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Abstract

The influence of supraglacial debris on the rate and spatial distribution of glacier sur-
face melt is well established, but its potential impact on the structure and evolution of
the drainage system of extensively debris-covered glaciers has not been previously
investigated. Forty-eight dye injections were conducted on Miage Glacier, Italian Alps,
throughout the 2010 and 2011 ablation seasons. An efficient conduit system emanates
from moulins in the mid-part of the glacier, which are downstream of a high melt area
of dirty ice and patchy debris. High melt rates and runoff concentration by intermoraine
troughs encourages the early-season development of a channelized system down-
stream of this area. Conversely, the drainage system beneath the continuously debris-
covered lower ablation area is generally inefficient, with multi-peaked traces suggesting
a distributed network, which likely feeds into the conduit system fed by the upglacier
moulins. Drainage efficiency from the debris-covered area increased over the sea-
son but trace flow velocity remained lower than from the upper glacier moulins. Low
and less-peaked melt inputs combined with the hummocky topography of the debris-
covered area inhibits the formation of an efficient drainage network. These findings
are relevant to regions with extensive glacial debris cover and where debris cover is
expanding.

1 Introduction

Debris-covered glaciers are prevalent in mountainous regions such as the Pamirs and
Himalaya (Scherler et al., 2011; Bolch et al., 2012), Caucasus Mountains, Russia
(Stokes et al., 2007), and the Western Alps (Deline et al., 2012) and the extent and
thickness of debris-cover on glaciers is increasing in many regions (Bolch et al., 2008;
Bhambri et al., 2011; Lambrecht et al., 2011; Kirkbride and Deline, 2013). Glacier-
runoff is important for downstream water resources, especially during dry seasons (Xu
et al., 2009; Maurya et al., 2011). The ablation of ice has a non-linear relationship to the
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thickness of the overlying debris, with the exact relationship determined by the debris
thermal and radiative properties. The relationship between ablation and debris thick-
ness has been derived for several different glaciers and surface covers (e.g. Qstrem,
1959; Mattson et al., 1993; Kirkbride and Dugmore, 2003). The dominant effect is a re-
duction in the melt rate compared with that of bare ice where debris is continuous
and more than a few centimetres thick (Brock et al., 2010), with recent hourly energy
balance modelling suggesting the debris causes attenuation of the diurnal melt signal
(Fyffe et al., 2014).

On debris-free temperate glaciers, dye-tracing studies have demonstrated that the
seasonal evolution of the hydrological system, characterised by increasing efficiency
over time, is closely linked to the increase in volume and daily amplitude of surface melt-
water inputs associated with the upglacier retreat of the seasonal snowline (Nienow
et al., 1998; Willis et al., 2002; Campbell et al., 2006). Understanding the nature and
evolution of the glacial drainage system is important because it controls how meltwater
inputs impact glacial dynamics (Mair et al., 2002), with the glacial dynamic response af-
fecting erosion rates (Hallet et al., 1996). However, only Hasnain et al. (2001) have car-
ried out dye tracing on a debris-covered glacier, focussing on the autumn close-down
rather than the spring evolution of the hydrological system, and not dealing explicitly
with the influence of debris cover. Direct investigation of englacial conduit systems
within debris-covered glaciers (e.g. Gulley and Benn, 2007) have not yet revealed the
morphology of inaccessible regions, or gauged the efficiency of the entire system. Con-
sidering the strong influence debris has on surface ablation rates (Nicholson and Benn,
2006; Lejeune et al., 2013; Fyffe et al., 2014) extensive debris cover can be expected
to influence the morphology and evolution of a glacier's hydrological system, but the
nature and extent of this impact is not currently known. Based on field investigations at
an alpine debris-covered glacier, this study therefore has two aims:

1. to understand the influence of debris cover on the daily amplitude and magnitude
of surface meltwater input to the glacial drainage system;
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2. to determine the morphology and seasonal evolution of the englacial and sub-
glacial hydrological system and its relationship to the spatial distribution of
supraglacial debris cover.

2 Study site

Miage Glacier is situated in the Western lItalian Alps (Fig. 1). It originates from four
main tributaries, the Mont Blanc, Dome, Bionassay and Téte Carrée Glaciers, which
form steep icefalls prior to joining the main tongue. As the main tongue enters Val
Veny it bends eastwards before splitting into the large northern and southern lobes
and smaller central lobe. The glacier area is 10.5 km? over an elevation range of 1740
to 4640ma.s.l. The lower 5km of the glacier is completely covered by debris which
averages 0.25m in thickness (Foster et al., 2012), except for isolated debris-free ice
cliffs (Reid and Brock, 2014). The debris increases in thickness with distance down
glacier so that over most of the lower tongue it is thicker than the “critical thickness”
(see Kirkbride and Dugmore, 2003), resulting in reduced ablation compared to bare ice.
At higher elevations (above c. 2500 ma.s.l.) the debris is confined to medial and lateral
moraines with the intervening ice having a patchy covering of dust to boulder sized
sediment (hereafter “dirty ice”). The debris originates predominantly from rockfalls and
mixed snow and rock avalanches from the steep valley sides (Deline, 2009). Diolaiuti
et al. (2009) found that the debris cover, and its influence on ablation, strongly influ-
enced changes in the glacier's volume over time. A distributed surface energy-balance
melt model for the glacier was recently developed by the authors and used to explore
patterns and rates of surface melting (Fyffe et al., 2014).
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3 Methods
3.1 Runoff
3.1.1 Proglacial runoff

Field data were collected at Miage Glacier over two ablation seasons, from 5 June 2010
to 13 September 2010, and from 4 June 2011 to 16 September 2011.

