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Abstract. In this paper we introduce a parameter for the retrieval of the thickness of 12	

undeformed first-year sea ice that is specifically adapted to compact polarimetric (CP) 13	

synthetic aperture radar (SAR) images. The parameter is denoted as “CP-Ratio”. In 14	

model simulations we investigated the sensitivity of CP-Ratio to the dielectric 15	

constant, ice thickness, ice surface roughness, and radar incidence angle. From the 16	

results of the simulations we deduced optimal sea ice conditions and radar incidence 17	

angles for the ice thickness retrieval. C-band SAR data acquired over the Labrador 18	

Sea in circular transmit, linear receive (CTLR) mode were generated from 19	

RADARSAT-2 quad‐polarization images. In comparison with results from 20	



helicopter-borne measurements we tested different empirical equations for the 1	

retrieval of ice thickness. An exponential fit between CP-Ratio and ice thickness 2	

provides the most reliable results. Based on a validation using other compact 3	

polarimetric SAR images from the same region we found a root mean square (rms) 4	

error of 8 cm and a maximum correlation coefficient of 0.94 for the retrieval 5	

procedure when applying it to level ice between 0.1 m and 0.8 m thick. 6	

 7	

1 Introduction 8	

Sea ice covers about one tenth of the world ocean surface and significantly affects the 9	

exchanges of momentum, heat, and mass between the sea and the atmosphere. Not 10	

only sea ice extent is a significant indicator and effective modulator of regional and 11	

global climate change, but also sea ice thickness is an important parameter from a 12	

thermodynamic and kinematic perspective (Soulis et al., 1989; Kwok, 2010). The 13	

decline of sea ice extent recently observed in the Arctic, e. g. is linked with a decrease 14	

of ice thickness and increasing fractions of seasonal ice areas (e.g. Kwok et al., 2009). 15	

Measurements of sea ice thickness are compared with model results to control and 16	

validate the model capabilities for reproducing recent and predicting future trends of 17	

sea ice conditions in the Arctic (e.g. Laxon et al., 2013). Although sea ice thickness is 18	

only several meters at most, it forms an effective thermal insulation layer due to its 19	

high albedo and low thermal conductivity, leading to a significant reduction in the 20	

heat flux from the ocean to the atmosphere, especially in winter (Vancoppenolle et al., 21	

2005). Besides investigations focusing on the entire Arctic or Antarctic region, other 22	



studies analyze ice thickness variations on local scales to improve regional ice 1	

thickness retrievals (e.g. Haapala et al., 2013). Operational services charged with 2	

providing sea ice maps and forecasting ice conditions for marine transportation and 3	

offshore operations need near-real time regular information about local and regional 4	

ice thickness distributions. The use of sensors providing high spatial resolutions on 5	

the order of 100 meters or better such as SAR for ice thickness retrieval is an 6	

important topic of recent research (Dierking, 2013). 7	

Unfortunately, the sea ice thickness distribution is also one of the most difficult 8	

parameter to measure. The most direct and accurate measurement technique is in-situ 9	

drilling with an ice auger. Although it provides data with sufficient accuracy (in the 10	

range of centimeters), it is time consuming and spatially limited. Therefore, this 11	

method is used mainly for calibration of other sensors or methods. To obtain ice 12	

thickness distributions at larger spatial scales, remote sensing methods are requisite 13	

tools. There are generally different strategies: 14	

1) Measurements of ice draft using upward-looking sonar on ocean moorings or 15	

submarines (Wadhams, 1980; Behrendt et al., 2013) from which thickness is 16	

estimated based on assumptions about buoyancy, ice density, and snow load (e. g. 17	

Rothrock et al., 1999). Such data provide information about detailed temporal 18	

thickness variations (daily or even hourly) at a fixed location. An example for using in 19	

situ measurements of ice thickness from the New Arctic Program initiated by the 20	

Canadian Ice Service (CIS) starting in 2002, and sea ice draft measurements from 21	

moored ULS instruments in the Beaufort Gyre Observing System for testing a method 22	



of ice thickness retrieval from optical methods is provided by Wang et al. (2010).  1	

2) Measurements of sea ice freeboard (i.e., the part of the ice above the water level) 2	

plus snow layer thickness with laser altimetry (e. g. Wadhams et al., 1992; Dierking, 3	

1995). From such data, the average ice thickness can be estimated, or the probability 4	

density function (PDF) of ice freeboard can be converted to a PDF of ice thickness. 5	

However, the estimation of ice thickness from freeboard data is less reliable than from 6	

ice draft because of a relatively stronger impact of errors in the freeboard 7	

measurements (Goebell, 2011). 8	

3) Measuring the distance between snow surface and ice bottom with electromagnetic 9	

induction sounders (EMS) mounted on sledges, ships or helicopters/airplanes 10	

(Goebell, 2011; Haas et al., 1997; Prinsenberg et al., 2012a, 2012b). With such 11	

systems, spatial ice thickness variations measured at horizontal distances of a few 10 12	

meters were obtained in various regions (Kovacs et al., 1987; Rossiter and Holladay, 13	

1994; Haas et al., 2006; Hendricks et al. 2011). 14	

Although ULS and EMS have all contributed greatly to our knowledge about ice 15	

thickness distributions on local and regional scales, such data can be obtained only at 16	

specific locations over a limited time period. Satellite remote sensing, on the other 17	

hand, is useful to monitor ice thickness variations regularly over much larger areas. 18	

On a still experimental basis, data of L-band passive microwave sensors, such as for 19	

example the Soil Moisture and Ocean Salinity mission (SMOS) radiometer, have been 20	

employed to retrieve thickness of, sea-ice thinner than about half a meter. The 21	

limitation of this approach is that it is only possible for very high (almost 100%) sea 22	



ice concentration and in cold freezing conditions (Tian-Kunze et al., 2014; 1	

Huntemann et al., 2014). Space-borne altimeter has been used primarily to map ice 2	

thickness, and to monitor and study their trends. The capabilities of laser and radar 3	

altimeter systems (such as CryoSat-2 and ICESAT) for measuring ice freeboard have 4	

been extensively investigated during the last decade (e. g. Kwok and Cunningham, 5	

2008; Kwok et al., 2009; Laxon et al., 2013). Compared with radiometers, which 6	

collect data only at a coarse spatial resolution of a few to tens of kilometers (e.g. 25 7	

km for SSM/I 37 GHz data), the spatial resolutions of radar altimeter systems are 8	

about 250 m along-track for CryoSat-2, and a footprint of about 70 m diameter for 9	

ICESAT. The sea ice products derived from altimeters usually focus on large-scale 10	

spatial and temporal variations. While the large-scale ice thickness product is 11	

important for climate research, the support of marine navigation and offshore 12	

operations in polar areas are crucially dependent on precise and reliable sea ice 13	

thickness maps with spatial resolutions better than 1 km. 14	

Space-borne synthetic aperture radar (SAR), which operates in the microwave 15	

frequency band, provides all-weather and day-night high-resolution imagery (within a 16	

range of 1-100 m) with 1~3 days’ temporal coverage. Hence, SAR is in general very 17	

useful for operational mapping tasks on regional and local spatial scales (Dierking, 18	

2013). The disadvantage of SAR systems is that higher spatial resolutions are linked 19	

with a limited coverage between 10 and 500 km, compared for example to more than 20	

1000 km for passive microwave radiometers. SAR measures the intensity of the radar 21	

signal backscattered from the ice surface and volume at different polarizations. The 22	



backscattered intensity depends on the dielectric constant of the ice and small-scale 1	

(mm – dm range) ice properties such as ice surface roughness and air bubble fractions 2	

and sizes. If at least two polarizations are measured simultaneously, the SAR, which is 3	

a coherent device, can also provide the phase difference between the differently 4	

polarized channels. The most recent SAR sensors have polarimetric capabilities. A 5	

fully polarimetric radar transmits and receives both linear horizontal (H) and vertical 6	

