James Bay 412 
snowpits. In each case, at least one snow layer with a snow density higher than 367 kg m

-413 
3
 (ice fraction of 0.4: Dierking et al., 2012) is used. For each of the 19 sites studied, 414 

simulations at 37 GHz (the most sensitive frequency to snow) with and without the 415 
bridging implementation were conducted (all input parameters kept the same). The 416 
bridging has a relatively modest impact on simulations with an improvement in the 417 

RMSE of between 2 and 4 K at tundra sites (Umiujaq and James Bay). The greatest 418 
improvements are found for deep drifted tundra snowpits where there is a very thick wind 419 
slab with high ρsnow and small rounded grains are present at the top of the snowpack.  420 
 421 

3.2 Signal contributions and modeling uncertainties 422 
 423 
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In the following, all DMRT-ML simulations consider the bridging implementation and 424 
include the observed ice lenses. Table 7 shows the overall RMSE for all campaigns that 425 
are described in Sect. 3.3.1 to 3.3.4. The RMSE values oscillate between 7.8 and 21.5 K 426 
at H-pol (Table 7). Since V-pol is less affected by layering in the snowpack at 11 GHz 427 

and 19 GHz, the RMSE are generally lower (between 3.5 and 14.4 K), while the RMSE 428 
at 37 GHz are similar at V-pol and H-pol. This is due to the higher sensitivity of higher 429 
frequencies to snow grain scattering when compared to the lower frequencies that are less 430 
affected by stratigraphy. Table 7 also suggests that the inclusion of bridging only 431 
decreases the RMSE by 0.5 K and 0.3 K at 37 GHz at H-pol and V-pol respectively (see 432 

Fig. 5). These RMSE will thus be used as a reference to quantify the effect of spatial 433 
variability and uncertainty in measurements on the TB simulations. 434 
 435 

Table 7: Overall RMSE (K) between measured and simulated TB for all sites considering 436 
ice lenses and bridging in DMRT-ML. 437 
 JBJan  JBFeb JBMar UMI All 

11H 21.5 13.6 18.2 14.3 18.8 

11V 6.4 5.5 6.3 9.8 7.2 

19H 11.7 8.7 19.8 11.2 12.7 

19V 3.5 5.7 9.2 13.4 8.0 

37H 12.1 15.1 9.7 9.7 11.5 

37V 7.8 15.3 14.4 16.8 12.3 

  438 
 439 
3.2.1 Soil roughness 440 

 441 
The analysis of small-scale soil variability in modeling the TB of snow-covered surfaces 442 

is conducted using the SEex from the transect during the JBJan (mineral soil) and JBFeb 443 

campaigns (organic soil). The JBJan SEex data represent the variability within a 30 m 444 
transect in a relatively homogeneous mineral soil area (quarry). The JBFeb SEex were 445 

conducted at four different locations in clearings with organic soil and within about 1 km 446 
from each other. The strategy behind the evaluation of the small-scale spatial variability 447 
on snow-covered TB is to first calculate the soil emission variability (optimization of σ) 448 

from SEex measurements. This variability is then introduced in the simulations with 449 
snow-covered surfaces to evaluate the sensitivity of TB to variability in the emission of 450 
frozen soil. 451 
 452 

For each SEex measurement, the surface roughness parameter σ was optimized using the 453 
three frequencies and both polarizations for bare soil measurements. The σ value was 454 

changed by increments of 0.01 cm, up to 1 cm (Eq. 3 and 4) and the associated RMSEσ 455 
was calculated as a function of the measured TB (TBmes) and simulated TB (TBsim) in V-pol 456 
and H-pol as follows: 457 
 458 
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 460 
where j corresponds to the frequencies (j=1,2,3 respectively for 11, 19 and 37 GHz) and i 461 
corresponds to the sites. The optimal σ was determined by the lowest RMSEσ (Eq. 5) 462 
value for all sites at JBJan and JBFeb. 463 

