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Abstract. In this study, we investigate the potential of sea ice segmentation by C- and X-band multi-

polarisation synthetic aperture radar (SAR) features during late summer. Five high-resolution satel-

lite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-year and old sea ice

during a week with air temperatures varying around zero degrees Celsius. Sea ice thickness, surface

roughness and aerial photographs were collected during a helicopter flight at the site. Six polarimet-5

ric SAR features were extracted for each of the scenes. The ability of the individual SAR features

to discriminate between sea ice types and their temporal consistency were examined. All SAR fea-

tures were found to add value to sea ice type discrimination. Relative kurtosis, geometric brightness,

cross-polarisation ratio and co-polarisation correlation angle were found to be temporally consistent

in the investigated period, while co-polarisation ratio and co-polarisation correlation magnitude were10

found to be temporally inconsistent. An automatic feature-based segmentation algorithm was tested

both for a full SAR feature set, and for a reduced SAR feature set limited to temporally consistent

features. In C-band, the algorithm produced a good late summer sea ice segmentation, separating

the scenes into segments that could be associated with different sea ice types in the next step. The

X-band performance was slightly poorer. Excluding temporally inconsistent SAR features improved15

the segmentation in one of the X-band scenes.

1 Introduction

A decline in the Arctic sea ice extent has been observed during the last decades, together with a large

reduction in sea ice thickness and sea ice volume (Kwok et al., 2009a; Parkinson and Comiso, 2013;

Laxon et al., 2013; Meier et al., 2014). At the same time, the melt season has lengthened at a rate of20

about five days per decade since 1979 (Stroeve et al., 2014). To understand the processes governing

these changes, and to meet the needs of shipping, oil and gas industries in an increasingly accessible
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Arctic, more detailed mapping and monitoring of the summer sea ice cover are required (Stephenson

et al., 2013).

Synthetic aperture radar (SAR) is widely used in operational sea ice monitoring. The Canadian25

Ice Service alone processes ten to twelve thousand SAR images every year (Moen et al., 2013).

Operating in the microwave frequency, SAR has the advantage of providing all-weather and day-

and-night imagery. At present, operational sea ice services use single and dual polarimetric SAR

images (HH + HV or VH + VV) in sea ice monitoring due to their wide swath widths and good

temporal coverage. However, on a local scale, more information and improved sea ice segmentation30

can be retrieved from full polarimetric SAR imagery (HH + HV + VH + VV). Today, such data is

in limited use mainly due to its reduced coverage. The recent development of compact polarimetry

could open the way for more polarimetric radar information to be retrieved at larger swath widths

(Raney, 2007; Dabboor and Geldsetzer, 2014).

C-band (5.4 GHz) is considered the preferred frequency in operational sea ice satellite monitoring,35

offering good all-season capability (Onstott, 1992). With the launch of TerraSAR-X (2007) and

COSMO Skymed (2007) new opportunities to investigate the potential use of X-band (frequency of

9,6GHz) in sea ice satellite monitoring appeared. Several studies have investigated the application

of X-band radar for sea ice mapping through ground based, airborne and satellite borne platforms.

X-band is found to have good separation capabilities between first-year ice and old ice (Onstott,40

1992), between water and sea ice (Brath et al., 2013), and in detection of thin ice (Matsuoka et al.,

2001). Results from the Baltic Sea suggest that the information content in C- and X-band are largely

equivalent (Mäkynen and Hallikainen, 2004; Eriksson et al., 2010), while X-band was found to add

information when used in combination with C-band in the Arctic Ocean (Brath et al., 2013).

Several techniques for automatic segmentation of sea ice in SAR scenes exist. Methods consist45

of gamma distribution mixture models, thresholding of polarimetric features, K-means clustering,

neural networks, Markov random field models, Gaussian mixture models, Wishart classifiers, and

iterative region growing using sematics (see Moen et al., 2013, and references therein). Several of

these methods are feature-based methods, making use of a feature set in the segmentation. They have

the advantage of being flexible as the input features used can be varied with, e.g., location and sea-50

sonal conditions, and the features offer possible post-segmentation information as an interpretation

and labeling source. Moen et al. (2013) showed promising results in segmenting a full polarimet-

ric sea ice scene taken under winter conditions (low temperatures and snow cover) with a simple

feature-based multi-channel SAR segmentation method described in Doulgeris and Eltoft (2010)

and Doulgeris (2013), utilising six polarimetric features derived from the covariance matrix.55

Research has been conducted on SAR and microwave scatterometer measurements of sea ice since

the early 1990s (Onstott, 1992). Most of the conducted studies have been in winter and late fall, and

the number of studies in the melt period is limited. In winter, differences in salinity content and de-

gree of deformation of sea ice make it possible to separate multiyear ice (MYI) and different stages
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of first-year ice (FYI) from each other. During summer, smaller differences in salinity between MYI60

and FYI and the presence of moist snow on the sea ice surface make monitoring with SAR chal-

lenging. SAR is sensitive to the large changes in relative permittivity connected to air temperatures

close to 0◦C (Vant, 1974; Barber et al., 1998), and to variation in moisture content in the sea ice vol-

ume caused by freeze and melt cycles (Scharien et al., 2010). Early studies on the use of SAR and

microwave scatterometer data for summer sea ice applications can be found in, e.g., Onstott (1992),65

Gogineni et al. (1992), Carlstrom and Ulander (1993), Jeffries et al. (1997), and Yackel and Barber

(2000). Newer studies include examination of backscatter signatures of multiyear sea ice with ship-

based scatterometer (Isleifson et al., 2009) and investigation of the use of a supplementary frequency

of either X- or Ku-band in addition to C-band in late summer sea ice classification with an airborne

scatterometer (Brath et al., 2013). Satellite-based studies include separation of MYI and FYI by dual70

polarisation intensity data from Radarsat-2 (Warner et al., 2013), classification potential of polari-

metric features from Radarsat-2 (Gill et al., 2013) and investigations of melt pond fraction retrieval

from co-polarisation ratio data acquired by Radarsat-2 (Scharien et al., 2012, 2014b). Separating

different sea ice types during summer-melt is still a challenge.

