

1 **A comprehensive interpretation of the NEEM basal ice
2 build-up using a multi parametric approach.**

3 T.Goossens¹, C. J. Sapart^{1,2}, D. Dahl-Jensen³, T. Popp³, S. El Amri¹ and J.L. Tison¹.

4 [1] {Laboratoire de Glaciologie, Université Libre de Bruxelles, 1050 Brussels, Belgium}

5 [2] {Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584CC
6 Utrecht, The Netherlands}

7 [3] {Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, 2100
8 Copenhagen, Denmark}

9 Correspondence to : J.-L. Tison (jtison@ulb.ac.be)

10

11 **Abstract**

12 *Basal Ice* is a common expression to describe bottom ice layers of glaciers, ice caps and ice
13 sheets in which the ice is primarily conditioned by processes operating at the bed. It is
14 chemically and/or physically distinct from the ice above, and can be characterized by a
15 component of basally derived sediments. The study of basal ice properties provides a rare
16 opportunity to improve our understanding of subglacial environments and processes and to
17 refine ice sheet behaviour modelling. Here, we present and discuss the results of water stable
18 isotopes ($\delta^{18}\text{O}$ and δD), ice fabrics, debris weight/size distribution and gas content of the basal
19 part of the NEEM (North Greenland Eemian Ice Drilling Project) ice core. Below a depth of
20 2533.85 m, almost 10 m of basal debris-rich material was retrieved from the borehole and
21 regular occurrence of frozen sediments with only interstitial ice lenses in the bottom 5
22 meters, suggest that the ice-bedrock interface was reached. The sequence is composed of an
23 alternation of three visually contrasting types of ice : clear ice with specks (very small
24 amounts) of particulate inclusions, stratified debris-rich layers, and ice containing dispersed
25 debris. The use of water stable isotope signatures ($\delta^{18}\text{O}$ and δD) together with other
26 parameters, allows discrimination between the different types of ice and to unravel the
27 processes involved in their formation and transformation. The basal debris-rich material
28 presents $\delta^{18}\text{O}$ values [-39.9 ‰; -34.4 ‰] within the range of the above last 300 m of
29 unaltered meteoric ice [-44.9 ‰; -30.6 ‰] spanning a glacial-interglacial range of values.
30 This rules out the hypothesis of a basal ice layer originating from pre-ice sheet ice overridden
31 by the growing ice sheet, as previously suggested e.g. in the case of GRIP (Greenland Ice Core
32 Project). We show that clear basal ice with specks corresponds to altered meteoric glacial ice
33 where some of the climatic signal could have been preserved. On the other hand, the stratified
34 debris-rich layers and the ice containing dispersed debris layers respectively express an
35 "open" or "closed" system melting/refreezing signature, somewhat blurred by mixing
36 processes in the upper part of the sequence. Climatic reconstruction is therefore prohibited
37 from these ice types. We propose a first interpretative framework for the build-up of the
38 NEEM basal ice sequence, based on the origin of the various ice types.

39 **1 Introduction**

40 The dynamics of ice sheets and their climatic feedback and future contribution to sea level
41 rise still remains highly uncertain (Church et al., 2013). Establishing more accurate and
42 constrained models of ice sheet behavior has therefore become an important scientific
43 challenge.

44 The Basal Ice Layer (BIL) of an ice-sheet, is primarily conditioned by processes operating at
45 the bed and often contains debris-laden ice close to the ice-bedrock interface (Souchez et al.,
46 1978). It is, according to the following description (Knight, 1997) : "a rheological control on
47 ice sheet dynamics; an indicator of subglacial conditions and processes; a limit to the
48 downward extension of climate record from deep ice core(s)". Because its physical and
49 chemical characteristics are representative of the different processes leading to its formation,
50 a multi-parametric study of the BIL offers the opportunity to infer the former thermal,
51 rheological and environmental conditions prevailing during its formation and reveal the
52 processes acting at the ice-bedrock interface (Hubbard and Sharp, 1995; Alley et al., 1998;
53 Lawson et al., 1998; Christoffersen and Tulaczyk, 2003; Christoffersen, 2006; Cook et al.,
54 2007; Hubbard et al., 2009). These inferences allow establishing better constrained initial and
55 boundary conditions required for ice sheet modelling and bound the validity of paleoclimatic
56 data interpretation.

57 Understanding basal ice processes is therefore an important challenge to face for those who
58 are looking at ice older than a million years in Antarctica or trying to decipher the details of
59 rapid climate changes in more recent times in Greenland (Fischer et al., 2013).

60 To date, only a few deep ice core projects have been conducted on the Greenland main ice
61 divide (Dye3 – ice core locations elected at one of the 58 US radar stations of the Distant Early
62 Warning (DEW) Line, GISP2 - Greenland Ice Sheet Project, GRIP - Greenland Ice Core Project,
63 NGRIP - NorthGRIP) and most recently NEEM. Due to difficulties in accessing the bedrock, the
64 various processes involved in the formation of a BIL and their possible interactions are still
65 not well understood. Previous studies summarized in two review papers (Hubbard and Sharp,
66 1989; Knight, 1997) have however identified a certain number of mechanisms leading to a
67 physically distinguishable BIL.

68 Basal temperature below the pressure melting point (pmp) allows the formation and
69 preservation of a basal ice sequence as recovered for example from the Byrd (Antarctica) and
70 GRIP and GISP2 ice core (Gow and Meese, 1996). In other areas where the pmp is reached,
71 paleoclimatic information could be partially melted away and lost e.g. at NGRIP (Andersen et
72 al., 2004). In any case, interactions between moving ice and the irregular bedrock can result in
73 flow disturbances, partial alteration of the ice properties and a loss of climate and
74 environmental signal much higher into the ice column and well above the BIL (e.g. Landais et
75 al., 2012; Tison et al., 2015)

76 The international NEEM project aimed to recover a complete and unaltered sequence of
77 Eemian ice and it succeeded to reach close to the bedrock in 2011 at a depth of 2537.980 m.
78 About 4 m of debris-rich ice was retrieved at that time (Dahl-Jensen et al., 2013). During the
79 2011 and 2012 field seasons, a narrower borehole was drilled further through about 6 m of
80 frozen sediment layers alternating with sparser clear ice segments containing dispersed
81 debris. This is the second time that a complete sequence from non-altered ice originating from
82 a firnification process (referred to here as meteoric ice - MI) to frozen sediments has been
83 retrieved from a borehole in Central Greenland (first time being the GISP2 ice core – Gow and
84 Meese, 1996).

85 In this paper, we use a high-resolution multiparametric approach (stable isotopes, ice fabrics,
86 debris content and total gas content) to achieve a comprehensive interpretation of the NEEM
87 basal ice build-up. We follow here the terminology proposed by Tison et al. (2015), in which
88 "basal ice" practically refers to the part of the ice core showing visible solid inclusions. This is
89 also because the sampling protocol for the NEEM ice core needed some visual criteria to
90 adapt the sampling scheme. In this study the presence of millimetric solid inclusions in the
91 BIL is shown to be an indicator of a transformation process resulting from interaction with

92 the bedrock, but does not necessary mean that these inclusions originated from the ice
93 bedrock interface. The term “deep ice” is used to name the ice sequence just above, that is
94 potentially altered by the vicinity of the bedrock, but does not show any visible inclusions.

95 **2 Material and methods**

96 **2.1 Drilling**

97 The NEEM core (77.45° N, 51.06° W) was drilled between 2008 and 2012 field seasons using
98 the Hans-Tausen (HT) drill (9.8 cm inner diameter) (Johnsen et al., 2007) from the surface to
99 the depth of 2537.990 m. Because of the increasing occurrence of solid particles with depth, a
100 narrower dedicated “Rock Drill” (RD) (2.5 cm inner diameter) was used below this depth and
101 the final depth of 2543.840 m was reached. For transport and storage purposes the core was
102 cut into 55 cm sub-units called “bags”.

103 **2.2 Sampling and analytical methods**

104 The basal ice layer, as defined in the introduction, starts effectively at bag 4595,
105 corresponding to a depth of 2527.250 m. However, because visible solid inclusions were only
106 described in the field starting at 2533.85 m depth, for logistic reasons, the NEEM community
107 has only adopted the dedicated basal sampling procedure (defining the dimensions of samples
108 attributed to each measurement) from that depth (bag 4608) onwards, the segment which is
109 the focus of the present study. Samples were cut using a Well 6234 diamond wire saw (Tison,
110 1994). Due to its smaller diameter (2.5 cm) the basal cutting scheme was not applied to the
111 RD core for which a smaller number of parameters are possibly extractable.

112 The total gas content (TGC) was measured using a Toepler pump and the melting/refreezing
113 (M/R) extraction technique (Martinerie et al., 1994; Raynaud et al., 1983). The existence of
114 numerous debris layers is a potential indicator of the occurrence of melting/refreezing (M/R)
115 events (Hubbard and Sharp, 1989; Knight, 1997) that leads to a drastic depletion of the gas
116 content. In order to insure detectable measurements, samples of 5 cm vertical resolution were
117 measured by groups of 3 or 4. Data are expressed in milliliters of gas per kilogram of ice (ml_{gas}
118 kg_{ice}⁻¹) and the precision is estimated at ± 5%.

119 Melted residues from TGC samples were filtered on 0.20 µm Millipore® filters. Collected dry
120 residues were weighed and their content expressed as weight percentage of the ice plus
121 debris weight. Note that the sampling resolution of debris content is therefore inherited from
122 the TGC samples grouping.

123 Ice water isotopes were measured at the Niels Bohr Institute – Center for Ice and Climate,
124 Copenhagen – using a Picarro 2120 Cavity Ring-Down Spectroscopy Analyser equipped with a
125 high throughout evaporator. Data are expressed as permil (‰) difference relative to Vienna
126 Standard Mean Ocean Water (VSMOW) and the accuracy is 0.01 ‰ for both δD and δ¹⁸O. The
127 initial vertical resolution was 5 cm for the first series of samples corresponding to the ice
128 drilled during the 2010 field season (2533.850 – 2537.300 m depth). To ensure a better
129 detection of potential small-scale M/R events, the samples covering the 2011 and 2012 field
130 season (below 2537.300 m) were later analysed at 2 cm vertical resolution.

131 In order to cope with the presence of debris, vertical 400 microns thin sections were prepared
132 (resolution 5 cm) using a Well 6234 diamond wire saw (Tison, 1994) instead of the standard
133 microtome procedure initially described in Langway (1958). C-axis orientations were
134 obtained using a G50 Fabric Analyser (Wilson et al., 2003). The analyser generates a file
135 containing lines of raw orientation information with quality factors at the pixel scale (1 pixel =
136 43 µm). This raw dataset was post-processed using algorithms from the MTEX (Bachmann et

137 al., 2010) and FAME (Peternell et al., 2014) MATLAB® toolboxes in order to filter the poor
138 quality pixels (threshold : quality parameter lower than 70 %) and produce stereographic
139 pole plots in the vertical plane. The size of the crystals is revealed by pictures of cross-
140 polarized thin-sections generated by the fabric analyser.

141 Granulometry of the incorporated debris was measured on discrete selected samples using a
142 Malvern Mastersizer 3000 ® laser granulometer.

143 **3 Results**

144 **3.1 Ice types and debris content**

145 Figure 1 displays representative samples of our classification based on the raw visual
146 appearance of the ice types encountered in the NEEM basal ice sequence.
147 As described in sect. 2, a specific cutting procedure has been adopted from the first core
148 encountered showing conspicuous layers of highly concentrated debris (top at 2533.850 m),
149 following a “practical” definition of the basal ice layer. However, it was discovered “a
150 posteriori” that the first visible solid inclusions occur further up in the core at a depth of
151 2527.250 m. These start as scarce (a few per 55 cm “bag” core) submillimetric pinhead like
152 inclusions, with their size and densities slowly increasing downwards. We will refer to this ice
153 type illustrated in Fig. 1a, as “Clear Ice with Specks” CIS (white symbols in Fig. 2a). It would
154 correspond to the lower end (in terms of debris concentration) of the *banded dispersed*
155 cryofacies of Hubbard et al. (2009).

156 From 2533.850 m to 2536.600 m (Fig. 2a), the BIL is dominated by this ice type showing
157 increasingly large amount of very small dark solid inclusions. The diameters of these specks
158 range between less than one millimeter in the top and up to 3 mm downcore. Figure 3 shows
159 the volume density (in %) and cumulated volume density (in %) for the range of size from
160 clays to gravel for a set of representative samples from the NEEM BIL. CIS (Fig. 3a) mainly
161 consists of silts (local maximum at 40 μ m) and small sands (local maximum at 150 μ m), which
162 suggests that most of the specks actually consist of aggregates of individual particles.