The main outflow stream from the glacier exits the northern lobe, while very little
drainage exits the southern lobe. Discharge was monitored at a gauging station di-
rectly downstream of the northern portal (Fig. 1). Stage was measured using a pres-
sure transducer mounted in a well attached to a large, stable boulder (see Table 1
for details). The Onset HOBO pressure data were compensated using air pressure
data from Mont de la Saxe, 7.6km from the gauging station. A high flow event in
June 2011 caused damage to the well, resulting in lost data between 18 June 2011
and 3 August 2011 and the repositioning of the well. Other data voids are 27 to 28 Au-
gust 2010 and 4 to 8 September 2010. All recorded stages were adjusted to the datum
of the June 2010 stilling well so that a single stage-discharge rating could be applied to
the entire record. The stage-discharge rating was derived from discharges calculated
from dye dilution gauging using rhodamine WT. In total 16 dye dilution gaugings pro-
vided a two-part rating curve which has a standard error of the estimate of 0.76 m3s™
which gav? a percentage error of 14.6 % using the average daily discharge in 2010 of
537m°s™ .

3.1.2 Supraglacial stream measurements

Prior to conducting a dye trace, the discharge and velocity of the chosen supraglacial
stream (Qg and ug, respectively) were measured in 2011. Either the velocity-area
method or salt dilution gauging was used to measure supraglacial stream discharge.
Dilution gauging was preferred, but this was not always possible. Surface velocity was
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measured using floats, which are likely to overestimate mean depth-averaged velocity
(Dingman, 2002). Floats usually followed the stream thalweg and so travelled faster
than the width and depth-averaged flow. The salt dilution gauging was performed using
a portable conductivity probe (Table 1).

The dilution gauging velocity is the distance between injection and detection points
divided by the time between injection and peak of the concentration curve. This gives
the average water velocity, a preferable measure of velocity than the float method.
Therefore, discharges measured using the velocity-area method were adjusted using
the ratio of dilution to float velocity found from simultaneous measurements.

3.2 Delimiting supraglacial catchments and routing

Supraglacial streams and their catchments were defined by applying Arnold (2010)’s
lake and catchment identification algorithm (LCIA) to a digital elevation model (DEM).
The algorithm calculates surface slope and direction of steepest descent (flow direc-
tion) for each cell. Sinks (potential lakes) are defined as cells with no lower neigh-
bours, with the algorithm using the flow direction matrix to find the upstream cells
that feed to that sink. The catchment outlet is determined as the lowest cell on the
catchment boundary, with each cell lower than this within the catchment flooded with
water to identify lakes. The algorithm also determines the flow pathways between each
catchment allowing the entire supraglacial stream and lake network to be defined. This
supraglacial algorithm is favoured over most others because it does not rely on the ar-
tificial filling of sinks before calculating the flow routing. Arnold (2010) provides detailed
model methods. The DEM was derived from airborne LiDAR surveys in 2008 (provided
by Regione Autonoma Valle d’Aosta, VDA DEM hereafter) and has a spatial resolution
of 2m and a vertical accuracy of < 0.5m. The VDA DEM was resampled to a 4 m cell
size and was clipped to the glacier catchment boundary which follows the mountain
ridge surrounding the glacier and the moraine crests outside of the glacial trough.
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3.3 Ice thickness

Ice thickness data was required to calculate the conduit closure rates (see Appendix).
The ice thickness is calculated as the difference between the surface and bed elevation.
The VDA DEM was used to give the surface topography. A map of the bed topography
in Deline (2002) (based on Carabelli, 1961; Casati, 1998; Lesca, 1974), was scanned,
georeferenced, digitised and interpolated into a raster with a 25m cell size. Unfortu-
nately, the resolution of the map contours was low and the fit of the map to the glacier
outline was poor due to a lack of clear control points. Resulting conduit closure rates
should therefore be treated with caution.

3.4 Meteorological stations

Three meteorological stations were located on the glacier. The lower and upper
weather stations (LWS and UWS hereafter) were full energy-balance stations situated
on continuous debris cover, with the ice weather station (IWS) measuring only air tem-
perature on an area of dirty ice (Fig. 1). Details of the instruments installed on LWS,
UWS and IWS are given in Brock et al. (2010) and Fyffe et al. (2014).

3.5 Dye tracing

In total 48 dye injections were conducted into 16 surface streams. All dye traces were
carried out using 21 % rhodamine WT liquid dye. Between 40 and 280 mL of dye was
used per injection. The dye trace was detected at the gauging station using a fluorom-
eter (see Table 1) recorded by a Campbell logger (CR500, until 14 June 2011 when
it was replaced with a CR10X) at either 5 or 1 min intervals. Each fluorometer was
calibrated in the field for each dye lot.

Although it was intended to use injection points which led directly into a moulin,
this often was not possible, especially where debris cover was thick. Streams often
flow beneath the debris, making it difficult to inject dye. In some cases, difficulty in
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accessing moulins due to ice cliffs meant an injection point was used further upstream.
During 2011 the execution of repeat injections at individual points was emphasised.
Five injection points were chosen, two on the lower glacier debris zone (S5 and S7),
and three on the upper glacier debris zone (S12, S14 and S15) (see Fig. 1). The
three upper points were intended to be spread equally along the glacier, but following
an extensive search the only moulins found were all in a relatively small area. The
parameters calculated for each dye-breakthrough curve are given in Table 2.