 464 
The optimization was also done for each site individually to estimate the spatial 465 
variability in σ. The results presented in Fig. 7 show that a clear minimum in the RMSEσ 466 
can be found at every site. Fig 7 (right) shows that the optimal σ at JBJan-transect values are 467 
located between 0.22 and 0.54 cm, while 0.31 is found for all 5 sites. The variability can 468 

be explained by the variation of the gravel size that affects the surface roughness. For 469 
JBFeb, the observed spatial variability is more significant with variations ranging between 470 
0.195 cm and 1.987 cm with an optimized σ = 0.411 cm for all 4 sites (Fig. 7 left). 471 

However, one should be careful in interpreting these results as the optimization could 472 
also compensate for uncertainties in the permittivity of frozen ground. Nevertheless, 473 
because the minimal and maximal values of optimized σ are taken, this does not affect 474 

our main goal, which is to estimate the variability in snow-covered TB introduced by the 475 
soil in the model. Furthermore, as mentioned in Sect. 2.2.3, the permittivity used in this 476 

study were retrieved at the same site as this study.  477 
 478 

 479 
Fig. 7. RMSEσ for bare frozen soil sites (snow excavation experiment, SEex) as a 480 

function of soil roughness (σ) for (left) JBJan-transect and (right) JBFeb. The optimized σ for 481 
each site is given in parentheses. 482 
 483 

We evaluated the small-scale spatial variability of soil emissivity resulting from the 484 
observed roughness variability. For the sites with observations taken with snow on the 485 
ground (Tables 1, 2, 3 and 5, for both campaigns), we simulated the TB with DMRT-ML 486 
considering the lowest and highest optimized σ (see Fig. 7). Note that we have not used 487 

the standard deviation of σ that would have led to negative values. Fig. 8 (left) shows that 488 
the TB sensitivity to the variation of soil roughness is very weak. TB variations of 0.5 K 489 
and 1.3 K were observed at the JBJan-transect site where the soil properties were more 490 
homogeneous (mineral soil), while a variation of 0.7 K to 3.8 K was measured at the 491 
JBFeb site with organic soil (Table 8). The sensitivity is higher at 11 and 19 GHz because 492 
the soil emission is less attenuated by snow grain scattering. We also performed the same 493 
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calculation without the ice lens implementation where results are similar (less than 1 K 494 
change) suggesting that  despite a potential low transmissivity, ice lenses are not 495 
responsible for the attenuation of the soil upwelling emission.  496 
 497 

 498 
Fig. 8. Sensitivity of snow-covered surface TB to the variation of soil roughness (σ) for 499 
(left) JBJan-transect and (right) JBFeb. The error bars show the variation of TB for maximum 500 

and minimum optimized σ derived from SEex during both campaign (Fig. 7). The RMSE 501 
(K) values correspond to the retrievals using the initial (Table 6) σ value. 502 

 503 
Table 8: TB sensitivity (∆TB) (K) associated with the small-scale variability of soil 504 
roughness (σ). 505 
 JBJan-transect  JBFeb 

11H 1.3 3.8 

11V 1.3 3.8 

19H 1.2 3.2 

19V 1.4 3.5 

37H 0.5 0.7 

37V 0.6 0.7 

 506 
The results show that the soil small-scale spatial variability is much lower than the RMSE 507 
for most of the frequencies and polarizations (Tables 7 and 8). However, for 11 and 19 508 
GHz at V-pol, the soil-induced variability calculated during JBFeb campaign leads to ∆TB 509 
values (Table 8) similar to the measured RMSE (Table 7). Hence, the modeling error 510 

cannot be solely explained by small-scale variability in the emissivity of frozen soil, 511 

except possibly for 11 and 19 GHz at V-pol. However, these conclusions are only valid 512 

for frozen soils, but the higher dielectric contrast of thawed soil would have a greater 513 
impact on the emissivity of snow-covered surfaces.     514 
 515 

