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Abstract.

This article presents a set of spectro-goniometric measurements of different water ice samples and the comparison

with an approximated radiative transfer model. The experiments were done using the spectro-radiogoniometer described in

Brissaud et al. (2004). The radiative transfer model assumes an isotropization of the flux after the second interface and is fully

described in Andrieu et al. (2015).5

Two kinds of experiments were conducted. First, the specular spot was closely investigated, at high angular resolution, at

the wavelength of 1.5 µm, where ice behaves as a very absorbing media. Second, the bidirectional reflectance was sampled at

various geometries, including low phase angles on 61 wavelengths ranging from 0.8 to 2.0 µm.

In order to validate the model, we made qualitative tests to demonstrate the relative isotropization of the flux. We also

conducted quantitative assessments by using a Bayesian inversion method in order to estimate the parameters (e.g., sample10

thickness, surface roughness) from the radiative measurements only. A simple comparison between the retrieved parameters

and the direct independent measurements allowed us to validate the model.

We developed an innovative Bayesian inversion approach to quantitatively estimate the uncertainties in the parameters

avoiding the usual slow Monte Carlo approach. First we built lookup tables, and then we searched the best fits and calculated a

posteriori density probability functions. The results show that the model is able to reproduce the geometrical energy distribution15

in the specular spot, as well as the spectral behavior of water ice slabs. In addition, the different parameters of the model are

compatible with independent measurements.

We present an effort to validate a radiative transfer model previously developed, and an innovative bayesian inversion method

designed to retrieve the properties of slab ice covered surfaces. This retrieval method is adapted to satellite data, and is able to

provide uncertainties on the results of the inversions. We focused in this study on surfaces composed of a pure slab of water20

ice covering an optically thick layer of snow. We see sought to retrieve the roughness of the ice/air interface, the thickness of

the slab layer and the mean grain-size of the underlying snow. Numerical validations have been conducted on the method, and

showed that if the thickness of the slab layer is above 5 mm and the noise on the signal is above 3%, then it is not possible to

invert the grain-size of the snow. On the contrary, the roughness and the thickness of the slab can be determined even with ultra
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high levels of noise up to 20%. Experimental validations have been conducted on spectra collected from laboratory samples of

water ice on snow using a specro-gonio-radiometer. The results are in agreement with the numerical validations, and show that

a grain-size can be correctly retrieved for low slab thicknesses, but not for bigger ones, and that the roughness and thickness

are correctly inverted in every case.
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1 Introduction

Various species of ices are present throughout the solar system, from water ice and snow on Earth to nitrogen ice on Triton

(Zent et al., 1989), not to forget carbon dioxide ice on Mars (Leighton and Murray, 1966). Ice- and snow-covered areas have

a strong impact on planetary climate dynamics, as they can lead to significant regional-scale albedo changes at the surface

and surface–atmosphere volatiles interactions. The physical properties of the cover also have an impact on the energy balance:5

for example, the albedo depends on the grain size of the snow (Dozier et al., 2009; Dozier et al., 2011) (Dozier et al., 2009;

Negi and Kokhanovsky, 2011; Picard et al., 2009; Mary et al., 2013) , on the roughness of the interface (Lhermitte et al.,

2014), on the presence or not and the physical properties of impurities (Dumont et al., 2014) , or on the specific surface area

(Picard et al., 2009; Picard et al., 2013). The study and monitoring of theses parameters is a key to constraining the energy

balance of a planet.10

Radiative transfer models have proven essential for retrieving such properties (Zege et al., 2008; Negi and Kokhanovsky,

2011) and their evolution at a large scale, and different families exist. Ray-tracing algorithms, such as those described in

Picard et al. (2009) for snow or Pilorget et al. (2013) for compact polycrystalline ice, simulate the complex path of millions of

rays into the surface. Ray-tracing algorithms, such as those described in Picard et al. (2009) for snow, Pilorget et al. (2013)

for compact polycrystalline ice or Muinonen et al. (2009) for particulate media such as rough ice grains in an atmosphere,15

simulate the complex path of millions of rays into the surface. They provide very accurate simulations but have the weakness

of being time consuming. Such modelings are experiencing a golden era due to the positive comparison between models

and exact calculations (e.g. (Muinonen et al., 2012; Mishchenko et al., 2015)). Analytical solutions of the radiative transfer

in homogeneous granular media have been developed, for example, by Shkuratov et al. (1999) and Hapke (1981). They are

fast, but when the surface cannot be described as homogeneous statistically as a mono-layer, they must be combined with20

another family of techniques such as discrete ordinate methods like DISORT (Stamnes et al., 1988). These methods have

been widely studied on Earth snow (Carmagnola et al., 2013; Dozier et al., 2009; Dumont et al., 2010; Painter and Dozier,

2004) and other planetary cryospheres (Appéré et al., 2011; Eluszkiewicz and Moncet, 2003), modeling a granular surface.

Compact polycrystalline ices have, however, been recognized to exist on several objects: CO2 on Mars (Kieffer and Titus, 2001;

Eluszkiewicz et al., 2005), N2 on Triton and Pluto (Zent et al., 1989; Eluszkiewicz and Moncet, 2003) and probably SO2 on Io25

(Eluszkiewicz and Moncet, 2003), owing to as suggested by the very long light path lengths measured, over several decimeters

several centimeters to decimeters (Eluszkiewicz, 1993; Quirico et al., 1999; Douté et al, 1999, 2001). Radiative transfer is

different in compact slabs or in granular media. We developed an approximated model (Andrieu et al., 2015) designed to

study contaminated ice slabs, with a fast numerical implementation, which has already been numerically validated. The main

objective of the model is the analysis of massive spectro-imaging planetary data of these surfaces. For this purpose, it is30

semi-analytic and quickly implemented. It is designed to retrieve the variations of thickness and impurity content of compact

polycrystalline planetary ices.