The injection point into S5 was into a stream 446 m upstream of the moulin and so
the trace flow velocity (v) was adjusted to account for the time spent in the supraglacial
stream, using the measured supraglacial stream velocity (u) at the time of the test
(2011 only). Henceforth, only adjusted v is given.

4 Results
4.1 Meteorological and snow cover conditions

An overview of the air temperature, discharge and precipitation in both years is given
in Fig. 2. On average, air temperatures in the June to August period were similar in
2010 and 2011 (11.1 and 10.5°C, respectively). June was relatively cool in both years;
although a rise in air temperature along with heavy rainfall resulted in a significant
increase in discharge on 18 June 2011. In early June 2010 snow cover was contin-
uous above 2290 ma.s.l. (close to S9). In contrast, the continuously debris-covered
zone was mainly snow free in early June 2011, with continuous snow cover only above
2400 ma.s.l., due to prolonged high temperatures in May (Fig. 2b). Clean ice was ex-
posed in places on the main tongue, above the Dome Glacier confluence. July 2010
was warmer than July 2011 (mean air temperatures were 13.1 and 9.4°C, respec-
tively) whereas August was cooler in 2010 than in 2011, (mean air temperature 10.5
and 12.6 °C, respectively).
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4.2 Supraglacial hydrology

The mean Qg and ug for each of the 2011 streams is given in Table 3, with values for
each injection time in Table 5. S14 (the main stream draining the western side of the
upper glacier, Fig. 3c) and S15 (the main stream draining the eastern side of the upper
glacier, Fig. 3b) had the highest Q4 and u, of those measured. They had relatively large
catchments bounded laterally by the central and lateral moraine crests (Figs. 4 and 5).
Supraglacial streams were difficult to find on the continuously debris-covered zone, and
there was a lack of well-defined moulins. Streams cut laterally into the ice, forming ice
cliffs from which the debris collapses; hiding the stream beneath the boulders. S5 (the
largest stream observed on the lower glacier) and S7 both had relatively low Q4 and
us. Figure 5 clearly shows that on the lower glacier catchment sizes are smaller and
no-longer controlled by the lateral moraines.

4.3 Englacial and subglacial hydrology

Dye trace parameters for all 2010 and 2011 injections are reported in Tables 4 and 5,
with dye return curves shown in Figs. 6 and 7. For ease of reference, injections into
S9 and above will be termed upper glacier traces (zone of patchy debris and bare
ice), while those into S8 and below will be termed lower glacier traces (continuously
debris-covered ice).

4.3.1 Spatial patterns

Generally, the water entering the glacier via the main moulins around the upper limit
of continuous debris cover travelled quickly to the ?roglacial stream, with mean u of
the upper glacier traces (S10-S15) being 0.56 ms™ . These traces also generally had
single peaked return curves (Figs. 6a and 7d—f) and relatively high percentage dye re-
turns (P,), confirming that the majority of the water was routed efficiently. Most streams
from the lower glacier had low v (the average for all lower glacier injection points was
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0.26 ms‘1), with the exception of S6 and S8 (Figs. 3a and 6a) which had a faster v of
0.58 and 0.43m s‘1, respectively. However, generally meltwater produced on the upper
glacier could reach the proglacial stream before meltwater produced at the same time
on the lower glacier. Return curves from lower glacier traces were generally broader
and several displayed multiple peaks (Figs. 6b and 7a—c).

A striking result is that average v increases with distance upglacier and is signifi-
cantly positively correlated with the distance from the gauging station, (p value = 0.005,
Pearson’s r = 0.709) (Fig. 8a). £, was also significantly positively correlated with dis-
tance from the gauging station (Fig. 8b, p value = 0.032, Pearson’s r = 0.620, excluding
F, values greater than 100 %). The average P, for injection points below and including
S10 was always less than 48 % with an average of 38 %, while for injection points S11
and above the average F, was at least 50 % with an average of 63 %.

4.3.2 Seasonal evolution
Lower glacier

Lower glacier traces in early June were generally slow (e.g. traces into S1, S3, S5
and S7 had u < 0.2ms"1) and often displayed multiple peaks (e.g. S5_060611 and
S7_050611, Fig. 7b and c). The shape of the S5 dye breakthrough curve changed
from six to three more prominent peaks between 6 and 12 June 2011 (Fig. 7b) de-
spite v remaining at 0.07ms™". Similarly, there was a change between S7_050611
and S7_110611 from a multi-peaked return curve to a curve with one steeply-rising
main peak (Fig. 7c).

Between June and July 2011 v at S5 increased substantially, the dispersion coeffi-
cient (D) and dispersivity (b) decreased markedly and £, increased, even though the
July input discharge was similar to June. The shape of the dye breakthrough curve
changed to a steeply rising main peak, with a later secondary peak (Fig. 7b), simi-
lar to the trace shape and F, at the same stage in 2010 (S5_300710, Fig. 7b). The
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S3_290710 trace produced a singular peak, much clearer than its June counterpart,
with a faster v and much larger P, (Fig. 7a).

In September the S3_090910 v was slower than in July but faster than June and
had twice the D of the S3_290710 trace (Fig. 7a and Table 4). The S5_120911 trace
showed the slowest v of the season and was composed of small peaks before and
after a broad main peak (Fig. 7b). Misleadingly, D and b values were the lowest of
the season because they were calculated from only the main peak. The form of the
trace suggests a complex drainage system composed of a small, fast path, a separate
slower but larger path, and a third even slower, small path.