(V) polarized electromagnetic waves. Amplitude and phase information of the 7	

backscattered signal are recorded for four transmit/receive polarizations (HH, HV, VH 8	

and VV). This mode is commonly referred to as “quad-pol”. Quad-pol scenes are 9	

usually acquired at very high spatial resolution. A RADARSAT-2 Quad-pol scene has 10	

a spatial resolution of 4.7 m (slant range) × 5.0 m (azimuth) at a swath width of 25/50 11	

km. Dual-pol scenes contain two polarimetric channels (e.g. HH and HV or VV and 12	

VH). In operational ice-charting services dual-pol scenes are preferred because of 13	

their wider areal coverage (Geldsetzer et al., 2015). The RADARSAT-2 ScanSAR 14	

Wide mode, e.g., can have a swath width of 500 km with 160-72 m (ground range) × 15	

100 m (azimuth) resolution. Despite their currently very limited coverage, the 16	

quad-pol images are important information sources to understand the scattering 17	

mechanisms of sea ice. 18	

Recently a number of investigators noted correlations between ice thickness and the 19	

co-polarization ratio, which is the ratio of measured intensities at VV- and 20	

HH-polarization (here we use VV/HH). The sensitivity between co-polarization ratio 21	

and thin ice thickness has been firstly demonstrated by Onstott (1992), based on 22	



C-band radar data from the Eastern Arctic region. Kwok et al. (1995) estimated the 1	

thin ice thickness (0 to 0.1m) from L- and C- band fully polarimetric airborne SAR 2	

data acquired over the Beaufort Sea. Their approach included the training of a neural 3	

network. L-band polarimetric characteristics of ice in the Sea of Okhotsk were 4	

investigated by Wakabayashi et al. (2004), and the L-band co-polarized ratio was used 5	

to estimate ice thicknesses between 0 and 2 m (their Fig. 13). The investigation was 6	

further extended to other sensors, e.g. to the airborne Pi-SAR (X-, and L-band, data 7	

from the Sea of Okhotsk; Nakamura et al., 2009a; Toyota et al., 2009) and to 8	

ENVISAT ASAR, using radar intensity and ice thickness data from 0.2 to 2.5 m, the 9	

latter acquired from a research vessel in the Lützow-Holm Bay Antarctica (Nakamura 10	

et al., 2009b). The good correlations were attributed to the fact that the co-polarized 11	

ratio values are sensitive to the dielectric constants of the ice surface layer which 12	

changes due to the process of desalination during ice growth. The relationship 13	

between relatively thick multi-year ice (thickness between 2 m and 5 m), on the one 14	

hand, and co-polarized correlation and cross-polarized ratio HV/HH or VH/VV, on the 15	

other hand, was also investigated in the Arctic Ocean employing RADARSAT-2 and 16	

TERRASAR-X data (Kim et al., 2012). They found that the degree of depolarization 17	

is linked to the thickness of the MYI as ice surface roughness increases and salinity 18	

decreases. 19	

Although the above mentioned parameters derived from polarimetric SAR imagery 20	

have shown the potential for estimating sea-ice thickness under certain conditions, 21	

polarimetric SAR data can presently only be acquired at limited swath-widths. The 22	



quad-pol mode on RADARSAT-2, has a swath width of only 25-50 km, as mentioned 1	

above. The swath width of the VV/HH dual-polarization Stripmap mode on 2	

TerraSAR-X is 15 km. Therefore, they are insufficient for operational use which 3	

requires a large-scale coverage (Scheuchl et al., 2004). The limited swath-width also 4	

restricts scientific investigations to local domains. An alternative is to use compact 5	

polarimetry. 6	

The methods of generating compact polarimetric (CP) information (explained below) 7	

are based on receiving data at two different polarizations (Souyris et al., 2005; Raney, 8	

2007). Compared with the “traditional” dual-polarization modes described above, CP 9	

data include a greater amount of polarization information (but less than 10	

quad-polarization data). They can cover much greater swath widths compared to 11	

quad-polarization modes due to reduced power consumption and data storage 12	

requirements. 13	

The term “CP system” refers to a unique polarization in transmission and coherent 14	

dual-orthogonal polarizations in reception. There are three different CP configurations 15	

(Nord et al., 2009). The first architecture is the “π/4 mode” with a slant linear 16	

transmission and horizontal (H) and vertical (V) receptions (Souyris et al., 2005). The 17	

second is the “dual circular (DC) mode”, i.e. transmitting at a single circular 18	

polarization and receiving two orthogonal circular polarizations. The last approach is 19	

circular transmit and linear (H and V) receive (called CTLR mode). Among these 20	

three compact polarization modes, the latter has been ranked to be the most promising 21	

in terms of performance and receiver complexity. The current Indian RISAT-1, the 22	



Japanese ALOS-2 and the planned Canadian RADARSAT Constellation Mission 1	

(RCM) also support the CTLR mode. According to the description in Geldsetzer et al. 2	

(2015), the coming CTLR mode of RCM will be particularly tailored to sea ice 3	

applications by offering a medium-resolution mode with a swath width of 350 km and 4	

a resolution of 50 m, a low-noise mode with the same swath width and a resolution of 5	

100 m., or a low-resolution mode with a swath width of 500 km and a resolution of 6	

100 m. Hence, the CTLR modes of RCM are well suited for operational sea ice 7	

monitoring. 8	

However, one apparent disadvantage of the CP mode as compared to dual- or 9	

quad-polarization mode is the fact that the HH, VV, and HV signal combinations are 10	

not directly measured. This means that the co-polarized ratio (Wakabayashi et al., 11	

2004; Nakamura et al., 2009a; Toyota et al., 2009) and the cross-polarized ratio (Kim 12	

et al., 2012) which are often used as an ice thickness proxy cannot be directly 13	

calculated from CP mode SAR data. Although CP SAR images have been used to 14	

distinguish sea ice types (Dabboor and Geldsetzer, 2014; Charbonneau et al., 2010; 15	

Geldsetzer et al., 2015), to our knowledge there have been no published studies on its 16	

use for ice-thickness detection in the open literature until now. Therefore, in this study, 17	

we considered the CTLR mode and developed an approach to directly retrieve the 18	

thickness from CP SAR data (hereafter we assume that the CP SAR is operated in 19	

CTLR mode). The paper is organized as follows: in Sect. 2 we introduce a new 20	

parameter to estimate ice-thickness and demonstrate its sensitivity to different ice 21	

parameters by numerical modeling in Sect. 3. In Sect. 4, an empirical relationship 22	



based on a comparison of CP-SAR signatures with ice thickness data obtained from 1	

electromagnetic induction sounding is presented, and the retrieval performance of this 2	

algorithm is described. Further discussions and conclusion are presented in Sect. 5. 3	

 4	

2 Model and method 5	

2.1 Full polarimetry and compact polarimetry 6	

The full polarimetric radar scattering return can be represented by the scattering 7	

matrix S 8	
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where Spq denotes the p transmit and q received linear polarization. In the monostatic 10	

case and considering that reciprocity can be assumed for sea ice and snow, SHV=SVH. 11	
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where * denotes the complex conjugate and <�> the ensemble average. 16	

We consider the CTLR mode for which the scattering vectors are given by (e. g. Nord 17	

et al, 2009) 18	
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.                       (3) 19	



As usual, the “R” denotes that the transmitted polarization is right circular, while “H” 1	

and “V” stand for the linear reception. We set 2	

RVRHH iSS +=Σ    RVRHV iSS −=Σ ,                                        (4) 3	

From Eq. (3) it then follows that 4	

VVHHH SS +=Σ

 

