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Comments from reviewer #1

The paper is interested by the reflection of ice slab covering snowpack in the near-infrared domain. It aims at retrieving two5

parameters (namely ice slab thickness and snow ’grain size ’) from spectral BDRF measurements. To this end, direct modeling

based on a radiative transfer model and inverse method related to Bayesian inference was used.

Although the general structure of the paper is clear, the paper is hard to follow because of imprecise writing. Many different

and sometimes fuzzy terms are used for the same meaning. The overall objective of the paper is not clearly stated. The first

sentence of the abstract, the title and the objective stated P2L31 do not match. The overarching goal of the paper needs to10

be clearly stated and used to conduct the introduction. It would also be made more attractive and adequate for TC audience

by specifying the geophysical problem the authors want to solve (in the introduction with details, not a one-sentence at the

end of the conclusion). On which planets is such ice over snow configuration found ? Which are the expected values for the

parameters (ice thickness and snow ’grain size ’) found there. The results of the paper should then be interpreted in terms of

the geophysical problem(s) in the discussion (which is not a discussion otherwise).15

These suggestions have been taken into account and the introduction and the discussion have been modified accord-

ingly.

Regarding the practicle application to remote sensing, it would be interesting to test how the degradation of the BDRF

sampling (e.g. MODIS takes a very limited number of ’angels ’ in a day) change the value and uncertainty. Application to the

sensor/mission targeted by the authors would be most relevant.20

It would indeed be most relevant, but cannot be done in the time imparted to submit revisions to this paper. However,

it is something to be done in the future.Furthermore, applications can be done on different instruments in the Solar

System (MODIS, CRISM, OMEGA, ...) each one with specific observation conditions. We do not think that a specific
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sensor would be more relevant than another. The purpose of this article is to focus on the direct and inverse radiative

transfer model validation. Future work will be done to analyze a specific sensor.

The inversion method developed seems inadequate regarding the speed criteria. Reference to this criteria should be removed

or a variational method should be used to offer a benchmark, such methods are so common that any scientific language has a

few of them (see details below).5

The method is adequate regarding the speed criterion, in the particular case where the computational time of the

direct model decreases with the number of elements of the database (see comments below). In our case, it is much faster

than any MCMC method as the direct model is extremely slow for the calculation of one spectrum (about a second)

and becomes very fast for the calculation of large databases (< 0.01s per spectrum) due to the re-use of temporary

calculations.10

In addition, MCMC requires the computation of millions of candidates (to fill the Markov chain) per data to analyze.

The target sensors are usually hyperspectral images with billions of spectra so that the MCMC should be duplicates

billions of times. In our strategy, the database is computed once (direct model) and the inversion is a simple matrix

multiplication so that the hyperspectral case can be solved in a reasonable amount of time.

We agree that this particularity was not well explained and a point was added in the discussion about the speed15

criterion to rectify that lack.

At last to avoid misunderstanding, it has been suggested that ’grain size ’ is reserved to the ’maximal extent ’ measured

with a hand lens (Fierz 2009). Optical radius or diameter is the precise and relevant term for the present study. I recommend it

should be changed throughout the paper.

It has been changed throughout the paper.20

My recommendation is to improve the readiness and interest for TC audience before acceptation.

Detailed comments.

- English editing is required. Remove future in the introduction and in most of the paper.

English editing has been done and future has been removed

- remove excessive words like ’ultra ’ ’golden era ’ ’kill ’25

- L6P3 is not clear (what is spectral spot?).

- L16P3 is not clear.
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- In general ’inversion ’ is unclear with the model and parameter to be estimated precisely defined. Use retrieval, estimate,

estimation, ...

The term ’inversion’ refers to the inverse problem in mathematics, as it means ’solving the inverse problem’. For this

reason we feel that it is the clearest term. In some scientific communities, the term ’assimilation’ is also used. A sentence

has been added to the introduction to clarify that point.5

- L24P3. It’s difficult to follow with these parameters not properly defined.

- L1P4. Not clear. Remove this information if you mean something that is not in this paper.

- the model is half described which is acceptable owing to the earlier publication but this is not reader-friendly. Consider to

improve this section.‘

It was a choice to half describe this model to give to the reader the key assumptions and general structure of the10

algorithm, but we intentionally avoided equations as we considered it even less reader friendly. We considered that for

a more detailed description, the reader should directly check the paper dedicated to the said description.

- L10P4. What means ’from IPAG ’ ?

It is a research laboratory. The acronym has been replaced by the full name.

- L12P4. How large ?15

It is 200mm large, that is much larger than the 20mm large field of view.

- end of P4. A picture of the experiment and slab would be helpful.

Unfortunately, We do not have such a picture.

- L5P5. Figure order must be ascending.

- Section 3.2.3 should be in the results, at least the interpretation.20

- L1P6. Why ? Is there any reason to use the older reference at wavelength larger than 1 microns ? Computation of the

uncertainty associated with this issue would be interesting.

The dataset by Schmitt et al. is older but at a much higher spectral resolution. We thus used it when possible. However,

it does not cover the whole range of wavelengths measured. We chose Warren and Brandt dataset for the corresponding

wavelengths.25

- L15P6. Are ’m ’ and ’d ’ vectors ? If yes, use bold face. Considering only two parameters are used here, I suggest to

explicitly write the formula with the parameters instead of ’m ’ or ’d ’. This will be easier to follow.

Yes they are. The font has been corrected.

3



(m) is a set of parameters. It is not necessary a vector but in the general case, it is considered as one. For the inversion

of the roughness parameter, m is actually the scalar θ̄ and for the inversion of the diffuse spectra, m is the vector (p1,p2),

p1 being the thickness of the slab layer and p2 the grain diameter. As m changes in the course of the paper, we chose to

be as general as possible in the description of the method, and not to explicit the expression of m.

d is the data. It is an array of reflectances, and its size may vary. It is clearer for the reader to keep it as a vector.5

- L17P6. ’this problem ’ is not clearly stated. Please define what ’close ’ means. This vocabulary does not sound Bayesian.

The sentence has been clarified.

- L17P6. ’each quantity as a probability density function (PDF) ’ seems to be a leap. Do you mean each quantity is considered

as a random variable ?

Yes, except the data d. But d is not accessible. dmed, that is accessible is the measure of the data d, and is a random10

variable. As an example, if you measure several times the exact same data, you will get a dispersion in your measured

values that represents the uncertainties of your captor. In this paper, we consider these uncertainties as Gaussian.

- L18P6. What means ’In non-linear direct problems ’ ? Non-linear, direct and the plurial of problems are odd.

This means that the model F is not linear, so F (m) is not a linear combination of the elements of m

- L22P6. Do you mean Multivariate normal distribution ?15

IYes, the term has been changed.

- L22P6. I don’t understand what is ri compared to d ?

This is a mistake. This ri is a remnant from another version of the par par that has been corrected and should have

had been removed before...

- L25P6. ’with ? i being the standard deviations of each measurement. ’ There is a conceptual problem here. A single mea-20

surement has potentially error but not a standard deviations. Random variables and sets of samples have standard deviations.

The sentence seemed to be unclear. The σi are the standard deviations that characterize the uncertainties of the

captors : if you repeat the same measure 1000 times, you will get 1000 different results. We suppose here that these 1000

different measure follow a normal distribution characterized by a standard deviation σi. Since each sensor (for each

channel) may have a different noise level, the standard deviation sigma is depending on i.25

- L5P7. Which also supposes that the covariance matrix is fully known. In a typical Bayesian application it would be included

in the parameter spaces.
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Yes, we suppose that the covariance matrix is fully known. It can be determined experimentally when characterizing

the captors

- L3P8. How fine ? Why not to use a Monte-Carlo Markov Chain sampler which is incomparably more efficient and has not

the problem of chosing a step ?