Upper glacier

Most upper glacier traces in June (into S10, S12, S13, S14) had v > 0.4 ms™", with low
D and b, despite the early season stage and extensive snow cover on the upper glacier.
Traces tended to give discrete, narrow peaks, although the secondary peak on the
S13_110610 trace may suggest temporary water storage in the moulin or a secondary
channel (Fig. 6a). The shoulder of the S15_130611 trace (Fig. 7f) might indicate an
englacial channel constriction, past which water was released gradually.

Comparing June and July traces, the S15_280711 v was much faster than in June
(Fig. 7f) and no longer had a flat top to the trace, causing a reduction in D and b.
Conversely, S14 and S12 v was slower than in June, with larger D and b values (13
times larger for S12, Table 5). July input discharges into both moulins were larger than
in June. S12, S14 and S15 were all injected again 3 or 4 days later at the start of
August. The flow velocities of all three traces were faster than those in late July along
with markedly lower D values (Table 5). The channel cross-sectional area (A,,) of all
three moulins had also increased since late July. Early August input discharges of S15
and S14 were slightly larger than in July, although for S12 the input discharge was less
than half that measured on 30 July 2011. All three breakthrough curves were of single
peaks (Fig. 7d—f).
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The September traces into S12, S14 and S15 showed faster v than the June and
end of July traces, but similar, or in the case of S12, slightly slower than their early
August traces (Fig. 7d—f and Table 5). D was also greater than in early August, and in
the case of S12 and S14 greater than in June.

5 Interpretation and discussion
5.1 The influence of supraglacial debris on glacial topography and hydrology

In the region of the glacier between approximately 2300 and 2500 ma.s.l., surface to-
pography is strongly controlled by contrasting ablation rates between thick moraine-
crest debris, and partly debris-covered ice in the intervening troughs, resulting in longi-
tudinal ridges and valleys of 30—40 m vertical amplitude (Fig. 4). Ridge-crest ablation is
low at around 0.02 mday'1, compared to 0.05 mday'1 in the intermoraine areas, rep-
resenting the highest ablation rates on the glacier over an extensive area of thin and
partial debris cover immediately upglacier from the continuously debris-covered zone
(Fyffe et al., 2014). Thus, relatively high discharges of meltwater are focused into the
troughs in the mid-part of the glacier, amplifying discharges flowing into the cluster of
moulins at S12-S15 (Fig. 5). This explains the relatively large Q4 and ug measured at
S12 and S14 (Sect. 4.2).

Surface relief decreases downglacier due to the gravitational redistribution of debris
down moraine flanks into the troughs. This inverts relief development by reversing the
ablation gradient down the moraine flanks, reducing the systematic spatial variation in
debris thickness, and eventually resulting in the hummocky topography of the lower
tongue (Fig. 4). Consequently, there is less potential for the formation of an integrated
channel network on the continuously debris-covered zone, resulting in a chaotic, lo-
cal stream network with hollows which may lead to pond development. Consequently,
catchments tend to be smaller than upstream (Fig. 5), demonstrating that continuous
debris cover can constrain catchment size. Melt beneath a continuous debris cover is
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less than that of clean or dirty ice, in 2010 averaging 0.019 m we day_1 under continu-
ous cover compared to, 0.025 and 0.047 m we day‘1 for clean and dirty ice respectively
(Fyffe et al., 2014). Therefore, much less meltwater is produced on the lower glacier,
despite the lower elevation and warmer air temperatures. This explains the small Qg
and slow ug of the streams on the lower tongue.

5.2 Establishment of channelized system draining upper glacier surface
streams

Fast, peaked and low dispersion dye return traces from the upper glacier indicate that
a channelized system connects surface streams originating on clean and dirty ice,
above the continuously debris-covered zone, to the proglacial stream. This was the
case even in early June 2010 when the glacier was snow-covered well below the ele-
vation of the upper moulins.

It is widely accepted that the seasonal evolution of a temperate glacier's hydrological
system is caused by an increase in the magnitude and amplitude of inputs into the sys-
tem, initiated by the switch from snow to ice melt, which causes pressure fluctuations
large enough to destabilise the hydraulically inefficient distributed system into a more
efficient discrete channel system (e.g. Nienow et al., 1998; Willis et al., 2002; Camp-
bell et al., 2006). The question of how a channelized network draining the upper glacier
moulins could be established prior to the depletion of the winter snow cover could be
explained by two factors: (a) the channels did not completely close over the winter; or
(b) early season snowmelt inputs were sulfficiently large. Both of these possibilities will
be evaluated in turn.

Conduit closure calculations estimate that the main conduit system is likely to have
closed over the winter (Appendix). Although there is some uncertainty in the ice thick-
ness values, the modelling suggested it would take only 6-9 days for the conduits
emanating from S12 and S14 to close, depending upon the ice density and whether
they fed into separate or one combined conduit. Furthermore, if the subglacial conduit
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was broad and low rather than semi-circular (as suggested by the form of the proglacial
stream outlet), closure rates would be faster than those estimated (Hooke et al., 1990).