The objective of this study is to investigate the potential of sea ice segmentation using C- and75

X-band multi-polarisation SAR features during late summer. A dataset consisting of five high-

resolution C- and X-band scenes recorded on iceberg-fast first-year and old ice in the Fram Strait in

August and September 2011 is employed in our study. The satellite data is combined with airborne

measurements from a helicopter flight at the site. We explore how the features and feature-based au-

tomatic segmentation successfully employed on FYI during winter conditions in Moen et al. (2013)80

perform on late summer sea ice with air temperatures close to 0◦C. Our study consists of two parts:

Firstly, the suitability of the individual features for use in late summer sea ice segmentation is eval-

uated. This is done by investigating the ability of the individual features to discriminate between

sea ice types and their temporal consistency during changing temperature conditions. A reduced

set of the four most temporally consistent features is suggested for use in segmentation. Secondly,85

a feature-based automatic segmentation algorithm is tested on the dataset. We investigate whether

it groups the scenes into reasonable segments, which are possible to associate with distinct sea ice

types. The algorithm is tested both with a full feature set, and with the reduced feature set suggested

in the first part of the study. The segmented images are evaluated both visually, and by pixel-wise

evaluation of regions with known geophysical properties.90

2 Methods

In this study, we examine the potential of six polarimetric SAR features for use in late summer sea

ice segmentation. To simplify the study, five regions of interest (ROIs) with different sea ice types

were defined based on information from the satellite scenes and the helicopter flight at the site. The
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first part of this section describes the dataset utilized in our study. In the second part we explain the95

design of the study, including the choice of ROIs, the generation of polarimetric SAR features and

the methodology of the analysis.

2.1 Study site

Fram Strait is a dynamic region characterised by the outflow of sea ice from the central Arctic Ocean

(e.g. Kwok, 2009b; Renner et al., 2014). The sea ice cover is therefore highly variable with both FYI100

and MYI, and contains a large fraction of deformed ice. In late summer, the snow cover has usually

melted completely, leading to melt ponds on top of the ice (e.g. Renner et al., 2013). While in most

parts of Fram Strait, southward drift leads to fast movement of the sea ice, a region with iceberg-fast

ice forms in some years in western Fram Strait (Hughes et al., 2011). In this region, the ice cover

varies between rough ice due to deformation and very level ice where the ice is formed during winter105

and protected from impact (Beckers et al., 2015; unpublished data). The study site was situated in

this area (Fig. 1). Both FYI and old sea ice in different stages of development were represented at

the site.

2.2 Dataset

The data used in this study were collected from ship, helicopter and satellite platforms during a co-110

ordinated campaign in Fram Strait in late summer 2011. The dataset consists of several high resolu-

tion multi-polarimetric SAR scenes, together with airborne observations collected from a helicopter

(Table 1). In addition, meteorological observations from the scientific vessel R/V Lance provided

information about the changing weather conditions during the campaign. The area covered by the

satellite scenes could not be reached by the ship, and the helicopter did not have the opportunity to115

land within the area, therefore no in situ measurements from the sea ice surface were retrieved.

2.2.1 Satellite measurements

For this study, three quad polarimetric C-band scenes from the Canadian Radarsat-2 (RS-2) satellite

(denoted R1, R2 and R3) and two dual polarimetric X-band scenes from the German TerraSAR-

X (TS-X) satellite (denoted T1 and T2) were used. More details about the scenes can be found in120

Table 1, and the positions of the scenes are displayed in Fig. 1. All scenes were acquired during

ascending orbits. The RS-2 scenes have a coverage of 25km (range)× 25km (azimuth), while the

TS-X scenes have a coverage of 15km (range)× 50km (azimuth).

2.2.2 Airborne measurements

Airborne measurements were conducted during a helicopter flight out from R/V Lance within the125

period of the satellite campaign (see Table 1). They include sea ice thickness, relative surface rough-
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ness and aerial images. The track of the flight is displayed together with the location of the satellite

scenes in Fig. 1.

Measurements of total snow plus sea ice thickness (from now on referred to as sea ice thickness)

were performed with an electromagnetic induction sounder (EM-bird), which was towed underneath130

the helicopter and flown at a height of about 15m above the surface. More details about the EM-bird

can be found in Haas et al. (2009) and Renner et al. (2013, 2014). From this device, the difference in

conductivity between sea ice and water is used to find the height of the EM-bird above the ice/water

interface, and a laser altimeter integrated in the EM-bird detects the distance between the EM-bird

and the snow/ice surface. The difference between the two measures gives the sea ice thickness. The135

footprint of the EM-bird has a diameter of about 50m (depending on the height of the instrument).

At the time of the acquisition there was very little or no snow on top of the sea ice, confirmed by the

aerial photos and observations from scientists onboard the helicopter.

The data from the laser altimeter mounted on the EM-bird can be used to extract surface roughness

(von Saldern et al., 2006; Beckers et al., 2015). Calibration is needed to remove helicopter altitude140

variations. This was done by the three-step high- and low-pass filtering method described in Hibler

(1972). The resulting surface elevation profiles are relative to the level ice. Surface roughness is in

this study presented as the standard deviation of the profile surface elevation about the mean (root

mean square height), Rq ,

Rq =

√√√√ 1

N

N∑
i=1

(yi− y)2, (1)145

where N represents the number of measurements, y the mean height above level ice, and yi the

height above level ice of sample i. Each ROI profile is 400m long, and N varies between 960 and

1067, depending on the speed of the helicopter.