163 Embedded in this CIS, segments of ice containing individual high concentration debris layers
164 (second ice type, Fig. 1b, black symbols in Fig. 2a, ranging from 2 to 5 mm in thickness) were
165 observed at depths from 2534.500 m to 2534.600 m and from 2534.850 m to 2534.870 m. In
166 these high concentration debris-rich layers (DRL), debris size ranges from clay to coarse sand
167 and fine gravels (Fig. 3b) and the debris weight content reaches 0.4 % (at 20 cm depth
168 resolution - Fig. 2b).

169 A similar sequence, but with much larger DRL segments (from 1 to 12 cm in thickness) is
170 observed between 2536.600 m and 2538.145 m (Fig. 1b, Fig. 2a). In some of these layers, the
171 debris weight content peaks at 23 % (Fig. 2b) (at 15 cm depth resolution) and the debris size
172 distribution resembles the one in the DRL above, with large proportion of fine sands (Fig. 3c).
173 In one of these layers at 2536.650 m depth, a large granite pebble of 5 cm of diameter is
174 protruding from the side of the core. A careful examination of these DRL segments (e.g. Fig.
175 1b) shows that they generally consist of an alternation of thinner individual debris layers with
176 clear ice laminae. This is typical of what has been referred to as the *laminated* cryofacies in
177 (Hubbard et al., 2009) classification of basal ice types.

178 At 2537.300 m depth, a new ice type can be observed (Fig. 1c and grey symbols in Fig. 2a) that
179 consists of clear ice containing dispersed debris (IDD) at such low concentration (typically 0.5
180 to a few % in weight) that the ice still remains transparent. Individual debris particles are
181 roughly aligned in laminated bands that occasionally cross-cut at low angles suggesting a

182 folding structure (Fig. 1c). This ice type could also be classified as a *banded dispersed*
183 cryofacies with a higher debris content than the CIS described above.

184 Along the same lines the DRL segments show evidence of tilting with regard to the core axis
185 (the « vertical ») and that the dip goes in opposite directions depending on the section
186 considered in the BIL (Fig. 4, left vertical strip showing core in transmitted light). This
187 observation is valid since the azimuth of the core remains coherent throughout the BIL.

188 Down to the depth of 2541.800 m, clear ice layers containing variable amount of dispersed
189 debris alternate with more frequent layers of ice presenting high concentration debris layers
190 (Fig. 2a). Below that depth the core mainly consists of an alternation of unsorted frozen
191 sediments layers, the *solid* cryofacies in Hubbard et al. (2009), and ice layers with dispersed
192 debris (also referred to as IDD). In this section, the debris size range is similar to the DRL
193 above with further increase of the small sand proportion (Fig. 3d). Pebbles of cm-size are
194 regularly found in this lower part of the basal ice sequence. An irregular increasing downward
195 trend in debris content (Fig. 2b) and debris size (Fig. 3) is observed along the NEEM basal ice
196 core.

197 **3.2 Gas content**

198 The TGC versus depth profile of the NEEM BIL shows a generally increasing trend from the
199 top to the bottom of the sequence (Fig. 2c). The lowest value ($0.30 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$) is observed in
200 the upper part of the core where the TGC is quite constant around $1 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$ (from
201 2533.850 m to 2536.600 m).

202 At intermediate depths (2536.600 m – 2539.190 m), the TGC is more variable with slightly
203 higher values fluctuating around $4 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$. The lowest part of the core is characterized by
204 TGC up to 5 times higher than measured in the upper layers and reaches a maximum observed
205 value of $56.17 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$ at 2539.250 m of depth.

206 Close to the bottom, the TGC is similar to the one at intermediate depth. The deepest sample
207 (2543.250 m) reaches a second maximum of $33.25 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$.

208 The mean TGC value of the entire NEEM BIL ($6.19 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$) is very low compared to the
209 typical dry-firn derived meteoric ice (MI) value of about $90 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$ (Martinerie et al., 1994;
210 Raynaud et al., 1983).

211 **3.3 Stable isotope composition**

212 The depth profiles of the ice-water isotopes of the NEEM basal ice core are shown in Fig. 2d
213 with δD and $\delta^{18}\text{O}$ expressed in permil (‰) versus the Vienna Standard Mean Ocean Water (V-
214 SMOW). The various symbols in Fig. 2d refer to the different visual ice types identified above
215 with CIS as white circles, DRL as black triangles and IDD as grey squares.

216 With a mean value of -38.4 ‰ , the $\delta^{18}\text{O}$ profile displays a non-linear downward trend towards
217 an isotopic enrichment in heavy isotopes (i.e. increasing δ -values).

218 Along the first 2.8 m of the core where 5 cm resolution measurements were performed, $\delta^{18}\text{O}$
219 values slightly fluctuate around -39.0 ‰ with two layers enriched by about 1 ‰ in heavy
220 isotopes at 2534.600 m and 2535.650 m depth.

221 From 2536.600 m to 2537.150 m, the ice shows a progressive depletion in heavy isotopes and
222 reaches the lowest value measured in $\delta^{18}\text{O}$ (-39.9 ‰) at 2537.150 m of depth.

223 Between 2537.150 m and 2537.900 m, the $\delta^{18}\text{O}$ profile is nearly constant and its values are
224 again clustered around -39.0 ‰.
225 From 2537.900 m depth to 2539.310 m, the $\delta^{18}\text{O}$ profile shows a positive trend towards
226 isotopic enrichment and larger amplitude variations with a difference of about 3.5 ‰
227 between the lowest value (-39.9 ‰) and the locally most enriched layer (-35.5 ‰),
228 respectively at 2537.175 m depth and 2538.145 m depth.
229 Finally, the deepest samples (below 2543.150 m) are characterized by the highest $\delta^{18}\text{O}$ values
230 recorded in the NEEM BIL with a maximum of -34.4 ‰. These remain well in the range of $\delta^{18}\text{O}$
231 values observed in the ice above the BIL (last 300 m depth interval above the BIL, Fig. 5, dark
232 crosses).
233 The δD profile follows the same pattern as the $\delta^{18}\text{O}$ with a mean value of -301 ‰ and it ranges
234 from -311 ‰ (at 2536.850 m depth) to -275 ‰ (at 2543.150 m depth).

235 **3.4 Ice textures and Fabrics**

236 Textures and fabrics have only been investigated on the basal ice sequence drilled during the
237 2010 field season, which represents 3.45 m of material represented by the green line on the
238 right of Fig. 2a. A detailed view of this sequence is presented in Fig. 4.
239 Large interlocking crystals (up to 15 cm equivalent diameter) are representative of clear ice
240 layers while small crystals (less than 1 cm equivalent diameter) are always found in the
241 debris layers.
242 As shown by the c-axis pole diagrams (summarized in the last column of Fig. 4,) the two types
243 of ice crystals show strikingly different fabrics. Large crystals are organised in such a way that
244 their fabric shows a small girdle roughly centered around the core axis, while small crystals
245 plot as a single maximum along the same direction. Surprisingly, a third type of generally
246 small crystals, frequently occurs along the sides of the ice core (e.g. see thin section at a depth
247 of 2536.400 m in Fig. 4). The fabric of these border crystals partly mimics the pattern of the
248 populations of small and large crystals, but also add randomness to the distribution. Note that
249 these border crystals are part of the ice core and do not represent the expression of "water-
250 welding" during the thin sectioning procedure.

251

252 **4 Discussion**

253 During ice formation the basal sequence has lost an important part of its gas content and
254 contains numerous debris layers. This study is based on a co-isotopic approach in order to
255 test if processes involving melting/refreezing (M/R) events, able to reject gases and
256 incorporate the coarser particles in the observed debris range, could be responsible for the
257 build-up of the sequence or at least parts of it.

258 **4.1 A $\delta^{18}\text{O}_{\text{ice}}$ - $\delta\text{D}_{\text{ice}}$ approach to detect melting/refreezing processes**

259 Figure 5 shows the $\delta^{18}\text{O}_{\text{ice}}$ - $\delta\text{D}_{\text{ice}}$ relationship for the various ice types described in sect. 3.1,
260 and compares it to the co-isotopic signature of the 567 samples of meteoric ice (MI) from the
261 300 meters above (black crosses). Samples of MI are aligned on a slope of 8.02 which is typical
262 of the global Meteoric Water Line (MWL) (Craig, 1961).

263 **4.1.1 The “freezing slope” concept and caveats**

264 On a co-isotopic diagram, a M/R process can be detected by a slope of the $\delta^{18}\text{O}_{\text{ice}} - \delta D_{\text{ice}}$
 265 relationship for a group of samples significantly lower than 8, in accordance with what is
 266 usually referred to as a “freezing slope”. A freezing slope is the result of a fractionation effect
 267 between light and heavy isotopes in the course of freezing. Jouzel and Souchez (1982) have
 268 theoretically computed the value of the freezing slope in the case of a closed system reservoir
 269 (S_{cs}) and successfully validated it on an experimental setup (Souchez and Jouzel, 1984). It is
 270 expressed as:

$$271 S_{\text{cs}} = \frac{(\alpha-1).(1000+\delta D_{\text{res}})}{(\beta-1).(1000+\delta^{18}\text{O}_{\text{res}})} \quad (1)$$

272 where α (=1.0212) and β (=1.00291) are the equilibrium fractionation coefficients between
 273 water and ice for D/H and $^{18}\text{O}/^{16}\text{O}$ respectively (Lehmann and Siegenthaler, 1991) and $\delta^{18}\text{O}_{\text{res}}$
 274 and δD_{res} are the initial isotopic composition of the reservoir before freezing. In the basal part
 275 of an ice sheet, the meltwater supplying a freezing reservoir most presumably originates from
 276 the meteoric ice above. As no isotopic fractionation occurs during melting (Friedman et al.,
 277 1964; Souchez and Lorrain, 1991), $\delta^{18}\text{O}_{\text{res}}$ and δD_{res} are located on the MWL, i.e. at the
 278 intersection with the best fit line across the samples resulting from the freezing process.

279 Several studies have used this concept of the “freezing slope” to track M/R processes in basal
 280 ice sequences of ice sheets (Knight, 1989; Hubbard and Sharp, 1993, 1995; Iverson and
 281 Souchez, 1996; Souchez et al., 1988, 1994, 1998; Cook et al., 2009; Larson et al., 2010) by
 282 comparing the $\delta^{18}\text{O}_{\text{ice}}-\delta D_{\text{ice}}$ regression line of their set of samples to the modelled freezing line,
 283 using closed system eq. (1) with the initial values for the freezing meltwater provided by the
 284 intersection of the $\delta^{18}\text{O}_{\text{ice}}-\delta D_{\text{ice}}$ regression line through the samples with the MWL. These
 285 attempts were only partly successful due to various potential sources of bias summarized
 286 below and in Fig. 6 :

287 a. The vertical sampling resolution may affect the detection of a M/R signature. To pinpoint
 288 any isotopic fractionation in a sample, its vertical size must be smaller than the one of the
 289 refreezing process (Souchez et al., 1988). If a single sample covers the full set of refreezing
 290 increments, its measured δ -value corresponds to the average δ -value of all the increments
 291 together. Because this average is equal to the meteoric δ -value of the initial reservoir admitted
 292 to freeze ($\delta^{18}\text{O}_{\text{res}}$ and δD_{res}), no isotopic fractionation is detected (Fig. 6, case a).

293 b. Equation (1) is only valid for “closed system” freezing. In nature, it is possible that the
 294 system is “open” both in terms of refrozen ice/meltwater ratio and in terms of the water
 295 isotopic signature. This more complex case has been discussed (Souchez and De Groote, 1985;
 296 Souchez, 1984) and provides the following expression for the “open system” freezing slope S_{os}
 297 (Fig. 6, case b) :

$$298 S_{\text{os}} = \frac{\alpha(\alpha-1)(1000+\delta D_{\text{res}})-\frac{A}{F}(\delta D_{\text{inp}}-\delta D_{\text{res}})}{\beta(\beta-1)(1000+\delta^{18}\text{O}_{\text{res}})-\frac{A}{F}(\delta^{18}\text{O}_{\text{inp}}-\delta^{18}\text{O}_{\text{res}})} \quad (2)$$

299 where $\delta^{18}\text{O}_{\text{res}}$ and δD_{res} are the isotopic composition of the water reservoir before freezing and
 300 $\delta^{18}\text{O}_{\text{inp}}$ and δD_{inp} are the isotopic composition (considered constant) of the input water joining
 301 the reservoir in the course of freezing. A and F are respectively the constant input and
 302 freezing rate. While the closed system approach provides a single theoretical freezing slope,
 303 the open system model usually provides a set of multiple possible freezing slopes, the range of
 304 which is constrained by generally unknown values of δ_{inp} and A/F. Given the numerous
 305 possible freezing slopes it provides, the open system approach increases the probability of
 306 finding a fit that describes sufficiently the observations, making it a less parsimonious model.