Runoff generated by the large catchment areas supplying the S12 and S14 moulins
combined with topographic flow concentration (Sect. 5.1) could produce input dis-
charges large enough to initialise channelization, even from snowmelt. In early June
of both years a large supraglacial stream was observed flowing beneath or through the
snow cover in the valley to the east of the central moraine above the S12-S14 moulins.
The S12-S14 catchments exist at a relatively low elevation (2400-2500 ma.s.l.), below
the terminus elevations of most clean glaciers in the western European Alps. Conse-
quently, favourable spring weather conditions could lead to water inputs large enough
to destabilise the distributed system. As suggested by Mair et al. (2002), a channelized
system could form when a snow pack is still present if the snowpack remains longer into
the melt season. This allows time for snowmelt percolation to become rapid enough to
develop an efficient supraglacial drainage system at the base of the snowpack, gener-
ating input hydrographs with sufficient amplitude to channelize the system.

5.3 Evolution of channelized system over the summer

The u of traces from the upper glacier moulins in 2011 (S12, S14 and S15) remained
higher than those from the lower glacier (S5 and S7) throughout the season (Fig. 9a).
However, compared to June, the late July return curves S12_300711 and S14_290711
were slower and more dispersed, although they still had singular peaks (Fig. 7d and e,
respectively). Surprisingly, this indicates the efficiency of the channel system had re-
duced since June. In contrast, the early August traces into upper glacier moulins S12,
S14 and S15in 2011 all showed a strong increase in u (Fig. 9a), a decrease in D and
b, and an increase in A,, (Fig. 9b), compared to the return curves prior to 31 July 2011.

Normally, it would be expected that increased melt inputs between the early and
mid-ablation season would result in a progressively more efficient channel network.
The slower and more dispersed July traces could be due to increased conduit rough-
ness, caused by a smaller discharge allowing boulders and cobbles on the conduit
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floor to decrease flow velocity (Gulley et al., 2012). However June and July proglacial
discharges were similar and the degree of dispersion seen was less in June. Rapid
changes in flow velocity can also result from inflow modulation and/or changes in the
channel geometry (Nienow et al., 1996; Schuler and Fischer, 2009). However similar
patterns were observed at three different moulins traced at similar times on different
days (Table 5), so it is unlikely that inflow modulation over short time periods was
the cause of the differences between the July and August traces. More plausible is that
cold weather between 17 and 27 July 2011 (Fig. 2b, maximum daily temperatures were
generally below 10°C, and air temperatures fell below zero at UWS during the morn-
ings of 24 and 25 July 2011) and reduced meltwater inputs resulted in relative closure
of the main subglacial conduit (Réthlisberger, 1972). When the weather warmed from
28 July 2011 the system was not able to efficiently evacuate the increased discharges,
resulting in hydraulic damming, and the slower v and greater D observed in July. This
interpretation is corroborated by an observed increase in glacier sliding velocities over
the same period, likely generated by high basal water pressure as water was forced
across large areas of the bed (Fyffe, 2012). Conduit diameters likely grew rapidly so
that by August the network could accommodate the increased discharges.

The September 2011 traces into the upper glacier moulins (Fig. 7d—f), suggested
the drainage system remained more efficient than in late July but slightly less efficient
than in early August. Air temperatures remained high throughout August 2011 (mean
LWS air temperature in July was 9.4°C, but 12.6°C in August 2011), and proglacial
discharges were all higher in September 2011 than they were during any earlier traces
(Table 5), explaining the preservation of drainage system efficiency. S12b and S14b
u in September 2010 was slower than its 2011 counterparts (Fig. 7d and e). Air tem-
peratures during August and September (until 10 September 2011) were much cooler
in 2010 compared to 2011 (see Fig. 2). Consequently, input discharges in Septem-
ber 2010 would have been smaller than in 2011, increasing conduit closure rates and
slowing water velocities.
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5.4 Englacial and subglacial drainage beneath continuous debris

The drainage system beneath the continuously debris-covered zone was far less effi-
cient than the upper debris-free area. Traces into S1, S3, S5 and S7 had slower v and
in some cases (especially S5 and S7, Fig. 7b and c) displayed multiple peaks, indicat-
ing the water spent at least some time within a less efficient hydrological network, with
multiple flow paths characteristic of a distributed system. On average, injection points
S8 and below had a relatively slow average v of 0.26 ms~', and a low average P, of
38 %.

Traces into S3, S5 and S7 showed evidence of drainage system evolution (Fig. 7a—c).
Certain peaks of the dye breakthrough curves became more prominent or coalesced
over the season, suggesting certain flow paths began to dominate within a more inte-
grated network. Therefore the hydrological network did increase in efficiency, but not
to the extent that water was transferred as quickly as from the upper glacier moulins.
Later in the season there was evidence that the efficiency of the hydrological network
decreased, e.g. a decrease in v and increase in D (S3), or a return to traces with mul-
tiple peaks (S5, Fig. 7b), indicating increased flow divergence and the reversion of the
system back to the distributed configuration found early in the season.

The role of debris in reducing meltwater inputs below the critical discharge at which
channels develop (Hewitt and Fowler, 2008) appears crucial in inhibiting channelisa-
tion. Low ablation rates (around 0.02mwe day'1, Fyffe et al., 2014), and an attenu-
ated melt signal under thick debris result in small and likely low amplitude supraglacial
stream discharges (Sect. 5.1). Furthermore, the uneven topography of the lower glacier
(Figs. 4 and 5) inhibits dendritic drainage system development and results in small
supraglacial catchments and consequently smaller but more numerous inputs to the
englacial system. These low magnitude and amplitude meltwater inputs can be ac-
commodated within a less efficient glacial drainage system.