The sampling of the parameters space must be determined by a separate statistical study, because it depends on the5

variability of the direct model itself on its parameters. If it is too coarse, some of the model’s complexity is lost, and if it

is too fine, the results is not altered but some computational time is wasted.

We chose this method instead of a more classical MCMC method, because the direct model we use is not adapted

to calculation on the fly as requested by these method. Indeed, the computation time for one reflectance is about one

second. However, we optimized the algorithm to be able to re-use many of the temporary values, and this improvement10

allow us to calculate large synthetic databases of millions of spectra in a reasonable time (a few days).

The problem we address here is how to propagate rigorously and efficiently the uncertainties, without being able to

use iterative methods such as MCMC methods. We chose to keep the bayesian formalism as it is widely used in the

community, but with a different method of sampling.

Moreover the hyperspectral application requires the inversion to be very fast and MCMC requires millions of direct15

model per observation. With our method, direct models are computed only once and thus the inversion is much faster.

Finally with our new method, we manage to inverse a spectrum in a time that would not even be enough to run one

single direct model.

- L14P8 and L17P8. Reference

- L1P9: ’The best match ’ please rephrase in proper Bayesian terms. Or remove any reference to Bayesian method and20

likelihood, and use fit, cost function, etc...

With the method described in this paper, there is both a best match (maximum likelihood) and the solution that is

a probability density function (PDF). They are not necessarily the identical though. Indeed, as the parameters space is

sampled, the a posteriori PDF is sampled, and even if its mean is likely to be in between two steps, there is one element

of the synthetic database that is closer to the mean of the PDF than the others : the best match. See Figure 9 for an25

example. It is not incompatible with bayesian formalism. This point has been clarified in the text.

- L11P9: Is it really justified considering that the ice absorption dataset has a resolution 10nm. Give a rational or remove.

The optical constants may strongly vary within the bandwidth of one instrumental channel. For example if we want

to simulate the reflectance at a given wavelength, and that there is only one 0.5nm ice absorption band within the

bandwidth of this particular channel. Then the reflectance that will be measured will depend on the position of the30

absorption band. if the absorption band is centered on the central wavelength of the channel’s bandwidth then the
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measured reflectance will be lower than if the band is close to the edges of the bandwidth (as the captor’s response is

not constant within its bandwidth). We need a high resolution and a rigorous downsampling to be able to simulate this.

- L13P10: What is a ’stack ’ of pdf ?

We mean the normalized sum of 1000 PDF. It has been clarified.

- L20P10: not sure to follow what is ’posterior uncertainty ’. Is it the standard deviation ? I’m also uncomfortable with5

relative uncertainty larger than 100

When the a posteriori PDF can be described as Gaussian, then it is characterized only by its mean and its standard

deviation. In this case, we define the a posteriori uncertainty as two times the standard deviation (2σ in equations 12

and 17). This value may be larger than the mean of the a posteriori PDF, resulting in a relative a posteriori uncertainty

larger than 100%.10

- L21P11: What means compatible ?

’Compatible’ means that the simulation is within the range of uncertainty of the measure.

- L31P11: The sentence starting by ’It would require... ’ is not clear.

- L5P12: Why roughness and tilt of the sample would have the same results in the BDRF ? The description of the model

roughness is clearly needed in this paper, even if it was already published elsewhere.15

The roughness parameter in this case may be interpreted as the mean slope angle.

- L17P12: ’mismatch between the best fits ’ these terms do not sound Bayesian.

See previously (authors answer for comment on L1P9) for more detailed comment. These terms are unusual in a

Bayesian framework, but in this particular case they are justified: The best fit/best match are the elements of the

database that are closest to the mean of the a posteriori PDF.20

Still, we agree that the use of the terms ’best match’, ’best fit’ etc are confusing in a Bayesian method and we replaced

them by ’maximum likelihood’.

- L24P12, L12P13: even if snow has been evolving, it would be interesting to show the grain size measurements ? How are

obtained the ’independent measurements ’ ?

Unfortunately, we only have one independent measurement of the snow grain-size, that is a photo taken at the begin-25

ning of the experiment (see Figure 1).

- L17P13: The sampler used (lookup table) is very inefficient compared to many MCMC samples. Moreover, considering

that for most applications the uncertainty will be of little use, using a variational optimization algorithm which returns the

Hessian should be sufficient. Variational optimization is probably another order of magnitude faster than MCMC. This must be
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Figure 1. Photo of the snow taken before the spectral measurements. 15 graduations represents 1mm.

made clear because the text indirectly suggests that the presented method is efficient. The model seems indeed fast, but since

the number of calculations is huge, a much slower model with a good inversion method would perform as well.

There is a particularity here that the direct model is fast when computing large databases, but very slow to simulate

of single spectrum. In the end the method is faster than any MCMC method, as the inversion takes less time that what

would be required to simulate one single spectrum with the direct model. This is why we consider (and suggest it in the5

text) that this method is efficient.

Still it is true that with a model which computation time vary linearly with the number of simulated spectra, MCMC

methods would be much more efficient, and we do not suggest otherwise.

- L28P13: The first sentence suggests that by using Bayesian inversion, modeling error was accounted for. This is not the

case (as written in the paper). The method only accountd for uncertainties resulting from observation errors (and considering10

the errord are known while it could be estimated).

Indeed this sentence seems out of context and have been replaced. We meant that regardless of the ability of the

model to correctly reproduce the reality, the synthetic database created will display an inherent variability, that will

have an impact on the a posteriori uncertainties, for a given level of error. In particular, if the variability associated
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with a parameter is smaller than the measurement error, then the method will not be able to correctly retrieve the said

parameter.

- What is proposed for the data availability (cf TC data policy) ?

The data will be publicly accessible.

- Figures 4, 5, 6: increase the size of the axes and tick labels.5

- Figure 3: is the phase angle the relevant parameter ? I mean is the BDRF only dependent on the difference of the incident

and emergent angles ? Or I miss the point.

- Figure 4: unit on y-label (should be m−1)

Units were indeed missing on y-labels for several figures... It has been corrected.

- Figure 5: uppercase are missing.10

- Figure 7 and 8 unit for the reflectance (is it percent?). Same in Figure 10 and 13 ?

It is the reflectance factor, that is defined as the ration between the bidirectional reflectance of the surface and the

one of a perfectly lambertian surface. It has no unit. It has bee precised in the captions.

- Figure 8. Remove ’.0 ’ everywhere. Adjust colorscale on the right plots to avoid decimal numbers.

We felt that it was misleading for the reader as this change in the color scale does not change visibly the plot, and in15

this way make the reader think that both plot have identical maxima. You visibly think different, and we chose to follow

your advice and did the change.

- Figure 10: ’The thicknesses indicated in the captions ’. Captions/Titles are missing ?

- Figure 13: Why means ’R ’ on this graph ?

It is the reflectance factor at λ= 1.5µm. It is mentioned in the caption, and has been even more clarified.20

Comments from reviewer #2

The paper has improved on the original version, in response to the comments of the original two reviewers. There are still quite

a few minor issues with the written English (which remain evident as a fair bit of new text has been introduced in the second

version), and the paper would therefore benefit from a thorough checking and copy-edit. Once these presentational matters

have been cleared up, the paper should become suitable for publication in TC.25

Thorough checking and english editing have been done.
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Abstract.