The helicopter was equipped with a digital camera (GoPro YHDC5170, focal length 5mm, view

angle 127◦), taking downward looking photographs of the sea ice surface. The area covered by150

each image was about 85m (length)× 110m (width) and the sampling rate was 0.5Hz. The images

were processed with a semi-automatic classification algorithm, separating classes of open water,

submerged ice, melt ponds, very thin ice and thicker ice, as described inRenner et al. (2013). In

an accuracy assessment of the method performed in Renner et al. (2013), 76% of the melt pond

pixels were correctly classified. The melt pond fraction, i.e., the percentage coverage of melt ponds155

retrieved from each image, is used in our description of the sea ice types. No additional ground

information could be retrieved about the state of the melt ponds at the site of the satellite scenes

during the campaign; hence, we do not know whether the melt ponds were open or refrozen at the

time of the acquisitions. According to the cruise report, open melt ponds were observed during the

first days of the cruise, but from 26 August, a major part of the melt ponds had started to freeze160

over. Melt pond measurements in open melt ponds at the ice edge were however performed until 31

August.
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2.2.3 Meteorological information

SAR scattering properties of sea ice are highly affected by temperature and humidity, and meteo-

rological information can therefore aid the interpretation of SAR satellite scenes. Meteorological165

measurements were performed on R/V Lance during the campaign (Fig. 2). An automatic weather

station at R/V Lance consisting of an air temperature sensor (3455), an air pressure sensor (2810)

and a relative humidity sensor (3445), all from Aanderaa (numbers refer to model), were recording

meteorological information during the campaign (Fig. 2). The height of the station was 22 meters

above sea level. R/V Lance was sailing during this period and its route was located in the Fram Strait170

within 100 km west and north of the position of satellite scenes. During the week of data collection,

the weather conditions were varying and the temperature was fluctuating around 0◦C We have no

recorded information about the amount of precipitation during the campaign, but the cruise report

describes long periods with fog until 2 September. To investigate how the distance between R/V

Lance and the position of the satellite scenes influenced the meteorological information, 2 meter175

air temperature and surface pressure were extracted from the European Center for Medium-Range

Weather Forecasts (ECMWF) re-analysis (ERA-interim; Dee et al., 2011). The parameters were ex-

tracted in 6-hours increments for both the position of R/V Lance and the satellite scenes (79.25◦N

14.25◦W). There was good agreement between ERA-interim air temperature and surface pressure at

the two locations (Fig. 2). The re-analysis seems to overestimate the air temperature during the start180

of the campaign.

2.3 Study design

In the following subsections, the design of our study is presented.

2.3.1 Regions of interest

The area covered by the satellite scenes consists of sea ice with different geophysical properties.185

Some regions were homogeneous and some contained mixtures of different sea ice types. To sim-

plify our study we focus on five different sea ice regions, representing the most typical sea ice types

in the scenes (Fig. 3). The regions of interest were chosen to be as homogeneous as possible, and to

represent five distinctly different sea ice types. All ROIs are situated along the helicopter flight track

and are 400m (along track)× 200m (across track) in size. The selection of the ROIs was performed190

manually, based on color coded polarimetric images (Pauli and composite-representations) of the

satellite scenes together with photos, sea ice thickness, surface roughness and melt pond fraction re-

trieved from the helicopter overflight. Example photos from each ROI are presented in Fig. 4 and sea

ice thickness histograms for each ROI can be found in Fig. 5. Table 2 presents helicopter measure-

ments for each ROI, including mean and modal sea ice thickness, mean melt pond fraction, surface195

roughness, and sea ice class labels according to WMO sea ice nomenclature (World Meteorological
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Organisation, 1989). ROI1 represents an area with level medium thick FYI, found in the upper left

part of the scene in Fig. 3. The sea ice in ROI1 was relatively smooth and had a moderate melt pond

fraction. ROI2 represents the area of level thin FYI located in the middle of the scene. The sea ice

in ROI2 was smooth with a high melt pond fraction. ROI3 and ROI4 represent areas of weathered200

deformed old ice, situated in the lower middle part of the scene. ROI3 represents thinner ice with a

higher melt pond fraction than ROI4. ROI5 represents heavily deformed old ice, located in the lower

part of the scene. Note that other areas of deformed ice can be seen as light-coloured regions in the

right part of the scene possibly forming a shear ridge.

2.3.2 Polarimetric SAR features205

Polarimetric SAR features combine information from the channels of a multi-polarisation SAR sys-

tem, and they represent information about the scattering properties of the surface. The features

studied were previously successfully used in segmentation of a wintertime sea ice scene (Moen

et al., 2013). An overview of the features and their definitions is presented in Table 3. The features

consist of relative kurtosis (RK), geometric brightness (B), cross-polarisation ratio (RVH/VV), co-210

polarisation ratio (RVV/HH), co-polarisation correlation magnitude (|ρ|) and co-polarisation correla-

tion angle (∠ρ).RVH/VV is used instead ofRHV/HH as T2 has the polarisation combination VH−VV.

By inspection, these two features show similar values in our dataset. ∠ρ is equivalent to the more

frequently used term co-polarisation phase difference (φHH−VV).