307 The sensitivity of the basal ice isotopic signature to the range of isotopic values of the input
308 water and to the “degree of closure” of the system (ratio A/F) has been discussed in previous
309 modelling exercises (Hubbard and Sharp, 1995; Cook et al., 2009). The authors concluded that
310 a freezing slope might not be displayed, and suggested that only a range of plausible values for
311 the input waters can be deduced from the observed isotopic signature of the ice.

312 c. If the vertical sampling resolution is too coarse, it could also possibly lead to measurements
313 that mix both M/R and meteoric signals. In such situations, samples might be located on
314 intermediate positions between the MWL and the freezing line, their precise coordinates
315 depending on both the proportion and values of each of the co-isotopic signals they combine.
316 Such a process has a higher probability to result in a more scattered distribution between
317 theoretical freezing slopes and the MWL (Fig. 6, case c). A similar case could be drawn for a
318 mixing process with a “closed system” freezing slope.

319 **4.1.2 Tracking M/R in the NEEM basal ice**

320 In the following sections, we will use analyses of covariance techniques (ANCOVA), to track
321 M/R processes in our various ice types from the NEEM basal ice. The rationale is as follows:
322 For each group of observations, a regression line is calculated with slope S_{obs} (Table 1a). At
323 first, S_{obs} is compared to the slope of the MWL (S_{MWL}). The M/R origin hypothesis is refuted if
324 both slopes are not significantly different (P -value > 0.01). However, if S_{obs} is significantly
325 lower than S_{MWL} (P -value ≤ 0.01), the considered group of samples could presumably originate
326 from a M/R process. This assumption is further tested by comparing S_{obs} with the expected
327 closed system slope (S_{cs}) computed from eq. (1) with the intersection between the observed
328 regression line and the MWL being the initial water δ -values for the freezing process (Table
329 1b). The closed system M/R origin hypothesis is accepted for that group of samples if the two
330 slopes are not statistically different. If S_{obs} is both statistically different from S_{MWL} and S_{cs} or if
331 no significant regression line can be drawn for that specific group, then alternatives b) and c)
332 in sect. 4.1.1 and figure 6 have to be considered.

333 Table 1 summarizes the observed regression lines for each group of basal ice samples defined
334 in sect.3 (and a few other combinations, see below - Table 1a) and the theoretical closed
335 system freezing lines calculated for the various groups (Table 1b). These data are used in the
336 following section to discuss the origin for the various groups, in conjunction with the other
337 available ice properties.

338 **4.2 Origin of the ice types**

339 **4.2.1 Whole basal ice sequence**

340 Since the whole basal ice sequence displays a stacking of clear ice and debris bands, one could
341 assume that the whole sequence might have resulted from a large scale M/R process such as a
342 “bulk freezing-on” mechanism (e.g. at transitions from warm to cold bed conditions under the
343 ice sheet) (Weertman, 1961). The corresponding $\delta^{18}\text{O}_{ice}$ - δD_{ice} slope for the whole set of basal
344 ice samples ($S_{obs-Blwhole} = 6.48$, Table 1a) is significantly lower (P -value = 0) than that of the
345 Meteoric Water Line ($S_{MWL} = S_{MI300} = 8.02$), excluding a meteoric origin for the whole
346 sequence. A closed-system M/R origin hypothesis is highly unlikely because $S_{OBS-Blwhole}$ is
347 significantly higher (P -value = 0.001) than the slope computed from the intersection between
348 $S_{obs-Blwhole}$ and the MWL, referred as $S_{Blwhole \cap MI300}$ (= 5.20, Table 1b). This and the contrasted
349 properties (Fig. 1 to 4) within the sequence suggest that it should indeed not be considered as
350 a single refrozen entity, but rather interpreted as a composite signal.

351 **4.2.2 Clear Ice with Specks (CIS)**

352 The slope of the $\delta^{18}\text{O}_{\text{ice}}\text{-}\delta\text{D}_{\text{ice}}$ regression line for the CIS samples ($S_{\text{obs-CIS}} = 7.93$, Fig. 5 and Table
353 1a) is not significantly lower (P-value = 1) than the slope of the Meteoric Water Line ($S_{\text{MI300}} =$
354 8.02). This similarity suggests that M/R events at a scale larger than the resolution of the
355 samples (5 cm) did not occur for this ice type. This is further confirmed by $S_{\text{obs-CIS}}$ being
356 significantly too high (P-value = 0) compared to the expected $S_{\text{CS-CIS}}$ (3.85) that would have
357 been developed from melted meteoric ice (MI) with δ -values (-64.4 ‰; -506 ‰) at the
358 intersection with the CIS regression line (totally unrealistic value lying well out of the range of
359 the whole NEEM core - Fig.5).

360 The rejection of the Melting/Refreezing (M/R) hypothesis for the CIS samples is coherent with
361 their textural signature. As shown in Fig. 4, the large crystals of the clear ice samples with
362 specks show a typical small girdle around the core axis. This is similar to the recrystallization
363 fabric described higher up in the core in the Eemian “warm” ice (Montagnat et al., 2014). This
364 “inherited” strain history is not compatible with melting-refreezing processes that would have
365 reset the signature to smaller grains oriented according to the simple shear stress regime
366 dominating in the deepest layers of the ice sheet (Cuffey and Paterson, 2010; Hooke and
367 Hudleston, 1980).

368 Despite the fact that the isotopic and textural signature of the CIS samples are in accordance
369 with a meteoric ice origin, they show a very low Total Gas Content (TGC mean value = 1.46
370 $\text{ml}_{\text{gas}} \text{kg}_{\text{ice}}^{-1}$, ranging from 0.30 to 5.42 $\text{ml}_{\text{gas}} \text{kg}_{\text{ice}}^{-1}$, Fig. 2c) as compared to typical ice sheet
371 meteoric ice values (ca. 90 $\text{ml}_{\text{gas}} \text{kg}_{\text{ice}}^{-1}$). This points to mechanical “reworking” close to the ice-
372 bedrock interface. As discussed for the Basal Ice Layer of EPICA Dome C (EDC) (Tison et al.,
373 2015), an intense migration recrystallization process in ice close to the pmp results in
374 drastically increased crystal sizes and expulsion of gases and impurities out of the crystal
375 lattice into the intergranular liquid network. As impurities get concentrated within the
376 premelt layer, they are shown to form precipitated aggregates leading to an ice type very
377 similar to our CIS. A major difference, is that, in the EDC basal ice, typical meteoric TGC are
378 preserved. Note that the EDC ice core was terminated at least a few tens of meters above the
379 ice-bedrock interface. It is therefore possible that, at NEEM, the CIS has travelled close enough
380 to the ice-bedrock interface for its TGC to be partially expelled out of the crystal lattice and
381 drained with the intercrystalline interstitial water (premelt) towards the bedrock. This
382 process is thought to result from the hydraulic gradient driven by the density difference
383 between the premelt and the surrounding ice crystals (Rempel, 2005, 2002). Similar facies
384 have been described close to the ice-bedrock interface of high altitude alpine glaciers (“clear
385 ice” facies – in Hubbard et al., 2000; Tison and Hubbard, 2000) and at the margin of the
386 Greenland Ice Sheet (“clotted ice” facies in Sugden et al., 1987; “dispersed with clots” facies in
387 Souchez et al., (1988, 1993)

388 The CIS ice type has preserved its water stable isotope signature and is the meteoric ice the
389 closest to the ice-bedrock interface. It might therefore be considered as a better reference for
390 the meltwater source to potential refrozen ice types, as compared to the whole set of MI300
391 samples. However, since folding could have brought meteoric ice from higher up in the ice
392 sheet close to the ice-bedrock interface, we will keep the meteoric ice of the bottom 300
393 meters (MI300 in Table 1a; $S_{\text{MWL}} = 8.02$) as the potential reference for the input water
394 signature of the melted ice.

395 **4.2.3 Debris-Rich Layers (DRL) and Ice with Dispersed debris (IDD)**

396 Both the debris weight content (0.4 to 23 %, Fig. 2b) and the debris size distribution (Fig. 3),
397 with a characteristic peak in coarser sands, gravels and individual rock pebbles up to 4.5 cm

398 in diameter, preclude an aeolian origin for the particle load of the DRL and IDD ice types.
399 Indeed, typical individual particle size ranges e.g. at Camp Century Greenland, from 0.04 to 8
400 μm for the aeolian input (Kumai and Langway Jr, 1988). Only ice-bedrock interactions can
401 therefore be held responsible for the incorporation of such large particle sizes in the NEEM
402 basal ice.

403 These, however, do not have to imply melting-refreezing processes. Several authors
404 (Anderton, 1974; Echelmeyer and Zhongxiang, 1987; Fitzsimons et al., 1999; Tison et al.,
405 1993) have discussed mechanisms for mechanical entrainment of debris in basal ice below
406 the pmp. Basal ice at the NEEM location is at the pmp and phase changes are therefore likely
407 to occur. Furthermore, the geometrical arrangement of the debris layers (with the repetition
408 of small scale alternation of clear ice and debris layers) is more typical of melting-refreezing
409 processes (*laminated* facies – see e.g. review from Knight, 1997 and Hubbard et al. (2009)),
410 “cold” mechanical entrainment generally resulting in a more homogeneously mixed ice/debris
411 facies (the *amber* cryofacies in Hubbard et al., 2009). Where available, the debris-bearing ice
412 fabrics (Fig. 4, small crystals) also show a single maximum fabric, typical for ice originating in
413 the vicinity of the ice-bedrock interface. There, simple shear dominates, rather than the
414 vertical small girdle resulting from long-term recrystallization under progressive burying in
415 pure shear regime (Fig. 4, large crystals) close to the pmp. Finally, a maximum difference of 3.5
416 ‰ is observed between the highest $\delta^{18}\text{O}$ values in the CIS (-37.9 ‰) and the isotopically
417 heavier debris-bearing ice sample (-34.4 ‰). This difference is close to the maximum 3 ‰
418 enrichment in $\delta^{18}\text{O}$ for oxygen fractionation between ice and water (O’Neil, 1968). It thus
419 provides further support to a M/R origin for that group. Note that the slightly higher range
420 may also result from multiple M/R events over successive small bumps, a process known to
421 produce laminations (Hubbard and Sharp, 1993).

422 Do the co-isotopic signature of the debris-bearing (DRL + IDD) ice types further support a
423 M/R origin? Figure 5 shows DRL as red triangles and IDD as green squares. Calculating a
424 regression slope for these two groups together (Debris Bearing ice in Table 1a, not shown in
425 Figure 5) gives a slope ($S_{\text{obs-DB}} = 6.47$) identical to the one of the whole basal ice sequence ($S_{\text{obs-}}_{\text{BIWHOLE}} = 6.48$), which is significantly lower than $S_{\text{MI300}} (8.02)$, and suggesting potential melting-
426 refreezing. The slope is also significantly too high (P -value = 0) when compared to the one
427 expected for a closed system M/R ($S_{\text{CS-DB}} = 5.26$) with $\delta^{18}\text{O}_{\text{res}}$ and $\delta\text{D}_{\text{res}}$ being the intersection
428 of the regression lines of debris bearing ice and MI300 groups. Regressions through each
429 individual group gives a slightly higher slope for the DRL samples (6.91) and slightly lower
430 slope (6.27) for the IDD samples, still precluding closed system refreezing.

432 Closer examination of the behaviour of the debris-bearing samples (Fig. 5) suggests that an
433 inflection point exists in the overall trend between heavier and lighter samples at about (-38
434 ‰, -296 ‰), in other words, close to the transition from HT drill samples to rock drill
435 samples (Fig. 2). This is where resistance to drilling penetration reveals a transition to thicker
436 frozen sediments with larger clasts and interstitial clear ice layers of the IDD type (Fig. 1c and
437 3). Restricting the regression calculation to IDD samples with $\delta^{18}\text{O} > -38.0$ ‰ (i.e. all IDD
438 samples but one within the ice lenses of the frozen sediments in the bottom part of the core)
439 gives an observed slope of 5.62 (Table 1a), which is significantly different (P -value = 0.01)
440 from $S_{\text{MI300}} (8.02)$ but not from the theoretical slope (P -value = 1) calculated using the
441 intersection of the observed regression line with the MWL (5.28, Table 1b). IDD segments
442 within the frozen sediment at the base of the NEEM core typically represent closed system
443 refreezing. Note that the isotopic values of the initial water for these samples (-39.2 ‰; -305
444 ‰) still lies in the range of the CIS samples (open blue symbols in Fig. 5).