In the present article, we will test the accuracy of this approximated model: on laboratory spectroscopic measurements

of pure water ice bidirectional:reflectance distribution function (BRDF). The goal is to propose an inversion: framework to
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retrieve surface properties, including uncertainties, in order:to demonstrate the validity of the approach. In order to speed up

the inversion, we based the algorithm on lookup tables that minimize the computation time of the direct model. This strategy

will be very useful for analyzing real hyperspectral images. The thickness of ice estimated from the inversion is validated

in comparison to real direct measurements. In addition, the specular lobe is adjusted to demonstrate that the model is able

to reasonably fit the data with a coherent roughness value. Compact slabs have very different radiative properties from close5

packed granular media, and radiative transfer models have been developed to study their characteristics (e.g. (Mullen and

Warren, 1988; Jin et al., 1994; Perovich, 1996; Jin et al., 2006)) in the case of sea or lake ices. We developed an approximated

model (Andrieu et al., 2015) model that has the interest of being able to model a layer of ice covering a surface with radically

different optical properties, for instance a refractive index, unlike it predecessors. It was designed to study planetary ice slabs,

with a fast numerical implementation, which has already been numerically validated and aims at the analysis of massive10

spectro-imaging planetary data such as the OMEGA (Bibring et al., 2004) or CRISM (Murchie et al., 2007) datasets for the

study of Mars icy surface and seasonal cycle, NIMS (Carlson et al., 1992) dataset for SO2 on Io or RALPH (Reuter et al.,

2009) data for the ices of Pluto. For this purpose, it is semi-analytic and implemented to optimize the computation time.

In the present article, we will test the accuracy of this approximated model on laboratory spectroscopic measurements of pure

water ice on top of snow bidirectional reflectance distribution function (BRDF). The slabs that will be studied thus contain no15

impurity, and the surface properties we will seek to retrieve will be the thickness of the ice, the roughness of the surface and the

grain-size of the underlaying snow. The main goals of this work are thus (i) to test the ability of the model to reproduce reality

and (ii) to propose an inversion framework to retrieve surface ice properties, including uncertainties, in order to demonstrate

the applicability of the approach to satellite data.

We presents a set of spectro-goniometric measurements of different water ice samples put on top of snow using the spectro-20

radiogoniometer described in Brissaud et al. (2004). Three kind of experiments were conducted. First, the BRDF was measured

for a snow layer only, and then measured again after adding a slab ice layer at the top. The objective was to test the effect of

an ice layer at the top on the directivity of the surface. Second, the specular spot was closely investigated, at high angular

resolution, at the wavelength of 1.5 µm, where ice behaves as a very absorbing media. Finally, the bidirectional reflectance

was sampled at various geometries on 61 wavelengths ranging from 0.8 to 2.0 µm. In order to validate the model, we made25

qualitative tests to demonstrate the relative isotropization of the flux. We also conducted quantitative assessments by using a

Bayesian inversion method in order to estimate the sample thickness, surface roughness and snow grain-size from the radiative

measurements only. A simple comparison between the retrieved parameters and the direct independent measurements allowed

us to validate the model.

The inversion algorithm that will be tested is based on lookup tables that minimize the computation time of the direct30

model. The solution is then formulated as a probability density function, using bayesian formalism. This strategy will be very

useful for analyzing hyperspectral images. The thickness of ice estimated from the inversion will be compared to real direct

measurements. In addition, the specular lobe will be adjusted to demonstrate that the model is able to reasonably fit the data

with a coherent roughness value.
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2 Description of the model

The model, from Andrieu et al. (2015), is inspired from by an existing one described in Hapke (1981) and Douté and Schmitt

(1998), which simulates the bidirectional reflectance of stratified granular media. It has been adapted to compact slabs, contam-

inated with pseudo-spherical inclusions, and a rough top interface. In the context of this work, we suppose a layer of pure slab

ice, overlying an optically thick layer of granular ice, as described in Fig. 1. The roughness of the first interface is described5

using the probability density function of orientations of slopes defined in Hapke (1984). This distribution of orientations is

fully described by a mean slope parameter θ̄. The ice matrix is described using its optical constants and its thickness. Within

the slab, the model can also incorporate inclusions, assumed to be close to spherical and homogeneously distributed inside the

matrix. They are described by their optical constants, their volumetric proportions and their characteristic grain sizes. There

can be several different types of inclusions. Each type can be of any material but the one constituting the matrix: it can be any10

other kind of ice or mineral, or even bubbles.

Figure 2 illustrates the general principle of the model. The simulated bidirectional reflectance results from two separate

contributions: specular and diffuse. The specular contribution of a measurement in the model is estimated from the roughness

parameter, the optical constants of the matrix, and the apertures of the light source and the detector. The surface is considered

to be constituted of many unresolved facets, whose orientations follow the defined probability density function. The specular15

reflectance is obtained integrating every reflection on the different facets. The total reflection coefficient at the first rough in-

terface is obtained by integrating specular contributions in every emergent direction, at a given incidence. This gives the total

amount of energy transmitted into the system constituted of the contaminated slab and the substrate. The diffuse contribution

is then estimated through solving the radiative transfer equation inside this system under various hypotheses. The following

considerations are made. (i) The first transit through the slab is anisotropic due to the collimated radiation from the source,20

and that there is an isotropization at the second rough interface (i.e., when the radiation reach reaches the semi-infinite sub-

strate). For the refraction and the internal reflection, every following transit is considered isotropic. (ii) The geometrical optics

are is valid. This means that the size of the inclusions and the thickness of the slab layer must be larger than the considered

wavelength. (iii) The inclusions inside the matrix are close to spherical and homogeneously distributed. If the matrix is con-

taminated with inclusions, unlike in this work, then these inclusions are supposed to be close to spherical and homogeneously25

distributed inside the matrix. The reflection and transmission factors of the layers are obtained using an analytical estimation

of the Fresnel coefficients described in Chandrasekhar (1960) and Douté and Schmitt (1998), as well as a simple statistical

approach, detailed in Andrieu et al. (2015). The contribution of the semi-infinite substrate is described by its single-scattering

albedo. Finally, as the slab layer is under a collimated radiation from the light source, and under a diffuse radiation from the

granular substrate, the resulting total bidirectional reflectance is computed using adding–doubling formulas (Stamnes et al.,30

1988; Douté and Schmitt, 1998; Van de Hulst, 2012).
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3 Data

3.1 Spectro-radiogoniometer

The bidirectional reflectance spectra were measured using the spectro-radiogoniometer from IPAG fully described in Brissaud

et al. (2004). We collected spectra in the near infrared at incidences ranging from 40 to 60◦, emergence angles from 0 to

50◦, and azimuth angles from 0 to 180◦. The sample is illuminated with a large monochromatic beam (divergence < 1◦) and5

the near-infrared spectrum covering the range from 0.800 to 4.800µm is measured by an InSb photovoltaic detector. This

detector has a nominal aperture of 4.2◦, which results in a field of view on the sample of approximately 20mm in diameter.

The minimum angular sampling of illumination and observation directions is 0.1◦, with a reproducibility of 0.002◦. In order

to avoid azimuthal anisotropy, the sample is rotated during the acquisition. The sample rotation axis may be very slightly

misadjusted, resulting in a notable angular drift on the emergence measured up to 1◦.10

3.2 Ice BRDF measurements

The ice samples were obtained by sawing artificial columnar water ice into sections circular sections of 20 cm in diameter.