A full-polarimetric SAR system is transmitting and receiving both horizontal (H) and vertical215

(V) polarised electromagnetic waves, resulting in d= 4 possible polarimetric channels (SHH, SHV,

SVH and SVV). Assuming reciprocity (SHV = SVH), the Lexicographic feature vector, s, is given by

equation

s=
[
SHH

√
2SVH SVV

]T
, (2)

where T denotes transpose (Lee and Pottier, 2009). The covariance matrix, C, is defined as the mean220

outer product of the Lexiographic feature vector

C=
1

L

L∑
i=1

sis
∗T
i , (3)

where si is the single look complex vector corresponding to pixel i, L is the number of scattering

vectors in a local neighbourhood and ∗T denotes the Hermitian transpose (Lee and Pottier, 2009).

Hence, C can be written as225

C=


〈SHHS

∗
HH〉 〈SHHS

∗
VH〉 〈SHHS

∗
VV〉

〈SVHS
∗
HH〉 〈SVHS

∗
VH〉 〈SVHS

∗
VV〉

〈SVVS
∗
HH〉 〈SVVS

∗
VH〉 〈SVVS

∗
VV〉

 , (4)

where the 〈·〉 is the sample mean over L scattering vectors and ∗ denotes the complex conjugate.
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The TS-X scenes included in our study are dual-polarimetric. The covariance matrix then reduces

to a 2×2 matrix. This implies that the full feature set of six features could not be achieved for these

scenes since the achievable feature set depends on the scenes’ polarimetric channel combination (see230

Table 3). Note that RK and B in the TS-X scenes are calculated from reduced covariance matrices,

and should not be directly compared to the similar RS-2 features.

RVH/VV, RVV/HH, |ρ| and ∠ρ are well known polarimetric features in sea ice applications

(Drinkwater et al., 1992), while RK and B have seen less attention in the literature. RK is a mea-

sure of non-Gaussianity, and is defined as Mardia’s multivariate kurtosis of a sample divided by235

the expected multivariate kurtosis of a complex normal distribution (d(d+1)) (Mardia, 1970; Doul-

geris and Eltoft, 2010). RK < 1 points towards a distribution with broader shoulders and lighter

tails than for Gaussian data, while RK > 1 implies a sharp peak close to the mean, and heavy tails

relative to Gaussian distribution (DeCarlo, 1997). Large values of RK are expected for deformed

sea ice due to scattering from a few strong reflections, and for inhomogeneous areas due to dif-240

ferences in intensity mixtures (Moen et al., 2013). B represents the intensity of the multichannel

radar backscatter. It is closely related to the more familiar feature SPAN, i.e. trace(C), as they both

represent the eigenvalues of the covariance matrix.B is however more sensitive to the smaller eigen-

values. RV H/V V is known as a measure of depolarisation (Drinkwater et al., 1992). In microwave

scattering of sea ice, depolarisation is expected related to multiple scattering within the sea ice vol-245

ume or to surface roughness (Scharien et al., 2012; Moen et al., 2013). RV V/HH is only dependent

on the relative permittivity for very smooth surfaces within the Brag regime (Hajnsek et al., 2003).

For rougher surfaces, the feature is expected to increase with incidence angle and relative permit-

tivity, and decrease with increasing surface roughness (Drinkwater et al., 1991; Fung, 1994). With

volume scattering, RV V/HH (dB) tends toward zero (Scharien et al., 2012). |ρ| is a measure of the250

proportion of polarised backscatter, reaching unity when the co-polarisation channels are perfectly

correlated (Drinkwater et al., 1992). The feature is expected to decrease with incidence angle, at an

increasing rate for high salinity ice (Drinkwater et al., 1992; Gill et al., 2012). ∠ρ is the relative

difference in phase between the co-polarisation channels, describing the sea ice scattering history

(Drinkwater et al., 1992). The feature depends on both the sea ice relative permittivity and surface255

roughness.

2.3.3 Data analysis

In this study, the sea ice type discrimination ability is evaluated through a maximum a posteriori

(MAP) supervised classifier, using Bayes’ decision rule (Theodoridis and Koutroumbas, 2009). The

classifier assigns pixel x to class ωj if260

P (ωj |x)> P (ωi|x) ∀j 6= i, (5)
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where P (ωj |x) is the probability of class ωj given the feature value x. The probability density

functions (PDFs) are estimated with a Parzen kernel density estimator, using a Gaussian kernel

function (Theodoridis and Koutroumbas, 2009). The bandwidth used is a function of the number

of points in the sample and their distribution, as described in Bowman and Azzalini (1997). The265

pixels in the five ROIs are used as training areas, and each of the satellite scenes are classified

individually. As the ROIs investigated are small, resulting in small sample sizes, leave-one-out cross

validation is used in training and testing the classifier. A 7× 7 pixels neighbourhood, L= 49, is

used in the classification and a stepping window with steps of 5× 5 pixels is employed to reduce

neighbourhood overlap. The resulting classification accuracies obtained for each individual feature270

are used to evaluate the discrimination abilities of the features in each of the five scenes.

The temporal consistency of the individual features is studied qualitatively for the three RS-2

scenes, by inspecting the mean ROI values of each feature. We consider a feature temporally consis-

tent if the ranking of the mean ROI values of the feature is similar in all three scenes. E.g., the ROI

with the highest mean value for a specific feature has the highest mean value of that feature in all the275

three investigated scenes. Based on the result of temporal consistency, a reduced feature set of four

features is suggested.