445 The DRL samples with $\delta^{18}\text{O} > -38.0$ ‰ (6.45, Table 1a) show significant discrepancy with the
446 MWL line, but also with the theoretical slope (5.23, Table 1b), ruling out closed system

447 freezing. Since a clear regression line ($R^2 = 0.97$) can be drawn through that group of samples,
448 an open system freezing process can be considered, as shown below.

449 Using eq. (2) with a) initial water values at the intersection of the regression of DRL samples >
450 -38.0 ‰ and MI300 (Table 1b, $\delta^{18}\text{O} = -40.2$ ‰, $\delta\text{D} = -312$ ‰), b) the observed slope of 6.45,
451 and c) varying A/F ratio from 1 (input equals amount of freezing) to 10 (freezing is only 10 %
452 of input), we can reconstruct the range of plausible isotopic values for the input water in the
453 open system hypothesis (Table 2). The expected isotopic range (-42.2 ‰ to -40.4 ‰ in $\delta^{18}\text{O}$, -
454 327 ‰ to -313 ‰ in δD) is slightly below the lightest CIS ice sample (-39.9 ‰ in $\delta^{18}\text{O}$), but
455 still in the range of the values observed within the last 50 meters of meteoric ice (MI) above
456 the sampled basal ice sequence (Fig. 5).

457 As underlined in sect. 3, the geometrical arrangement of the debris layers in the basal ice
458 sequence (Fig. 4) suggests active folding, in accordance with folding reported higher up in the
459 core (Dahl-Jensen et al., 2013). It is therefore likely that folding has also affected the few tens
460 of meters of deep ice above the basal ice layer, providing opportunities for that ice to melt
461 close to the ice-bedrock interface, somewhere upstream of the drill location, and feeding into
462 the water reservoir for the “open system” refreezing of the debris rich layers.

463 Both the DRL and the IDD with isotopic values below (-38.0 ‰; -296 ‰) do not show a slope
464 of their regression line (respectively 7.24 and 7.52, Table 1b) significantly different from that
465 of the MWL (MI300, with P-values of respectively 0.1 and 1). This suggests that within the
466 debris-rich HT section of the basal ice sequence containing relatively less debris, mixing
467 processes between the DRL/IDD ice types and the CIS has destroyed the specific co-isotopic
468 M/R signatures, even at the high (2 cm) sampling resolution for IDD. Several mechanisms
469 have been invoked for these small scale mixing processes between ice and debris close to the
470 ice-bedrock interface. (Boulton, 1970) proposed that individual particles or aggregates are
471 incorporated within the flowing ice by undetectable small scale melting-refreezing events in
472 the subglacial water film. Small scale mixing higher up in the sequence could also result from
473 tectonic thrusting of DRL or IDD layers into the surrounding CIS layer during a folding event.
474 Such an incorporation process of debris in ice by tectonic thrusting along shear planes oblique
475 to the layering, in the vicinity of a bedrock hummock, has been proposed for several basal ice
476 sequences (e.g. Boulton, 1975; Echelmeyer and Zhongxiang, 1987; Fitzsimons et al., 1999;
477 Tison et al., 1993). More recently, Waller et al. (2000) and Cook et al. (2011) also underlined
478 the potentially important role of tectonic mixing in the generation and metamorphism of basal
479 ice sequences.

480 To summarize, our co-isotopic investigations show that: a) melting-refreezing has been
481 involved in the genesis of the debris-rich layers and the ice with dispersed debris, b) that this
482 original signature only appears at high-resolution sampling (2 cm) and has only been
483 preserved in the lower rock-drill section of the basal ice sequence, c) that, in that case, IDD
484 results from closed system freezing, while an open system freezing is required for DRL
485 samples and d) that the specific M/R isotopic signature for both DRL and IDD samples is lost
486 through small-scale mixing (< 5 to 2 cm) in the higher section of the basal ice sequence.

487 The ice crystallography within the DRL shows small crystals and a near vertical c-axes single
488 maximum (Fig. 4), in accordance with dominant simple-shear in the deeper part of the ice
489 sheet. The debris content has prevented recrystallization processes in these layers, which act
490 as discrete weaker zones for accumulated stress release, preventing the inherited
491 recrystallization fabric of the surrounding CIS from crystal size reduction. A similar pattern
492 has been described by Tison et al. (1994) in the upper meter of the GRIP core basal ice
493 sequence.

494 The relatively higher TGC observed in the debris-bearing ice (DRL+IDD) as compared to the
495 CIS (Fig. 3), may reflect the downward expulsion of the air content from the CIS facies and the
496 subsequent enrichment of the subglacial water prone to refreeze, sometimes in closed system
497 configuration (IDD).

498 **4.3 A scenario for the build-up of the NEEM basal ice sequence**

499 The mean $\delta^{18}\text{O}$ value of the NEEM basal ice sequence (-38.4 ‰) is within the range of the
500 meteoric ice above, intermediate between Holocene and Younger Dryas values.
501 Reconstructing the local mean surface temperature using Johnsen et al. (1992) relationship
502 ($\delta^{18}\text{O} = 0.67 \text{ T} - 13.7 \text{ ‰}$) gives a value of -36.8 °C, compatible with the existence of an
503 extensive Greenland Ice Sheet. Previously depicted mixing processes between relict low-
504 altitude ice bodies and a nascent growing ice sheet, such as those invoked for the basal ice at
505 the GRIP location (Souchez and Jouzel, 2006; Souchez et al., 1995; Tison et al., 1998) are
506 therefore not applicable for the build-up of the NEEM basal ice sequence. Its origin must
507 instead be interpreted in terms of incorporation processes of bedrock inherited material
508 within englacial ice, that occurred under a pre-existing large ice mass. On the basis of the ice
509 types analysis of the previous section and of the relevant literature, we propose a possible
510 mechanism for the construction of the NEEM basal ice layers, as depicted in Fig. 7.

511 While snow accumulates and compacts under its own weight to become ice, it simultaneously
512 undergoes a dry recrystallization process due to the increase of pressure according to depth
513 (Alley, 1992). At the NEEM location, ice flows NW along the divide and the original
514 stratigraphy of the deepest layers is shown to be already disturbed by folding at the last
515 glacial-Eemian boundary (2200 - 2450 m; Dahl-Jensen et al., 2013). Closer to the ice-bedrock
516 interface, and thanks to the increased recrystallization at temperatures close to the pmp,
517 impurities (including gases) are gathered at crystal boundaries. As described for the deep ice
518 at EPICA Dome C (de Angelis et al., 2013; Tison et al., 2015) increased concentration of
519 atmospheric-borne impurities at the grain boundaries leads to the precipitation of salts and to
520 the aggregation of visible specks. Depending on the amplitude of the bedrock irregularities,
521 gas expelled within the ice premelt layer will be drained off at the interface with the
522 intergranular water as a result of density contrast (Rempel, 2001, Tison et al., 2015). At NEEM
523 this gas loss (clear ice, no specks, Fig. 7, #1) precedes the apparition of visible specks. As the
524 latter appear, the CIS (Fig. 7, #2) is created, which nonetheless preserves its inherited fabrics
525 (small girdle around the vertical) and original meteoric signature ($S_{\text{CIS}} = 7.93$), because no
526 large scale refreezing is involved.

527 Pressure-melting on the stoss side of bedrock hummocks will produce interfacial meltwater
528 that will flow over and within the basal till, eventually entraining fine abrasion products.
529 Following the pressure gradient, this water will refreeze on the lower pressure lee-side of the
530 obstacle (Kamb, 1970; Weertman, 1964). This will result in the repetition of millimetric
531 laminations of debris-rich and clear regelation ice layers such as what has been described
532 here as our DRL ice type (dark obliquely hatched layers in Fig.7).

533 Our isotopic analyses show that the refreezing process may occur in an open system regime,
534 with meltwater contribution from meteoric ice above the CIS horizon, having reached the
535 bedrock (and partially melted) upstream of the NEEM drilling location. During this open
536 system refreezing, most of the gases remain dissolved into the water reservoir, although the
537 TGC of DRL is slightly higher ($2\text{-}6 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$, Fig. 2c) than in the CIS layer above. The newly
538 formed DRL show a c-axes distribution in accordance with the simple shear stress regime
539 dominant at the base of the ice sheet (single maximum fabric), and their texture made of small

540 crystals reflects the inhibition of their normal grain growth from the presence of debris (Alley
541 et al., 1986).

542 While the melting-refreezing DRL have to be formed at the ice-sediment interface, several
543 processes have been proposed to explain their occurrence higher up in the basal ice sequence.
544 For example, it has been suggested that divergent plastic flow on the stoss side of larger
545 bedrock obstacles may entrain pre-existing DRL into the superincombent ice layers. By
546 repetition of the process, numerous DRL can be intercalated within the CIS, as observed in the
547 top part of our basal ice layer (2533.850 to 2537.300 m). Boulton (1970) stated that, in this
548 process, the uppermost debris layers are the first to be incorporated at the farthest point up-
549 flow and the lowest debris layers more locally derived. However, the variability and reverse
550 directions of the dip of some of the DRL in our sequence suggest that the latter has been
551 folded. This is consistent with the detailed radio-echosounding observations of Dahl-Jensen et
552 al. (2013, fig. S2-b and d). Tison et al. (1993) suggest that local shear stress parallel to the
553 local ice-sediment interface, but oblique to the DRL layering, contributes to its protrusion
554 within the ice above and to the development of folds across the layering. This can happen at
555 the interface and help initial incorporation of the DRL (Fig. 7, #3), or further up in the
556 sequence with previously incorporated DRL (Fig. 7, #3'). This complex deformational regime
557 will result in small scale mixing with spatial redistribution of the DRL debris within the
558 surrounding CIS, resulting in the formation of clear IDD, with a somewhat blurred co-isotopic
559 signature (Fig. 7, #4).

560 Finally, part of the basal meltwater flowing at the ice-bedrock interface may progressively
561 infiltrate the pore network of the basal till. If the required temperature and pressure
562 conditions are met, the refreezing of that water builds up the isolated layers/lenses of IDD
563 within the frozen sediment, as a kind of segregation ice in permafrost (Fig. 7, #5). This ice
564 displays an indisputable closed system M/R origin. If it is formed in closer vicinity of the ice-
565 sediment interface (Fig. 7, #5') it will also dilute its specific isotopic signature within the CIS
566 meteoric signal (Fig. 4, green squares with $\delta^{18}\text{O} < -38.0 \text{ ‰}$) as a result of small scale shearing
567 and/or folding. A TGC of up to $60 \text{ ml}_{\text{gas}} \text{ kg}_{\text{ice}}^{-1}$ in the IDD of the lower basal ice section (Fig. 2c)
568 is coherent with a closed system refreezing process, recovering most of the gas content
569 originally expelled from the meteoric ice towards the subglacial water system.

570 **5 Conclusions**

571 This multiparametric study of the NEEM basal ice sequence has provided, to our best
572 knowledge, the first opportunity to describe the full transition from unaltered meteoric ice to
573 frozen basal till, including all intermediary stages. Souchez et al. (2000) argued that
574 incorporation of relict ice by overriding during initial ice sheet growth is an important process
575 of basal ice formation in central Greenland. Here, we demonstrate that this situation is not
576 relevant to NEEM, which needs to be interpreted in terms of formation and transformation
577 processes occurring under a well developed ice sheet. The full sequence involves the following
578 succession on the vertical : a) clear ice with normal TGC and no specks, b) clear ice with low
579 TGC and no specks, c) clear ice with low TGC and specks, d) laminated debris-rich layers and
580 e) clear ice with dispersed debris, that can either occur as segregation ice within the frozen
581 sediment of the lower part of the sequence or, higher up in the sequence, as a mix between
582 clear ice with specks and lower DRL.

583 CIS shows large ice crystals, no signs of melting-refreezing, a pure shear recrystallization
584 fabric similar to the Eemian ice above and a low debris content with a narrow distribution of
585 silts and fine sands. It can be compared to the EPICA Dome C basal ice sequence (de Angelis et
586 al., 2013; Tison et al., 2015) apart from the fact that it already shows a near complete loss of
587 TGC, suggesting transit closer to bedrock hummocks. Note that EPICA Dome C was stopped

588 some 20 meters above the ice-bedrock interface (Tison et al., 2015). As in EPICA Dome C, the
589 visible specks are homogeneously dispersed into the ice matrix, with increasing number and
590 sizes downwards. Therefore, they most likely represent autochthonous dissolved impurity
591 redistribution at crystal boundaries, with intense recrystallization and formation of salt
592 precipitates.