 HVVVHHV SiSS 2Σ −−= .                                    (5) 5	

The terms 2
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Under the assumption of reflection symmetry, the cross- and co-polarized scattering 9	

coefficients are uncorrelated. This assumption is reasonable for snow and sea ice 10	

surfaces at various frequencies and for different spatial scales (Souyris et al., 2005). 11	

Hence 12	

0** ≈= HVHHVVHV SSSS .                                                (7) 13	

and Eq. (6) can be rewritten by the elements of coherency matrix T: 14	

11
22 tSS VVHHH =+=Σ

    3322
222 4Σ ttSSS HVVVHHV +=+−= .         (8) 15	

2.2 X-Bragg model and X-SPM model 16	

According to the results obtained by the Cold Region Research and Engineering 17	

Laboratory (CRREL’88), the typical ranges of RMS height and correlation lengths for 18	



smooth level sea ice are 0.02~0.143 cm and 0.669~1.77 cm respectively (Fung, 1994). 1	

For C-band SAR, the small perturbation method (SPM) can be applied for explaining 2	

the surface scattering characteristics from smooth level sea ice. By doing so the 3	

underlying assumption is that the received radar signatures are typical for Bragg 4	

scattering. However, the SPM fails to describe cross-polarization and de-polarization 5	

effects that are observed in real SAR data. In order to overcome these limitations and 6	

to widen the SPM range of validity, an extended Bragg model (termed X-Bragg model) 7	

was presented by Hajnsek et al. (2003). In the X-Bragg model the scattering surface is 8	

composed of rough randomly tilted facets that are large with respect to the 9	

wavelength but small with respect to the spatial resolution of the sensor (for 10	

RADARSAT-2 fine-quad mode, the wavelength is 5.6 cm and the resolution is 8 or 25 11	

m). Scattering from each rough facet is evaluated by employing the SPM, whereby for 12	

the facets a random tilt is assumed which causes both a random variation Δθ of the 13	

incidence angle θ and a random rotation β of the local incidence plane around the line 14	

of sight. In the X-Bragg model, the random incidence angle variation Δθ is ignored, 15	

and the incidence plane angle of rotation β is assumed to be uniformly distributed in 16	

an interval (−β1, β1), where the parameter β1 is used to characterize the large-scale 17	

roughness (del Monaco et al., 2009). 18	

In order to improve the range of validity of the X-Bragg model, different approaches 19	

(termed X-SPM model) were proposed by del Monaco et al. (2009) and Iodice et al. 20	

(2011). In those studies, more realistic distributions of β and ∆θ were derived by 21	

assuming that the range and azimuth facet slopes are Gaussian random variables. The 22	



coherency matrix of the X-SPM model (TX-SPM) after ensemble averaging over the 1	

local incidence angle θl and rotation angle β can be expressed as follows (del Monaco 2	

et al., 2009) 3	
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Here, 
lθ<>  means averaging over the local incidence angle; θl which is used to 9	

characterize the random slope variations of the facets; <>|β means averaging over the 10	

rotation angle β; ρ includes small scale roughness effects, and σ is the standard 11	

deviation of the surface slope which is a Gaussian random variable. Erfc{�} is the 12	

complementary Gauss error function. RP and RS are the Bragg scattering coefficients 13	

perpendicular and parallel to the incident plane, respectively. Both are functions of the 14	

complex permittivity ε and the incidence angle θ (Iodice et al., 2011) 15	
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In the paper by del Monaco et al. (2009) it is demonstrated that the X-SPM model 17	

coincides with the X-Bragg model when the standard deviation of the surface slope is 18	

zero, and that the X-Bragg model can only be applied for standard deviations of the 19	



surface slope σ < 0.1. When σ > 0.1, the effects of incidence angle fluctuations, which 1	

is ignored in the X-Bragg model, is significant (del Monaco et al., 2009). Because of 2	

its wider range of validity, we used the X-SPM model in our study. 3	

2.3 Inversion model 4	

For ice thickness retrievals we propose to exploit the ratio between 2ΣV  and 5	

2ΣH  (here denoted as the CP-Ratio). The CP-Ratio can be written as (see Eq. 4) 6	
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By relating the CP-Ratio to the elements of the coherency matrix given for the 8	

X-SPM we obtain 9	
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Equation (12) shows that the CP-Ratio is controlled by ensemble averages of the 11	

difference and sum of the Bragg coefficients with respect to the incidence angle. From 12	

del Monaco et al. (2009), the probability density function for cosθl is a normal 13	

distribution with mean cosθ and standard deviation equal to σsinθ. After averaging 14	

over variations of the local incidence angle θl, the CP-Ratio is dependent on the 15	

dielectric constant of the surface ε, the incidence angle θ, and the standard deviation 16	



of the surface slope σ. By using the model of del Monaco et al. (2009), the results of 1	

SAR measurements can be better explained than with the SPM. 2	

We calculated the CP-Ratio as a function of the standard deviation of surface slope σ 3	

assuming ε=3.9+j0.15 which are suggested in (Fung and Eom, 1982) for first year sea 4	

ice. The results show that the CP-Ratio increases with increasing standard deviation 5	

of the surface slope at fixed incidence angles and with increasing incidence angle at 6	

fixed σ (Fig. 1). The relationship between CP-Ratio and the dielectric constant is 7	

presented in Fig. 2. When the incidence angle is constant, the CP-Ratio reveals 8	

monotonically increasing values with increasing dielectric constant. A similar trend 9	

also can be found in the co-polarization ratio (Iodice et al., 2011). With respect to our 10	

simulated results shown in Figs.1 and 2, it is important to note that the proposed 11	

parameter CP-Ratio is sensitive to the variation of the dielectric constant and almost 12	

insensitive to surface slope variations if σ < 0.15. 13	

For our analysis we use the fact that a dry snow layer is transparent at C and L 14	

frequencies (meaning that our method is only applicable under freezing conditions), 15	

and we do not consider metamorphosis of the basal snow layer due to brine wicking 16	

effects or due to melt-freeze cycles. We focus on undeformed Arctic young and 17	

first-year ice for which volume scattering is low because of the relatively high ice 18	

salinity, which means that the ice surface is the dominant scattering source. Then the 19	

backscattering coefficients depends on the small-scale surface roughness and the 20	

dielectric constant of the ice surface. Desalination of the ice occurs parallel to its 21	

growth due to brine drainage (Kovacs, 1996). The desalination process causes a 22	



decrease of the dielectric constant. Hence the basic idea of our method for retrieving 1	

ice thickness is to relate changes of the dielectric constant to ice thickness growth. 2	

Because the CP-Ratio is sensitive to the variation of the dielectric constant, it is 3	

well-suited for detecting changes of the ice thickness of smooth first-year level ice. 4	

 5	

3 A simulation study 6	

3.1 Forward scattering model 7	

In this section, we describe the combined use of an ice growth model and an 8	

electromagnetic scattering model for level sea ice to study sensitivities of CP-Ratio to 9	

different ice and radar properties. We applied the scattering model proposed by 10	

(Nghiem et al., 1995) to simulate the sea ice volume scattering and absorption by 11	

brine inclusions. The surface contribution was calculated with the polarimetric 12	

two-scale model (PTSM) (Iodice et al., 2011, 2013) and incoherently added to the 13	

volume term. 14	

The sea ice scattering model configuration is presented in Fig. 3. Note that we do not 15	

explicitly include a snow layer (see also section 2.3). The effects of a dry snow layer 16	

are (1) the dielectric contrast between ice and snow is lower than between ice and air, 17	

hence the reflectivity of the ice surface is lower; (2) the radar wavelength in the snow 18	

is shorter than in air, hence the ice surface appears rougher to the radar; (3) the 19	

incidence angle gets steeper (depending on the dielectric constant of the snow), which 20	