These sections were put on top of an optically thick layer of compacted snow that was collected in Arselle, in the French Alps.

The spectral measurements were conducted in a cold chamber at 263 K. However, the ice and the snow were unstable in the

measurement’s environment, due to the dryness of the chamber’s atmosphere. The grain size of the snow showed an evolution,15

and the thickness of a given slab showed a decrease of 0.343mm day−1. Each sample needs an acquisition time of 10h. For

each measurement, the ice slab was sliced, and its thickness was measured in five different locations. It was then set on top of

the snow sample, and this system was put into rotation in the spectro-goniometer for the measurement. The sample complete

a full rotation (10 s) during the measurement of the reflectance at one wavelength and one geometry. As the surface is not

perfectly planar, the measured thickness is not constant. This results in an 2σ standard deviation in the measurement of the20

thickness than ranges from 0.54 to 2.7mm in our study, depending on the sample.

3.2.1 Specular contribution

The specular contribution reflectance was measured on a 12.51mm thick slab sample on top of Arselle snow. This sample is

described as sample 3 in the next paragraph. The illumination was at an incidence angle of 50◦, and 63 different emergent

geometries were sampled, ranging from 45 to 55◦ in emergence and from 170 to 180◦ in azimuth. A measure at the wavelength25

of 1.5µm is shown in Fig. 8a. The sampling is 1◦ in emergence and azimuth within 47 and 53◦ in emergence and 175 and 180◦

in azimuth.

3.2.2 Diffuse reflectance spectraIce on snow diffuse reflectance spectra

The diffuse contribution was measured on three samples of different slab thickness. The three thicknesses were measured on

different locations of the samples with a caliper before the spectro-goniometric measurement, resulting in h1 = 1.42±0.47mm,30
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h2 = 7.45±0.84mm, h3 = 12.51±2.7mm, respectively, for samples 1, 2 and 3, with errors at 2σ. Sixty-one wavelengths were

sampled ranging from 0.8 to 2.0µm. Spectra were collected on 39 different points of the BRDF for the incidence, emergence

and azimuth angles: [40,50,60◦], [0,10,20] and [0,45,90,140,160,180◦], respectively. This set of angles results in only 39

different geometries because the azimuthal angle is not defined for a nadir emergence.

3.2.3 Snow diffuse reflectance spectra5

Diffuse reflectance spectra of natural snow only were also measured. The objective was to estimate the effect of a slab layer

on the BRDF. Figure 3 shows the reflectance factor (the ratio between the bidirectionnal reflectance I/F of the surface and the

reflectance of a perfectly lambertian surface) vs. phase angle (angle between incident and emergent directions) of the snow and

the snow covered with a 1.42mm thick ice slab (sample 1). It illustrates the two most notable effects of a thin layer of slab ice

on top of an optically thick layer of snow. The most intuitive effect is to lower the level of reflectance: it is due to absorption10

during the long optical path lengths in the compact ice matrix as the dependance of the reflectance on the phase angle is almost

killed by the addition of the ice layer. The second effect is that the radiation is more Lambertian than that of snow only. These

data give credit to the first hypothesis of isotropization of the radiation formulated in the model (see Sect. 2). The description

of the bottom granular layer as isotropic lambertian, defined only by its single-scattering albedo, may be considered simplistic,

but this data set shows that a thin coverage of slab ice, even on a very directive material such as snow, is enough to strongly15

flatten the BRDF.

4 Method

We designed an inversion method aimed at massive data analysis. This method consists of two steps: first, the generation of

a synthetic database that is representative of the variability in the model, and then comparison with actual data. To generate the

synthetic database, we used optical constants for water ice at 270K. The 7K difference between the actual temperature of the20

room and the temperature assumed for the optical constants has a negligible effect. We combined the data sets of Warren and

Brandt (2008) and Schmitt et al. (1998), making the junction at 1µm, the former set for the shorter wavelengths and the latter

for the wavelengths larger than 1µm.

In order to validate the model on the specular reflection from the slab, we chose to use the reflectance at 1.5µm, where the

ice is very absorptive. Figures 7 and 8 clearly demonstrate that there is a negligible diffuse contribution in geometry outside25

the specular lobe from the sample with a 12.51mm thick pure slab. Thus, the roughness parameter θ̄ is the only one impacting

the reflectance in the model. We chose to inverse invert this parameter first and validate the specular contribution.

We will then focus on the validation in the spectral domain, for the diffuse contribution. We will use the estimation of the

roughness parameter θ̄ obtained earlier and the spectral data in order to estimate the slab thickness and the grain size of the

snow substrate. To do this, we assume that the roughness is not changing significantly enough to have a notable impact on30

diffuse reflectance from one sample to another. This assumption is justified by the fact that the different columnar ice samples

were made the same way, as flat as possible and the low value of θ̄ retrieved as discussed in the next section. It is confirmed

7



by the results of Sect. 4.2, which suggest a very low roughness, as expected. Such low roughness parameters have negligible

influence on the amount of energy injected into the surface.

4.1 Inversion strategy

The inversion consists in estimating the model parameters m (i.e. the slab thickness, the roughness parameter, the snow grain-

size) from the models F (m) (the reflectance simulations) that are close to the data d (the reflectance observations). Tarantola5

and Valette (1982) showed that it this problem can be mathematically solved by considering each element quantity as a proba-

bility density function (PDF). In non-linear direct problems, the solution may not be analytically approached. Nevertheless, it

is possible to sample the solutions’ PDF with a Monte Carlo approach as shown in Mosegaard and Tarantola (1995), but this

solution is very time consuming.