593 With their tail of coarse sands and gravels and total debris content of up to 23 % (similar to
594 those of the basal ice of the Byrd Antarctic core, 12-15 %), DRL and IDD cannot result from
595 aeolian incorporation at the ice sheet surface. This implies thermodynamic (melting-
596 refreezing, co-isotopic signature) and/or dynamic (folds, layer dips, single maximum ice
597 fabric) protrusion of basal sediments within the basal ice sequence. This has been described
598 at length in the literature, such as the basal banded series in West Greenland where "stratified
599 facies" (dark laminations of sandy debris and clear ice) are interspersed with "dispersed
600 facies" (clear ice containing fine debris aggregates of silts and clays, also referred to as
601 "clotted ice") segments (e.g. Sugden et al., 1987; Souchez et al., 1993).

602 Single maximum ice fabrics in the DRL concord with generalized simple shear conditions close
603 to the ice bedrock interface. Melting-refreezing at the ice-bedrock interface of NEEM is
604 coherent with measured temperatures close to the pmp and the upwelling of meltwater in the
605 drill hole on extraction. Finally, gases rejected from the recrystallized meteoric ice above,
606 accumulate within the water-soaked sediment below and can be re-incorporated within the
607 refrozen ice layers, especially if these are formed in a closed system configuration.

608 Complementary ongoing work within the NEEM basal ice will enable us to further validate
609 and refine the basal ice build-up processes presented here: for example, gas composition and
610 isotopic measurements will highlight potential phase changes and biological fractionation
611 processes, and dating attempts will eventually confirm that the build-up occurred under an
612 already existing and mature ice sheet and help refining the succession of events.

613

614 **Acknowledgments**

615 We thank all the participants of the NEEM project. NEEM is directed and organised by the
616 Center of Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is
617 supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada
618 (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR),
619 Germany (AWI), Iceland (RannIs), Japan (NIPR), Korea (KOPRI), The Netherlands
620 (NWO/ALW), Sweden (VR), Switzerland (SNF), United Kingdom (NERC) and the USA (US NSF,
621 Office of Polar Programs).

622 T.G. acknowledges support of a FNRS (National Science Foundation, Belgium) - FRIA grant
623 (5.2.014.15) by the time the present work was conducted. Finally, the authors are very
624 grateful to O. Eisen, P. G. Knight and S. Cook for their supportive and constructive comments
625 on earlier versions of this manuscript.

626

627 **References**

628 Alley, R. B.: Flow law hypotheses for ice-sheet modeling, *J. Glaciol.*, 38(129), 245–256, 1992.

629 Alley, R.B., Lawson, D.E., Evenson, E.B., Strasser, J.C., Larson, G.J., 1998. Glaciohydraulic
630 supercooling: a freeze-on mechanism to create stratified, debris-rich basal ice: II. Theory.
631 *Journal of Glaciology* 44, 563–569.

632 Alley, R. B., Perepezko, J. H. and Bentley, C. R.: Grain growth in polar ice: II. Application, *J.
633 Glaciol.*, 32(112), 425–433, 1986.

634 Andersen, K., Azuma, N. and Barnola, J.-M.: High-resolution record of Northern Hemisphere
635 climate extending into the last interglacial period, *Nature*, 431(7005), 147–151,
636 doi:10.1038/nature02805, 2004.

637 Anderton, P. W.: Ice fabrics and petrography, *Meserve Glacier, Antarctica*, *J. Glaciol.*, 13(68),
638 285–306, 1974.

639 De Angelis, M., Tison, J. L., Morel-Fourcade, M. C. and Susini, J.: Micro-investigation of EPICA
640 Dome C bottom ice: Evidence of long term in situ processes involving acid-salt interactions,
641 mineral dust, and organic matter, *Quat. Sci. Rev.*, 78, 248–265,
642 doi:10.1016/j.quascirev.2013.08.012, 2013.

643 Bachmann, F., Hielscher, R. and Schaeben, H.: Texture Analysis with MTEX – Free and Open
644 Source Software Toolbox, *Solid State Phenom.*, 160(2010), 63–68,
645 doi:10.4028/www.scientific.net/SSP.160.63, 2010.

646 Boulton, G. S.: On the origin and transport of englacial debris in Svalbard glaciers, *J. Glaciol.*,
647 9(56), 213–229, 1970.

648 Boulton, G. S.: Processes and patterns of subglacial sedimentation: a theoretical approach, in
649 *Ice Ages: Ancient and Modern*, edited by A. Wright and F. Moseley, pp. 7–42, Seel House Press
650 Liverpool, 1975.

651 Christoffersen, P., Tulaczyk, S., 2003b. Thermodynamics of basal freeze-on: predicting basal
652 and subglacial signatures of stopped ice streams and interstream ridges. *Annals of Glaciology*
653 36, 233–243.

654 Christoffersen, P., Tulaczyk, S., Carsey, F.D., Behar, A.E., 2006. A quantitative framework for
655 interpretation of basal ice facies formed by ice accretion over subglacial sediment. *Journal of
656 Geophysical Research-Earth Surface* 111. F01017, doi:10.1029/2005JF000363

657 Church, J. a., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M.
658 a., Milne, G. a., Nerem, R. , Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D. and
659 Unnikrishnan, A. S.: Sea level change, in *Climate Change 2013: The Physical Science Basis.*
660 Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental
661 Panel on Climate Change, pp. 1137–1216., 2013.

662 Cook, S.J., Knight, P.G., Waller, R.I., Robinson, Z.P., Adam, W.G., 2007. The geography of basal
663 ice and its relationship to glaciohydraulic supercooling: Svinafellsjökull, southeast Iceland.
664 *Quaternary Science Reviews* 26, 2309–2315.

665 Cook, S.J., Robinson, Z.P., Fairchild, I.J., Knight, P.G., Waller, R.I. and Boomer, I., 2009. Role of
666 glaciohydraulic supercooling in the formation of stratified facies basal ice: Svínafellsjökull and
667 Skaftafellsjökull, southeast IcelandArticle first published online: 4 AUG 2009, p. 24–38, doi:
668 10.1111/j.1502-3885.2009.00112

669 Craig, H.: Isotopic Variations in Meteoric Waters., *Science* (80-.), 133(3465), 1702–1703,
670 doi:10.1126/science.133.3465.1702, 1961.

671 Cuffey, K. M. and Paterson, W. S. B.: *Grain-Scale Structures and Deformation of Ice*, in *The
672 physics of glaciers*, Fourth Edition, pp. 29–89, Academic Press., 2010.

673 Dahl-Jensen, D., Albert, M. R., Aldahan, A., Azuma, N., Balslev-Clausen, D., Baumgartner, M.,
674 Berggren, A.-M., Bigler, M., Binder, T., Blunier, T., Bourgeois, J. C., Brook, E. J., Buchardt, S. L.,
675 Buizert, C., Capron, E., Chappellaz, J., Chung, J., Clausen, H. B., Cvijanovic, I., Davies, S. M.,

676 Ditlevsen, P., Eicher, O., Fischer, H., Fisher, D. a., Fleet, L. G., Gfeller, G., Gkinis, V., Gogineni, S.,
677 Goto-Azuma, K., Grinsted, A., Gudlaugsdottir, H., Guillevic, M., Hansen, S. B., Hansson, M.,
678 Hirabayashi, M., Hong, S., Hur, S. D., Huybrechts, P., Hvidberg, C. S., Iizuka, Y., Jenk, T., Johnsen,
679 S. J., Jones, T. R., Jouzel, J., Karlsson, N. B., Kawamura, K., Keegan, K., Kettner, E., Kipfstuhl, S.,
680 Kjær, H. a., Koutnik, M., Kuramoto, T., Köhler, P., Laepple, T., Landais, A., Langen, P. L., Larsen,
681 L. B., Leuenberger, D., Leuenberger, M., Leuschen, C., Li, J., Lipenkov, V., Martinerie, P., Maselli,
682 O. J., Masson-Delmotte, V., McConnell, J. R., Miller, H., Mini, O., Miyamoto, A., Montagnat-
683 Rentier, M., Mulvaney, R., Muscheler, R., Orsi, a. J., Paden, J., Panton, C., Pattyn, F., Petit, J.-R.,
684 Pol, K., Popp, T., Possnert, G., Prié, F., Prokopiou, M., Quiquet, A., Rasmussen, S. O., Raynaud, D.,
685 Ren, J., Reutenauer, C., Ritz, C., Röckmann, T., Rosen, J. L., Rubino, M., Rybak, O., Samyn, D.,
686 Sapart, C. J., Schilt, A., Schmidt, a. M. Z., Schwander, J., Schüpbach, S., Seierstad, I., et al.: Eemian
687 interglacial reconstructed from a Greenland folded ice core, *Nature*, 493(7433), 489–494,
688 doi:10.1038/nature11789, 2013.

689 Echelmeyer, K. and Zhongxiang, W.: Direct observation of basal sliding and deformation of
690 basal drift at sub-freezing temperatures, *J. Glaciol.*, 33(113), 83–09, 1987.

691 Fischer, H., Severinghaus, J., Brook, E., Wolff, E., Albert, M., Alemany, O., Arthern, R., Bentley, C.,
692 Blankenship, D. and Chappellaz, J.: Where to find 1.5 million yr old ice for the IPICS“ Oldest
693 Ice” ice core, *Clim. Past Discuss.*, 9(3), 2771–2815, 2013.

694 Fitzsimons, S. J., McManus, K. J. and Lorrain, R. D.: Structure and strength of basal ice and
695 substrate of a dry-based glacier: evidence for substrate deformation at sub-freezing
696 temperatures, *Ann. Glaciol.*, 28(1), 236–240, 1999.

697 Friedman, I., Redfield, A. C., Schoen, B. and Harris, J.: The variation of the deuterium content of
698 natural waters in the hydrologic cycle, *Rev. Geophys.*, 2(1), 177–224, 1964.

699 Gow, A. and Meese, D.: Nature of basal debris in the GISP2 and Byrd ice cores and its relevance
700 to bed processes, *Ann. Glaciol.*, 1996.

701 Hooke, R. L. and Hudleston, P. J.: Ice fabrics in a vertical flow plane, Barnes Ice Cap, Canada, *J.*
702 *Glaciol.*, 25, 195–214, 1980.

703 Hubbard, B., Cook, S. and Coulson, H.: Basal ice facies: a review and unifying approach, *Quat.*
704 *Sci. Rev.*, 28(19-20), 1956–1969, doi:10.1016/j.quascirev.2009.03.005, 2009.

705 Hubbard, B. and Sharp, M.: Basal ice formation and deformation: a review, *Prog. Phys. Geogr.*,
706 13(4), 529–558, doi:10.1177/03091338901300403, 1989.

707 Hubbard, B. and Sharp, M.: Weertman regelation, multiple refreezing events and the isotopic
708 evolution of the basal ice layer, *J. Glaciol.*, 1993.

709 Hubbard, B. and Sharp, M.: Basal ice facies and their formation in the Western Alps, *Arct. Alp.*
710 *Res.*, 27(4), 301–310, 1995.

711 Hubbard, B., Tison, J. L., Janssens, L. and Spiro, B.: Ice-core evidence of the thickness and
712 character of clear-facies basal ice: Glacier de Tsanfleuron, Switzerland, *J. Glaciol.*, 46(152),
713 140–150, doi:10.3189/172756500781833250, 2000.

714 Iverson R., N. and Souchez, R.: Isotopic signature of debris-rich ice formed by regelation into a
715 subglacial sediment bed, *Geophys. Res. Lett.*, 23(10), 1151–1154, doi:10.1029/96GL01073,
716 1996.

717 Johnsen, S. J., Clausen, H. B., Dansgaard, W., Fuhrer, K., Gundestrup, N., Hammer, C. U., Iversen,
718 P., Jouzel, J., Stauffer, B. and Steffensen, J. P.: Irregular glacial interstadials recorded in a new
719 Greenland ice core, *Nature*, 359(6393), 311–313, 1992.

720 Johnsen, S. J., Hansen, S. B., Sheldon, S. G., Dahl-Jensen, D., Steffensen, J. P., Augustin, L. J.,
721 Journé, P., Alemany, O., Rufli, H., Schwander, J., Azuma, N., Motoyama, H., Popp, T., Talalay, P.
722 G., Thorsteinsson, T., Wilhelms, F. and Zagorodnov, V.: The Hans Tausen drill: Design,
723 performance, further developments and some lessons learned, in *Annals of Glaciology*, vol. 47,
724 pp. 89–98., 2007.

725 Jouzel, J. and Souchez, R.: Melting-refreezing at the glacier sole and the isotopic composition of
726 the ice, *J. Glaciol.*, 28(98), 35–42, 1982.

727 Kamb, B.: Sliding motion of glaciers: theory and observation, *Rev. Geophys.*, 8(4), 673–728,
728 1970.

729 Knight, P.: Stacking of basal debris layers without bulk freezing-on: isotopic evidence from
730 West Greenland, *J. Glaciol.*, 35(120), 214 – 216, 1989.