(relatively) causes a stronger backscattering. Since we carry out simulations with 21	



different dielectric constants (by varying temperature and brine volume fraction), 1	

surface roughness parameters, and radar incidence angles, the results obtained without 2	

snow can be transferred to cases with dry snow layers. 3	

In our model, the uppermost layer is air with permittivity ε0, the lowermost medium is 4	

seawater with complex permittivity ε2, both enclosing the ice layer. The sea ice 5	

background is assumed to be pure ice with complex permittivity εi. The complex 6	

permittivity of brine inclusions is εb, and their fractional volume is fv. The relative 7	

permittivity of the sea ice εeff is a function of the volume fraction of brine inclusions 8	

(Arcone et al., 1986; Vant et al., 1978). The ice surface roughness is described by the 9	

correlation length l, rms height s, and the standard deviation of surface slope σ. The 10	

thickness and surface temperature of the sea ice layer are H and T0, respectively. 11	

Lastly, the magnetic permeability of free space is µ0. Thickness and permittivity of sea 12	

ice are subject to dynamic changes during the ice growth process. The small-scale 13	

surface roughness (on cm-scale) may also vary temporally and spatially. This, 14	

however, can hardly be measured in the field with sufficient spatial density over larger 15	

areas. Here we do neither consider deformation processes causing surface roughness 16	

components on the order of meters. Furthermore, we assume that the scattering 17	

contribution of the ice-water interface can be neglected because of the relatively high 18	

salinity of Arctic young and first-year ice. Very thin ice for which reflections of the 19	

radar waves between surface and bottom have to be considered is excluded from this 20	

study. In our simulations, we do not take a snow cover into account. We restrict our 21	

analysis to temperatures well below freezing point, which means that a dry snow layer 22	



would change the incidence angle and the dielectric contrast at the ice surface. In case 1	

of the ice growth simulations described below, the snow has an insulating effect that 2	

changes the rate of ice thickness growth. Hence, various scenarios can be constructed, 3	

which is beyond the scope of this paper, which we regard as a first step towards 4	

developing a methodology for ice thickness retrieval using CP SAR. 5	

For ice growth simulations we use a 1-D thermodynamic model developed by Maykut, 6	

(1978, 1982) based on the energy balance equations at the atmosphere-ocean 7	

boundary. The balance of the heat fluxes at the upper surface of the ice can be 8	

expressed as: 9	

0)1( 0 =+++−+−− CeSELr FFFFFIFα .                                    (13) 10	

where Fr is the incident short wave radiation, αFr is the short wave radiation reflected 11	

by ice, and α is the albedo. I0 is the amount of shortwave radiation absorbed in the 12	

interior of the ice layer, FL is the incoming long wave radiation, FE is the long wave 13	

radiation emitted by the ice, FS is the sensible heat flux, and Fe is the latent heat flux. 14	

The last term FC is the upward conductive heat flux that is the heat from the bottom 15	

interface conducted through the ice to the upper surface. We assume that the 16	

temperature at the ice-water interface is at -1.8°C. The equations and parameters used 17	

in this study are listed in Table 1. 18	

Substituting the equations and parameters listed in Table 1 into the Eq. (13) and using 19	

the Newton-Raphson iteration method, the sea ice surface temperature T0 is obtained. 20	

Once T0 is known, FE, FS, Fe and FC can be easily calculated. A linear temperature 21	

profile within the sea ice layer is assumed. For volume scattering and absorption 22	



calculations we use a mean ice temperature (T) calculated from the melting 1	

temperature at the ice-water interface temperature (Tb = -1.8 °C) and the ice surface 2	

temperature (T0). Furthermore, the thickness H (cm), density ρ (kg m-3), brine volume 3	

fraction fvb, and permittivity εeff of sea ice, which are directly related to the volume 4	

scattering and absorption in the ice, are obtained by the equations given in Table 2. 5	

The ice surface roughness parameters s, l and σ are set to different values considering 6	

the validity range of the X-SPM model (Ulaby et al., 1982; del Monaco et al., 2009; 7	

Iodice et al., 2011). 8	

3.2 Simulation results 9	

To assess theoretical possibilities and limitations of ice-thickness measurements by 10	

CP-Ratio, we simulated the evolution of ice growth for given temperature and wind 11	

conditions based on the growth model described in Sect. 3.1. The air temperature and 12	

wind speed were set to -12°C and 10.5 m s-1, respectively, throughout this simulation, 13	

based on reports from the field measurements that are described in section 4 below. 14	

The simulation started at an initial ice thickness of 1.0 cm. A finite difference scheme 15	

was used to calculate the increase of ice thickness at every 1 h step. After executing 16	

about 25 days’ simulation, the following parameters were extracted as a function of 17	

time to drive the sea ice scattering model: ice permittivity εeff, thickness of ice layer H, 18	

and volume fraction of brine inclusions fvb. For evaluating the rough surface scattering 19	

contribution, we took roughness data reported in Onstott (1992, Table 5-3) who  20	

listed them for different stages of ice growth: (1) s=0.031 cm and l=1.26 cm (ks = 21	



0.035, kl = 1.4 for the radar frequency of 5.4 GHz, k - wavenumber) for dark nilas, (2) 1	

s=0.12 cm and l=1.45 cm (ks = 0.14, kl = 1.6) for light nilas, and (3) s=0.11 cm and 2	

l=0.54 cm (ks = 0.12 and kl = 0.6) for smooth first-year ice. We note that we will use 3	

these roughness values for first-year ice in general, considering the large variability of 4	

small-scale ice surface roughness. The values are in the validity range of the original 5	

Bragg scattering theory and should hence be fully covered by the X-SPM model 6	

presented in Iodice et al. (2011). The standard deviation of the large-scale slope σ is 7	

ranging according to the validity range of the X-SPM model (Iodice et al., 2011). 8	

At this point we note that a systematic relationship between small-scale surface 9	

roughness and ice thickness has never been reported. Weathering effects, melt events, 10	

and snow metamorphism influence the millimeter-to-centimeter ice surface roughness 11	

to a highly variable extent, independent of ice thickness. As we will show below, the 12	

influence of the small scale roughness on CP-Ratio is moderate to low, hence the 13	

issue of varying small-scale surface roughness is not very critical. 14	

Figure 4 illustrates the simulated sea ice thickness as a function of time, and ice 15	

temperature, and volume fraction of brine inclusions as functions of ice thickness. 16	

Figure 4 clearly shows that the volume fraction of of brine inclusions reduces due to 17	

desalination processes as the ice thickness increases. 18	

To investigate the dependence of CP-Ratio on the radar incidence angle and ice 19	

thickness, the complex scattering coefficients (SHH, SVV, and SHV) were computed for 20	

C-band (5.4 GHz) at incidence angles of 20° - 60°. Then the CP-Ratio was calculated 21	

from Eq. (12). The relationship between CP-Ratio and sea ice thickness at case (3) 22	



(first year ice roughness conditions given above) and σ = 0.1 is shown in Fig. 5. It 1	

reveals that CP-Ratio exhibits a monotonically decreasing trend with growing 2	

ice-thickness at constant incidence angles. It should be noted that the sensitivity of 3	

CP-Ratio to vertical ice growth is much higher at smaller ice-thickness values up to 4	

approximately 0.4 m. This can be explained by fact that the ice salinity is calculated 5	

according to the relationship proposed by (Cox and Weeks, 1983). Their 6	

parameterization of salinity as a function of ice thickness reveals a discontinuity at a 7	

thickness of 0.4 m. 8	

Figure. 6 and 7 indicate the roughness dependencies of the CP-Ratio. In Fig. 6 the 9	

standard deviation of surface slope σ is varied from 0.05 to 0.4 and the small-scale 10	

roughness is fixed at the case 2 roughness condition (s=0.12 cm, l=1.45 cm). When σ 11	

is smaller, the effect of the	variability of the ice-surface slope on the sensitivity of the 12	