3.2.2 Snow grain size 516 
 517 

To test the sensitivity of the simulations to the grain size (SSA) measurement errors, the 518 
simulations considered an error of 12% in SSA when using the shortwave infrared 519 
reflection measurement approach as reported in Gallet et al. (2009). Hence two 520 

simulations were conducted: one with all SSA data along the profile increased by 12% 521 
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(TBSSA+12%), and one with all SSA data decreased by 12% (TBSSA-12%). From these two 522 
simulations, the variation of TB related to SSA errors (∆TBSSA: TBSSA+12% - TBSSA-12%) was 523 
calculated, keeping in mind that this should be the maximum ∆TB error, since the 524 
variations in SSA are all in the same direction for the whole profile. The soil 525 

parameterization is kept the same for all sites (see Table 6). 526 
 527 
Figure 9 shows the error bars related to a variation of + 12% in SSA (upper bars: higher 528 
SSA leads to smaller grains and less scattering) and - 12 % (lower bars: lower SSA leads 529 
to larger grains and more scattering). The results show that 37 GHz is the most sensitive 530 

to the grain size with variations between 16.2 K and 27.4 K (Table 9). The variations are 531 
generally higher at V-pol, which has a higher penetration depth with less sensitivity to 532 
stratification and ice lenses. As such, 37 GHz is more influenced by large depth hoar 533 

grains at the bottom of the snowpack. Hence, because the relationship between the 534 
scattering and the particle size reaches a maximum sensitivity within the particle range 535 
(Picard et al. 2013), the variation of 12% for depth hoar SSA will cause a higher increase 536 

of ∆TBSSA. In all cases, ∆TBSSA are higher than the RMSE (Table 7) suggesting that grain 537 
size can explain the uncertainty in the TB simulations.  538 

 539 
At 19 GHz, there is an increase in ∆TBSSA of about 7 K at V-pol and H-pol during the 540 
three James Bay campaigns. This increase of ∆TBSSA is linked to snow grain 541 

metamorphism (Colbeck, 1983) that tends to increase the particle size through the winter 542 
(see Table 1, 2 and 3). With a higher sensitivity on the particle range and the dependence 543 

of scattering to the particle size, the variation of large grains will increase ∆TBSSA. This 544 
phenomenon shows that at 19 GHz, the effect of SSA measurement uncertainty on TB 545 
depends on the type of grains. For small snow grains in January, the error in SSA is small 546 

compared to the RMSE, which is not the case in March where the error is closest to the 547 

RMSE in the presence of larger grains. A very small increase of ∆TBSSA is also seen at 11 548 
GHz, but with much lower ∆TBSSA (less than 1 K). These results show that scattering is 549 
negligible at 11 GHz for seasonal snow, even with large grains such as depth hoar.  550 

 551 
We assessed average variation in TB resulting from 100 runs with random error between 552 

± 12% applied to SSA for each layer and snowpit. As expected, the results show that the 553 
variations between initial simulation and simulation with random error on SSA are 554 

significantly lower than those shown in Table 9. With random error applied on SSA 555 
measurements, the variations are lower than 1 K at 11 and 19 GHz, and between 2 and 3 556 
K at 37 GHz. These values give the lower limits of TB error related to SSA uncertainties, 557 
while values in Table 9 give the highest limit of the variation in TB. 558 

 559 
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 560 
Fig. 9. TB sensitivity associated to the error of SSA measurements (12%) for the James 561 

Bay (three dates) and Umiujaq sites.  562 

 563 
Table 9: TB sensitivity (∆TBSSA: TBSSA+12% - TBSSA-12%) (K) associated with the error of 564 

SSA measurements 565 
 JBJan  JBFeb JBMar UMI 

11H 0.3 0.7 1 0.5 

11V 0.3 0.7 1.1 0.5 

19H 2.8 6.5 10 4.5 

19V 3.3 6.9 11.1 4.5 

37H 21.2 21.6 22.5 16.2 

37V 27.4 26.7 25.9 18.6 

 566 

3.2.3 Snow density 567 
 568 
A similar analysis was conducted to evaluate the TB sensitivity to an error in ρsnow of +/-569 
10% (TBρsnow+10% and TBρsnow-10%). The ice lens density was left at 900 kg m