We present an effort to validate a radiative transfer model previously developed, and an innovative bayesian inversion method

designed to retrieve the properties of slab ice covered surfaces. This retrieval method is adapted to satellite data, and is able to

provide uncertainties on the results of the inversions. We focused in this study on surfaces composed of a pure slab of water

ice covering an optically thick layer of snow. We see sought to retrieve the roughness of the ice/air interface, the thickness of5

the slab layer and the mean grain-size grain diameter of the underlying snow. Numerical validations have been conducted on

the method, and showed that if the thickness of the slab layer is above 5 mm and the noise on the signal is above 3%, then it

is not possible to invert the grain-size grain diameter of the snow. On the contrary, the roughness and the thickness of the slab

can be determined even with ultra high levels of noise up to 20%. Experimental validations have been conducted on spectra

collected from laboratory samples of water ice on snow using a specro-gonio-radiometer. The results are in agreement with the10

numerical validations, and show that a grain-size grain diameter can be correctly retrieved for low slab thicknesses, but not for

bigger ones, and that the roughness and thickness are correctly inverted in every case.
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1 Introduction

Various species of ices are present throughout the solar system, from water ice and snow on Earth to nitrogen ice on Triton

(Zent et al., 1989), not to forget carbon dioxide ice on Mars (Leighton and Murray, 1966). The physical properties of the cover

also have an impact on the energy balance: for example, the albedo depends on the grain size of the snow (Dozier et al., 2009;

Negi and Kokhanovsky, 2011; Picard et al., 2009; Mary et al., 2013) , on the roughness of the interface (Lhermitte et al., 2014),5

on the presence or not and the physical properties of impurities (Dumont et al., 2014). The study and monitoring of theses

parameters is a key to constraining the energy balance of a planet.

Radiative transfer models have proven essential for retrieving such properties (Zege et al., 2008; Negi and Kokhanovsky,

2011) and their evolution at a large scale, and different families exist. Ray-tracing algorithms, such as those described in Picard

et al. (2009) for snow, Pilorget et al. (2013) for compact polycrystalline ice or Muinonen et al. (2009) for particulate media10

such as rough ice grains in an atmosphere, simulate the complex path of millions of rays into the surface. Such modelings are

experiencing a golden era booming due to the positive comparison between models and exact calculations (e.g. (Muinonen

et al., 2012; Mishchenko et al., 2015)). Analytical solutions of the radiative transfer in homogeneous granular media have been

developed, for example, by Shkuratov et al. (1999) and Hapke (1981). They are fast, but when the surface cannot be described

statistically as a mono-layer, they must be combined with another family of techniques such as discrete ordinate methods like15

DISORT (Stamnes et al., 1988). These methods have been widely studied on Earth snow (Carmagnola et al., 2013; Dozier

et al., 2009; Dumont et al., 2010; Painter and Dozier, 2004) and other planetary cryospheres (Appéré et al., 2011; Eluszkiewicz

and Moncet, 2003), modeling a granular surface. Compact polycrystalline ices have, however, been recognized to exist on

several objects: CO2 on Mars (Kieffer and Titus, 2001; Eluszkiewicz et al., 2005), N2 on Triton and Pluto (Zent et al., 1989;

Eluszkiewicz and Moncet, 2003) and probably SO2 on Io (Eluszkiewicz and Moncet, 2003), as suggested by the very long20

light path lengths measured, over several centimeters to decimeters (Eluszkiewicz, 1993; Quirico et al., 1999; Douté et al,

1999, 2001). In particular, the Martian climate is mostly controlled by a seasonal CO2 cycle that result in the condensation and

sublimation of deposits constituted of a layer up to a meter thick of nearly pure CO2 ice, possibly contaminated with H2O ice

and regolith dust (Leighton and Murray, 1966; Eluszkiewicz et al., 2005). The monitoring of the evolution of these deposits’

composition would bring key constraints to the water ice cycle on Mars and dust transport at the surface.25

Compact slabs have very different radiative properties from close packed granular media, and radiative transfer models

have been developed to study their characteristics (e.g. (Mullen and Warren, 1988; Jin et al., 1994; Perovich, 1996; Jin et al.,

2006)) in the case of sea or lake ices. We developed an approximated model (Andrieu et al., 2015) model that has the interest

of being able to model a layer of ice covering a surface with radically different optical properties, for instance a refractive

index, unlike it predecessors. It was designed to study planetary ice slabs, with a fast numerical implementation, which has30

already been numerically validated and aims at the analysis of massive spectro-imaging planetary data such as the OMEGA

(Bibring et al., 2004) or CRISM (Murchie et al., 2007) datasets for the study of Mars icy surface and seasonal cycle, NIMS

(Carlson et al., 1992) dataset for SO2 on Io or RALPH (Reuter et al., 2009) data for the ices of Pluto. It was originally designed

to the study of Martian seasonal ice deposits, using massive spectro-imaging datasets, such as OMEGA (Bibring et al., 2004)
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or CRISM (Murchie et al., 2007) datasets. For this purpose, it is semi-analytic and implemented to optimize the computation

time. However, the algorithm was built to be adaptable to any other spectroscopic data, from terrestrial water ice laboratory

measurements as is the case of this work, to the study of SO2 ice on Io or N2 ice on Pluto unsung respectively the NIMS

(Carlson et al., 1992) and RALPH (Reuter et al., 2009) datasets.

In the present article, we will test the accuracy of this approximated model on laboratory spectroscopic measurements of pure5

water ice on top of snow bidirectional reflectance distribution function (BRDF). On the same time, we present an innovative

bayesian inversion method that was developed to retrieve the properties of Solar System compact ices using satellite spectro-

imaging data. In this paper, the term ’inversion’ is used and means ’solving the inverse problem’. The slabs that will be are

studied thus contain no impurity, and the surface properties we will seek to retrieve will be are the thickness of the ice, the

roughness of the surface and the grain-size grain diameter of the underlaying snow. The main goals of this work are thus (i) to10

test the ability of the model to reproduce reality and (ii) to propose an inversion framework to retrieve surface ice properties,

including uncertainties, in order to demonstrate the applicability of the approach to satellite data.

We presents a set of spectro-goniometric measurements of different water ice samples put on top of snow using the spectro-

radiogoniometer described in Brissaud et al. (2004). Three kind of experiments were conducted. First, the BRDF was measured

for a snow layer only, and then measured again after adding a slab ice layer at the top. The objective was to test the effect of15

an ice layer at the top on the directivity of the surface. Second, the specular spot lobe was closely investigated, at high angular

resolution, at the wavelength of 1.5 µm, where ice behaves as a very absorbing media. Finally, the bidirectional reflectance

was sampled at various geometries on 61 wavelengths ranging from 0.8 to 2.0 µm. In order to validate the model, we made

qualitative tests to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a

Bayesian inversion method in order to estimate the sample thickness, surface roughness and snow grain-size grain diameter20

from the radiative measurements only. A simple comparison between the retrieved parameters and the direct independent

measurements allowed us to validate the model.

The inversion algorithm that will be is tested is based on lookup tables that minimize the computation time of the direct

model. The solution is then formulated as a probability density function, using bayesian formalism. This strategy will be is

very useful for analyzing hyperspectral images. The thickness of ice estimated from the inversion will be is compared to real25

direct measurements. In addition, the power distribution in specular lobe, that is determined by the roughness of the surface

will be is adjusted to demonstrate that the model is able to reasonably fit the data with a coherent roughness value.

2 Description of the model

The model, from Andrieu et al. (2015), is inspired by an existing one described in Hapke (1981) and Douté and Schmitt (1998),

which simulates the bidirectional reflectance of stratified granular media. It has been adapted to compact slabs, contaminated30

with pseudo-spherical inclusions, and a rough top interface. In the context of this work, we suppose a layer of pure slab ice,

overlying an optically thick layer of granular ice, as described in Fig. 1. The roughness of the first interface is described using

the probability density function of orientations of slopes defined in Hapke (1984). This distribution of orientations is fully
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described by a mean slope parameter θ̄, that can be interpreted as a mean slope parameter at the surface, in the case of small

angles. The ice matrix is described using its optical constants and its thickness.