731 Knight, P. G.: The basal ice layer of glaciers and ice sheets, *Quat. Sci. Rev.*, 16(9), 975–993,
732 doi:10.1016/S0277-3791(97)00033-4, 1997.

733 Kumai, M. and Langway Jr, C. C.: Electron microscope analysis of aerosols in snow and deep ice
734 cores from Greenland, *Isot. Impurities Snow Ice, IAHS Publ.*, 10, 208–, 1988.

735 Landais, a., Dreyfus, G., Capron, E., Pol, K., Loutre, M. F., Raynaud, D., Lipenkov, V. Y., Arnaud, L.,
736 Masson-Delmotte, V., Paillard, D., Jouzel, J. and Leuenberger, M.: Towards orbital dating of the
737 EPICA Dome C ice core using δ O 2/N 2, *Clim. Past*, 8(1), 191–203, doi:10.5194/cp-8-191-
738 2012, 2012.

739 Langway, C. C.: Ice fabrics and the universal stage, *SIPRE Tech. Rep.*, 62, 1958.

740 Larson, G. J., Lawson, D. E., Evenson, E. B., Knudsen, Ó., Alley, R. B. and Phanikumar, M. S.:
741 Origin of stratified basal ice in outlet glaciers of Vatnajökull and Öræfajökull, Iceland, *Boreas*,
742 39(3), 457–470, doi:10.1111/j.1502-3885.2009.00134.x, 2010.

743 Lehmann, M. and Siegenthaler, U.: Equilibrium oxygen and hydrogen-isotope fractionation
744 between ice and water, *J. Glaciol.*, 37(125), 23–26, 1991.

745 Lawson, D.E., Strasser, J.C., Evenson, E.B., Alley, R.B., Larson, G.J., Arcane, S.A., 1998.
746 Glaciohydraulic supercooling: a freeze-on mechanism to create stratified, debris-rich basal
747 ice: I. Field evidence. *Journal of Glaciology* 44, 547–562.

748 Martinerie, P., Lipenkov, V. Y., Raynaud, D., Chappellaz, J., Barkov, N. I. and Lorius, C.: Air
749 content paleo record in the Vostok ice core (Antarctica): A mixed record of climatic and
750 glaciological parameters, *J. Geophys. Res.*, 99(D5), 10565–10576, doi:10.1029/93JD03223,
751 1994.

752 Montagnat, M., Azuma, N., Dahl-Jensen, D., Eichler, J., Fujita, S., Gillet-Chaulet, F., Kipfstuhl, S.,
753 Samyn, D., Svensson, a. and Weikusat, I.: Fabric measurement along the NEEM ice core,
754 Greenland, and comparison with GRIP and NGRIP ice cores, *Cryosph. Discuss.*, 8(1), 307–335,
755 doi:10.5194/tcd-8-307-2014, 2014.

756 O’Neil, J. R.: Hydrogen isotope fractionation between ice and water, *J. Phys. Chem.*, 72(10),
757 3683–3684, 1968.

758 Peterzell, M., Dierckx, M., Wilson, C. J. L. and Piazolo, S.: Quantification of the microstructural
759 evolution of polycrystalline fabrics using FAME: Application to in situ deformation of ice, *J.*
760 *Struct. Geol.*, 61, 109–122, doi:10.1016/j.jsg.2013.05.005, 2014.

761 Raynaud, D., Delmas, D., Ascencio, J. M. and Legrand, M.: Gas extraction from polar ice cores: a
762 critical issue for studying the evolution of atmospheric CO₂ and ice-sheet surface elevation,
763 *Ann. Glaciol.*, 3, 265–268, 1983.

764 Rempel, A.: Englacial phase changes and intergranular flow above subglacial lakes, *Ann.*
765 *Glaciol.*, 40(1), 191–194, doi:10.3189/172756405781813564, 2005.

766 Rempel, A. W.: Anomalous diffusion of multiple impurity species: Predicted implications for
767 the ice core climate records, *J. Geophys. Res.*, 107(B12), 2330, doi:10.1029/2002JB001857,
768 2002.

769 Souchez, R.: On the isotopic composition in δD and $\delta^{18}O$ of water and ice during freezing, *J.*
770 *Glaciol.*, 30(106), 369–372, 1984.

771 Souchez, R. A. and De Groote, J. M.: δD - $\delta^{18}O$ relationships in ice formed by subglacial freezing:
772 paleoclimatic implications, *J. Glaciol.*, 31(109), 229–232, 1985.

773 Souchez, R. A. and Lorrain, R. D.: *Ice Composition and Glacier Dynamics*, Springer Science &
774 Business Media., 1991.

775 Souchez, R., Bouzette, A., Clausen, H. B., Johnsen, S. J., Jouzel, J., Clausen B., H., Johnsen J., S. and
776 Jouzel, J.: A stacked mixing sequence at the base of the Dye 3 core, Greenland, *Geophys. Res.*
777 *Lett.*, 25(11), 1943–1946, doi:10.1029/98GL01411, 1998.

778 Souchez, R. and Jouzel, J.: Gas isotopes in ice reveal a vegetated central Greenland during ice
779 sheet invasion, *Geophys. Res. Lett.*, 33(24), 2–5, doi:10.1029/2006GL028424, 2006.

780 Souchez, R., Lemmens, M. and Chappellaz, J.: Flow-induced mixing in the GRIP basal ice
781 deduced from the CO_2 and CH_4 records, *Geophys. Res. Lett.*, 22(1), 41–44,
782 doi:10.1029/94GL02863, 1995.

783 Souchez, R., Lemmens, M., Lorrain, R. and Tison, J.-L.: Pressure-melting within a glacier
784 indicated by the chemistry of regelation ice, *Nature*, 273(5662), 454–456,
785 doi:10.1038/273454a0, 1978.

786 Souchez, R., Lemmens, M., Tison, J.-L., Lorrain, R. and Janssens, L.: Reconstruction of basal
787 boundary conditions at the Greenland Ice Sheet margin from gas composition in the ice, *Earth*
788 *Planet. Sci. Lett.*, 118(1-4), 327–333, doi:10.1016/0012-821X(93)90176-A, 1993.

789 Souchez, R., Lorrain, R., Tison, J. L., Jouzel, J., Bruxelles, U. L. De, Iouzel, J. and Jouzel, J.: Co-
790 isotopic signature of two mechanisms of basal-ice formation in Arctic outlet glaciers, *Ann.*
791 *Glaciol.*, 10, 163–166, 1988.

792 Souchez, R., Tison, J., Lorrain, R., Lemmens, M., Janssens, L., Stievenard, M., Jouzel, J.,
793 Sveinbjörnsdóttir, A. and Johnsen, S. J.: Stable isotopes in the basal silty ice preserved in the
794 Greenland Ice Sheet at Summit; environmental implications, *Geophys. Res. Lett.*, 21(8), 693–
795 696, 1994.

796 Souchez, R., Vandenschrick, G., Lorrain, R. and Tison, J.-L.: Basal ice formation and deformation
797 in central Greenland: a review of existing and new ice core data, *Geol. Soc. London, Spec. Publ.*,
798 176(1), 13–22, doi:10.1144/GSL.SP.2000.176.01.02, 2000.

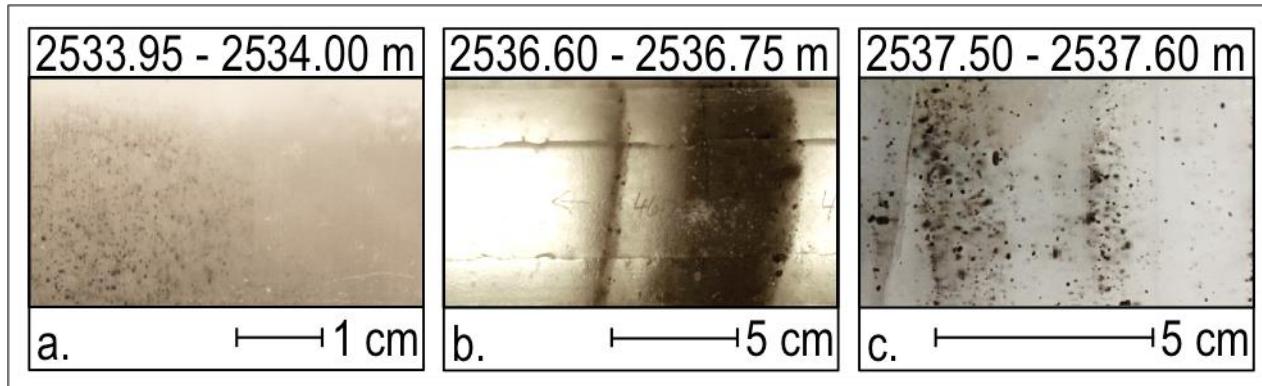
799 Sugden, D. E., Knight, P. G., Livesey, N., Lorrain, R. D., Souchez, R. A., Tison, J.-L. and Jouzel, J.:
800 Evidence for two zones of debris entrainment beneath the Greenland ice sheet, *Nature*,
801 328(6127), 238–241, doi:10.1038/328238a0, 1987.

802 Tison, J., Thorsteinsson, T., Lorrain, R. D. and Kipfstuhl, J.: Origin and development of textures
803 and fabrics in basal ice at Summit, Central Greenland, *Earth Planet. Sci. Lett.*, 125(1-4), 421–
804 437, doi:10.1016/0012-821X(94)90230-5, 1994.

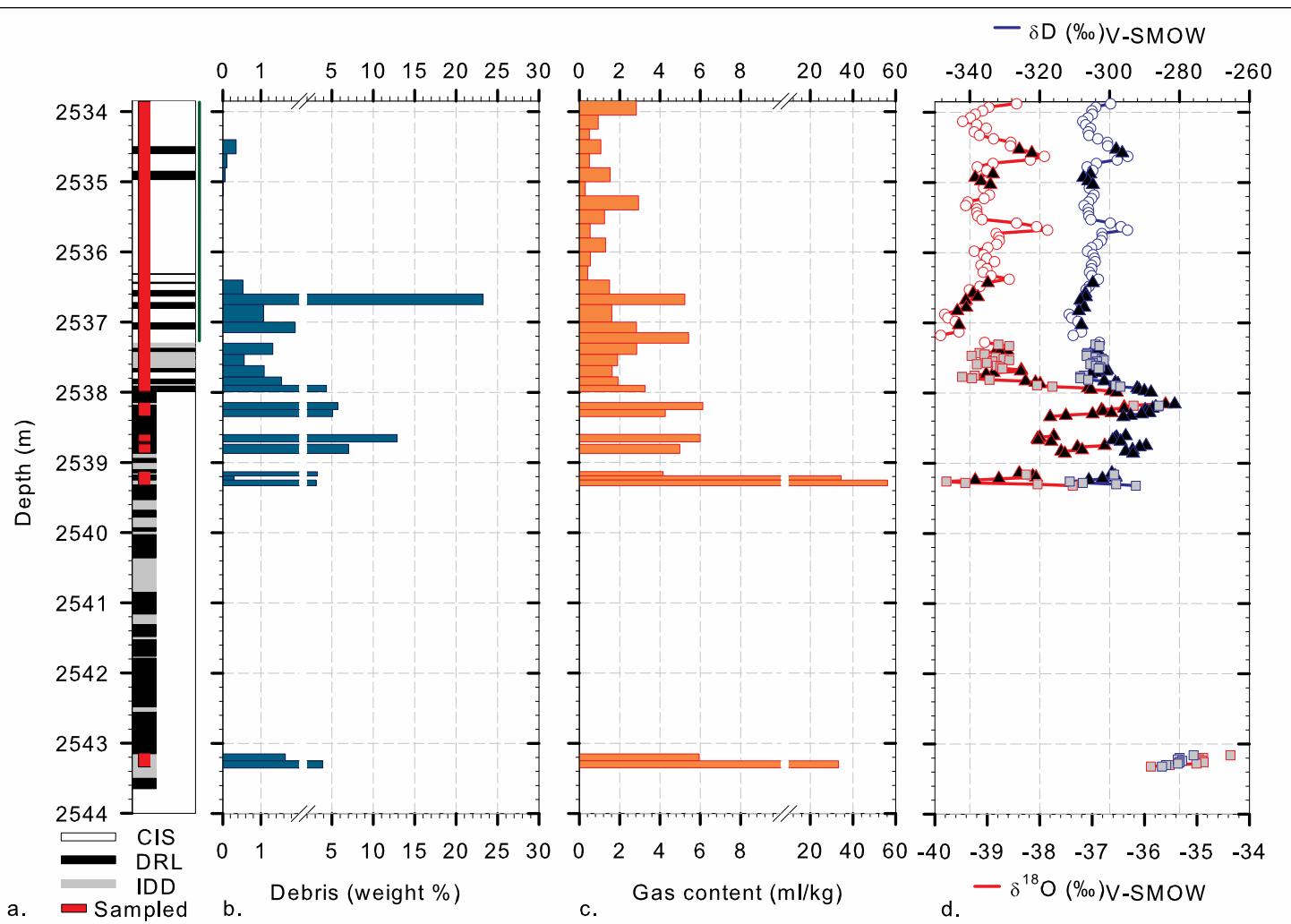
805 Tison, J.-L.: Diamond wire-saw cutting techniques for investigating textures and fabrics of
806 debris-laden ice and brittle ice, *J. Glaciol.*, 40(135), 410–414, 1994.