CP-Ratio to ice thickness is small; however, at larger values of σ this effect becomes 13	

significant and weakens the capability of CP-Ratio to estimate thickness. Given the 14	

same σ-values, the magnitude of CP-Ratio is higher at larger than at smaller incidence 15	

angles, while the sensitivity (given by the local slope of the curves) does hardly 16	

change, as depicted in Figure 7, where we show examples for case 2 (moderate) ice 17	

roughness. The sensitivity as a function of ice thickness remains basically the same 18	

for all incidence angles. A larger magnitude of CP-Ratio means that it is less affected 19	

by noise (see equation 11). From the results of these simulations, we expect that the 20	

proposed new parameter for thickness retrieval has a strong correlation with the 21	

thickness of smooth undeformed sea ice over all incidence angles, and the sensitivity 22	



is larger for thinner (<0.4 m) than for thicker sea ice. At larger incidence angles, the 1	

reduction of the radar wavelength in a snow layer on top of the ice is not a critical 2	

issue, since the effect of the small-scale roughness on CP-Ratio is low in this case. 3	

However, the snow layer also changes the incidence angle of the radar beam on the 4	

ice surface, which can have a considerable impact on the thickness retrieval in 5	

particular at thickness values larger than 0.3 to 0.4 m where the slope of the curves 6	

theoretically decreases to a low value (Fig. 7). In practice, this limitation is less 7	

critical as we show below. On first-year sea ice the bottom part of the snow layer can 8	

be saline due to brine wicking, possibly creating a dielectric interface within the snow, 9	

or resulting in brine volumes large enough to influence the radar backscatter (Barber 10	

and Nghiem, 1999; Galley et al., 2009). This may also affect the accuracy of the 11	

thickness retrieval using CP-Ratio. Finally, we note that the model simulations 12	

include interactions between the ice surface and the ice-water interface, which result 13	

in oscillations of the CPR for an ice thickness < 0.16 m. In the field measurements 14	

discussed below, this effect was not observed. We assume that the actual ice thickness 15	

is rarely exactly constant over larger areas. 16	

 17	

4 Datasets and experimental results 18	

4.1 Field Study 19	

On 19-20 March 2011, a field program was conducted by the Department of Fisheries 20	

and Oceans Canada (DFO) along the mid-Labrador coast (Fig. 8) (Prinsenberg et al., 21	



2012a). As part of the field survey, snow thickness and ice thickness were measured 1	

with a helicopter-borne sensor package which consists of a laser altimeter, an 2	

electromagnetic induction sounder (EMS), and a ground-penetrating radar (GPR). The 3	

laser altimeter provides the distance to the snow or ice surface, whereas the induction 4	

sounder measures the distance from the sensor to the ice-water interface. Hence the 5	

snow-plus-ice thickness can be obtained (Prinsenberg et al., 2012a; 2012b). 6	

Comparisons with drill hole data showed that the ice thickness values derived from 7	

such soundings agree well within ±0.1 m over flat homogeneous ice (Haas et al., 2006; 8	

Prinsenberg et al., 2012b). The accuracy decreases over ridges and deformed ice, 9	

where the maximum thickness can be underestimated by as much as 50 % (Haas et al., 10	

2006; Prinsenberg et al., 2012b). Snow thickness profiles were collected concurrently 11	

with a ground-penetrating radar (GPR) and the laser altimeter measurements. The 12	

ground-penetrating radar which was operated at a frequency of 1 GHz, receives 13	

returns from the ice-snow and air-snow interfaces, though the return from air-snow 14	

surface is very weak. The laser altimetry is superior for defining the air-snow 15	

interface. Therefore, the combination of GPR and laser altimetry allows to retrieve the 16	

snow depth on sea ice. For a 1 GHz GPR system, the minimum detectable snow layer 17	

thickness is 0.12 m and the measurement error is 0.08 m in light dry snow. (Lalumiere, 18	

2006) By subtracting the GPR snow thickness measurements from the EMS snow 19	

plus ice thickness measurements, sea ice thickness can be estimated. 20	



4.2 Data sets and data processing 1	

All data are available on the Website of DFO including pictures, notes and reports of 2	

the survey (http://www.bio.gc.ca/science/research-recherche/ocean/ice-glace/ 3	

data-donnees-eng.php). 4	

During the field survey, four C-band RADARSAT-2 quad-polarization images were 5	

acquired nearly coincident with the DFO airborne survey flight lines (Fig. 8). The 6	

RADARSAT-2 data were provided by the MacDonald, Dettwiler and Associates Ltd 7	

(MDA). Important SAR parameters are listed in Table 3. For our processing we used 8	

the RADARSAT-2 single-look slant range complex format as starting point. A speckle 9	

reduction filter (13×13 Lee filter) and radiometric calibration procedures were applied 10	

for the calculation of the scattering matrix. With the quad-polarization data, the CTLR 11	

compact polarimetry mode can be generated via Eq. (3). Subsequently the CP-Ratio 12	

was extracted by Eq. (11). Lastly, the geometric registration of the simulated CP SAR 13	

images (i.e. their representation in geographical coordinates) was performed based on 14	

longitude and latitude data provided in SAR metadata. 15	

Fig. 8 presents the ice condition at the study site, flight paths and four nearly 16	

coincident RADARSAT-2 fine quad-polarization images. Eight EMS profiles were 17	

measured within the coverage of the four SAR images, and the time differences 18	

between the SAR acquisitions and EMS flights are summarized in Table 4. The 19	

images in Fig. 8 show the RADARSAT-2 data overlain with the EMS flight tracks 20	

over the fast ice and drifting pack ice. According to the ice charts, the total ice 21	

concentrations in fast-ice and pack ice regions are 10/10 and 9/10, respectively. The 22	



main ice type in land-fast is first-year ice of 70-120 cm in thickness, and the drift ice 1	

region contains grey ice (10-15 cm thick), grey-white ice (15-30 cm), thin first-year 2	

ice (30-70 cm) and again first-year ice 70-120 cm thick. In the drifting ice region 3	

several openings can be seen in the SAR images. The extent of land-fast ice evolves 4	

in the offshore direction and can be visually separated from the pack ice. Most of the 5	

rougher land-fast ice is brighter in the SAR images than the thinner undeformed 6	

land-fast ice. According to the meteorological data archive from Makkovik station 7	

(http://climate.weather.gc.ca/), the air temperature was around -9~-17 °C on 15-16 8	

March 2011, and snow fall was registered during 2 days in the period 17-19 March 9	

with average air temperature around -15 °C. So a large fraction of the sea ice was 10	

covered with snow, which can be clearly seen in aerial photos (not shown). On 19-20 11	

March 2011, the average air temperature was around -8~-12°C and the wind speed 12	

around 11~15 ms-1 (Prinsenberg et al., 2012a). Hence the snow can be regarded as dry. 13	