A feature-based automatic segmentation algorithm is tested on the five scenes in the dataset. It is

tested both with the original full feature set, and with a reduced feature set excluding the most tem-

porally inconsistent features. The segmentation uses multivariate Gaussian mixture models to model280

the features’ PDF, and employs an expectation-maximization algorithm. Markov random fields are

used for contextual smoothing. Further description of the segmentation approach is given in Doul-

geris (2013) and Moen et al. (2013). A 21×21 pixels neighbourhood, L= 441, was used performing

the segmentation. The size of the neigbourhood does not take into account the difference in reso-

lution between the scenes, but assures an equal sample size in the extraction of the features. The285

algorithm was set to segment the scenes into six different segments. The number is chosen to allow

for the five sea ice types described by the ROIs, in addition to one extra segment to allow for detec-

tion of other sea ice types and to assure some flexibility for the algorithm. For easier comparison, the

area used in the segmentation is confined to the intersection of the individual scenes’ geographical

location (see the pink patch in Fig. 1). For each scene, the segmentation’s performance is evaluated290

visually on its ability to separate the four main sea ice types represented in the ROIs (medium thick

FYI, thin FYI, old ice and old deformed ice), and based on its ability to discriminate the pixels of

the five ROIs into different segments.

3 Results

This section consists of three parts. The first two parts examine the individual sea ice type discrim-295

ination ability and the temporal consistency of six polarimetric SAR features. In the third part, an

9



automatic segmentation algorithm based on the investigated features is tested on the data set. Results

for C- and X-band are presented separately, as differences in incidence angle, resolution and polari-

metric channel combinations make a direct comparison inappropriate (see Table 1). The features in

C-band are based on the full covariance matrix, while those in X-band are based on reduced covari-300

ance matrices as the TS-X scenes are dual polarisation scenes (see Table 3). Note that ROI5 is only

present in the RS-2 scenes.

3.1 Individual features discrimination ability

The polarimetric features’ individual capacity of classifying the investigated ROIs into separate

classes is presented in Tables 4 and 5, for RS-2 and TS-X respectively. The presented values rep-305

resent the diagonal values of the confusion matrices, i.e., the percentage of true classification. The

best result for each ROI is highlighted in bold. All pixels from the five ROIs were included in the

classification, and the experiment was performed separately for each of the scenes included in the

study. From the two tables we note that none of the features individually was able to classify all the

five ROIs in a single scene with high accuracy. All features do however give satisfying classifica-310

tion results for some of the sea ice types represented by the ROIs, in some of the scenes. Hence,

by combining the features, all features could add value to a feature-based sea ice type segmentation

algorithm. The best feature for discriminating a given ROI varies from scene to scene. In all scenes

except T1, ROI4 seems to be the most challenging to separate from the others. ROI4 consisted of

old ice, as did ROI3. An overlap between the PDFs of these two ROIs could be a reason for the poor315

discrimination result.

The result of the MAP classification for C- and X-band does not show large differences. The best

classification accuracies in the C-band scenes are slightly higher than those in the X-band scenes,

indicating a larger discrimination potential in C-band. This difference is not necessarily a result of

different frequencies. RK and B are calculated from a reduced covariance matrix in the X-band320

scenes, and therefore contain less information. The lower incidence angles and higher resolution of

the TS-X scenes could also contribute to the observed differences.

3.2 Temporal consistency of features

The temporal evolution of the feature means from each ROI are displayed in Figs. 6 and 7 for

RS-2 and TS-X, respectively. The variances of the features within each ROI are displayed as er-325

ror bars equivalent to two standard deviations. Due to different polarisation channel combinations

(see Table 1), different features are displayed for T1 and T2 in Fig. 7. This also limits a temporal

investigation in X-band, and we will in the following focus on the results in C-band.

As weather conditions and incidence angles are different for the RS-2 scenes in the dataset (see

Table1), the mean ROI values of the features are expected to vary between the scenes even if sea330

ice conditions would be the same or very similar. Hence, when searching for temporally consistent
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features, we look at the evolution of the ranking of the mean ROI values of each feature. For instance,

studying RK in Fig. 6, the mean value within each ROI varies between the scenes. However, the

relative relationship between the different mean values is almost constant. The RK of ROI5 does

for instance take values between 1.05 and 1.15, but the RK value is always highest in this ROI. The335

same between-ROI-consistency during the investigated period can also be found for B, RVH/VV and

∠ρ (Fig. 6). The relative relationship of the mean ROI value of RVV/HH and |ρ| changes from scene

to scene, hence no temporal consistency can be observed.

T2 shows similar relationships between the mean ROI values of the features as the RS-2 scenes

for all three features extracted (Figs. 6 and 7). The same between-ROI relationship cannot be found340

for T1. The error bars in the TS-X ROIs are in general larger than in the RS-2 ROIs, which may

indicate poorer discrimination ability of the TS-X scenes.

A feature-based sea ice segmentation algorithm depends on features with good discrimination

ability and temporal consistency to give consistent results during changing geophysical conditions.

This is especially important in the Arctic, as in situ information is often not available. Excluding345

temporally inconsistent features could help achieve a temporally stable segmentation during chang-

ing conditions. We therefore suggest a reduced feature set, consisting of RK, B, RV H/V V and ∠ρ

for late summer sea ice segmentation. A reduction of features in the feature set could of course also

imply loss of important information and hence degradation in the segmentation performance. The

following subsection will further explore the use of a reduced feature set.350

3.3 Segmentation

From Fig. 8, the segmentations of R1 and R2 look reasonable compared to the information from the

helicopter flight, both for the full (right) and reduced (left) feature set. The different segments seem

to be associated with distinct sea ice types. One can recognize the thin FYI ice area in the middle

of the scenes (violet), the heavily deformed old ice areas in the diagonal bottom-left part of the355

scenes (blue and turquoise), and two different sea ice types north (medium thick FYI, orange) and

south (old ice, yellow) of the middle region. The segmentation of R3 (Fig. 8e) has a more granular

appearance, and the areas with medium thick FYI are confused with the areas consisting of old ice

(yellow, orange, grey). The differences between the segmentations with full and reduced feature sets

for the three RS-2 scenes are small, but the segmentation of R3 becomes slightly noisier with the360

reduced feature set.