-3
 and the 570 

variations in TB related to the ρsnow error (∆TBρsnow: TBρsnow+10% - TBρsnow-10%) were 571 

calculated.  572 
 573 
The highest sensitivity to ρsnow is seen at 37 GHz (Fig. 10). The ∆TBρsnow are about 13 K 574 
during the JBJan campaign and increase to 20 K for JBMar (Table 10). Again, this increase 575 
is explained by the growth in snow grain size due to snow metamorphism that leads to 576 
lower density values. In the given range of sphere sizes and ρsnow at 37 GHz, the impact 577 
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of ρsnow on TB increases with a larger grain size (Fig. 3). These results show that the effect 578 
of ρsnow at 37 GHz on DMRT-ML simulations depends on grain size and evolves 579 
throughout the winter due to snow metamorphism. It should, however, be noted that if the 580 
ice fraction limits of the bridging (Sect. 3.1.2) were extended to a lower ice fraction 581 

density, the impact for high ρsnow would be lower or even the opposite, because of the 582 
increase in scattering due to bridging. Table 10 shows that ∆TBρsnow are of the same 583 
magnitude as RMSE. Hence, depending on the grain size, ρsnow can explain part of the 584 
error in the simulations.  585 
 586 

At 11 and 19 GHz, the highest ∆TBρsnow are found at H-pol with values around 7 K 587 
(Table 10). These highest values are related to the change in the permittivity discontinuity 588 
between layers, mostly at interfaces around the ice lenses leading to a change in the 589 

reflectivity at the different interfaces (Montpetit et al., 2013). Because V-pol is less 590 
affected by horizontal layering, the effect is smaller. Hence, the effect of ρsnow uncertainty 591 
on TB is lower than the measured RMSE at 11 and 19 GHz, but has a significant impact 592 

on TB at H-pol. These results are in agreement with studies that show that the microwave 593 
polarization ratio (H-pol/V-pol) can potentially be used for snow density retrievals 594 

(Champollion et al., 2013; Lemmetyinen et al., submitted).          595 
 596 

 597 
Fig. 10. TB sensitivity associated with the error in snow density measurements (±10%). 598 
The ice lens density remains at 900 kg m

-3
. 599 

 600 
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Table 10. TB sensitivity (∆TBρsnow : TBρsnow+10% - TBρsnow-10%) (K) associated with the error 601 
in snow density measurements 602 
 JBJan  JBFeb JBMar UMI 

11H 7.6 7.5 5.6 6.1 

11V 1.4 1.4 2.1 1.9 

19H 8 8.8 8.3 6.2 

19V 2.4 3.2 6.7 3.6 

37H 13.5 16.5 18.4 11.6 

37V 12.6 15.3 21.4 13.4 

 603 
 604 

3.2.4 Ice lenses 605 
 606 
While including ice lenses in DMRT-ML significantly reduces the RMSE (section 3.1.1), 607 
the underestimation of TB variability remains strong at 11 and 19 GHz. Given that the 608 
remaining bias cannot be explained by the soil, grain size or ρsnow (Sect. 3.3.1, 3.3.2 and 609 

3.3.3), we further explore here the role of ice lenses. The ice lens density (ρIL) variations 610 
can explain part of the variability as the density of ice influences the internal reflection 611 

(Durand et al., 2008; Rutter et al., 2013). In fact, ice lenses can be snow crusts with a 612 
density as low as 630 kg m

-3
 (Marsh and Woo, 1984). However, measuring the density of 613 

such layers is challenging and it was not attempted during our campaigns. The sensitivity 614 
was evaluated for a range of ice density between 700 kg m

-3
 (TBρIL700) and 917 kg m

-3
 615 

(TBρIL917) for all snowpits with ice lenses. The variation of TB related to ρIL uncertainties 616 

(∆TBρIL: TBρIL917 – TBρil700) was then calculated (all other parameters being constant).  617 
 618 