Figure 2 illustrates the general principle of the model. The simulated bidirectional reflectance results from two separate

contributions: specular and diffuse. The specular contribution in the model is estimated from the roughness parameter, the

optical constants of the matrix, and the apertures of the light source and the detector. In practical applications, the optical5

constants of the ice matrix, and the optical apertures are known parameters. The specular contribution for a given geometry

only depend on the orientation of slopes at the surface, that is fully determined by θ̄. The total reflection coefficient at the

first rough interface is obtained by integrating specular contributions in every emergent direction, at a given incidence. This

gives the total amount of energy transmitted into the system constituted of the contaminated slab and the substrate. The diffuse

contribution is then estimated through solving the radiative transfer equation inside this system under various hypotheses. The10

following considerations are made. (i) The first transit through the slab is anisotropic due to the collimated radiation from

the source, and that there is an isotropization at the second rough interface (i.e., when the radiation reaches the semi-infinite

substrate). For the refraction and the internal reflection, every following transit is considered isotropic. (ii) The geometrical

optics is valid. (iii) If the matrix is contaminated with inclusions, unlike in this work, then these inclusions are supposed to be

close to spherical and homogeneously distributed inside the matrix. The reflection and transmission factors of the layers are15

obtained using an analytical estimation of the Fresnel coefficients described in Chandrasekhar (1960) and Douté and Schmitt

(1998), as well as a simple statistical approach, detailed in Andrieu et al. (2015). The contribution of the semi-infinite substrate

is described by its single-scattering albedo. Finally, as the slab layer is under a collimated radiation from the light source, and

under a diffuse radiation from the granular substrate, the resulting total bidirectional reflectance is computed using adding–

doubling formulas (Stamnes et al., 1988; Douté and Schmitt, 1998; Van de Hulst, 2012).20

In this work, the radiative transfer model described in Andrieu et al. (2015) is used to simulate the reflectance factor spectrum

of a pure slab of water ice covering a layer of snow, as represented in Figure 1. This spectrum may vary with three parameters:

(i) the roughness θ̄ of the slab ice surface, that characterize the power distribution in the specular lobe ; (ii) the thickness h of

the slab ice layer, that determines the absorption in the ice layer, and (iii) the grain diameter �s of the snow that determines

the absorption in the snow.25

3 Data

3.1 Spectro-radiogoniometer

The bidirectional reflectance spectra were measured using the spectro-radiogoniometer from IPAG Institut de Planétologie et

d’Astrophysique de Grenoble fully described in Brissaud et al. (2004). We collected spectra in the near infrared at incidences

ranging from 40 to 60◦, emergence angles from 0 to 50◦, and azimuth angles from 0 to 180◦. The sample is illuminated with30

a 200mm large monochromatic beam (divergence < 1◦) and the near-infrared spectrum covering the range from 0.800 to

4.800µm is measured by an InSb photovoltaic detector. This detector has a nominal aperture of 4.2◦, which results in a field

of view on the sample of approximately 20mm in diameter. The minimum angular sampling of illumination and observation
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directions is 0.1◦, with a reproducibility of 0.002◦. In order to avoid azimuthal anisotropy, the sample is rotated during the

acquisition. The sample rotation axis may be very slightly misadjusted, resulting in a notable angular drift on the emergence

measured up to 1◦.

3.2 Ice BRDF measurements

The ice samples were obtained by sawing artificial columnar water ice into circular sections of 20 cm in diameter. These5

sections were put on top of an optically thick layer of compacted snow that was collected in Arselle, in the French Alps.

The spectral measurements were conducted in a cold chamber at 263 K. However, the ice and the snow were unstable in the

measurement’s environment, due to the dryness of the chamber’s atmosphere. The grain size of the snow showed an evolution,

and the thickness of a given slab showed a decrease of 0.343mm day−1. Each sample needs an acquisition time of 10h. For

each measurement, the ice slab was sliced, and its thickness was measured in five different locations. It was then set on top of10

the snow sample, and this system was put into rotation in the spectro-goniometer for the measurement. The sample complete

a full rotation (10 s) during the measurement of the reflectance at one wavelength and one geometry. As the surface is not

perfectly planar, the measured thickness is not constant. This results in an 2σ standard deviation in the measurement of the

thickness than ranges from 0.54 to 2.7mm in our study, depending on the sample.

3.2.1 Specular contribution15

The specular reflectancewas measured on a 12.51mm thick slab sample on top of Arselle snow. This sample is described as

sample 3 in the next paragraph. The illumination was at an incidence angle of 50◦, and 63 different emergent geometries were

sampled, ranging from 45 to 55◦ in emergence and from 170 to 180◦ in azimuth. A measure at the wavelength of 1.5µm is

shown in Fig. 8a. The sampling is 1◦ in emergence and azimuth within 47 and 53◦ in emergence and 175 and 180◦ in azimuth.

3.2.2 Ice on snow diffuse reflectance spectra20

The diffuse contribution was measured on three samples of different slab thickness. The three thicknesses were measured on

different locations of the samples with a caliper before the spectro-goniometric measurement, resulting in h1 = 1.42±0.47mm,

h2 = 7.45±0.84mm, h3 = 12.51±2.7mm, respectively, for samples 1, 2 and 3, with errors at 2σ. Sixty-one wavelengths were

sampled ranging from 0.8 to 2.0µm. Spectra were collected on 39 different points of the BRDF for the incidence, emergence

and azimuth angles: [40,50,60◦], [0,10,20] and [0,45,90,140,160,180◦], respectively. This set of angles results in only 3925

different geometries because the azimuthal angle is not defined for a nadir emergence.

Diffuse reflectance spectra of natural snow only were also measured before putting a slab on top of it. The objective was to

estimate the effect of a slab layer on the BRDF.

3.2.3 Snow diffuse reflectance spectra
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Diffuse reflectance spectra of natural snow only were also measured. The objective was to estimate the effect of a slab layer

on the BRDF. Figure 3 shows the reflectance factor (the ratio between the bidirectionnal reflectance I/F of the surface and the

reflectance of a perfectly lambertian surface) vs. phase angle (angle between incident and emergent directions) of the snow and

the snow covered with a 1.42mm thick ice slab (sample 1). It illustrates the two most notable effects of a thin layer of slab ice

on top of an optically thick layer of snow. The most intuitive effect is to lower the level of reflectance: it is due to absorption5

during the long optical path lengths in the compact ice matrix as the dependance of the reflectance on the phase angle is almost

killed by the addition of the ice layer. The second effect is that the radiation is more Lambertian than that of snow only. These

data give credit to the first hypothesis of isotropization of the radiation formulated in the model (see Sect. 2). The description

of the bottom granular layer as Lambertian, defined only by its single-scattering albedo, may be considered simplistic, but this

data set shows that a thin coverage of slab ice, even on a very directive material such as snow, is enough to strongly flatten the10

BRDF.

4 Method

We designed an inversion method aimed at massive data analysis. This method consists of two steps: first, the generation of

a synthetic database that is representative of the variability in the model, and then comparison with actual data. To generate the

synthetic database, we used optical constants for water ice at 270K. The 7K difference between the actual temperature of the15

room and the temperature assumed for the optical constants has a negligible effect. We combined the data sets of Warren and

Brandt (2008) and Schmitt et al. (1998), making the junction at 1µm, the former set for the shorter wavelengths and the latter

for the wavelengths larger than 1µm.

In order to validate the model on the specular reflection from the slab, we chose to use the reflectance at 1.5µm, where the

ice is very absorptive. Figures 7 and 8 clearly demonstrate that there is a negligible diffuse contribution in geometry outside20

the specular lobe from the sample with a 12.51mm thick pure slab. Thus, the roughness parameter θ̄ is the only one impacting

the reflectance in the model. We chose to invert this parameter first and validate the specular contribution.

We will then focus focused on the validation in the spectral domain, for the diffuse contribution. We will use used the

estimation of the roughness parameter θ̄ obtained earlier and the spectral data in order to estimate the slab thickness and the

grain size of the snow substrate. To do this, we assume that the roughness is not changing significantly enough to have a notable25

impact on diffuse reflectance from one sample to another. This assumption is justified by the fact that the different columnar

ice samples were made the same way, as flat as possible and the low value of θ̄ retrieved as discussed in the next section. It is

confirmed by the results of Sect. 4.2, which suggest a very low roughness, as expected. Such low roughness parameters have

negligible influence on the amount of energy injected into the surface.