The actual observation is considered as prior information on the data ρD(d) in the observation space D. It is assumed10

to be a N -dimension Gaussian PDF G(dmes,C), confirmed with mean dmes and covariance matrix C. The values ri are the

observations for each element (angular or spectral as described later). The covariance matrix C is assumed here to be diagonal

since measurements at a given geometry/wavelength are independent of the other measurements. The The measurements at any

given wavelength/geometry are supposed to be independent with each other, as each measurement of one wavelength, at one

geometry is done individually. The matrix C is thus assumed to be diagonal and its diagonal elements Cii are σ2
1 , . . . ,σ

2
N , with15

σi being the standard deviations of each measurement. The prior information on model parameters ρM(m) in the parameters

space M is independent of the data and corresponds to the state of null information µD(d) if no information is available on the

parameters. We consider a uniform PDF in their definition space M . The posterior PDF in the model space σM(m) as defined

by Bayes’s theorem (Tarantola and Valette, 1982) Tarantola and Valette (1982) is
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σM(m) = kρM(m)L(m), (1)

where k is a constant and L(m) is the likelihood function,

L(m) =

∫
D

dd
ρD(d)θ(d |m)

µD(d)
dd, (2)

where θ(d |m) is the theoretical relationship of the PDF for d given m. We do not consider errors on the model itself, so

θ(d |m) = δ(F (m)) is also noted dsim for simulated data. So the likelihood is simplified into5

L(m) = G(F (m)−dmes,C), (3)

and in the case of an uniform prior information ρM(m), the posterior PDF is

σM(m) = kL(m). (4)

This expression is explicitly

σM(m) = k.exp

(
−1

2
× t (F (m)−dmes)C

−1
(F (m)−dmes)

)
., (5)10

where t is the transpose operator that applies to (F (m)−dmes). The factor k is adjusted to normalize the PDF. The mean value

of the estimated parameter can be computed by

〈m〉=

∫
M

m.σM(m)dm, (6)

and the standard deviation,
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σ〈m〉 =

∫
M

(m− m̄)
2
.σM(m)dm. (7)

In order to speed up the inversion strategy but keep the advantage of the Bayesian approach, we choose to sample the parameter

space M with regular and reasonably fine steps, noted i. The likelihood for each element is

L(i) = exp

(
−1

2
× t (dsim(i)−dmes)C

−1
(dsim(i)−dmes)

)
. (8)

The derivation of posterior PDF with such formalism for specular lobe inversion and for spectral inversion is explained in the5

next sections.

4.2 Specular lobe

To study the specular spot, we have to consider the whole angular sampling of the spot as single data measurement. Similar

to the “pixel” (contraction of picture element), we choose to define the “angel” (contraction of angular element), as a single

element in a gridded angular domain. Interestingly, angel also refers to a supernatural being represented in various forms of10

glowing light. A single angel measurement could not well constrain the model, even at different wavelengths. Instead a full

sampling around the specular lobe should be enough, even at one single wavelength. We chose a wavelength where the diffuse

contribution was negligible in order to simplify the inversion strategy. We chose to focus on the 1.5 µm wavelength, as it showed

a penetration depth lower than 1 mm and thus much lower than the thickness of the used sample. We first generated a synthetic

database (lookup table), using the direct radiative transfer model. We simulated spectra in the same geometrical conditions, for15

a 12.5mm thick ice layer over a granular ice substrate constituted of 1000µm wide grains. These two last parameters are not

important since the absorption is so high in ice, such that the main contribution is from the specular reflection, and the diffuse

contribution is negligible. (the penetration depth inside a water ice slab at the 1.5m wavelength is lower than one millimetre).

The sampling of the parameter space, i.e., the lookup table, must correctly represent every possible variability the variability

of the model according to its parameters. For this study, we sampled the roughness parameter from 0.1 to 5◦ with a constant step20

dθ̄ = 0.01◦. We use a likelihood function L defined in Eq. (8), where dsim and dmes are ngeom-elements vectors, with ngeom the

number of angels (63 in this study). They respectively represent the simulated and measured reflectance at a given wavelength

in every geometry. C is a ngeom×ngeom matrix. It represents the uncertainties in the data. In this case, we considered each

wavelength independently, thus generating a diagonal matrix, containing the level of errors given by the technical data of the

instrument described by Brissaud et al. (2004). It corresponds at this wavelength to 2% of the signal.The roughness parameter25

θ̄ returned by the inversion will be described by its normalized PDF:

P
{
θ̄(i)

}
=

L(i)dθ̄∑
jL(j)dθ̄

=
L(i)∑
jL(j)

. (9)
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The best match is the value θ̄(i) with the highest probability. The full PDF If the PDF is close to a Gaussian, then it can be

estimated by its mean,〈
θ̄
〉

=

∑
i θ̄ (i)L(i)∑
iL(i)

, (10)

and associated standard deviations,

σ〈θ̄〉 =

√∑
i

(
θ̄ (i)−

〈
θ̄
〉)2

L(i)∑
iL(i)

. (11)5

We give error bars on the results that correspond to two standard deviations, and thus a returned value for θ̄ that is

θ̄r =
〈
θ̄
〉
± 2σ〈θ̄〉. (12)

4.3 Diffuse spectra

When out of the specular spot, the radiation is controlled by the complex transfer through the media (slab ice and bottom

snow). The experimental samples were made of pure water slab ice, without impurity. We generated the lookup table for every10

measurement geometry at very high spectral resolution (4.10−2 nm) as required by the variability in the optical constants of

water ice, and then down-sampled it at the resolution of the instrument (2nm). We sampled the 17 085 combinations of two

parameters for the 39 different geometries: p1 the thickness of the slab from 0 to 20mm (noted i= [1,201]) every 0.1mm

(noted dp1), and p2 the grain size of the granular substrate from 2 to 25µm every 1µm and from 25 to 1500µm every 25µm

(noted j = [1,85] and the corresponding dp2(j)). The parameters space is thus irregularly paved with dp(i, j) = dp1.dp2(j).15

For the inversion, we used the same method as previously described, with a likelihood function L that is written as in Eq. (8).

Two different strategies were adopted. First, we inverted each spectra independently. Thirty-nine geometries were sampled

(described in Sect. 3.2), and thus we conducted 39 inversions for each sample. This time dsim and dmes are thus respectively

the simulated and measured spectra. Then dsim and dmes are nb-elements vectors, where nb is the number of bands (61 in this

study) and C is a nb×nb matrix. As previously (see Sect. 4.2), we considered each wavelengths wavelength independently,20

thus generating a diagonal matrix, containing the level of errors given by the technical data of the instrument given by Brissaud

et al. (2004). The error is a percentage of the measurement, and thus C will be different for every inversion.

Secondly, we inverted the BRDF as a whole, for each sample. For this method, dsim and dmes are respectively the simulated

and measured BRDF and are thus nb×ngeom-elements vectors (2379 in this study), where nb is the number of bands (61 in this

study) and ngeom is the number of geometries (39 in this study) sampled. C is a (nb×ngeom)× (nb×ngeom) diagonal matrix,25

containing the errors on the data. We represent the results the same way as previously, but there are two parameters to inverse.