Figure 11 shows that ρIL variations have a significant impact on H-pol TB mostly at 11 619 
and 19 GHz. The low ∆TBρIL at 37 GHz (Table 11) is not related to the insensitivity of 37 620 

GHz to ice lenses, but rather to the attenuation owing to snow grains dominating the 621 
effect of ice lenses. In fact, Table 11 shows that the effect of the variation of ice lens 622 

density decreases throughout the winter at James Bay because of increasing attenuation 623 
related to grain size metamorphism. It should be noted that no scattering occurs in these 624 
layers in the model because the Reff was kept null. Hence, ρIL can only explain the 625 
underestimation of TB, not the overestimation. Part of the error could be explained by the 626 

coherence that is not taken into account in DMRT-ML. The coherence is caused by 627 
multiple reflections within a thin layer and associated interference when the thickness of 628 
the ice lenses is less than a quarter of the wavelength (λ/4) (Mätzler et al., 1987; 629 
Montpetit et al., 2013). Since DMRT-ML does not take into account the coherence, the 630 
thickness of the ice layer has a negligible impact on TB and was kept at 1 cm. However, 631 

simulations with MEMLS accounting for coherence have shown that variation in the ice 632 
lens thickness can change TB by up to 100 K at H-pol at 19 and 37 GHz (Montpetit et al., 633 

2013). Also, in this study, only the main ice lenses were noted and inserted in DMRT-634 
ML. Many other melt/refreeze thin snow crusts were present but not recorded, and they 635 
can have a large impact on TB observations (see Rutter et al., 2013). These thin crusts 636 
(less than 2 mm) with a high density (over 600 kg m

-3
) can also have significant 637 

coherence effects (less than λ/4).    638 

 639 
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During the JBJan campaign, at the transect, two ice lenses were observed at three 640 
consecutive snowpits (JBJan-6.7, JBJan-6.8 and JBJan-6.9). The simulations at these sites 641 
show the three lowest simulated TB at 11 GHz and 19 GHz at H-pol (Fig. 11). The second 642 
observed ice lens inserted in DMRT-ML significantly decreases the simulated TB. 643 

Including the second observed ice lens allows an improvement in the TB simulation at 644 
JBJan-6.8 (Table 1), while the accuracy decreases for the two other snowpits, especially at 645 
11 GHz. These results show the importance of small-scale spatial variability in the 646 
distribution of ice lenses. In this case, since the SBR footprint is not exactly where the 647 
snowpit was dug, the 11 GHz measured the two ice lenses at JBJan-6.8, but not at JBJan-648 

6.7 and JBJan-6.9. Rutter et al. (2013) showed that such small-scale discontinuities in ice 649 
lenses have a strong impact on TB.  650 
 651 

 652 
Fig. 11. TB sensitivity associated with the ρIL variation (700 to 917 kg m

-3
). 653 

 654 

Table 11. TB sensitivity (∆TBρIL: TBρIL917 – TBρil700) (K) associated with the ρIL variation 655 
(700 to 917 kg m

-3
) 656 

 JBJan  JBFeb JBMar UMI 

11H 17 15.9 11.9 13.4 

11V 3.7 3.1 2.6 3.5 

19H 15.4 14.3 9.2 12.1 

19V 3.2 2.4 1.8 3.1 

37H 6.4 5.7 1.2 6.1 

37V 0.8 1.5 1.7 1.1 

 657 



23  

 658 

3.2.5 Surrounding vegetation effects 659 
 660 
In a forested area, tree emission reflected by the snowpack can significantly contribute to 661 

the measured TB on the ground (Roy et al., 2012). An analysis was conducted on 18 site 662 
measurements taken in a forest during the three James Bay campaigns (Table 4) to 663 
quantify the forest contributions to measured TB using DMRT-ML. A first simulation, 664 
neglecting the emission coming from the trees in the downwelling TB (TBdown) reflected 665 
by the surface was conducted. Figure 12 shows a clear underestimation (biases ≈ 40 K at 666 