4.1 Inversion strategy30

The inversion consists in estimating the model parameters m m (i.e. the slab thickness, the roughness parameter, the snow

grain-size grain diameter ) from the models F (m) F (m))(the reflectance simulations) that are close to that best reproduce the
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data d d (the reflectance observations). Looking for these parameters sets is called the inversion problem. Tarantola and Valette

(1982) showed that this inverse problem can be mathematically solved by considering each quantity as a probability density

function (PDF). In non-linear direct problems, the solution may not be analytically approached. Nevertheless, it is possible to

sample the solutions’ PDF with a Monte Carlo approach as shown in Mosegaard and Tarantola (1995), but this solution is very

time consuming.5

The actual observation is considered as prior information on the data ρD(d) in the observation space D. It is assumed

to be a N -dimension Multivariate Gaussian PDF Distribution G(dmes,C), confirmed with mean centered on dmes and with

a covariance matrix C. The values ri are the observations for each element (angular or spectral as described later). The

measurements at any given wavelength/geometry are supposed to be independent with each other, as each measurement of one

wavelength, at one geometry is done individually. The matrix C is thus assumed to be diagonal and its diagonal elements Cii10

are σ2
1 , . . . ,σ

2
N , with σi being the standard deviations of corresponding to the uncertainties on each measurement. The prior

information on model parameters ρM(mm) in the parameters space M is independent of the data and corresponds to the state

of null information µD(dd) if no information is available on the parameters. We consider a uniform PDF in their definition

space M . The posterior PDF in the model space σM(mm) as defined by Bayes’s theorem (Tarantola and Valette, 1982) is
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σM(mm) = kρM(mm)L(mm), (1)

where k is a constant and L(mm) is the likelihood function,

L(mm) =

∫
D

ρD(dd)θ(dd |mm)

µD(dd)
dd, (2)

where θ(dd |mm) is the theoretical relationship of the PDF for dd given mm. We do not consider errors on the model itself,

so θ(dd |mm) = δ(F (m)) is also noted dsim for simulated data. So the likelihood is simplified into5

L(m) = G(F (m)−dmes,C), (3)

and in the case of an uniform prior information ρM(mm), the posterior PDF is

σM(mm) = kL(mm). (4)

This expression is explicitly

σM(mm) = k.exp

(
−1

2
× t (F (m)−dmes)C

−1
(F (m)−dmes)

)
, (5)10

where t is the transpose operator that applies to (F (m)F (m)− dmesdmes). The factor k is adjusted to normalize the PDF.

The mean value of the estimated parameter can be computed by〈
mm

〉
=

∫
M

mm.σM(mm)dmm, (6)

and the standard deviation,
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σ〈m〉 =

∫
M

(
mm− m̄m

)2

.σM(mm)dmm. (7)

In order to speed up the inversion strategy but keep the advantage of the Bayesian approach, we choose to sample the parameter

space M with regular and reasonably fine steps, noted i. The likelihood for each element is

L(i) = exp

(
−1

2
× t (dsim(i)−dmes)C

−1
(dsim(i)−dmes)

)
. (8)

The derivation of posterior PDF with such formalism for specular lobe inversion and for spectral inversion is explained in the5

next sections.

4.2 Specular lobe

To study the specular spot lobe, we have to consider the whole angular sampling of the spot as single data measurement.

Similar to the “pixel” (contraction of picture element), we choose to define the “angel” (contraction of angular element), as

a single element in a gridded angular domain. Interestingly, angel also refers to a supernatural being represented in various10

forms of glowing light. A single angel measurement could not well constrain the model, even at different wavelengths. Instead

a full sampling around the specular lobe should be enough, even at one single wavelength. We chose a wavelength where the

diffuse contribution was negligible in order to simplify the inversion strategy. We chose to focus on the 1.5 µm wavelength, as it

showed as we measured for this channel a penetration depth lower than 1 mm 1mm and thus much lower than the thickness of

the used sample. We first generated a synthetic database (lookup table), using the direct radiative transfer model. We simulated15

spectra in the same geometrical conditions, for a 12.5mm thick ice layer over a granular ice substrate constituted of 1000µm

wide grains. These two last parameters are not important since the absorption is so high in ice, such that the main contribution

is from the specular reflection, and the diffuse contribution is negligible (the penetration depth inside a water ice slab at the

1.5 µm wavelength is lower than one millimeter).

The sampling of the parameter space, i.e. the lookup table, must correctly represent the variability of the model according20

to its parameters. For this study, we sampled the roughness parameter from 0.1 to 5◦ with a constant step dθ̄ = 0.01◦. We

use a likelihood function L defined in Eq. (8), where dsim and dmes are ngeom-elements vectors, with ngeom the number of

angels (63 in this study). They respectively represent the simulated and measured reflectance at a given wavelength in every

geometry. C is a ngeom×ngeom matrix. It represents the uncertainties in the data. In this case, we considered each wavelength

independently, thus generating a diagonal matrix, containing the level of errors given by the technical data of the instrument25

described by Brissaud et al. (2004). It corresponds at this wavelength to 2% of the signal.The roughness parameter θ̄ returned

by the inversion will be is described by its normalized PDF:

P
{
θ̄(i)

}
=

L(i)dθ̄∑
jL(j)dθ̄

=
L(i)∑
jL(j)

. (9)

The best match is the value The value θ̄(i) in the database with the highest probability (maximum likelihood) correspond to

the sampling step that is closest to the maximum of the a posteriori PDF. If the PDF is close to a Gaussian, then it the solution30
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to the inverse problem can be estimated by its mean,

〈
θ̄
〉

=

∑
i θ̄ (i)L(i)∑
iL(i)

, (10)

and associated standard deviations,

σ〈θ̄〉 =

√∑
i

(
θ̄ (i)−

〈
θ̄
〉)2

L(i)∑
iL(i)

. (11)

We give error bars on the results that correspond to two standard deviations, and thus a returned value for θ̄ that is5

θ̄r =
〈
θ̄
〉
± 2σ〈θ̄〉. (12)

4.3 Diffuse spectra

When out of the specular spot lobe, the radiation is controlled by the complex transfer through the media (slab ice and bottom

snow). The experimental samples were made of pure water slab ice, without impurity. We generated the lookup table for

every measurement geometry at very high spectral resolution (4.10−2 nm), and then down-sampled it at the resolution of the10

instrument (2nm). We sampled the 17 085 combinations of two parameters for the 39 different geometries: p1 the thickness of

the slab from 0 to 20mm (noted i= [1,201]) every 0.1mm (noted dp1), and p2 the grain size of the granular substrate from

2 to 25µm every 1µm and from 25 to 1500µm every 25µm (noted j = [1,85] and the corresponding dp2(j)). The parameters

space is thus irregularly paved with dp(i, j) = dp1.dp2(j).

For the inversion, we used the same method as previously described, with a likelihood function L that is written as in Eq. (8).15

Two different strategies were adopted. First, we inverted each spectra independently. Thirty-nine geometries were sampled

(described in Sect. 3.2), and thus we conducted 39 inversions for each sample. This time dsim and dmes are thus respectively

the simulated and measured spectra. Then dsim and dmes are nb-elements vectors, where nb is the number of bands (61 in this

study) and C is a nb×nb matrix. As previously (see Sect. 4.2), we considered each wavelength independently, thus generating

a diagonal matrix, containing the level of errors given by the technical data of the instrument given by Brissaud et al. (2004).20

The error is a percentage of the measurement, and thus C will be is different for every inversion.