These results imply the coexistence of an inefficient drainage system beneath the
continuously debris-covered zone with an efficient channelized system which emanates
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from the upper glacier. Distributed and channelized systems are known to coexist, for
instance on Haut Glacier d’Arolla away from the preferential axis of drainage (Nienow
et al., 1996), on the western side of Midtalsbreen, southern Norway (Willis et al., 1990),
and within the smaller drainage catchment of the South Cascade Glacier, USA (Foun-
tain, 1993), but unusually on Miage Glacier the distributed system occurs downglacier
of the channelized network and is the main system of transferring melt on the lower
glacier, even though a conduit system exits within the same drainage catchment. How-
ever, the proportional distance water has travelled in the efficient and less efficient
systems is not known and the systems may not merge until close to the snout.

On the lower glacier it is envisaged that the link between the supraglacial stream and
the main subglacial channel is the inefficient part of the system. It is this part which
causes the lower v and multi-peaked traces. Borehole experiments at Haut Glacier
d’Arolla (Hubbard et al., 1995) revealed an area of distributed drainage adjacent to
the main channel which supplied water to, and was the recipient of, water from the
main channel, depending upon the direction of the pressure gradient between the two
areas. A distributed and channelized system probably occurs simultaneously under
Miage Glacier, with the distributed system draining to the main channel system. Un-
like the system described by Hubbard et al. (1995), water enters the Miage Glacier
distributed system from the surface so it contains water irrespective of the pressure
gradient between the channel and distributed system.

Sediment layers are commonly found beneath debris-covered glaciers, due to high
rates of sediment supply (Maisch et al., 1999; Hewitt, 2014). It is likely that a layer of
sediment underlies the lower glacier (Pavan et al., 1999, cited in Deline, 2002), and
if this is thick and highly porous it will likely further inhibit conduit formation, since
a sediment wedge downglacier of a hard bed can stall channelisation (Flowers, 2008).
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6 Conclusions

This is the first extensive investigation of the structure and seasonal evolution of the
hydrological system of a debris-covered glacier using dye tracing techniques.

Forty-eight dye injections were conducted into 16 surface streams distributed across
both debris-free and debris-covered areas of Miage Glacier over the 2010 and 2011
summers. The return curves were analysed in conjunction with supraglacial stream
discharge measurements, meteorological data, proglacial stream discharges and to-
pographical analysis of a DEM. The main findings are that:

1.

The upper ablation zone, exhibiting patchy debris cover and high surface melt
rates, is connected to the main proglacial stream via an efficient channelized sys-
tem, which is established early in the season when snow-cover is still extensive,
and maintained throughout the ablation season.

The majority of meltwater from the lower continuously debris-covered area is
drained via an inefficient network which may feed gradually into the main chan-
nelized network, although on occasion streams make a direct connection with the
main conduit system.

Significant and rapid changes in capacity and efficiency of the main channelized
network may occur mid-season in response to meltwater supply fluctuations.

Although the drainage network beneath the continuously debris-covered zone in-
creased in efficiency between the early and mid-season, it did not become as
efficient as the upglacier system.

The spatial distribution of debris influences hydrological system development in

important and contrasting ways, through its influence on both melt rates and sur-

face topography. First, the establishment and maintenance of an efficient chan-

nelized network emanating from moulins draining the upper ablation zone is pro-

moted both by very high ablation rates on patchy debris and dirty ice areas and the
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topographic concentration of flow into large channels within the moraine troughs.
This topographic enhancement is a direct consequence of the large difference
in melt rates between medial moraines, which are insulated by thick debris, and
the high melt rates of the dirty ice in the intermoraine valleys. Second, the small
discharges and low amplitude hydrographs of streams draining the continuously
debris-covered area result from both low and attenuated melt peaks beneath thick
debris and the hummocky topography which restricts catchment and stream size.
This produces dispersed low magnitude melt inputs, preventing water pressure
fluctuations becoming great enough to destabilize the distributed system beneath.

These interpretations contrast with conclusions from similar dye tracing studies con-
ducted on debris-free glaciers. In particular, on Miage Glacier: (i) the formation of the
channelized network is not related to the position of the snowline and (ii) v increased
linearly, rather than decreased with distance upglacier. This means that the hydro-
logical evolution of extensively debris-covered glaciers is distinct from that of clean
glaciers.

These findings have implications for those glaciers which are becoming increasingly
debris covered (Bolch et al., 2008; Bhambri et al., 2011; Lambrecht et al., 2011) since
the debris is likely to influence melt water travel times and therefore the proglacial runoff
signal. Debris thickness and spatial extent at Miage Glacier is similar to debris-covered
glaciers in mountain ranges such as the Himalayas (Rounce and McKinney, 2014;
Schauwecker et al., 2015) and Alaska (Kienholz et al., 2015) hence these findings
have relevance to regions where debris-covered glaciers are extensive and common.

Appendix: Conduit closure rates

Conduit closure rates were calculated by integrating Eq. (7) in Hooke (1984, cited in
Nienow et al., 1998). The time, #(s) for a conduit to close to a given radius, r,(m) is
given by:
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(3%)

nAg

where p; is the ice density (kg m'3), g is gravitational acceleration (9.81 ms™2, Oke,
1978), n=3 and Ag =5.8 x 107’ Pa s‘°'5, both constants in Glen’s flow law (Nienow
et al., 1998). The ice thickness (h, m) was derived from the ice thickness map (see
Sect. 3.3) by extracting a profile of thickness measurements (at approximately 25m
intervals) from the proglacial stream portal, up the northern lobe and along the glacier
centreline. It was assumed that a single conduit links the upper moulins and proglacial
stream, with the initial conduit radius (r;, m) derived by linearly interpolating the mea-
sured input (see below) and proglacial stream discharge, and dividing this by v to give
the channel cross sectional area along the entire stream length. The conduit was as-
sumed to be semi-circular and to have effectively closed when it had a radius of 0.01 m.