807 Tison, J.-L., de Angelis, M., Littot, G., Wolff, E., Fischer, H., Hansson, M., Bigler, M., Udisti, R.,
808 Wegner, A., Jouzel, J., Stenni, B., Johnsen, S., Masson-Delmotte, V., Landais, A., Lipenkov, V.,
809 Loulergue, L., Barnola, J.-M., Petit, J.-R., Delmonte, B., Dreyfus, G., Dahl-Jensen, D., Durand, G.,
810 Bereiter, B., Schilt, A., Spahni, R., Pol, K., Lorrain, R., Souchez, R. and Samyn, D.: Can we retrieve
811 a clear paleoclimatic signal from the deeper part of the EPICA Dome C ice core?, *Cryosph.*
812 *Discuss.*, 9(1), 567–608, doi:10.5194/tcd-9-567-2015, 2015.

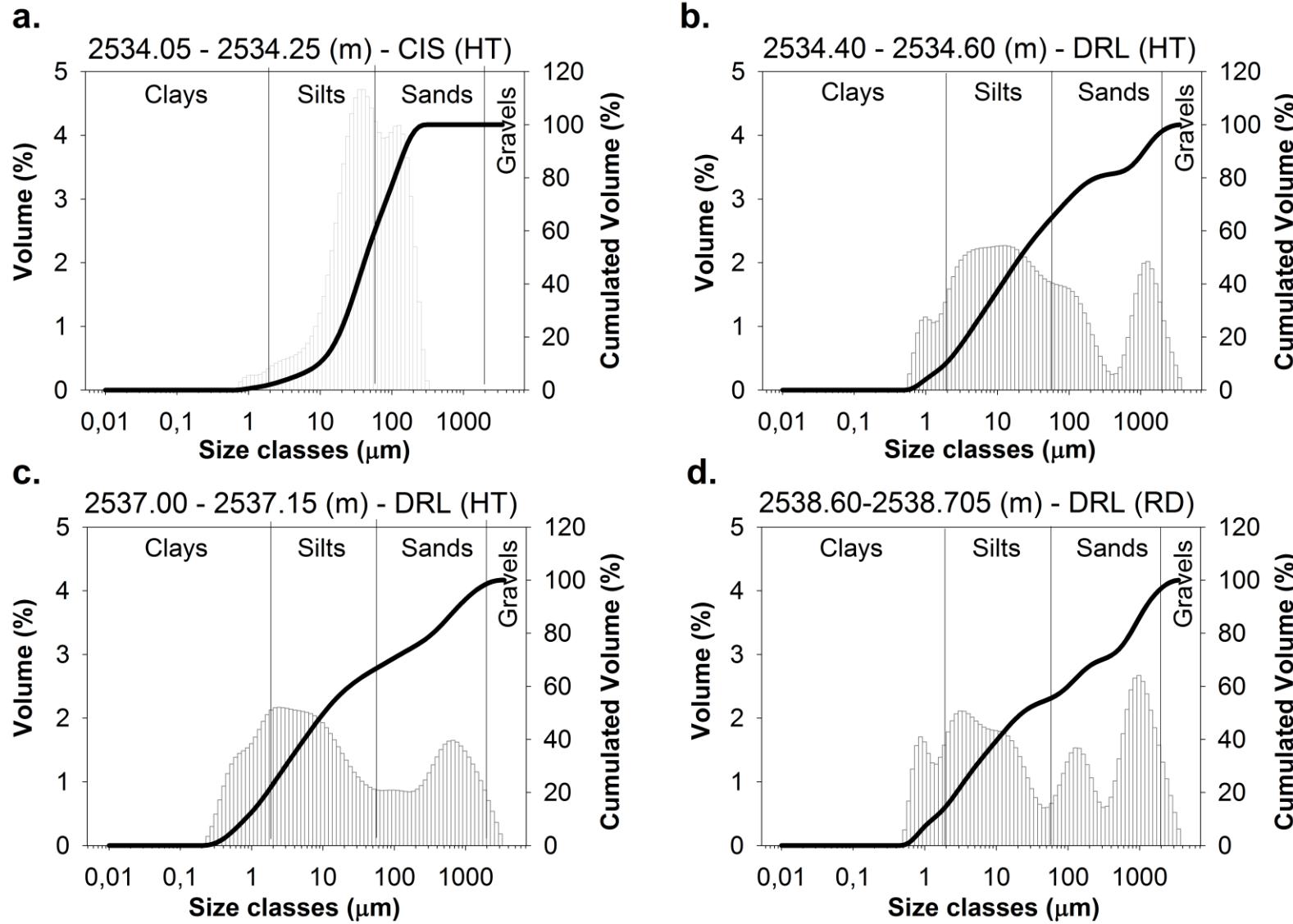
813 Tison, J.-L. and Hubbard, B.: Ice crystallographic evolution at a temperate glacier: Glacier de
814 Tsanfleuron, Switzerland, *Geol. Soc. London, Spec. Publ.*, 176(1), 23–38, 2000.

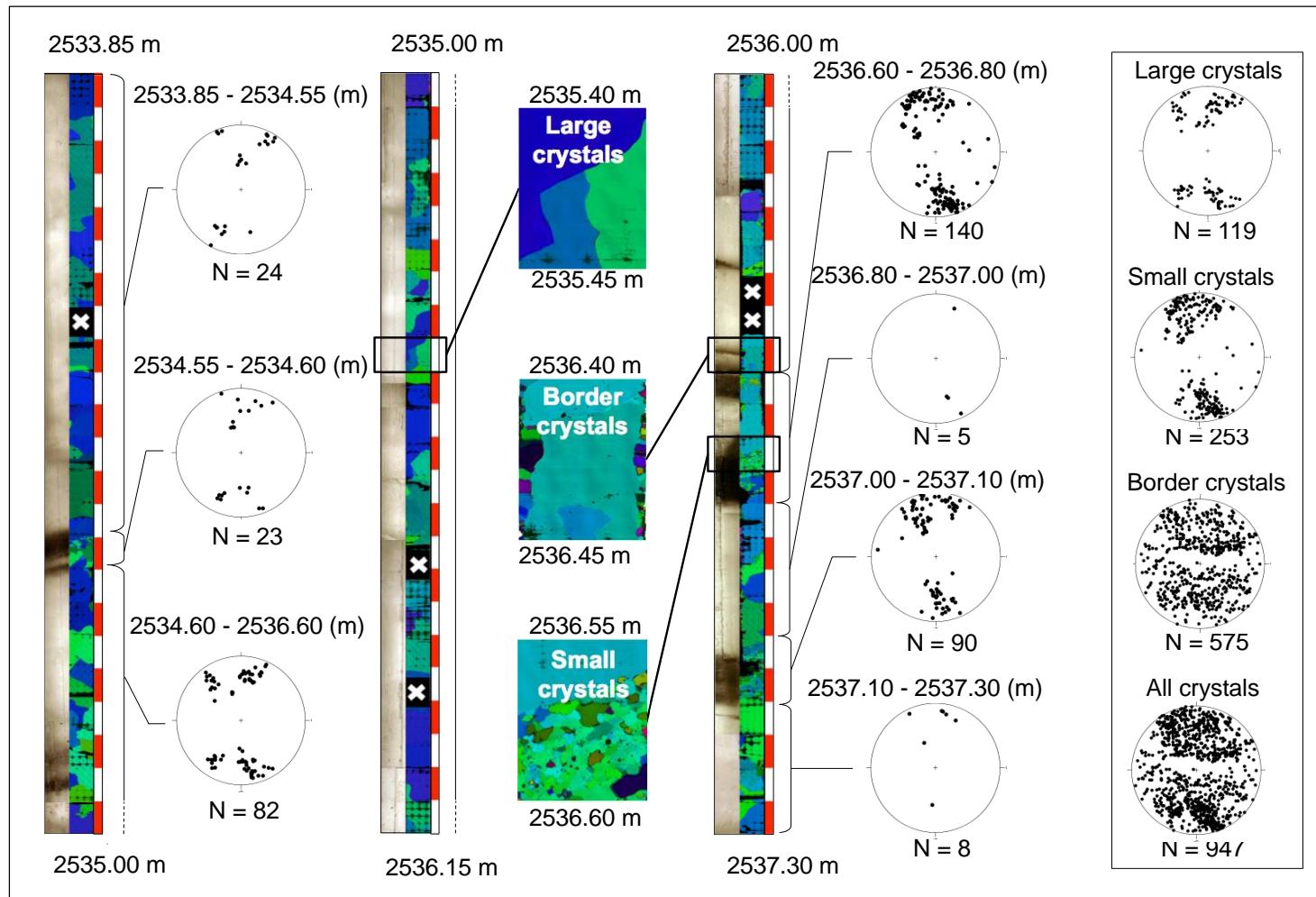

815 Tison, J.-L., Petit, J.-R., Barnola, J. M. and Mahaney, W.: Debris entrainment at the ice-bedrock
816 interface in sub-freezing temperature conditions (Adélie Land, Antarctica), *J. Glaciol.*, 39(132),
817 303–315, 1993.

818 Tison, J.-L., Souchez, R., Wolff, E. W., Moore, J. C., Legrand, M. R. and de Angelis, M.: Is a
819 periglacial biota responsible for enhanced dielectric response in basal ice from the Greenland
820 Ice Core Project ice core?, *J. Geophys. Res.*, 103(D15), 18,885–18,894,
821 doi:10.1029/98JD01107, 1998.

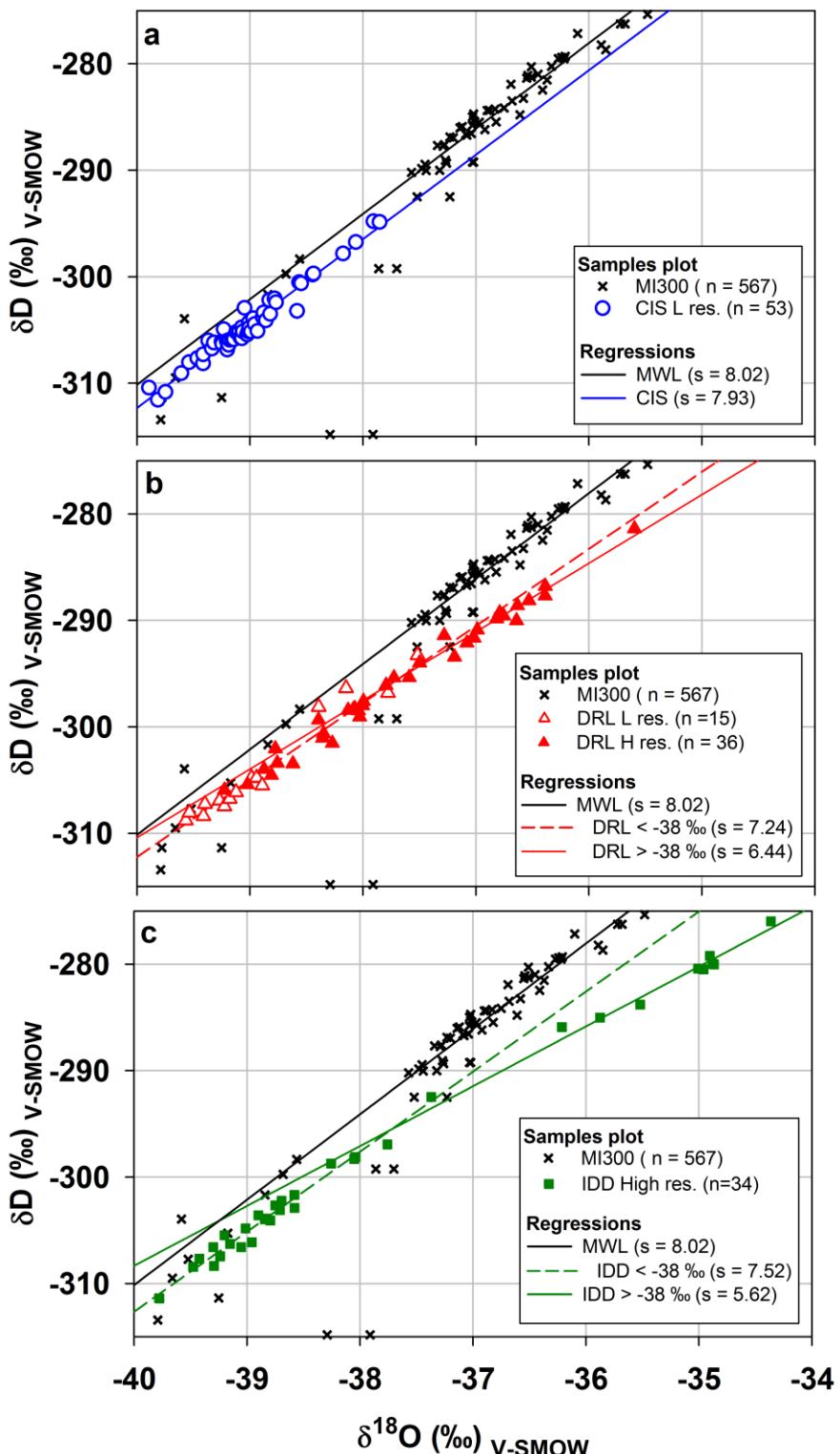

822 Weertman, J.: Mechanism for the formation of inner moraines found near the edge of cold ice
823 caps and ice sheets, *J. Glaciol.*, 3(30), 965–978, 1961.