For the sake of readability, we plot the normalized marginal probability density function for each parameter. We present here

the general method for the inversion of np = 2 parameters: the slab thickness and the grain size of the substrate. The PDF for

the two parameters p is described by

P {p(i, j)}=
L(i, j)dp(i, j)∑
i

∑
jL(i, j)dp(i, j)

. (13)30
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For a given parameter p1, the marginal PDF of the solution is

P {p1(i)}=
L′ (i) dp1 (i)∑

i

∑
jL(i, j) dp(i, j)

, (14)

with L′ (i) =
∑
jL(i, j)dp2(j). The best match is the value p1(i) with the highest probability. The marginal PDF can be

described by the mean,

〈p1〉=

∑
i p1 (i)L′ (i) dp1 (i)∑
i

∑
jL(i, j) dp(i, j)

, (15)5

and the associated standard deviation,

σ〈p1〉 =

√∑
i (p1 (i)−〈p1〉)2

L′ (i) dp1 (i)∑
i

∑
jL(i, j) dp(i, j)

. (16)

As for the roughness parameter, we give error bars on the results that correspond to two standard deviations, and thus a returned

value for p1 that is

p1r = 〈p1〉± 2σ〈p1〉. (17)10

4.4 Numerical validations of the inversion method

In order to numerically validate the inversion method described above, two kind of tests were conducted. First, we applied

a gaussian noise and inverted every spectrum in the synthetic spectral database. We show that with a negligible noise, the

parameters are always correctly retrieved with negligible uncertainties, and as the level of noise on the data increases, so do

the uncertainties on the results. Secondly, we generated spectra for parameters that were not sampled in the database and tried15

to recover successfully their characteristics.

On Figure 4 each curve corresponds to a stack of 1000 a posteriori PDF for the grain size of the underlying snow resulting

from 1000 random noise draws of the same 2 % level. Figure 4a is obtained for a low slab thickness of 1mm. In this case, the

grain size of the snow can be correctly estimated: the PDF are centred on the correct value and the dispersion suggests an a

posteriori uncertainty lower than the retrieved value. When the thickness of the slab layer increases, so does the a posteriori20

uncertainty on the estimation of the grain-size. For a slab thickness of 5 mm (Figure 4b), the a posteriori uncertainty is of the

same order than the estimated value, meaning that the grain-size cannot be retrieved. The grain-size of the snow thus cannot

be retrieved for slab thicknesses greater than 5 mm.

Figure 5a represents the stack of 1000 a posteriori PDF for the thickness of the ice layer. These PDF do not depend on the

grain-size of the snow, but only on the thickness itself and the level of noise. It shows that the thickness can be estimated, in25

the experimental conditions (2 % noise level) with an uncertainty of 2 % for lowest thicknesses to 5 % for highest ones. All

obtained a posteriori PDF for the thickness were very close to gaussian. We were thus able sum them up by their means and

standard deviations, allowing us to plot for example the uncertainty on the thickness estimation as a function (Figure 5b) of the

thickness that we want to estimate and (Figure 6) of the level of noise on the data. Figure 5b show the uncertainty (at 2 σ) on
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the estimation of the thickness of the slab layer as a function of the thickness itself, in the experimental conditions described

by Brissaud et al. (2004), that means a 2 % noise level on the signal. This relative uncertainty does not depend on the thickness

in the range of values tested. The low values for thicknesses below 1 mm is an effect of the discretisation in the LUT: the

thickness has been sampled every 0.1 mm. Below 1mm, this sampling step is large relatively to the values itself and ranges

from 10 % to 100 %. The relative uncertainty that we expect to be about 5 % is then no longer measurable, and the value drops5

to 0.

Figure 6 shows the evolution of the a posteriori uncertainties for the estimations of thicknesses and grain-sizes as a function

of the noise level. For the grain-sizes, a slab thickness of 2 mm has been used. The results show that with very low noise i.e.

lower than 0.5 %, the a posteriori uncertainties on the results are of the same order of magnitude, even for the grain-size. When

the level of noise increase, the uncertainties on the thicknesses estimations increase in the same proportions (Figure 6b), unlike10

the uncertainties on grain-sizes (Figure 6a) that increase drastically with the noise level. The uncertainties on the grain-sizes

seem to saturate for high noises. This effect is only an edge effect due to the size of the LUT: the dispersion of the a posteriori

PDF cannot get bigger than the range of values tested.

With the level of noise at 2 % as expected for the measured spectra (Brissaud et al., 2004), a posteriori uncertainties are

expected to be about 5 % on the thickness, and should be lower than 50 % for the grain-size for low thicknesses. This means15

that the method should be able to retrieve thicknesses with an uncertainty that correspond to the level of noise, but cannot

retrieve grain-sizes of the snow when the ice layer above is thicker than 5 mm.

5 Results

5.1 Specular lobe Specular lobe: roughness retreival

We performed the inversion taking into account 63 angel measurements, but for the sake of readability, Fig. 7 represents20

only the reflectance in the principle plane. The shapes and the intensities in Fig. 7a are compatible, but the measurement and

simulation are not centered at the same point. The simulation is centered at the geometrical optics specular point (emergence

50◦ and azimuth 180◦), whereas the measurement seems to be centered around an emergence of 50.5◦. This could be due to

slight misadjustment of the rotation axis of the sample in the instrument. This kind of misadjustment is common, and can easily

result in a notable shift up to 1◦ of the measure of the recorded measurement geometries. We simulated different possible shifts25

in this range, and found a best match represented in Fig. 7b for a shift of 0.5◦ in emergence, as was suggested by the first plot in

Fig. 7a, and 0.2◦ in azimuth. The measurements and the best match are represented in Fig. 8. The shape and the magnitude of

the specular lobe are very well reproduced. Both lobes show a small amount of asymmetry forward. This asymmetry is not due

to the sampling as it is also present when the simulation is not shifted (see the red curve in Fig. 7). It is due to an increase in the

Fresnel reflection coefficient when the phase angle increases for this range of geometries. Figure 9 shows the PDF a posteriori30

for the parameter θ̄. The best match was obtained with θ̄ = 0.43◦. The inversion method gives a result with a close to Gaussian

shape at θ̄ = 0.424◦± 0.046◦. Unfortunately, we have no direct measurements of θ̄. It would require a digital terrain model

of the sample that is difficult to obtain in icy samples. Still, we find a low value, which is consistent with the production in

laboratory of slabs of columnar ice that are very flat, but still imperfect as described in the data set. The average slope is
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compatible with a long-wavelength slope at the scale of the sample, demonstrating that the micro-scale was not important in

our case. Indeed, for a sample that has a length L, a 1σ standard deviation on the thickness ∆h can be attributed to a general

slope ϑ= arctan
(

∆h
L

)
due to a small error in the parallelism of the two surfaces of the slab. In the case of sample 3, L= 20cm

and ∆h= 1.35mm result in ϑ= 0.39◦, which is compatible with the roughness given by the inversion. We thus think that what

we see is an apparent roughness due to a small general slope on the samples, and that the roughness at the surface is much5

lower than this value.