We also note that thermodynamically driven effects on the bottom snow layer such as 14	

brine wicking take place at temperatures higher than -7°C (Barber and Nghiem, 1999) 15	

which means that we can ignore them here for the freshly fallen snow. However, we 16	

do not have any information about elder snow layers changed by metamorphosis 17	

processes, which may have an influence on the effective backscattering signature. Nor 18	

can we exclude that sea ice flooding took place in some smaller areas. Fig. 9 shows 19	

the ice thickness and snow depth profiles of the land-fast and drift ice, indicating that 20	

the ice freeboard was mostly above the water level. The histograms shown in Fig. 9 21	

confirm that the land-fast mean ice thickness is smaller than the one of the drifting 22	



pack ice. The percentages of areas with snow thickness above 0.2 m for land-fast and 1	

drift ice are 26.4% and 18.2% respectively. The flight profiles also show that there are 2	

deformed ice or ridges (ice thickness exceeded 2.0 m) in the survey field. 3	

A direct comparison between SAR imagery and flight profiles data may cause errors 4	

due to the time differences of the data acquisitions (the time difference between SAR 5	

and flight data is shown in Table 4). In addition, spatial differences may be caused by 6	

the different sampling and spatial resolutions of the measurement instruments. The 7	

sampling rate for EMS and laser is 10 Hz, which, given a typical helicopter survey 8	

speed of 80 mph, corresponds to a spatial sampling interval of about 3-4 m. While the 9	

footprint size of the laser is very small (several centimeters), the footprint of the EMS 10	

is around 20 m at a typical operation height of 5-6 m. For this experiment, the GPR 11	

was configured to a scan rate of approximately 30 scans per second. When flying at 12	

60-80 knots, the ground sample spacing is approximately one sample per 1.0-1.5 m. 13	

Moreover, according to the DFO survey report, the floating ice drifted 1.4-1.8 knots 14	

towards southeast, as measured by ice beacons (Prinsenberg et al., 2012a). In order to 15	

mitigate the errors caused by time and spatial resolution differences, we developed the 16	

following processing chain for linking SAR and airborne data. 17	

1. The correction of the time difference was only implemented for the drifting ice 18	

region. The boundary between fast ice and drifting pack ice was taken from ice charts 19	

of the Canadian Ice Service (Fig. 8). For the eight EMS profiles, P1, P2, P5, and P7 20	

are in or near the land-fast ice region, whereas P3, P4, P6, and P8 are from the drift 21	

ice zone. With an ice drift speed of 1.5 knots, and drift direction southeast taken from 22	



the DFO survey report and considering the respective time differences, the profiles P3, 1	

P4, P6, and P8 are shifted to their approximate positions at the acquisition time of the 2	

SAR images. The shifted profiles are presented in Fig. 8 (dotted line). It should be 3	

noted that 28 hours passed between the acquisition times of the P8 and SAR data, and 4	

the corrected location of P8 is beyond the coverage of the SAR image. Hence P8 was 5	

discarded from further analysis. 6	

2. The EMS (ice plus snow) thickness values below 0.1 cm were removed to consider 7	

the measurement accuracy of the EMS. Regions for which only EMS data but no GPR 8	

data are available were also removed. 9	

3. Regions with GPR snow thickness values higher than 0.20 m were removed, 10	

because snow layers thinner than 0.20 m are nearly transparent to C-band radar waves, 11	

and the backscatter from the snow surface and volume can be neglected (Hall et al., 12	

2006). 13	

4. By combining the field survey data (ice charts and aerial photos), a visual 14	

interpretation of RADARSAT-2 SAR was made, and regions of open water, land, and 15	

deformed ice were masked in the SAR images. Land was identified using the coastal 16	

line, open water areas were interpreted via backscattering and texture. Deformed ice 17	

was brighter than level ice in single-polarization SAR images, and revealed a higher 18	

entropy, which was extracted using H/A/α decomposition (Scheuchl et al., 2002). We 19	

emphasize that in step 1 most open water areas are already excluded from further 20	

analysis. 21	

5. For ice zones of 50 m in length, averages of different parameters were evaluated. 22	



Firstly, we used the H/A/α unsupervised Wishart classifier to segment the SAR 1	

images, and each patch was regarded a homogeneous ice area with respect to its radar 2	

signature. Then the snow thickness, snow-plus-ice thickness profiles were cut into 50 3	

m long flight track segments. The CP-Ratio values were evaluated from the 4	

co-located, drift-corrected, segmented SAR images, provided that the 50 m segment 5	

contained a homogeneous piece of ice. The segment length of 50 m was chosen 6	

according to the spatial resolution of the SAR image. Range and azimuth spacing of a 7	

RADARSAT-2 fine quad-polarization product are 4.7 m × 4.9 m respectively. Since 8	

we applied a 13 × 13 window for speckle reduction (see above), the effective spatial 9	

resolution is about 50 m. For the averages along transects, 13 SAR pixels, 15 EMS 10	

samples and 45 GPR samples were used. 11	

6. The sea ice thickness was extracted from the averaged GPR snow depth and EMS 12	

snow-plus-ice thickness values. 13	

7. Finally we calculated the CP-Ratio from equation (11) using the averaged complex 14	

backscattering coefficients. 15	

This processing chain ensures that only level ice is considered for which the EMS 16	

system delivers reliable thickness data with an acceptable accuracy. The total length 17	

of the profile segments that we used in this study amounts to about 16 km (320 18	

samples). Compared with the original data, almost 60% of the data were discarded in 19	

this processing chain (step 1: 17%, step 2: 10%, step 3: 23%, step 4: 10%). 20	

 21	



4.3 Ice thickness retrieval 1	

To investigate the possibility of using the proposed polarimetric parameter CP-Ratio 2	

to estimate sea ice thickness from SAR images, we plotted ice thickness values 3	

obtained during the field campaign describe against the corresponding values of 4	

CP-Ratio derived from the RADARSAT-2 images in Figure 10 (using all 320 5	

samples). It can be seen that at C-band, the CP-Ratio shows a negative trend relative 6	

to the ice thickness as the simulated results given in Sect. 3.2 predicted. Fig. 10 7	

reveals that the highest sensitivity occurs between 0 and 0.5 m and saturates with 8	

thickness values exceeding 1.5 m. As shown in Figs. 5 to 7, the sensitivity should be 9	

smaller for ice thickness exceeding 0.4 m. However, the slope change of the curves at 10	

0.4 m is not as abrupt as in the theoretical curves predicted in Sect. 3.2. This can be 11	

presumably explained by the fact that we average over segments with different values 12	

of ice roughness parameters s, l and σ. We also need to consider that the 13	

salinity-thickness parameterization proposed by Cox and Weeks (1983) includes a 14	

discontinuity in the slope of the salinity curve at a thickness of 0.4 m, which may not 15	

exist in reality. 16	

Since our data comprise different incidence angles (29°, 42° and 49° at the survey 17	

positions, Table 3), we can construct the relationships between ice-thickness and the 18	

CP-Ratio dependent on the incidence angle. We applied two different fits, a linear and 19	

a logarithmic one, to obtain an empirical relationship between the ice thickness and 20	

CP-Ratio. The best regression was obtained using a logarithmic function (Fig. 10). 21	

For Fig. 10, the empirical equations and correlation coefficients (CC) are 22	
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    (14) 1	

where all data points (320 samples) are used to derive the empirical regressions in the 2	

thickness range from 0.1–1.8 m. The reason to include larger ice thickness values is 3	

that they can be measured with a larger accuracy, hence leading to a more robust 4	

relationship at least for the moderate thickness values between 0.4 and 0.8 m. 5	

However, to our knowledge the distribution of CP-Ratio due to speckle has not been 6	

derived yet which makes it difficult to judge its variation. The smallest values of 7	

CP-Ratio observed are about 0.03, which may indicate the noise level of CP-Ratio. 8	