Secondly, we inverted the BRDF as a whole, for each sample. For this method, dsim and dmes are respectively the simulated

and measured BRDF and are thus nb×ngeom-elements vectors (2379 in this study), where nb is the number of bands (61 in this

study) and ngeom is the number of geometries (39 in this study) sampled. C is a (nb×ngeom)× (nb×ngeom) diagonal matrix,

containing the errors on the data. We represent the results the same way as previously, but there are two parameters to inverse.25

For the sake of readability, we plot the normalized marginal probability density function for each parameter. We present here

the general method for the inversion of np = 2 parameters: the slab thickness and the grain size of the substrate. The PDF for

the two parameters p is described by

P {p(i, j)}=
L(i, j)dp(i, j)∑
i

∑
jL(i, j)dp(i, j)

. (13)
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For a given parameter p1, the marginal PDF of the solution is

P {p1(i)}=
L′ (i) dp1 (i)∑

i

∑
jL(i, j) dp(i, j)

, (14)

with L′ (i) =
∑
jL(i, j)dp2(j). The best match is the value The value p1(i) in the database with the highest probability

(maximum likelihood) correspond to the sampling step that is closest to the maximum of the a posteriori PDF. The marginal

PDF can be described by the mean,5

〈p1〉=

∑
i p1 (i)L′ (i) dp1 (i)∑
i

∑
jL(i, j) dp(i, j)

, (15)

and the associated standard deviation,

σ〈p1〉 =

√∑
i (p1 (i)−〈p1〉)2

L′ (i) dp1 (i)∑
i

∑
jL(i, j) dp(i, j)

. (16)

As for the roughness parameter, we give error bars on the results that correspond to two standard deviations, and thus a returned

value for p1 that is10

p1r = 〈p1〉± 2σ〈p1〉. (17)

4.4 Numerical validations of the inversion method

In order to numerically validate the inversion method described above, two kind of tests were conducted. First, we applied

a gaussian noise and inverted every spectrum in the synthetic spectral database. We show that with a negligible noise, the

parameters are always correctly retrieved with negligible uncertainties, and as the level of noise on the data increases, so do15

the uncertainties on the results. Secondly, we generated spectra for parameters that were not sampled in the database and tried

to recover successfully their characteristics.

On Figure 4 each curve corresponds to a the normalized sum of stack of 1000 a posteriori PDF for the grain size of the

underlying snow resulting from 1000 random noise draws of the same 2 % level. We name this normalized sum of PDF a

’stack’ in the remainder of this article. Figure 4a is obtained for a low slab thickness of 1mm. In this case, the grain size of20

the snow can be correctly estimated: the PDF are centred on the correct value and the dispersion suggests an a posteriori

uncertainty lower than the retrieved value. When the thickness of the slab layer increases, so does the a posteriori uncertainty

on the estimation of the grain-size grain diameter . For a slab thickness of 5 mm (Figure 4b), the a posteriori uncertainty is of

the same order than the estimated value, meaning that the grain-size grain diameter cannot be retrieved. The grain-size grain

diameter of the snow thus cannot be retrieved for slab thicknesses greater than 5 mm.25

Figure 5a represents the stack of 1000 a posteriori PDF for the thickness of the ice layer. These PDF do not depend on

the grain-size grain diameter of the snow, but only on the thickness itself and the level of noise. It shows that the thickness

can be estimated, in the experimental conditions (2 % noise level) with an uncertainty of 2 % for lowest thicknesses to 5 %

for highest ones. All obtained a posteriori PDF for the thickness were very close to gaussian. We were thus able sum them
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up by their means and standard deviations, allowing us to plot for example the uncertainty on the thickness estimation as a

function (Figure 5b) of the thickness that we want to estimate and (Figure 6) of the level of noise on the data. Figure 5b

show the uncertainty (at 2 σ) on the estimation of the thickness of the slab layer as a function of the thickness itself, in the

experimental conditions described by Brissaud et al. (2004), that means a 2 % noise level on the signal. This relative uncertainty

does not depend on the thickness in the range of values tested. The low values for thicknesses below 1 mm is an effect of the5

discretisation in the LUT: the thickness has been sampled every 0.1 mm. Below 1mm, this sampling step is large relatively

to the values itself and ranges from 10 % to 100 %. The relative uncertainty that we expect to be about 5 % is then no longer

measurable, and the value drops to 0.

Figure 6 shows the evolution of the a posteriori uncertainties for the estimations of thicknesses and grain-sizes grain di-

ameters as a function of the noise level. For the grain-sizes grain diameters , a slab thickness of 2 mm has been used. The10

results show that with very low noise i.e. lower than 0.5 %, the a posteriori uncertainties on the results are of the same order

of magnitude, even for the grain-sizes grain diameters . When the level of noise increase, the uncertainties on the thicknesses

estimations increase in the same proportions (Figure 6b), unlike the uncertainties on grain-sizes grain diameters (Figure 6a)

that increase drastically with the noise level. The uncertainties on the grain-sizes grain diameters seem to saturate for high

noises. This effect is only an edge effect due to the size of the LUT: the dispersion of the a posteriori PDF cannot get bigger15

than the range of values tested.

With the level of noise at 2 % as expected for the measured spectra (Brissaud et al., 2004), a posteriori uncertainties are

expected to be about 5 % on the thickness, and should be lower than 50 % for the grain-size grain diameter for low thicknesses.

This means that the method should be able to retrieve thicknesses with an uncertainty that correspond to the level of noise, but

cannot retrieve grain-sizes grain diameters of the snow when the ice layer above is thicker than 5 mm.20

5 Results

5.1 Impact of a slab on the BRDF

Figure 3 shows the reflectance factor (the ratio between the bidirectionnal reflectance I/F of the surface and the reflectance of

a perfectly lambertian surface) vs. phase angle (angle between incident and emergent directions) of the snow and the snow

covered with a 1.42mm thick ice slab (sample 1). It illustrates the two most notable effects of a thin layer of slab ice on top25

of an optically thick layer of snow. The most intuitive effect is to lower the level of reflectance: it is due to absorption during

the long optical path lengths in the compact ice matrix as the dependance of the reflectance on the phase angle is almost killed

strongly attenuated by the addition of the ice layer. The second effect is that the radiation is more Lambertian than that of

snow only. These data give credit to the first hypothesis of isotropization of the radiation formulated in the model (see Sect. 2).

The description of the bottom granular layer as Lambertian, defined only by its single-scattering albedo, may be considered30

simplistic, but this data set shows that a thin coverage of slab ice, even on a very directive material such as snow, is enough to

strongly flatten the BRDF.
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5.2 Specular lobe: roughness retreival

We performed the inversion taking into account 63 angel measurements, but for the sake of readability, Fig. 7 represents

only the reflectance in the principle plane. The shapes and the intensities in Fig. 7a are compatible, but the measurement and

simulation are not centered at the same point. The simulation is centered at the geometrical optics specular point (emergence

50◦ and azimuth 180◦), whereas the measurement seems to be centered around an emergence of 50.5◦. This could be due to5

slight misadjustment of the rotation axis of the sample in the instrument. This kind of misadjustment is common, and can easily

result in a notable shift up to 1◦ of the recorded measurement geometries. We simulated different possible shifts in this range,

and found a best match maximum likelihood for the simulation represented in Fig. 7b for a shift of 0.5◦ in emergence, as was

suggested by the first plot in Fig. 7a, and 0.2◦ in azimuth. The measurements and the best match simulations corresponding to

the maximum likelihood are represented in Fig. 8. The shape and the magnitude of the specular lobe are very well reproduced.10

Both lobes show a small amount of asymmetry forward. This asymmetry is not due to the sampling as it is also present when

the simulation is not shifted (see the red curve in Fig. 7). It is due to an increase in the Fresnel reflection coefficient when

the phase angle increases for this range of geometries. Figure 9 shows the PDF a posteriori for the parameter θ̄. The best

match simulation corresponding to the maximum likelihood was obtained with θ̄ = 0.43◦. The inversion method gives a result

with a close to Gaussian shape at θ̄ = 0.424◦± 0.046◦. Unfortunately, we have no direct measurements of θ̄. It would require15

a digital terrain model of the sample that is difficult to obtain in icy samples. because the experimental determination of the

roughness of a sample requires a digital terrain model (DTM) of its surface. These DTM are measured with a laser beam, and

are thus very difficult to obtain for ice samples, as multiple reflections create false measures. Still, we find a low value, which

is consistent with the production in laboratory of slabs of columnar ice that are very flat, but still imperfect as described in

the data set. The average slope is compatible with a long-wavelength slope at the scale of the sample, demonstrating that the20

micro-scale was not important in our case. Indeed, for a sample that has a length L, a 1σ standard deviation on the thickness

∆h can be attributed to a general slope ϑ= arctan
(

∆h
L

)
due to a small error in the parallelism of the two surfaces of the slab.