Moreover, the value retrieved by the inversion is very well constrained as the probability density function is very sharp. This

means that we have an a posteriori uncertainty on the result that is very low. The quality of the reproduction of the specular

spot by the model suggests that the surface slope description is a robust description despite its apparent simplicity. In particular,

one single slope parameter is enough to describe this surface.10

5.2 Diffuse Diffuse reflectance: thickness and grain-size retrieval

5.2.1 Example for individual geometries

To reproduce diffuse reflectance we used the results obtained with the specular measurements and assumed that the roughness

of the samples was not changing much between the experiments. The range of variations in roughness should be negligible

in the spectral analysis. We simulated slabs over snow, having the grain size of the substrate and the thickness of the slab as15

free parameters. Figure 10 represents examples of the best matches we obtained for the three measured samples at various

geometries. three examples of measured and best simulated reflectance spectra for three different geometries. We also repre-

sented the mismatch between the best fits and the observations. We find an agreement between the data and the model that

is acceptable. Nevertheless, there seems to be a decrease in quality in the fits as the thickness increases. Figure 11 shows an

example of the marginal PDF for the three samples that are associated with the previous fits. The thickness is well constrained20

as the marginal probability density functions a posteriori are relatively sharp and very close to Gaussian. However, the grain

size of the substrate seems to have a limited impact on the result since it is little constrained. The marginal PDFs for the grain

size of the substrate are broad, and thus the a posteriori relative uncertainties in the result are very high. Unfortunately, we have

no reliable measurement of the grain size of the substrate, as it is evolving during the time of the measurements. The general

trend of decreasing grain size seems to be in agreement with visual assessment. numerical tests, the snow grain-size is not be25

accessible for slab thicknesses above 5mm. The a posteriori PDF for samples 2 and three then are not to be interpreted.

5.2.2 Results for 39 geometries

Figure 12 shows the measurements and the final result of the inversion of the thickness for the three samples, and for 39

measurement geometries independently. The data and the model are compatible. Still, the thickness of sample 1 is slightly

overestimated. This may reveal a sensitivity limit of the model. The thickness of sample 3 seems underestimated. This could30

be partly due to the duration of the measurement: the slab sublimates as the measure is being taken. Moreover, the specular

measurements were performed on that sample, increasing even more the duration of the experiment. The inversions inversion
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points in Fig. 12 are sorted by increasing incidence and, for each incidence, by increasing azimuth. There seems to be an

influence of the geometry on the returned result: it is particularly clear for sample 2. The estimated thickness tends to increase

with incidence and decrease with azimuth. This effect disappears for large thicknesses (sample 3).

5.2.3 Full BRDF inversion

Figure 13 shows the measure and the best match at the λ= 1.0µm wavelength when conducting the inversion on the whole5

BRDF data set for each sample. The relatively flat behavior of the radiation with the phase angle is reasonably well reproduced.

The quality of the geometrical match increases with the thickness of the sample. This is consistent with the fact that a thicker

slab will permit a stronger isotropization of the radiation. It is also consistent with the disappearance of the geometrical

dependence on the estimation for large thicknesses noted in Fig. 12. The values of thicknesses returned by the inversion are

displayed in Fig. 14a: they are also compatible with the data, and the results are close to the one given by independent inversions10

on each geometry (see Figs. 11 and 12). The grain sizes returned, even if compatible with the independent inversion results,

are at the boundary of the definition range of the parameter for samples 2 and 3. This means that the model cannot estimate

this parameter correctly. Indeed, as displayed in Fig. 14, the a posteriori marginal PDFs for samples 2 and 3 are very close to

a Dirac delta function at the lower limit of the domain. This means that the model inversion process cannot fit a value for this

parameter inside the definition domain that is fully satisfying. This suggests an evolution of the conditions of the experiment15

between the measure for sample 1 and the others. The fact that the returned value is at the lower boundary of the grain-size

range suggests that the actual grain size of the snow is lower than this value. Unfortunately, such a grain size would contradict

the fundamental hypothesis of geometrical optics assumed by the model. These results shall thus be interpreted as grain sizes

smaller than the limit of detection. This kind of very small grain size could be produced during the experiments by a small

temperature difference between the slabs and the natural snow, resulting in the condensation of frost at the bottom of the20

slab layer. The grain-size returned (see Fig. 14) for sample one is lower, but compatible with the one given by independent

measurements. For samples 2 and 3, the pdf are not interpreted, as the grain-size cannot be constrained by the method.

6 Discussion

The two main goals of this work were (i) to develop and validate an inversion method that is adapted to the treatment of

massive and complex datasets such as satellite hyperspectral datasets, and (ii) to partially validate a previously developed25

radiative transfer model.

The first criterion is the speed of the whole method, including the direct computation of the LUT and the inversion. The

lookup tables used for this project were computed in 150 s for the roughness study (1763 wavelengths sampled, 30933 spectra)

and 2.5h for the thickness and grain size study (33186 wavelengths sampled, 666 315 spectra). The inversions themselves

were performed in less than one-tenth of a second for specular lobe and independent spectral inversions, and 2s for BRDF-as-30

a-whole inversions. Every calculation was computed on one Intel CPU with 4 GB RAM. It has to be noted that once the lookup

table has been created, an unlimited number of inversions can be conducted. This means that this method satisfies the speed
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criterion for the study of massive and complex datasets. For inversions over very large databases, the code has been adapted

to GPU parallelization. It is also possible to increase the speed of the calculation of the lookup tables by means of multi-CPU

computing.

A second aspect is the reliability of the inversion method, regardless of the direct model. Indeed, as any model makes

assumptions, the method should allow the user to know how to interpret the result obtained. The bayesian statistics in our5

method allowed us to determine that the thicknesses that we estimated in this work were reliable, with a 5 % uncertainty.