The measured values of CP-Ratio for ice thickness values > 0.2 m shown in Fig. 10 9	

are lower than the theoretical computations. This can presumably be explained by the 10	

fact that underlying theoretical models are an over-simplification of the actual 11	

situation. We note that due to the limitation of sample points, the fit for 49° incident 12	

angle is mainly determined by ice thickness values > 0.5 m. 13	

We found that the level of the CP-Ratio increases as the incidence angle increases at a 14	

given value of the sea ice thickness. This observation compares well with the forward 15	

simulation studies as shown in Fig. 5. These high correlations enable us to derive 16	

reliable thickness information for smooth level ice from radar images assuming winter 17	

conditions (dry snow, no brine wicking). The ice thickness can be estimated using an 18	

exponential function, which can be described as follows: 19	

( )
⎥⎦
⎤

⎢⎣
⎡ −=

b
aH Ratio-CPexp .                                               (15) 20	



where a and b are the coefficients of the exponential fit. 1	

At the next stage, we focused on the RADARSAT-2 images #2 and #3 (which have 2	

the same incidence angle of 42°) to validate our method. Out of total 320 samples, 3	

159 samples belong to images #2 and #3. According to the principle of independent 4	

sample test, we divided these 159 samples into two data sets in an arbitrary way. The 5	

first set includes 79 samples that are used to fit the model for estimating ice thickness 6	

and the second one comprises 80 samples that serve to retrieve ice thickness and 7	

compare the results with the data from the field campaign. The coefficients a and b of 8	

the empirical fit generated from the first data set are 0.068 and 0.077 respectively. 9	

Note that these coefficients are different from those derived in Eq. (14) from the same 10	

two SAR images, because now less points could be used to derive the fit. The fitted 11	

curve and validation results are presented in Fig. 11a and Fig. 11 b, respectively. The 12	

correlation coefficient for the fit shown in Fig 11a is 0.93 for the thickness range from 13	

0.1 to 1.8 m and 0.94 for the thickness range from 0.1 to 0.8. The RMS error and the 14	

relative error between the observed and the estimated ice thickness, shown in Fig. 11b, 15	

are 12 cm and 20% in the thickness range from 0.1–1.8 m, and 8 cm and 17% for 0.1 16	

to 0.8 m. The relative RMS error implies, e.g. that the absolute RMS error is 0.2 m at 17	

an ice thickness of 1.0 m (for the range 0.1 to 1.8 m). Figure 11b also demonstrates 18	

that the error of the retrieved ice thickness is very large at values > 0.8 m which is to 19	

be expected from the theoretical curves, considering the significantly decreased 20	

sensitivity of CP-Ratio to larger ice thickness. 21	

 22	



5 Discussion and conclusion 1	

This paper provides a first analysis of sea ice thickness retrieval using compact 2	

polarimetric SAR. We developed a new parameter that we call CP-Ratio to estimate 3	

the thickness of undeformed first-year level ice from C-band radar images, under dry 4	

snow conditions (snow depth < 20 cm). Numerical model simulations showed that 5	

this parameter is sensitive to changes of the dielectric constant that are linked to the 6	

growth of sea ice. We developed empirical relationships for the retrieval of level ice 7	

thickness from CP-Ratios. For the validation of our results we also employed 8	

RADARSAT-2 images for which thickness values were available. The optimal 9	

regression between CP-Ratio and ice thickness was achieved with an exponential fit. 10	

The RMS error was 12 cm, and the relative error amounted to 20% for a thickness 11	

range between 0.1 and 1.8 m, and 8 cm and 17% for the range between 0.1 and 0.8 m. 12	

This indicates that the proposed parameter is very useful for the retrieval of first-year 13	

level ice thickness between 0.1 and 0.8 m. 14	

Since the thickness of deformed ice can be underestimated by the EMS measurements 15	

by as much as 50 or 60 % in the worst cases, we could only study the case of level ice. 16	

The capability of CP SAR to retrieve the thickness of deformed ice, which reveals a 17	

larger variation of large-scale roughness with respect to the sensor resolution, needs to 18	

be further discussed and studied. 19	

Although our tests are performed on a limited sample of images, our findings 20	

demonstrate that the C-band compact polarimetric SAR has a potential for sea-ice 21	

thickness retrievals over level first-year ice covered by a thin dry snowpack. The issue 22	



of environmental factors affecting the retrieval accuracy, e. g. brine wicking in the 1	

snow, or snow layers with different dielectric properties, has to be investigated further 2	

in more detail. The several planned Earth-observing satellite missions supporting 3	

compact polarimetry (e.g. the RCM operated at C-band) will provide the wide swath 4	

coverage necessary for operational sea ice monitoring. Hence our approach 5	

potentially provides a new operational tool for sea ice thickness measurements with a 6	

large areal coverage. In this case, the resulting thickness products are also of interest 7	

for the development, improvement, and validation of forecast models for the 8	

prediction of ice conditions, or of seasonal and climate simulations that consider 9	

Arctic and Antarctic ice conditions. 10	
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Table 1. Equations and parameters used for the sea ice thermodynamic model 1	

Term Equations Parameters Comments 

The 
incident 
short 
wave 
radiation 

Fr=(1–0.0065C2)Qsoam 
(Ji et al., 2000; Yue et al., 
2000) 

am=0.99–0.17m am is the atmospheric 
transmissivity; 
C is the cloud coverage; 
Qso is the solar irradiance for 
the Dth day in a year; 
Is is the solar radiation 
constant (unit: W/m2); 
δ is the declination angle of 
the sun; Ha is the local solar 
hour angle; β and λ are the 
latitude and longitude; t is 
Coordinated Universal Time. 

m=0.83 

C in the range 0~1 

Qso=Qs (sinβ sinδ + cosβ 

cosδ cosHa) 

(Yue et al., 2000) 

Qs=Is(1+0.033cos(2
πD/365)) 
δ=23.44°cos[(172–
D)2π/365] 
Ha=15(t-12)π/180+
λ 

The long 
wave 
radiation 

4
0i TσεFE =  

(Maykut, 1978) 

σ=5.670×10-8 σ is the Stefan-Boltzman 
constant (unit: w/(m2K4)); 
T0 is the surface temperature 
of sea ice (unit: K); 
Ta is the air temperature (unit: 
K); 
εi is the emissivity of sea ice; 
εa is the emissivity of 
atmosphere; 
e is the water vapor pressure 
at Ta (unit: HPa). 

εi=0.97 

4
a

2)1( aL TσεkCF +=  
(Maykut, 1978) 

k=0.0017 

εa=0.55+e×0.0521/2 

The 
sensible 
heat flux 

Fs=ρaCpCsu(Ta-T0) 
(Cox and Weeks, 1988) 

ρa=1.3 
ρa is the air density (unit: 
kg/m3); 
Cp is the specific heat at 
constant pressure (unit: 
J/(kg·K)); 
Cs is the sensible heat transfer 
coefficient; 
u is the wind speed; 

Cp=1006 

Cs=0.003 

The 
latent 
heat flux 

Fe=ρaLCeu(qa-q0) 
(Cox and Weeks, 1988) 

Ce=0.00175 
L=2.5×106–
2.274×103(Ta–
273.15)  

L is the latent heat of 
vaporization (unit: J/kg); 
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(Cox and Weeks, 1988) 

p0=1013 
p0 is the surface atmospheric 
pressure (unit: mbar); 
f is the relative humidity; 
a, b, c, d, and e are constants; 
a (unit: k4), b (unit: k3), c 
(unit: k2), d (unit: k) 

a=2.7798202×10-6 
b=-2.6913393×10-3 
c=0.97920849; 
d=-158.63779 
e=9653.1925; 

The 
albedo 
of sea 

α =β0+β1 H +β2 H2+β3 H3 
(Cox and Weeks, 1988) 

β0=0.2386; 
β1=6.015×10-3 
β2=-4.882×10-5; 

H is the sea ice thickness 
(unit: cm). 



ice β3=1.267×10-7 

The 
absorbed 
shortwav
e 
radiation 

I0=i0(1–α)Fr 
(Maykut, 1978; Cox and 
Weeks, 1988) 

i0=17% i0 is the percent. 