Figure 9 displays which segments the pixels of each of the ROIs were assigned to in all three RS-

2 scenes, both for the full (left) and the reduced (right) feature sets. In general, the segmentations

with the full feature set give good distinction between the different ROIs included in this study. In

particular, the thin FYI in ROI2 and the deformed old ice in ROI5 were separated with an accuracy365

above 71 % from the other ROIs in all three scenes. In R1 and R2, the segmentation was not able

to separate ROI3 and ROI4 clearly (Fig. 9a and c). These ROIs both contain old ice, with different
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thicknesses and melt pond fractions; hence, the ice types in the ROIs are quite similar. In R3, the

medium thick FYI in ROI1 was segmented to three different segments. Reducing the feature set by

excluding the temporally inconsistent features does not affect the results for R1 and R2 (Fig. 9b and370

d). In R3, it improves the separation of medium thick FYI in ROI1, and reduces the discrimination

between the thin FYI in ROI2 and the old ice in ROI3 (Fig. 9f).

The segmentations of the two TS-X scenes, based on the achievable features limited by their

polarisation channels (see Table 3), are presented to the left in Fig. 10. In addition, T1 was segmented

with a reduced feature set presented to the right in the same figure. The segmentation of T1 with a375

full achievable feature set gives a poor and granular impression. The area of thin FYI in the middle

of the scene was not discriminated from the rest of the scene, and the deformed sea ice areas in the

bottom-left diagonal were not fully segmented (green). Also the segmentation of T2 gives a slightly

granular impression, but the areas of thin FYI in the middle of the scene (violet), and the areas

of deformed ice in the bottom-left diagonal (blue and turquoise) were well segmented. Reducing380

the feature set in the segmentation of T1 seems to improve the segmentation of the area with thin

first-year ice in the middle of the scene (violet), but granular noise is still present.

Figure 11 displays which segments the pixels in each of the ROIs were assigned to in the seg-

mentations of the two TS-X scenes. For T1, both for the full achievable (left) and the reduced (right)

feature set. Fig. 11a confirms the poor impression of the segmentation of T1 with full achievable385

feature set, giving minimal discrimination between the four ROIs. In the segmented image of T2, the

thin FYI in ROI2 is separated from the other ROIs, while the rest of the ROIs are confused. Reducing

the feature set in the segmentation of T1 (Fig. 11b) does not improve the segmentation performance,

even if the visual inspection of Fig. 10b suggested a slight improvement for the whole scene.

4 Discussion390

Among the six investigated features, RV V/HH and |ρ| were found to be temporally inconsistent

during the study. The temporal inconsistency could have several reasons. These features might have

a stronger sensitivity to sea ice relative permittivity than the others. As stated in the introduction,

relative permittivity will vary largely with temperature during warm conditions (Vant, 1974; Barber

et al., 1998), and small temperature differences between the scenes could cause large differences in395

relative permittivity. In Bragg-scattering theory, RV V/HH is only dependent on the relative permit-

tivity of the surface for smooth surfaces (Fung, 1994). Another possible reason for the inconsistency

of these two features is a stronger sensitivity to changes in incidence angles than for the rest of the

features. The incidence angle of the three RS-2 scenes varies between 38 and 48 degrees (see Table

1). |ρ| varies linearly with incidence angle, according to Fig. 6, but the same dependency cannot be400

seen forRV V/HH . Gill et al. (2013) did a study on feature temporal consistency in C-band between a

winter and a spring scene on FYI north of Canada. They found, similar to this study, that ∠ρ showed
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high consistency during changing temperature conditions. In contradiction to our findings, they also

found RV V/HH to have high temporal consistency. RK and B were not included in their study.

Different incidence angles, sea ice types, snow conditions and season may explain the differences in405

results.

Choice of features and their temporal consistency is not the only factor affecting the results of the

segmentation algorithm. Differences in incidence angle and resolution between the scenes, changing

meteorological conditions and choice of segmentation parameters do all affect the outcome of our

study. The incidence angles in our study vary between 26◦ (T2) and 48◦ (R2). As the backscatter410

signature from a sea ice surface depends on incidence angle, this is expected to affect the results.

Between the RS-2 scenes, the incidence angle variation is small with a 10◦ difference. From Fig. 6,

the influence of the changing incidence angle is limited, except for |ρ|. The pronounced difference

in incidence angle between the RS-2 and TS-X scenes could contribute to the poorer performance

of the segmentation algorithm in X-band, but a larger number of scenes with overlapping incidence415

angle are needed to confirm this. To obtain equal sample sizes in our study, the same neighbourhood

size was used in filtering all scenes even if the scene resolution differed. The scenes with highest

resolution would therefore have smaller spatial filter sizes. This difference in scale possibly influ-

ences the signature of physical properties of the surface, like surface roughness variation. Filter sizes

adjusted to the resolution were tested during our investigations, but this made little difference to the420

results.