Moreover, for the radiative transfer model used in this work (see section 2), and in the experimental conditions described in

section 3, we could determine on synthetic cases (see section 4.4) that a 5 % uncertainty should be expected on ice thickness

estimation, and that the grain-size of the underlying snow could not be determined for ice thicknesses higher than 5 mm. The

experimental results on the thickness were in agreement with these estimations.10

The last point to be discussed is the capability of the model to reproduce the reality. Section 5 showed that every thickness

estimation was in agreement with independent measurements. This means that the modelling of the ice layer is radiative

transfer model is satisfactory, and that this quantity can be determined only using spectral measurements. However, this is not

the case for the estimations of the grain-size of the snow. Indeed, when the ice layer is thicker than 5 mm, our synthetic study

predicts that it cannot be retrieved. Still, the results obtained on experimental data for slab thicknesses greater than 5 mm (blue15

and green curves in figures 11 and 14) showed a posteriori PDF for the grain-sizes with surprisingly low standard deviations

compared to what was obtained on synthetic data. The experimental results favour situations in which the geometrical optics

hypothesis that is fundamental in the radiative transfer model is no longer valid. This shall not be interpreted as a result on the

grain-size, as the synthetic test showed that it was unaccessible. These low a posteriori uncertainties shall rather be interpreted

as a compensation effect: a behaviour that cannot be reproduced by the model may be approached by the most extreme values20

tested. In our case, small grain-size, even if they are not realistic, or in agreement with the model’s hypothesis, will produce an

effect in the simulation that reproduces the data better than in the other cases.

7 Discussion and conclusion Conclusions

The aim of this present work is to validate an approximate radiative transfer model developed in Andrieu et al. (2015) using

several assumptions. The most debated one is the isotropization of the radiation when it reaches the substrate. We first25

qualitatively validated this assumption with snow and ice data. We then quantitatively tested and validated our method using

a pure slab ice with various thickness and snow as a bottom condition. The thicknesses retrieved by the inversion are compatible

with the measurements for every geometry, demonstrating the robustness of this method to retrieve the slab thickness from

spectroscopy only. The result given by the inversion of the whole data set is also compatible with the measurements.

We also validate the angular response of such slabs in the specular lobe. Unfortunately, it was not possible to measure30

the micro-topography in detail to compare with the retrieved data. Nevertheless, we found a very good agreement between the

simulation and the data. The average slope is compatible with a long-wavelength slope at the scale of the sample, demonstrating
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that the micro-scale was not important in our case. This is probably due to the sharp slicing method used. In future work, an

experimental validation of the specular lobe and roughness should be addressed.

The large uncertainties in the grain size inversion demonstrate that the bottom condition is less important than the slab for

the radiation field at first order, as expected. Even at a thickness of 1.4mm, since water ice is highly absorbent, the bottom

layer is difficult to sense.5

In Fig. 10, there seems to be a decrease in the quality of the fit when the slab thickness increases. We explain it by the order

in which the experiments were conducted. Indeed, the first measurement was on the thinnest slab and the last on the thickest.

During that time, the snow substrate was sublimating. The errors in the fits could be due to the increasing contamination

in the substrate. The natural snow cannot be perfectly pure: as it sublimates during the measurements, the contribution of

the contaminants becomes stronger and stronger. These contaminants are not known and are not taken into account in the10

model. A way to avoid this problem could be to set the slab ice on top of a non-volatile granular material, such as dry mineral

sand, whose optical constants are known or can be determined. However this would not solve another problem, which is the

re-condensation of water into frost between the granular substrate and the slab.

The comparison of the a posteriori uncertainties in the thickness of the slab and the grain size of the snow substrate illustrates

the fact that those uncertainties depend both on the constraint brought by the model itself and the uncertainty introduced into15

the measurement, which only the Bayesian approach can handle. The use of Bayesian formalism is thus very powerful in

comparison with traditional minimization techniques.

We propose here a fast and innovative inversion method aiming at massive inversion, for instance for remote sensing

spectro-imaging data, that enables accurate estimation of the uncertainties in the model’s parameters. As an example, the

lookup tables used for this project were computed in ∼ 150s for the roughness study (1763 wavelengths sampled, 30 93320

spectra) and ∼ 2.5h for the thickness and grain size study (33 186 wavelengths sampled, 666 315 spectra). The inversions

themselves were performed in less than one-tenth of a second for specular lobe and independent spectral inversions, and 2s for

BRDF-as-a-whole inversions. Every calculation was computed on one Intel CPU with 4GB RAM. It has to be noted that once

the lookup table has been created, an unlimited number of inversions can be conducted. The model is fast and the inversion is

highly parallel and thus adapted to the study of the compact ice-covered surfaces of the solar system. For inversions over very25

large databases, the code has been adapted to GPU parallelization. It is also possible to increase the speed of the calculation of

the lookup tables by means of multi-CPU computing.

The aim of this present work is to validate an approximate radiative transfer model developed in Andrieu et al. (2015) using

several assumptions. The most debated one is that the radiation become lambertian when it reaches the substrate. We first

qualitatively validated this assumption with snow and ice data. We then quantitatively tested and validated our method using a30

pure slab ice with various thicknesses and snow as a bottom condition. The thicknesses retrieved by the inversion are compatible

with the measurements for every geometry, demonstrating the robustness of this method to retrieve the slab thickness from

spectroscopy only. The result given by the inversion of the whole data set is also compatible with the measurements. We

also validate the angular response of such slabs in the specular lobe. Unfortunately, it was not possible to measure the micro-
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topography in detail to compare with the retrieved data. Nevertheless, we found a very good agreement between the simulation

and the data. In future work, an experimental validation of the specular lobe and roughness should be addressed.

The large uncertainties in the grain size inversion demonstrate that the bottom condition is less important than the slab for the

radiation field at first order, as predicted by the synthetic tests conducted. The inconsistency between the a posteriori PDF on

the grain-sizes for experimental data and numerical tests stresses that synthetic tests must be performed in order to determine5

which quantities can be retrieved or not in the context of the study, and to precise the expected uncertainties.

The comparison of the a posteriori uncertainties in the thickness of the slab and the grain size of the snow substrate illustrates

the fact that those uncertainties depend both on the constraint brought by the model itself and the uncertainty introduced

into the measurement, which only the Bayesian approach can handle. The use of Bayesian formalism is thus very powerful

in comparison with traditional minimization techniques. We propose here a fast and innovative method aiming at massive10

inversions, and we demonstrated that it is adapted remote sensing spectro-imaging data analysis. The radiative transfer model

used in this study was proven appropriate to study the superior slab layer, but not the bottom one, unless the top layer is thin