To understand the sensitivity of the calculations to r; this was calculated using either
the S12, S14 or the sum of the S12 and S14 September 2011 supraglacial discharges.
The proglacial discharge was taken as the mean of the proglacial discharge at the
injection and peak of the return curve for the respective trace, or the mean for the
combined S12 and S14 test. The ice density was also varied from 830 kg m™> (lowest
density of glacial ice, Paterson, 1994) to 920 kg m~3 (pure ice at 0°C, Oke, 1978).

In all simulations the largest distance from the gauging station at which the conduits
would take 4 months to close was between 1820 and 1844 m, around 3 km downglacier
of S12 and S14. It was calculated that the ice would need to be 144 to 160m thick
(depending upon the ice density) in order for a combined S12 and S14 conduit to take
4 months to close, whereas the ice thickness calculated using the 2008 DEM at the
elevation of the S12 and S14 moulins was 375 to 380 m.
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Table 1. Details of supraglacial and proglacial stream instruments. o y
S
Quantity Location Time period Manufacturer  Type Accuracy _é)u
Stage Proglacial ~ 2010and Jun  GE Sensing  Druck PTX1830 +0.1 % full scale (or @ Title Page
2011 (vented) +0.06 % full scale)
Proglacial Aug and Sep Onset HOBO U20-001-04 +0.075 % full scale, — Abstract Introduction
2011 (non-vented) +0.3cm
Fluorescence Proglacial 2010 and Jun  Seapoint Rhodamine Not stated but minimum O
2011 fluorometer detection 0.02 ppb %
Proglacial Jul, Aug, Sep Turner Cyclops-7 Not stated but minimum c
2011 Rhodamine detection 0.01 ppb o 9
Conductivity ~ Supraglacial 2010 and 2011 Hanna HI9033 with HI +1% full scale o
76302W probe (excluding probe) % n _
o)
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Table 2. Parameters calculated for each dye breakthrough curve.

Symbol  Unit Definition

u ms™' The minimum estimate of the average flow velocity (d/t).

d m The straight line distance from the gauging station to the injection
site. Due to the bend in the glacier above S4, for all traces above
this point the distance between the injection point and S4 was
used and added to the distance between S4 and the gauging
station to give the total distance.

t S The time between the injection and peak of the return curve.

D m?s™ The dispersion coefficient, which is a measure of the spread
of the dye as it travels through the glacier, see Seaberg (1988,
Eq. 4).

b m The dispersivity, calculated as D /u (Seaberg, 1988, p. 224).

Amn m? The apparent mean cross-sectional area, calculated as Q,,/u.

Qn m3s™ The mean discharge between the injection and detection point,
calculated as the average of the supraglacial (assumed constant)
and proglacial (average of the discharge at the injection and peak
of the return curve) discharge.

/4 mL The volume of dye recovered, calculated from the equation be-
low, which was derived from the equation to calculate discharge

1 ;
gwnmemmkmdcwbu%apsyw=s(wmg“%M)

S n/a The specific gravity of the dye used (1.15 for rhodamine WT).

Q, m®s™ The average proglacial discharge from the time of injection until
the time of the peak of the dye return curve.

Ac ppbmin~"  The area under the dye breakthrough curve.

Cyi ppb The concentration of the dye prior to injection.

P, % The percentage dye return ((V,/V}) x 100).

v mL The volume of dye injected.
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Table 4. Dye trace parameters for all injection points in 2010, for definitions see Table 2. Mean
P, does not include values > 100 %.

Name Date ¥, Trace? u D b Qp A P,
(mL) (ms™") (m?s” (m) (m’s™) (ppbmin™') (%)

S1 5Jun 2010 N

S2 8 Jun 2010 40 N

S6 9 Jun 2010 40 Y 0.583 0.884 1.52 2.88 20.8 37.7

S8 10 Jun 2010 120 Y 0.434 1.180 2.72 2.90 55.9 34.0

S13 11 Jun 2010 200 Y 0.830 1.800 217 3.36 129.4 54.6

S1 12 Jun 2010 40 Y 0.024 0.004 0.15 5.97 34.4 129.0

S10 13 Jun 2010 160 Y 0.602 2.300 3.82 5.70 40.0 35.8

S3 14 Jun 2010 80 Y 0.192 0.230 1.20 2.84 3.7 3.3

S9 18 Jun 2010 120 N

S3 19 Jun 2010 80 N

S5 20 Jun 2010 80 N

S3 29 Jul 2010 80 Y 0.345 0.860 2.49 10.71 50.6 170.0

S5 30 Jul 2010 120 Y 0.226 9.490 42.01 5.63 47 .4 55.9

S9 31 Jul 2010 120 N

S11 1 Aug 2010 120 Y 0.442 3.550 8.03 7.80 56.3 91.8

S13 3 Aug 2010 160 N

S16 4 Aug 2010 200 N

S5b 6 Aug 2010 80 Y 2.98

S13 5 Sep 2010 160 N

S14b 6 Sep 2010 200 Y 0.613 1.770 2.89 181.9

S3 9 Sep 2010 80 Y 0.265 1.870 7.05 1.65 100.2 51.9

S4 10 Sep 2010 80 N

S12b 11 Sep 2010 100 Y 0.318 7.800 24.55 1.93 141.5 68.6

Mean (all) 0.406 2.645 8.21 4.63 71.8 48.2

Mean (upper) 0.561  3.444 8.29 4.74 109.8 62.7

Mean (lower) 0.296 2.074 8.16 4.57 44.7 36.6

" Only part of the rising limb of the trace was returned.
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Table 5. Dye trace parameters for all 2011 dye injections. The Q; and u, type is either “D”,
dilution gauging, “V”, the velocity area method (timing of floats), or “AdD”, adjusted to dilution
gauging (see Sect. 3.1.2 for details). Means are for detected traces only and mean £, does not
include values > 100 %. Since the P, for S_100911 exceeds 100 % this may indicate that the

spikes on the tail of the main peak (Fig. 7b) are erroneous.