The 
upward 
conducti
ve heat 
flux  

FC = (k/H)(Tb–T0) 
(Cox and Weeks, 1988) 

k = ki (1–fvb) + kb fvb 
ki = 4.17×104[5.35×
10-3–
2.568×10-5(T0–
273.15)] 
kb = 4.17×104[1.25
×10-3+3.0×10-5(T0–
273.15)+1.4×10-7(T
0–273.15)2]  
Tb=-1.8 

k, ki, kb are the conductivity of 
ice layer, pure ice and pure 
brine, respectively (unit: 
W/m/K); 
Tb is the freezing point at 35 
salinity (unit: °C); 
fvb is volume fraction of sea 
ice brine inclusion. 

 1	

Table 2. Equations and parameters used for the sea ice properties 2	

Term Equations Parameters Comments 

The ice 
thicknes
s 

f

C

Lρ
HF

t
h )(
Δ
Δ =  

(Cox and Weeks, 1988) 

∑
=

=
Time

i

Time
t
hH

0

Δ
Δ
Δ  

Lf=4.187×103(79.6
8–0.505Tb–
0.0273Si)+4.3115Si/
Tb+8×10-4 Tb Si–
0.009(Tb)2 
(Fukusako,1990) 

Δh
Δt

 is the sea ice growth 

rate when ice thickness is 
H (unit: m/s); 
Ice thickness is the sum of 
ice growth rate. 
ΔTime is the time lag (unit: 
hour). 

The sea 
ice 
density 
and 
brine 
volume 
fraction 
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(Cox and Weeks, 1983) 

ρi=0.917-1.403×10-4Ti 

ρ is sea ice density (unit: 
kg/m3); 
fvb is the relative brine 
volume fraction 
ρi is pure ice density (unit: 
kg/m3); 
Ti is the temperature of sea 
ice (unit: °C); 
Ta is the air temperature 
(unit: K); 
Si is ice salinity. 
The functional forms of F1 
and F2 can be found from 
the work of Cox and Weeks 
(1983). 

The ice 
salinity ⎩

⎨
⎧

>−=
≤−=

m) 4.0(        59.188.7
m) 4.0(    39.1924.14

HHS
HHS

i

i  H is the ice thickness (unit: 
m). 



(Cox and Weeks, 1983) 

The 
permitti
vity of 
sea ice 
at 
C-band 

vbeff fε 0072.005.3 +=′

vbeff fε 0033.002.0 +=′′  
(Arcone et al., 1986; 
Vant et al., 1978) 

 fvb is the relative brine 
volume fraction. 

Table 3. Specifications of the qual-pol RADARSAT-2 SAR data 1	

Scene ID Date/Time 
(UTC) 

Resolution (m)* 
Rng × Az 

Incidence 
angle(Deg.) 

Beam 
Mode 

#1 19 Mar 2011, 10:25 5.2 × 7.7 29.0 FQ9 

#2 19 Mar 2011, 21:51 5.2 × 7.7 42.0 FQ23 

#3 19 Mar 2011, 21:51 5.2 × 7.7 42.0 FQ23 

#4 20 Mar 2011, 09:56 5.2 × 7.7 49.0 FQ31 

*Resolution is nominal. Ground range resolution varies with incidence angle. 2	

Table 4. Specifications of helicopter-borne EMS ice thickness data sets 3	

EM ID 
SAR Scene ID coincident 

with EMS 
Date/Time (UTC) Time difference 

P-1 #1 
19 Mar 2011 

17: 00-17: 20 
~ 7 hour 

P-2 #2 
19 Mar 2011 

17: 25-17: 30 
~4 hour 

P-3 #2 
19 Mar 2011 

18: 30-18: 45 
~3.3 hour 

P-4 #3 
19 Mar 2011 

18: 40-18: 50 
~ 3 hour 

P-5 #4 
20 Mar 2011 

11: 55-12: 05 
~ 2 hour 

P-6 #4 
20 Mar 2011 

12: 10-12: 25 
~ 2.5 hour 

P-7 #1 20 Mar 2011 ~ 28 hour 



14: 25-14: 30 

P-8 #1 
20 Mar 2011 

14: 40-14: 50 
~ 28 hour 

	1	

 2	
Figure 1. Variations of CP-Ratio as a function of the standard deviation of surface 3	

slope σ for different incidence angles and ε=3.9+j0.15. The red line marks the 4	

maximum threshold of σ for the validity of our approach. 5	
 6	



 1	
Figure 2. CP-Ratio as a function of dielectric constants for different σ and incidence 2	

angle=30°. The results for other incidence angles follow the similar trends. 3	

 4	

 5	

Figure 3. Structure and geometric model of the configuration of sea ice. 6	

 7	



 1	
Figure 4. The simulated sea ice growth process. Blue: sea ice thickness; red: sea ice 2	

surface temperature; green: the volume fraction of brine inclusions. 3	

 4	



 1	
Figure 5. The relationship between CP-Ratio and ice thickness at different incidence 2	

angles for C-band radar (x-axis in log scale). The incidence angle varies from 20° to 3	

60°. The small-scale roughness parameters are set to s=0.11 cm and l=0.54 cm (case 4	

3), the standard deviation of the surface slope σ=0.1. 5	

 6	



 1	



 1	
Figure 6. Sensitivity of CP-Ratio to the standard deviation of the surface slope σ 2	

(x-axis in log scale). The standard deviation of the surface slope σ varies from 0.05 to 3	

0.4, while the small-scale roughness is fixed at s=0.12 cm and l=1.45 cm (case 2). Top 4	

figure is for 20° incidence angle and bottom is for 40° incidence angle. 5	

 6	



 1	
Figure 7. Sensitivity of CP-Ratio to the small-scale roughness (x-axis in log scale). 2	

The standard deviation of the surface slope σ is fixed at 0.1. Black, blue, red, green 3	

and cyan color are for 20°, 30°, 40°, 50°, and 60° incidence angles, respectively. In 4	

the legend, C1, C2 and C3 denote the three cases of small-scale surface roughness 5	

respectively (C1: s=0.031 cm, l=1.26 cm; C2: s=0.12 cm, l=1.45 cm; C3: s=0.11 cm 6	

l=0.54 cm) 7	

 8	



 1	

 2	

Figure 8. Location of the study site in the Labrador Sea, with Pauli RGB (HH+VV for 3	

blue, HH-VV for red, and HV for green) decompositions of the RADARSAT-2 4	

images © MDA. The specifications of the used SAR data are given in Table 3. 5	
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(a) 2	
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(b) 2	
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(c) 2	



 1	

(d) 2	

Figure 9. Histogram of ice and snow thickness in the Labrador Sea. (a) and (b): Ice 3	

plus snow thickness collected with EMS in the pack ice (a) and in the fast ice area (b). 4	

(c) and (d): Snow thickness collected with GPR in the pack ice (c) and in the fast ice 5	

area (d). The bin widths of ice and snow thickness and snow thickness are 0.1 m and 6	

0.02 m respectively. The histograms of the fast ice area are generated from flight 7	

tracks of P1, P2, P5, and P7. The histograms of the pack ice area are generated from 8	

flight tracks of P3, P4, P6, and P8. These histograms include both level and deformed 9	

ice. 10	

 11	



 1	

Figure 10. Regressions relating ice thickness to CP-Ratio at different incidence angles. 2	

The solid lines represent the fits, dashed lines the 90% confidence intervals. The black, 3	

green and red colors are used for the incidence angles of 29°, 42° and 49°, 4	

respectively.  5	

 6	
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(a) 2	



 1	
(b) 2	

Figure 11. (a) Relationship between the CP-Ratio and the observed EM sea thickness. 3	

(b) Comparison between the observed and estimated ice thicknesses, and the errorbars 4	

show the standard deviation with respect to the observation data for every 0.05 m 5	

segment of ice thickness. 6	

 7	

 8	