H-pol) of simulated TB at all frequencies, except for 11 and 19 GHz at V-pol. Table 12 667 
shows that these biases are much greater than the uncertainties induced by the snow cover 668 
in open areas, showing that the tree emission reflected by the surface significantly 669 

increased the measured TB. The low influence of vegetation (low biasforest: Table 12) at 11 670 
and 19 GHz V-pol is explained by the fact that the reflectivity of the surface at these 671 
frequencies is very low because the volume scattering is weak and the reflectivity at the 672 

interfaces is close to zero near the Brewster angle.     673 
 674 

 675 
Fig. 12. Simulated TB in forested sites neglecting the vegetation contribution (TBdown). 676 
 677 
Table 12. Comparison between the calculated biases in an open area and in a forested 678 
area 679 
 Biasopen Biasforest 

11H 4.7 -41.7 

11V -4.0 -1.1 
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19H -4.0 -35.9 

19V -5.7 -3.4 

37H 2.2 -37.4 

37V 3.3 -21.4 

 680 
To quantify the forest contribution, the TBdown was inverted with DMRT-ML. From the 681 

simulated TB neglecting the forest contribution (Fig. 12), an iteration process was 682 
performed to find the TBdown value that minimized the RMSEveg between simulated and 683 
measured TB at V-pol and H-pol for each frequency independently: 684 
 685 

N

TTTT

RMSE

N

i

fH

imes

fH

isim

fV

imes

fV

isim

veg
2

)()(
1

2

; B; B

2

; B; B




                                                                (6)  686 

 687 
where f is the frequency. 688 

 689 

Table 13 shows that the averaged optimized TBdown are 147 K, 120 K and 110 K 690 
respectively at 11, 19 and 37 GHz. The optimized TBdown, however, decrease with 691 
frequency, which is opposite to what was shown in other studies (Kruopis et al., 1999; 692 

Roy et al., 2012; Roy et al., 2014). This is probably related to the inherent error in the 693 
snow surface TB simulation in DMRT-ML (Table 7), which induces error in the 694 

calculation of the reflectivity of the snow-covered surface.  695 
   696 
Table 13. Average optimized TBdown and standard deviation (in parentheses) (K) 697 

 11 GHz 19 GHz 37 GHz 

TBdown (K) 147 (±64) 120 (±74) 110 (±43) 

 698 
Table 13 also shows that there are large variations between the different snowpits with a 699 

standard deviation between 43 K and 74 K. The average TBdown of the three frequencies 700 
was calculated for each site and compared with χveg obtained from fisheye pictures taken 701 
at the twelve JBveg sites in January and February (fisheye pictures were not taken in 702 
March). Figure 13 shows that there is a good correlation (R

2
 = 0.75) between averaged 703 

TBdown (mean for the three frequencies) and χveg. These results confirm that the optimized 704 
TBdown are related to the tree emission reflected by the surface (see an example of 705 
variations in Fig. 1). For comparison, the calculated atmospheric downwelling 706 
contributions were around 6 K at 11 GHz and 25 K at 37 GHz. It also shows the potential 707 

of using fisheye pictures to quantify tree microwave emission in boreal forests. However, 708 
further considerations are necessary to improve the method. Because of the non-709 
Lambertian component of the snow reflection and the non-homogeneity of the trees 710 

surrounding the site measurements, the direction (azimuth) in which the SBR is pointing 711 
has an important influence on the signal (Courtemanche et al., 2015). DMRT-ML 712 
assumed that the TBdown is isotropic, and does not take into account these specular 713 
components. For example, the TB will be higher if the SBR is pointing in the direction of 714 
a large trunk close to the snowpit instead of pointing in the direction of a forest opening.  715 
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 716 
Fig. 13. Relationship between the average TBdown of the three frequencies  and the 717 

proportion of pixels occupied by vegetation (trees) in the fisheye pictures (χveg) for the 12 718 