Name Date v, Trace? u D b Q, A A Qs Qs ug ug An
(mL) (ms™) (m?s™) (m) m®s™) (ppbmin™) (%) (M’s) type (ms™) type (m?)

S7 5Jun 2011 160 Y 0.073 2.907° 11517 2.14 70.1 235

S5 6 Jun 2011 120 Y 0.070 14.70°  178.58% 2.08 83.9 36.6 0.027 D 024 D 14.68

S15 8Jun 2011 280 N 0.027 D 044 D

S14 9 Jun 2011 280 N 0.535 \ 114V

S§12 10 Jun 2011 280 Y 0.510 0.700 0.02 2.09 466.8 87.4 0.025 AdD 044 AdD 2.06

s7 11 Jun 2011 240 Y 0.124  2.070 3.88 2.01 1240 26.1 0.011 AdD 017 AdD 8.14

S5 12 Jun 2011 200 Y 0.070 9.380° 113.82° 2.21 109.8 30.5 0.032 D 025 D 15.88

S15 13 Jun 2011 200 Y 0.283 71.400 144.08 3.00 1231 46.3 0.013 D 027 D 5.36

S14 14 Jun 2011 200 Y 0.583  1.300 0.06 2.35 2845 83.9 0.438 \ 124 VvV 2.39

3  15Jun2011 80 Y’

S5 27 Jul 2011 200 Y 0.229 1.980 9.91 1.98 2075 516 0.031 D 013 D 4.38

S15 28 Jul 2011 240 Y 0.439 1.570 0.22 2.85 196.4 58.6 0.010 D 027 D 3.25

S14 29 Jul 2011 160 Y 0.470  2.600 0.83 1.87 747 219 0874° V 213 V 2.92

S12 30 Jul 2011 160 Y 0.487 9.300 5.23 2.16 68.6 232 0.341 D 043 D 2.56

s7 31 Jul 2011 200 N 0.028 D 024 D

S14 1 Aug 2011 120 Y 0.731  1.240 0.26 4.47 410 383 0888 V 216 V 3.66

S15 1 Aug 2011 120 Y 0.576  1.230 0.35 4.47 429 401 0.014 D 0.30 D 3.89

S12 2 Aug 2011 160 Y 0.699 1.440 0.22 4.47 69.7 48.8 0.147 AdD 050 D 3.30

s7 3 Aug 2011 190 N 0.032 D 028 D

S5 4 Aug 2011 195 N 0.028 D 014 D

S5 12Sep 2011 200 Y 0.063  0.09% 1.16° 7.22 179.9 163.0

S15 13Sep2011 240 Y 0.578 4.50 0.47 5.16 1346 726 0.022 D 0.50 D 4.43

S14 14Sep 2011 120 Y 0.697 1.40 0.27 6.02 450 56.6 0.378° V 092 V 4.60

S12 14Sep 2011 160 Y 0.593 3.54 1.16 6.34 714 71.0 0.196 D 049 D 5.54

S7 15Sep 2011 200 Y 0.107  49.98 68.81 4.53 1645 93,5 0.006 D 025 D 22.31

Mean (all) 0.389 9.54 28.47 3.55 1346 50.6 0.203 0.63 6.43

Mean (upper) 0.554 8.35 12.76 3.77 1349 541 0.279 0.80 3.66

Mean (lower) 0.1056 11.59 55.38 3.17 1342 436 0.022 0.21 13.08

2 Indicates traces with multiple peaks for which the D and b parameters are less reliable.

b Only the first part of the trace was returned.
®The Q, values are an estimate because the stream cross-sectional area could not be measured, in these cases the mean cross-sectional area was

multiplied by the velocity.
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Figure 1. Map of Miage Glacier showing location of monitoring stations, lakes and dye trac- __

ing points. Inset shows location of Miage Glacier in the Alps. “IWS” is the ice weather station,
“UWS” the upper weather station, “LWS” the lower weather station and “GS” the gauging sta-
tion.
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Figure 4. Topographic influence on supraglacial hydrology. The top panel gives an overview of
catchment topography. The left inset shows the clear along-glacier ridge and valley topography
associated with the central, eastern and western moraines on the upper tongue. The right inset
shows hummocky topography on the lower glacier. Both insets show contours at 10 m intervals.
Source: Regione Autonoma Valle d’Aosta DEM.
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Figure 5. A map of the outlines (shown as white lines) of the modelled supraglacial catchments.
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Figure 7. Repeat dye return curves from single injection points, where ¢ is the dye concentra-
tion. The injection points S3, S5 and S7 (a, b, ¢) are on the lower glacier, while injection points
S12, S14 and S15 (d, e, f) are on the upper glacier. Note that vertical and horizontal scales
differ.
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