(thinner than 5mm in our case). The whole method is thus adapted to study the top slab layer of a planetary surface using

satellite hyperspectral data, for instance Martian seasonal deposits, that are constituted of a slab CO2 ice layer resting directly

on the regolith.15
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Figure 1. Scheme of the surface representation in the radiative transfer model applied to the laboratory measurements. h represents the slab

thickness and θ̄ represents the mean slope to describe the surface roughness.
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Figure 2. Illustration of the radiative transfer in the surface medium. Anisotropic transits are represented in red. F is the incident radiation

flux, Rspec and RDiff are respectively the specular and diffuse contributions to the reflectance of the surface, rs is the Lambertian reflectance

of the granular substrate, and R0 and T0 are respectively the total reflection and transmission factors of the slab layer. A prime indicates an

anisotropic transit. The reflection and transmission factors are different in the cases of isotropic or anisotropic conditions. The granular and

slab layers are artificially separated in this figure to help the understanding of the coupling between the two layers. Top: illustration of the

reflections and transmission at the first interface, used in the calculations ofRspec and the determination of the amount of energy injected into

the surface. z is the normal to the surface, W f the local normal to a facet, i and e are respectively the incidence and emergence angle, and ef

is the local emergence angle for a facet. Each different orientation of a facet will lead to a different transit length in the slab. A more detailed

description can be found in Andrieu et al. (2015).
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Figure 3. (a) Reflectance factor at a wavelength of λ= 1.4µm vs. phase angle for snow only (black crosses) and the same snow but covered

with a 1.42± 0.27mm water ice slab (red squares). The thin layer of slab ice not only lowers the level of reflectance as expected but

also seems to isotropize the reflected radiation. This is clearer on plot (b), which represents the same data but normalized by the value

at a phase angle α= 20◦. This data shows that even a very thin layer of ice has a strong effect on the directivity of the surface. This

justifies the approximation of isotropization at the second interface supposed by the model, and the description of the substrate using only its

single-scattering albedo.same data but normalized by the value at a phase angle α= 20◦.

(a) (b)

Figure 4. Normalized stacks of 1000 a posteriori PDF for the grain-size of the snow, when conducting the inversion on synthetic data, with

added random noise. The legends indicate the value for the grain-size used to create the synthetic data. (a) The ice layer is 1 mm thick. (b)

The ice layer is 5 mm thick.
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(a) (b)

Figure 5. (a) Normalized stacks of 1000 a posteriori PDF for the thickness of the slab ice layer, when conducting the inversion on synthetic

data, with added random noise. The legends indicate the value for the thickness used to create the synthetic data. (b) a posteriori uncertainty

(at 2σ) on the thickness estimation as a function of the slab thickness.

(a) (b)

Figure 6. (a) A posteriori uncertainties at 2σ on the grain-size as a function of the noise standard deviation, for a 2 mm thick ice layer. (b)

A posteriori uncertainties at 2σ on the thickness as a function of the noise standard deviation.
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Figure 7. (a) Measured (black) and simulated (red) reflectance at 1.5µm in the principal plan for an incidence angle of 50◦. The specular

lobe measured is not centered at 50◦. The sample may be slightly misadjusted resulting in a general drift on the observation. (b) Measured

(black) and simulated (red) reflectance at 1.5µm in the principal plan for an incidence angle of 50◦. We simulated a small misadjustment of

the sample, resulting in a shift of the observation of 0.5◦ in emergence and 0.2◦ in azimuth. With this adjustments, the model reproduces the

data well.

Figure 8. Measured and simulated reflectance around the specular geometry at 1.5µm for an incidence angle of 50◦. The simulation was

computed assuming the determined shift of 0.5◦ in emergence and 0.2◦ in azimuth. The shape and the intensity of the specular lobe are well

reproduced.
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Figure 9. Probability density function a posteriori for the roughness parameter θ̄, noted P
{
θ̄
}

. This function is very sharp and thus the

parameter θ̄ is well constrained. The inverted value at 2σ is θ̄ = 0.424± 0.046◦. The best match is obtained for θ̄ = 0.43◦.

(a) (b) (c)

Figure 10. Measured and best match of simulated reflectance spectra for the geometry of the best match for each sample: at incidence 40◦,

emergence 10◦ and azimuth 140◦ for sample 1 (a); at incidence 40◦, emergence 20◦ and azimuth 45◦ for sample 2 (b); and at incidence

60◦ and emergence 0◦ for sample 3 (c). The thicknesses indicated in the captions were measured before putting the sample into the spectro-

goniometer, and the errors are given at 2σ. The absolute differences are shown in blue on each graph. The simulated spectra well reproduce

the data within the range of a priori uncertainties. For sample 3 (c), the reflectances in the 0.8–1.0 µm range are not very well reproduced.

The model cannot match the high levels of the measurement. This could be explained by a change in the experimental protocol, leading to

the condensation of very fine frost at the bottom of the slab layer.
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Figure 11. Marginal probability density functions a posteriori Marginal a posteriori probability density functions for (a) the thickness of the

slab P {p1(i)} and (b) the grain size of the snow substrate P {p2(j)} for the three samples, and for the geometries described in Fig. 10. The

functions are very sharp and very close to Gaussian for the thickness of the slab (a) but are broad for the grain size of the substrate (b). The

thickness is well constrained by the inversion, whereas the grain size of the substrate cannot be determined with high precision.

Figure 12. Results of the inversions and measures measurements with error bars at 2σ for samples 1, 2 and 3, and for the 39 different

geometries of measurement. The thicknesses retrieved and measured are compatible. The inversion points (in red) are sorted by incidence

(3 values), and each incidence is then sorted by azimuth (13 values: 1 for emergence 0◦ and 6 each for the 10 and 20◦ emergences). The

geometry appears to have an impact on the result for sample 1 and 2. The thickness estimated seems to increase with incidence and decrease

with azimuth. The geometrical effect disappears for large thicknesses.
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Figure 13. Measured and simulated reflectance factor at λ= 1µm for (a) sample 1, (b) sample 2 and (c) sample 3. The simulation reasonably

well reproduces, if not perfectly, the geometrical behavior of the surfaces. The quality of the geometrical simulation seems to increase with

the thickness of the slab. This is consistent with the isotropization effect of a slab, which will increase with the thickness.
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Figure 14. Marginal probability density functions a posteriori Marginal a posteriori probability density functions for (a) the thickness of the

slab P {p1(i)} and (b) the grain size of the snow substrate P {p2(j)} for the three samples. The functions are very sharp and very close

to Gaussian for the thickness of the slab (a). The a posteriori uncertainties in the results are much smaller than the previous ones, because

the data set is larger and thus more constraining. Still, these uncertainties are not fully reliable, as the model cannot perfectly reproduce the

BRDF within the a priori uncertainties (see Fig. 13). (b) The grain size can be determined on sample 1, and is consistent with the results on

inversions of single spectra (see Fig. 11). However, they cannot be inverted for sample 2 and 3, as the returned probability density function

is close to a Dirac delta function at the boundary of the definition range.
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