JBveg sites in January and February. 719 
 720 

4. Discussion / conclusion 721 
 722 
This study presents a comprehensive analysis of the geophysical factors contributing to 723 

uncertainty in DMRT-ML for snow-covered surfaces in boreal forest, subarctic and arctic 724 
environments. A unique in situ database, including key information on the snowpack 725 

temporal winter evolution, allowed the assessment of the impact of spatial variability of 726 
1) soil emission, 2) errors in snow grains and 3) density measurements, 4) ice lenses and 727 
5) vegetation emission reflected from the surface on DMRT-ML simulations.   728 
 729 

The implementation in DMRT-ML of the bridging aiming at filling the gap between low 730 
and high snow density ranges where the theory is invalid has been tested. Bridging leads 731 
to a small improvement for tundra snow where wind slabs are present. These 732 

improvements are modest and could compensate for the measurement uncertainties or 733 
other limitations related to the use of the model such as stickiness and grain size 734 
distribution (Roy et al., 2013). Based on the work of Dierking et al. (2012), the range of 735 
the ice fraction where bridging was applied was limited to 0.4 - 0.6, but could be 736 
extended and lead to a stronger impact of bridging on the results (Tsang et al., 2008). But 737 
as shown in this study, the uncertainties in measurements make it difficult to make sure 738 
that any optimization of the bridging range does not compensate for other uncertainties. 739 
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In practice, this new version of DMRT-ML with bridging facilitates simulation of snow 740 
and/or ice without identification of the snow layer state.  741 
 742 
Based on several snow removal experiments, the study shows that small-scale variability 743 

in soil emissivity in a boreal forest has a second order effect on the snow-covered surface 744 
TB when the soil is frozen, even for lower frequencies that are more transparent to the 745 
snowpack (11 and 19 GHz). In practice, this implies that the use of constant soil 746 
parameters for frozen soil emission modeling for a given environment is adequate for 747 
snow emission studies. This result is surprising since soil roughness, soil wetness, 748 

freeze/thaw state and stratigraphy are usually difficult to measure in boreal conditions. 749 
However, further experiments should be done to validate this aspect for other types of 750 
environments. Exploring larger scales could help to determine at what scale soil 751 

emissivity has an influence on snow-covered TB.  752 
 753 
This study shows the strong sensitivity of DMRT-ML to snow grain size and density at 754 

37 GHz, and that the error related to the measurements can explain most of the RMSE at 755 
this frequency and probably at higher frequencies. These results are in agreement with 756 

studies using MEMLS (Durand et al., 2008) and HUT (Rutter et al., 2013; Lemmetyinen 757 
et al., 2015). It remains difficult to distinguish the sources of error related to DMRT-ML 758 
simulations at 37 GHz. The study, however, underlines that measurement error limits the 759 

accuracy of the simulations. The error related to the physical simplifications in DMRT-760 
ML was not investigated in this work, but our results suggest that the level of confidence 761 

of measurements is too low to test or significantly improve the DMRT-ML physics. In 762 
this study, SSA was used because it is a robust and objective metric that can be measured 763 
effectively on the field. However, the derived Ropt metric used in DMRT-ML is related to 764 

an optical definition (Grenfell and Warren, 1999) and might not represent the grain for 765 

microwave wavelength (Mätzler, 2002). Further experiments on isolated snow layers as 766 
done by Wiesmann et al. (1998) but using new tools for snow microstructure 767 
parameterization could be applied to improve the physics of emission models. For 768 

example, more precise measurements of snow microstructure like X-ray tomography 769 
(Heggli et al., 2011) and the snow micro-penetrometer (SMP) (Schneebeli et al., 1999; 770 

Proksch et al., 2015) could be the next step to improve the understanding of the physics 771 
in DMRT-ML (e.g., Lowe and Picard, 2015). However, each snow microstructure 772 

measurement method has its own limitations. Combining the different information could 773 
be an avenue to better quantify the snow scattering mechanism in DMRT-ML.  774 