During the week of data collection, the air temperature was varying around 0◦C, introducing diffi-

cult conditions for sea ice information retrieval from SAR. The distance between the meteorological

measurements retrieved from R/V Lance and the study site makes detailed analysis of SAR weather

dependence difficult. Some general events observed in the meteorological data could however help425

explaining our results. Both T1 and R2 were acquired during a period with air temperatures close to

or above 0◦C, conditions that are on the limit of suitability for sea ice type discrimination by SAR. As

reported by Scharien et al. (2010), moisture in the upper sea ice layer could mask out volume scatter-

ing and hence lower the backscatter contrast between different sea ice types. The difficult conditions

could explain the poor segmentation performance of T1. However, R2 was acquired during similar430

meteorological conditions with good segmentation results. Lower frequency, higher incidence angle

and extra information contained in the cross-pol channel (lacking for T1) could all have contributed

to a better segmentation of R2. The segmentation of R3 was poorer than those of the two other RS-2

scenes. Prior to the acquisition of R3, a drop in temperature and relative humidity could have caused

rime on the sea ice surface (Drinkwater, 1995) or draining and refreezing of freshwater in the upper435

layers of the sea ice (Scharien et al., 2010). Both processes could cause a lower contrast between

different sea ice types, and hence hamper the segmentation results. A refreeze of the sea ice could

however also result in the opposite, enhanced volume scattering could lead to increased sea ice type

discrimination.
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Choice of sliding window size and number of segments are important for the segmentation results.440

The use of window size of 21×21 pixels or larger showed the best results in our dataset. The size of

the window was in our case a trade-off between resolution details (small window) and segmentation

with little speckle and larger continuous regions (large window). The choice of window size will

also determine which kind of information one can retrieve about the sea ice surface. If information

about small-scale structure like ridges, melt ponds and small leads is important, this requires a small445

window. Larger window sizes could be more appropriate to gain information about, for instance,

sea ice age or type. Choice of sensor restricts how high a resolution is possible to achieve, and

high resolution is at present coupled to small swath width. The number of segments was set in

advance, based on visual inspection of the scenes and information retrieved from the helicopter-

borne measurements. Choosing too few segments could force different sea ice types into a common450

segment, while increasing the number of segments could split an ice type into several segments.

5 Conclusions

We examined the potential of sea ice segmentation by C- and X-band multi-polarisation SAR fea-

tures during late summer in the Fram Strait. Firstly, the individual features sea ice type discrimina-

tion ability and their temporal consistency were investigated. Secondly, an automatic feature-based455

segmentation was tested.

The ability of the individual features to discriminate five sea ice types during changing temper-

ature conditions was evaluated by a MAP supervised classifier, and by a qualitative study of the

temporal consistency of the features. The classification results revealed a potential in all individual

features for discriminating some of the sea ice types from each other, but none of the individual460

features could separate the total set of sea ice types in any of the scenes. Hence, a combination of

the features has the potential of segmenting the different sea ice types included in our study. Tem-

poral consistency was evaluated by studying the ability of the features to rank the mean value of

the five sea ice types in the same order throughout the three RS-2 scenes. Relative kurtosis, geo-

metric brightness, cross-polarisation ratio and co-polarisation correlation angle were found to give465

good temporal consistency during changing temperature conditions. These features were suggested

as a reduced feature set. Co-polarisation ratio and co-polarisation correlation magnitude were found

to be inconsistent through the period investigated. Possible reasons for the two features’ inconsis-

tency could be a higher sensitivity to changes in relative permittivity or incidence angles. Our study

demonstrates some of the difficulties of sea ice discrimination at temperatures close to 0◦C, and470

highlights that it is important to cautiously select features for consistent sea ice monitoring during

late summer. However, our study shows as well that it is possible to retrieve valuable information

from multi-polarisation SAR imagery, even under these difficult conditions.
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An automatic feature-based segmentation algorithm was tested on the dataset and evaluated for

its ability to discriminate the five investigated sea ice types. The segmentation was tested for a full475

feature set of six features and for a reduced feature set of the four features showing the best temporal

consistency. The segmentation in general performed well on the three RS-2 scenes. It showed good

temporal consistency between the scenes, both for the full and for the reduced feature set. How-

ever, reducing the feature set slightly degraded the segmentation performance for one scene. The

segmentation succeeded in segmenting some of the sea ice types in one of the two TS-X scenes. In480

the other scene the segmentation performed poorly. The poor performance might be a result of air

temperatures above 0◦C combined with low incidence angle and polarimetric channel combination

HH-VV. Reducing the feature set introduced a slight improvement in this poorest segmented scene.

In total, the automatic feature-based segmentation algorithm demonstrates a potential of sea ice type

discrimination during late summer, and our results indicate that an exclusion of temporally incon-485

sistent features could improve the segmentation results in some cases. To confirm this, more scenes

need to be investigated.

Both C- and X-band scenes were included in the study, but differences in incidence angle, res-

olution and number of polarisation channels made a direct comparison with respect to frequency

inappropriate. One of the X-band scenes showed promising results regarding sea ice type discrim-490

ination, close to those achieved for the quad polarimetric RS-2 scenes, even though it was a dual

polarimetric scene. However, investigations of more scenes with different incidence angle and po-

larisation combinations are necessary to assess the potential of X-band in sea ice discrimination.

Future studies should also focus on a better physical understanding of the relation between SAR

polarimetric features and geophysical properties. This could improve the interpretation of the seg-495

mented sea ice scenes, and possibly lead to an automatic labeling of the segments, a classification.

The suitability of other features in late summer sea ice segmentation should also be explored. Multi-

polarisation SAR images offer good possibilities for sea ice segmentation, but due to their limited

swath width they are not suitable for operational ice charting. The development of compact polarime-

try modes on new satellite missions like, e.g. RISAT-1, PALSAR-2, and Radarsat Constellation Mis-500

sion, and the new wide quad polarimetric mode in RS-2, could increase the amount of polarimetric

information on larger swath widths, and the possibilities of late summer sea ice investigations in

these modes should be investigated.
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Table 1. Overview of the data set.