In the case of sample 3, L= 20cm and ∆h= 1.35mm result in ϑ= 0.39◦, which is compatible with the roughness given by

the inversion. We thus think that what we see is an apparent roughness due to a small general slope on the samples, and that

the roughness at the surface is much lower than this value.25

Moreover, the value retrieved by the inversion is very well constrained as the probability density function is very sharp. This

means that we have an a posteriori uncertainty on the result that is very low. The quality of the reproduction of the specular

spot lobe by the model suggests that the surface slope description is a robust description despite its apparent simplicity. In

particular, one single slope parameter is enough to describe this surface.

5.3 Diffuse reflectance: thickness and grain-size grain diameter retrieval30

5.3.1 Example for individual geometries

To reproduce diffuse reflectance we used the results obtained with the specular measurements and assumed that the roughness

of the samples was not changing much between the experiments. The range of variations in roughness should be negligible
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in the spectral analysis. We simulated slabs over snow, having the grain size grain diameter of the substrate and the thickness

of the slab as free parameters. Figure 10 represents three examples of measured and best simulated reflectance spectra at the

maximum likelihood for three different geometries. We also represented the mismatch between the best fits these simulations

and the observations. We find an agreement between the data and the model that is acceptable. Nevertheless, there seems

to be a decrease in quality in the fits as the thickness increases. Figure 11 shows an example of the marginal PDF for the5

three samples that are associated with the previous fits. The thickness is well constrained as the marginal probability density

functions a posteriori are sharp and very close to Gaussian. However, the grain size grain diameter of the substrate seems

to have a limited impact on the result since it is little constrained. The marginal PDFs for the grain size grain diameter of the

substrate are broad, and thus the a posteriori relative uncertainties in the result are very high. Unfortunately, we have no reliable

measurement of the grain size grain diameter of the substrate, as it is evolving during the time of the measurements. Numerical10

tests show the snow grain-size grain diameter is not be accessible for slab thicknesses above 5mm. The a posteriori PDF for

samples 2 and three then are not to be interpreted.

5.3.2 Results for 39 geometries

Figure 12 shows the measurements and the final result of the inversion of the thickness for the three samples, and for 39

measurement geometries independently. The data and the model are compatible. Still, the thickness of sample 1 is slightly15

overestimated. This may reveal a sensitivity limit of the model. The thickness of sample 3 seems underestimated. This could

be partly due to the duration of the measurement: the slab sublimates as the measure is being taken. Moreover, the specular

measurements were performed on that sample, increasing even more the duration of the experiment. The inversion points in

Fig. 12 are sorted by increasing incidence and, for each incidence, by increasing azimuth. There seems to be an influence of the

geometry on the returned result: it is particularly clear for sample 2. The estimated thickness tends to increase with incidence20

and decrease with azimuth. This effect disappears for large thicknesses (sample 3).

5.3.3 Full BRDF inversion

Figure 13 shows the measure and the best match simulation corresponding to the maximum likelihood at the λ= 1.0µm

wavelength when conducting the inversion on the whole BRDF data set for each sample. The relatively flat behavior of the

radiation with the phase angle is reasonably well reproduced. The quality of the geometrical match increases with the thickness25

of the sample. This is consistent with the fact that a thicker slab will permit a stronger isotropization of the radiation. It is also

consistent with the disappearance of the geometrical dependence on the estimation for large thicknesses noted in Fig. 12. The

values of thicknesses returned by the inversion are displayed in Fig. 14a: they are also compatible with the data, and the results

are close to the one given by independent inversions on each geometry (see Figs. 11 and 12). The grain-size grain diameter

returned (see Fig. 14) for sample one is lower, but compatible with the one given by independent measurements. For samples30

2 and 3, the pdf are not interpreted, as the grain-size grain diameter cannot be constrained by the method.
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6 Discussion

The two main goals of this work were (i) to develop and validate an inversion method that is adapted to the treatment of

massive and complex datasets such as satellite hyperspectral datasets, and (ii) to partially validate a previously developed

radiative transfer model.

The first criterion is the speed of the whole method, including the direct computation of the LUT and the inversion. The5

lookup tables used for this project were computed in 150 s for the roughness study (1763 wavelengths sampled, 30933 spectra)

and 2.5h for the thickness and grain size grain diameter study (33186 wavelengths sampled, 666 315 spectra). The inversions

themselves were performed in less than one-tenth of a second for specular lobe and independent spectral inversions, and 2s for

BRDF-as-a-whole inversions. Every calculation was computed on one Intel CPU with 4 GB RAM. It has to be noted that once

the lookup table has been created, an unlimited number of inversions can be conducted. This means that this method satisfies10

the speed criterion for the study of massive and complex datasets. For inversions over very large databases, the code has

been adapted to GPU parallelization. It is also possible to increase the speed of the calculation of the lookup tables by means

of multi-CPU computing. This bayesian method has been designed to deal with the particular case of a direct model which

computation time per simulation decreases with the size of the database. In our case, the direct radiative transfer algorithm

is slow to simulate only one spectrum (∼ 1s), but becomes fast for the calculation of large spectral databases (75 spectra15

per second in the case of the grain diameter and thickness study in this work). This particularity makes unefficient the usual

bayesian approaches such as Markov Chain Monte Carlo methods, and on the contrary makes efficient the method presented

in this paper.

A second aspect is the reliability of the inversion method, regardless of the direct model. Indeed, as any model makes

assumptions, the method should allow the user to know how to interpret the result obtained. For a given level of measurement20

errors, the user shall know the quality of the retrieval of any parameter. The bayesian statistics in our method allowed us to

determine that the thicknesses that we estimated in this work were reliable, with a 5 % uncertainty. Moreover, for the radiative

transfer model used in this work (see section 2), and in the experimental conditions described in section 3, we could determine

on synthetic cases (see section 4.4) that a 5 % uncertainty should be expected on ice thickness estimation, and that the grain-size

grain diameter of the underlying snow could not be determined for ice thicknesses higher than 5 mm. The experimental results25

on the thickness were in agreement with these estimations.

The last A third point to be discussed is the capability of the model to reproduce the reality. Section 5 showed that every

thickness estimation was in agreement with independent measurements. This means that the modelling of the ice layer is

radiative transfer model is satisfactory, and that this quantity can be determined only using spectral measurements. However,

this is not the case for the estimations of the grain-size grain diameter of the snow. Indeed, when the ice layer is thicker30

than 5 mm, our synthetic study predicts that it cannot be retrieved. Still, the results obtained on experimental data for slab

thicknesses greater than 5 mm 5mm (blue and green curves in figures 11 and 14) showed a posteriori PDF for the grain-sizes

grain diameters with surprisingly low standard deviations compared to what was obtained on synthetic data. The experimental

results favour situations in which the geometrical optics hypothesis that is fundamental in the radiative transfer model is no
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longer valid. This shall not be interpreted as a result on the grain-size grain diameter , as the synthetic test showed that it was

unaccessible. These low a posteriori uncertainties shall rather be interpreted as a compensation effect: a behaviour that cannot

be reproduced by the model may be approached by the most extreme values tested. In our case, small grain-size grain diameter

, even if they are either not realistic or not in agreement with the model’s hypothesis, will produce an effect in the simulation

that reproduces the data better than in the other cases.5

This work show that the radiative transfer model and the inversion method tested are adapted to retrieve the characteristics

of an ice slab overlaying a granular layer. In particular, they are thus adapted to the study of the Martian CO2 ice deposits,

but also to the study of other planetary compact ice such as nitrogen ice on Pluto or Triton, or SO2 ice on Io. However, our

results show that this method is adapted to study the granular material underneath only in the most favorable cases, when the

uncertainties on the data are lower than a percent, or when the absorption in the slab layer is weak. In the general case of a slab10

ice layer covering a granular material, the retrieval method used in this work is not adapted to the study of the bottom layer.