This analysis confirms that the scaling factor (= 3.3) proposed by Roy et al. (2013) is a 775 
general value as it yields accurate results with the new data set presented in this paper. 776 
We do not pretend that this value exactly applies to other environments as Picard et al. 777 

(2014) found a lower value (2.3) for Antarctica with a SSA measurement technique that 778 
was inter-calibrated with ours. The temporal analysis during the three campaigns in 779 
James Bay, however, shows that the sensitivity to snow measurement uncertainties 780 
evolve during winter due to snow metamorphism. This sensitivity change is also 781 
important at 19 GHz. Although snow is almost transparent at this frequency at the 782 

beginning of winter when the grains are small, TB at 19 GHz becomes sensitive to snow 783 
in March because of snow grain growth. This could be of interest for the SWE retrieval 784 

approach, knowing that 19 GHz TB becomes sensitive to snow when snow grains become 785 
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larger. As proposed in Derksen (2008) 11 and 19 GHz frequencies could be usefull for 786 
SWE retrievals for deep snow to overcome the problem of saturation at 37 GHz (see 787 
Rosenfeld and Grody, 2000). At 11 GHz, snow is almost transparent throughout the 788 
winter demonstrating the utility of this band for monitoring soil conditions (phase, 789 

temperature) under the snow (Kohn and Royer, 2010).  790 
 791 
The inclusion of ice lenses in DMRT-ML significantly improves the simulations at H-792 
pol. However, the model is not able to reproduce the observed spatial variability at 11 793 
and 19 GHz at H-pol, which was shown to be related to snowpack stratigraphy 794 

inaccuracies, mostly related to ice lenses and strong variations in snow density (for 795 
example, thin snow crust). The large spatial variability of ice lenses and snow crusts at 796 
the meter scale (Rutter et al., 2013) can lead to the strong spatial variability of observed 797 

TB. This ice lenses and snow crust spatial variability raise the need to develop efficient 798 
and practical methods to effectively characterize ice lenses and thin snow crusts, 799 
especially their density (Marsh and Woo, 1984). Using short-wave infrared photography 800 

(Montpetit et al., 2012) or SMP profiles (Proksch et al., 2015) are possible options. The 801 
coherence, which is not taken into account in DMRT-ML, is responsible for a large 802 

sensitivity of TB to ice lens thickness and can explain the observed TB variability at 19 803 
and 11 GHz at H-pol. The implementation of the coherence in DMRT-ML is not difficult, 804 
but collecting the input variables in the field remains the major challenge.  805 

 806 
In boreal forest areas, our analysis shows that the vegetation emission reflected by the 807 

snow-covered surface can contribute more than 200 K and that neglecting the reflection 808 
of the signal on the snow surface can lead to a bias of up to 40 K, mostly at H-pol where 809 
the surface reflectivity is the highest. This bias is coupled to the snow state, depending on 810 

the snow reflectivity. These results clearly show the importance of the vegetation 811 

contribution and avoiding this contribution in measurements imply to operate in clearings 812 
with minimal forest cover mostly on the opposite side of the measurements (specular 813 
contributions). However, some promising results on the use of fisheye photographs to 814 

quantify that vegetation contribution were shown. The use of a Lambertian microwave 815 
surface for retrieving the downwelling contribution in ground-based radiometric 816 

measurements (Courtemanche et al., 2015) may also be a promising avenue.  817 
 818 

To the best of our knowledge, this is the first time that an analysis has been carried out of 819 
all the elements (soil, grain size, snow density, ice lenses, and vegetation) that contribute 820 
to the microwave signal at three frequencies (36.5, 18.7 and 10.65 GHz) in a boreal 821 
forest. The study sheds light on DMRT-ML uncertainties related to small-scale variability 822 

and measurement errors in different environments and for different periods in the winter. 823 
Some limitations were raised on the accuracy of DMRT-ML to simulate the TB of snow-824 
covered surfaces, and this analysis will help to design future studies to improve the 825 

ability of DMRT-ML and other MESM to model the radiative transfer processes of snow-826 
covered surfaces. 827 
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