824 Weertman, J.: Glacier sliding, *J. Glaciol.*, 5, 287–303, 1964.


825 Wilson, C. J. L., Russell-Head, D. S. and Sim, H. M.: The application of an automated fabric
826 analyzer system to the textural evolution of folded ice layers in shear zones, *Ann. Glaciol.*,
827 37(1), 7–17, doi:10.3189/172756403781815401, 2003.

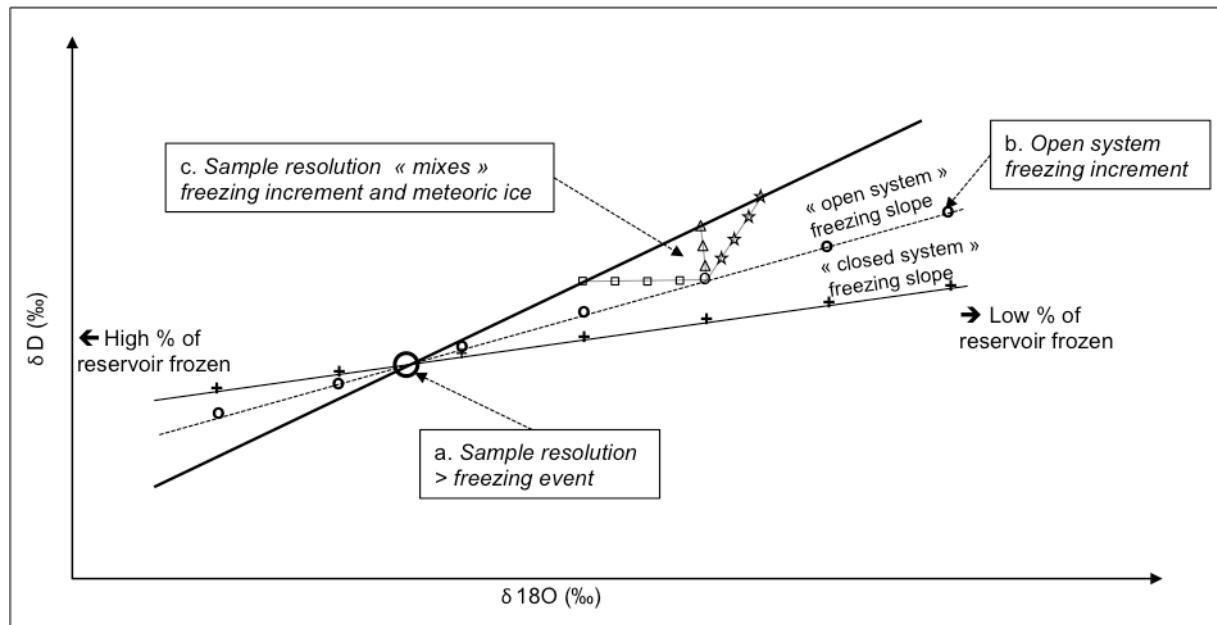


828 **Fig. 1.** Representative photographs of the three visually contrasting ice types encountered in the NEEM BIL sampled with the HT drill. **a.** clear ice
829 with specks (CIS), **b.** debris rich layers (DRL) embedded in clear ice, **c.** ice containing dispersed debris (IDD). Note the difference in scales for the
830 three pictures.

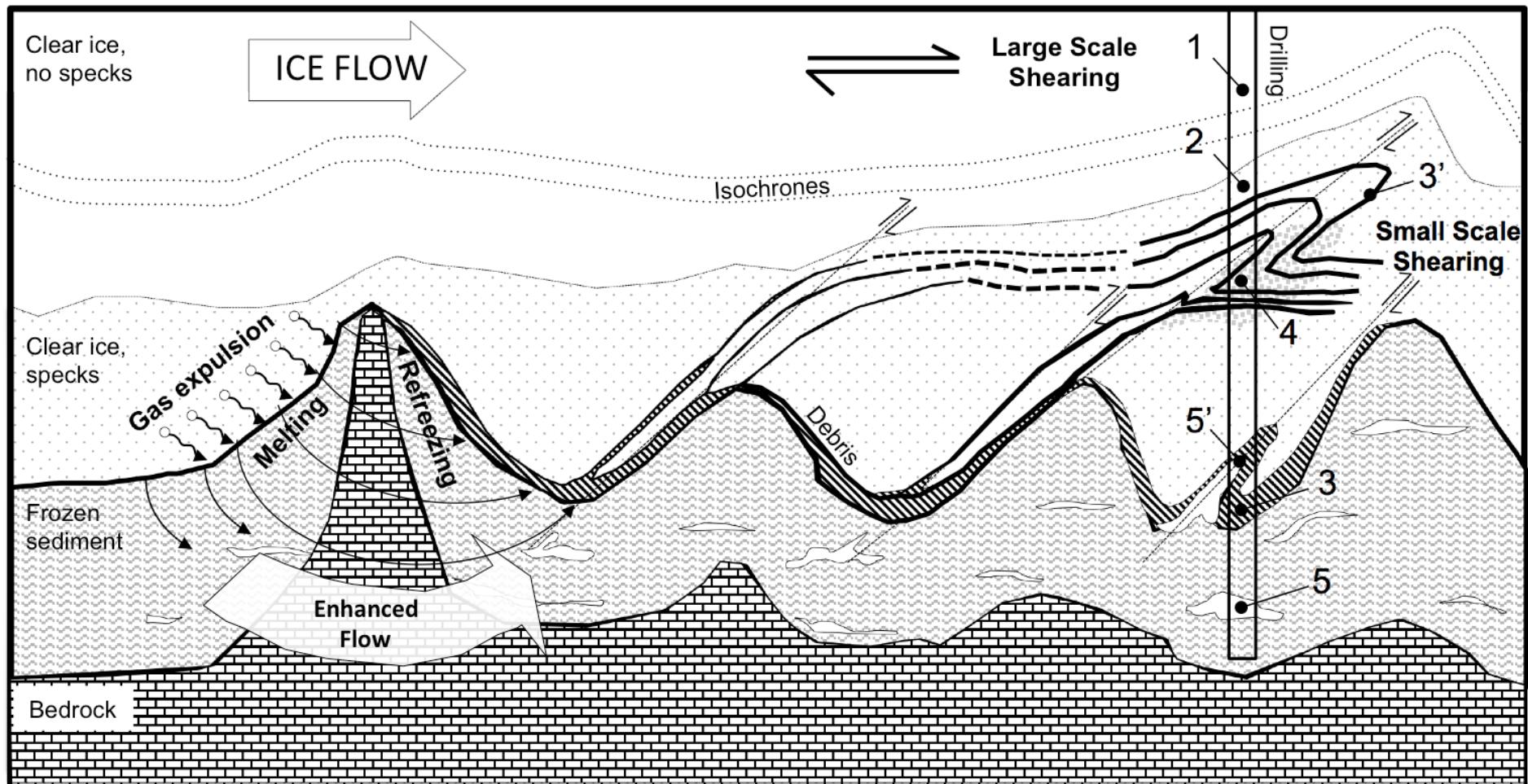


831 **Fig. 2.** Vertical profiles: **a.** symbolic representation of the ice types encountered along the core (CIS, DRL, IDD). The green bar corresponds to the
 832 part of the core detailed in Fig. 4, **b.** debris content in weight percentage, **c.** Total gas content in $\text{ml}_{\text{gas}} \text{kg}_{\text{ice}}^{-1}$, **d.** $\delta^{18}\text{O}$ (bottom axis, red symbols) and
 833 δD (top axis, blue symbols), white circles: CIS, black triangles : DRL, grey squares : IDD.

835 **Fig. 4.** Vertical profile presenting the 2011 season - HT drill cores. From left to right, for each section of the core: photographs of the core in
 836 transmitted light, vertical thin sections images from the automated ice fabric analyser, fabric plots in the vertical plane with associated depth range
 837 for the crystals used. The red and white scale units are 5 cm each. The frame presents the fabrics for crystals grouped by types.



838 **Fig. 5.** Co-isotopic diagram presenting both the last 300m of meteoric ice (MI300) and the basal ice
 839 samples at the NEEM location. The plot is centered on the BIL range. Open symbols correspond to
 840 low vertical resolution samples (5 cm) and closed symbols to high vertical resolution samples (2
 841 cm). Lines: regressions for investigated groups of samples, n : number of samples of the considered
 842 group, s : value of the slope of the regressions.


843

844

845

846 **Fig. 6.** Scheme describing the potential isotopic signatures for various combinations of open and closed system freezing, mixing and sampling
 847 resolution. The black thick line represents the Meteoric Water Line.

848 **Fig. 7.** Scheme for the build-up of the basal ice sequence at NEEM, based on the interpretation of the observed properties (not to scale). See text for
849 details. Note that all processes may combine at each bedrock bump. See text for numbers caption.

a. Observed regression line

Group of samples	Acronym	Slope (S_{obs})	Intercept	R^2
Meteoric Ice from 300m above the basal ice layer	MI300	8.02	10.73	0.99
Whole basal ice sequence	BI _{whole}	6.48	-51.99	0.98
Clear ice with Specks	CIS	7.93	4.95	0.96
Debris bearing ice (DRL + IDD)	DB	6.47	-52.57	0.99
Debris-Rich Layers	DRL	6.91	-35.60	0.98
Ice with Dispersed Debris	IDD	6.27	-60.31	0.99
Debris-Rich Layers $\delta^{18}\text{O} > -38\text{\textperthousand}$	DRL>38	6.45	-52.61	0.97
Debris-Rich Layers $\delta^{18}\text{O} < -38\text{\textperthousand}$	DRL<38	7.24	-22.77	0.94
Ice with Dispersed Debris $\delta^{18}\text{O} > -38\text{\textperthousand}$	IDD>38	5.62	-83.40	0.99
Ice with Dispersed Debris $\delta^{18}\text{O} < -38\text{\textperthousand}$	IDD<38	7.52	-11.79	0.96

b. Theoretical Closed-system freezing line

Initial water used for slope calculation (\cap =intersection)	$\delta^{18}\text{O}$ intercept	δD intercept	Theoretical slope (S_{cs})	Theoretical intercept
BI _{whole} \cap MI300	-40.6	-315	5.20	1.49
CIS \cap MI300	-64.4	-506	3.85	2.04
DRL \cap MI300	-41.5	-322	5.15	1.51
IDD \cap MI300	-40.6	-315	5.20	1.49
DRL > 38 \cap MI300	-40.2	-312	5.23	1.48
DRL < 38 \cap MI300	-42.7	-331	5.09	1.53
IDD > 38 \cap MI300	-39.2	-304	5.28	1.47
IDD < 38 \cap MI300	-45.0	-350	4.96	1.57

851 **Table 1.** a. Parameters of regressions, b. Theoretical slopes computed using the closed-system model eq. (1).

A/F	$\delta^{18}\text{O}$	δD
1	-42.2	-327
2	-41.2	-319
3	-40.9	-316
4	-40.7	-315
5	-40.6	-315
6	-40.5	-314
7	-40.5	-314
8	-40.4	-314
9	-40.4	-313
10	-40.4	-313

855 **Table 2.** Expected range of input water δ -values in an open system freezing configuration computed with the observed slope of 6.45 and a range of
 856 A/F values from 1 to 10.