7 Conclusions

The aim of this present work is to validate an approximate radiative transfer model developed in Andrieu et al. (2015) using

several assumptions. The most debated one is that the radiation become lambertian when it reaches the substrate. We first

qualitatively validated this assumption with snow and ice data. We then quantitatively tested and validated our method using a15

pure slab ice with various thicknesses and snow as a bottom condition. The thicknesses retrieved by the inversion are compatible

with the measurements for every geometry, demonstrating the robustness of this method to retrieve the slab thickness from

spectroscopy only. The result given by the inversion of the whole data set is also compatible with the measurements. We

also validate the angular response of such slabs in the specular lobe. Unfortunately, it was not possible to measure the micro-

topography in detail to compare with the retrieved data. Nevertheless, we found a very good agreement between the simulation20

and the data. In future work, an experimental validation of the specular lobe and roughness should be addressed.

The large uncertainties in the grain size grain diameter inversion demonstrate that the bottom condition is less important

than the slab for the radiation field at first order, as predicted by the synthetic tests conducted. The inconsistency between the a

posteriori PDF on the grain-sizes grain diameters for experimental data and numerical tests stresses that synthetic tests must be

performed in order to determine which quantities can be retrieved or not in the context of the study, and to precise the expected25

uncertainties.

The comparison of the a posteriori uncertainties in the thickness of the slab and the grain size grain diameter of the snow

substrate illustrates the fact that those uncertainties depend both on the constraint brought by the model itself and the uncertainty

introduced into the measurement, which only the Bayesian approach can handle. The use of Bayesian formalism is thus very

powerful in comparison with traditional minimization techniques. We propose here a fast and innovative method aiming at30

massive inversions, and we demonstrated that it is adapted remote sensing spectro-imaging data analysis. The radiative transfer

model used in this study was proven appropriate to study the superior slab layer, but not the bottom one, unless the top layer is

thin (thinner than 5mm in our case). The whole method is thus adapted to study the top slab layer of a planetary surface using

16



satellite hyperspectral data, for instance Martian seasonal deposits, that are constituted of a slab CO2 ice layer resting directly

on the regolith.
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Figure 1. Scheme of the surface representation in the radiative transfer model applied to the laboratory measurements. h represents the slab

thickness and θ̄ represents the mean slope to describe the surface roughness.
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Figure 2. Illustration of the radiative transfer in the surface medium. Anisotropic transits are represented in red. F is the incident radiation

flux, Rspec and RDiff are respectively the specular and diffuse contributions to the reflectance of the surface, rs is the Lambertian reflectance

of the granular substrate, and R0 and T0 are respectively the total reflection and transmission factors of the slab layer. A prime indicates an

anisotropic transit. The reflection and transmission factors are different in the cases of isotropic or anisotropic conditions. The granular and

slab layers are artificially separated in this figure to help the understanding of the coupling between the two layers. Top: illustration of the

reflections and transmission at the first interface, used in the calculations ofRspec and the determination of the amount of energy injected into

the surface. z is the normal to the surface, W f the local normal to a facet, i and e are respectively the incidence and emergence angle, and ef

is the local emergence angle for a facet. Each different orientation of a facet will lead to a different transit length in the slab. A more detailed

description can be found in Andrieu et al. (2015).

Figure 3. (a) Reflectance factor at a wavelength of λ= 1.4µm vs. phase angle for snow only (black crosses) and the same snow but covered

with a 1.42± 0.27mm water ice slab (red squares). (b) Same data but normalized by the value at a phase angle α= 20◦.
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(a) (b)

Figure 4. Normalized stacks of 1000 a posteriori PDF for the grain-size grain diameter of the snow, when conducting the inversion on

synthetic data, with added random noise. The legends indicate the value for the grain-size grain diameter used to create the synthetic data.

(a) The ice layer is 1 mm thick. (b) The ice layer is 5 mm thick.

(a) (b)

Figure 5. (a) Normalized stacks of 1000 a posteriori PDF for the thickness of the slab ice layer, when conducting the inversion on synthetic

data, with added random noise. The legends indicate the value for the thickness used to create the synthetic data. (b) a posteriori uncertainty

(at 2σ) on the thickness estimation as a function of the slab thickness.
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(a) (b)

Figure 6. (a) A posteriori uncertainties at 2σ on the grain-size grain diameter as a function of the noise standard deviation, for a 2 mm thick

ice layer. (b) A posteriori uncertainties at 2σ on the thickness as a function of the noise standard deviation.

Figure 7. (a) Measured (black) and simulated (red) reflectance factor at 1.5µm in the principal plan for an incidence angle of 50◦. The

specular lobe measured is not centered at 50◦. (b) Measured (black) and simulated (red) reflectance factor at 1.5µm in the principal plan for

an incidence angle of 50◦. We simulated a small misadjustment of the sample, resulting in a shift of the observation of 0.5◦ in emergence

and 0.2◦ in azimuth.

24



Figure 8. Measured and simulated reflectance factor around the specular geometry at 1.5µm for an incidence angle of 50◦. The simulation

was computed assuming the determined shift of 0.5◦ in emergence and 0.2◦ in azimuth.

Figure 9. Probability density function a posteriori for the roughness parameter θ̄, noted P
{
θ̄
}

. The inverted value at 2σ is θ̄ = 0.424±

0.046◦. The best match simulation corresponding with the highest likelihood is obtained for θ̄ = 0.43◦.
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(a) (b) (c)

Figure 10. Reflectance factor spectra for the measure and the simulation at the maximum likelihood, and for the geometry which maximum

likelihood was highest, Measured and best match of simulated reflectance spectra for the geometry of the best match for each sample: at

incidence 40◦, emergence 10◦ and azimuth 140◦ for sample 1 (thickness: 1.42mm) (a); at incidence 40◦, emergence 20◦ and azimuth 45◦

for sample 2 (thickness: 7.45mm) (b); and at incidence 60◦ and emergence 0◦ for sample 3 (thickness: 12.51mm) (c). The thicknesses

indicated in the captions were measured before putting the sample into the spectro-goniometer, and the errors are given at 2σ. The absolute

differences are shown in blue on each graph.

Figure 11. Marginal a posteriori probability density functions for (a) the thickness of the slabP {p1(i)} and (b) the grain-size grain diameter

of the snow substrate P {p2(j)} for the three samples, and for the geometries described in Fig. 10.
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Figure 12. Results of the inversions and measurements with error bars at 2σ for samples 1, 2 and 3, and for the 39 different geometries of

measurement. The inversion points (in red) are sorted by incidence (3 values), and each incidence is then sorted by azimuth (13 values: 1 for

emergence 0◦ and 6 each for the 10 and 20◦ emergences).

Figure 13. Measured and simulated reflectance factor at λ= 1µm (R) for (a) sample 1, (b) sample 2 and (c) sample 3.
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Figure 14. Marginal a posteriori probability density functions for (a) the thickness of the slabP {p1(i)} and (b) the grain size grain diameter

of the snow substrate P {p2(j)} for the three samples.
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