Date Time

(UTC)

Scene

ID

Satellite, mode and polarisation Incidence

angle

Pixel spacing

(azimuth× slant

range)

29 Aug 2011 17:41 R1 Radarsat-2, Fine Quad, HH,HV,VH,VV 38.2◦ 5.0m× 5.0m

30 Aug 2011 18:23 T1 TerraSAR-X, StripMap, HH,VV 29.4◦ 2.4m× 1.9m

31 Aug 2011 18:23 R2 Radarsat-2, Fine Quad, HH,HV,VH,VV 48.2◦ 4.7m× 5.1m

3 Sep 2011 14:09 – Helicopter fligth – –

4 Sep 2011 18:07 R3 Radarsat-2, Fine Quad, HH,HV,VH,VV 44.4◦ 5.1m× 6.8m

5 Sep 2011 17:00 T2 TerraSAR-X, StripMap, VH,VV 25.9◦ 2.3m× 2.1m

Table 2. Detailed information about the regions of interest (ROIs) from helicopter-borne measurments and the

corresponding sea ice class labels (WMO nomenclatura).

ROI

ID

Mean (modal) sea

ice thickness

Mean melt pond

fraction

Surface roughness,

Rq

Sea ice class labels

ROI1 1.3 (1.2)m 17% 0.098m Medium thick first-year ice

ROI2 0.6 (0.6)m 38% 0.062m Thin first-year ice

ROI3 2.1 (2.0)m 26% 0.231m Old ice

ROI4 3.7 (3.3)m 11% 0.204m Old ice

ROI5 11.7 (8.9)m 3% 0.575m Old ice

von Saldern, C., Haas, C., and Dierking, W.: Parameterization of Arctic sea-ice surface roughness for application

in ice type classification, Ann. Glaciol., 44, 224–230, 2006.

Warner, K., Iacozza, J., Scharien, R., and Barber, D.: On the classification of melt season first-year and635

multi-year sea ice in the Beaufort Sea using Radarsat-2 data, Int. J. Remote Sens., 34, 3760–3774,

doi:10.1080/01431161.2012.760855, 2013.

World Meteorological Organisation: Sea-ice nomenclature and interational system of sea ice symbols, Tech.

rep., World Meteorological Organisation, Geneva, Switzerland, 1989.

Yackel, J. J. and Barber, D. G.: Melt ponds on sea ice in the Canadian Archipelago: 2. On the use640

of RADARSAT-1 synthetic aperture radar for geophysical inversion, J. Geophys. Res., 105, 22061,

doi:10.1029/2000JC900076, 2000.
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Table 3. Polarimetric SAR features included in the study.

Polarimetric feature Definition Extracted for scene

Relative kurtosis RK = 1
L

1
d(d+1)

∑L
i=1

[
s∗Ti C−1si

]2
All scenes

Geometric brightness B = d
√

det(C) All scenes

Cross-polarisation ratio RVH/VV =

〈
SVHS∗

VH

〉〈
SVVS∗

VV

〉 R1, R2, R3, T2

Co-polarisation ratio RVV/HH =

〈
SVVS∗

VV

〉〈
SHHS∗

HH

〉 R1, R2, R3, T1

Co-polarisation correlation magnitude |ρ|=

∣∣∣∣∣∣
〈
SHHS∗

VV

〉
√〈

SHHS∗
HH

〉〈
SVVS∗

VV

〉
∣∣∣∣∣∣ R1, R2, R3, T1

Co-polarisation correlation angle ∠ρ= ∠
(〈
SHHS

∗
VV
〉)

R1, R2, R3, T1

Table 4. Classification accuracy of individual polarimetric features in the three Radarsat-2 scenes derived from

MAP classification. The best result for each ROI in each scene are highlighted in bold.

Scene ID Feature Sea ice type classification accuracy (%)

ROI1 ROI2 ROI3 ROI4 ROI5

R1 RK 5 22 42 0 64

B 1 69 71 10 78

RVH/VV 23 0 38 0 51

RVV/HH 7 49 15 0 40

|ρ| 0 41 31 5 46

∠ρ 0 30 70 0 41

R2 RK 41 28 0 7 8

B 31 63 75 32 23

RVH/VV 19 87 0 18 44

RVV/HH 0 70 40 0 26

|ρ| 57 0 0 0 34

∠ρ 5 11 19 27 44

R3 RK 0 20 60 40 55

B 38 45 24 26 54

RVH/VV 3 40 2 40 74

RVV/HH 61 35 0 41 0

|ρ| 31 50 6 2 58

∠ρ 14 0 0 23 51
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Table 5. Classification accuracy of individual polarimetric features in the two TerraSAR-X scenes derived from

MAP classification. The best result for each ROI in each scene is highlighted in bold.

Scene ID Feature Sea ice type classification accuracy (%)

ROI1 ROI2 ROI3 ROI4

T1 RK 35 3 24 17

B 54 0 21 60

RVV/HH 54 17 16 19

|ρ| 51 44 0 19

∠ρ 59 12 22 18

T2 RK 44 0 32 6

B 41 23 59 10

RVH/VV 16 61 19 23

Figure 1. Map of the western Fram Strait showing the location of the satellite scenes included in the study and

the track of the helicopter flight collecting airborne measurements for the study. The red box in the inset map

of the Northern Hemisphere displays the geographical position of the area displayed. At the time of the flight,

R/V Lance was slightly north of this map section.
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Figure 2. Air temperature (a), air pressure (b) and relative humidity (c) during the campaign. The gray vertical

lines represent the time of the acquisition of the satellite scenes.
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Figure 3. Position of regions of interest and helicopter thickness measurements displayed on the Radarsat-2

scene from 31 August 2011 (R2). The polarimetric image is a Pauli composite, the intensity channel combina-

tions |HH−VV|, 2|HV| and |HH+VV| are assigned to the red, green and blue (RGB) channels, respectively.
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Figure 4. Example photos from the five regions of interest: (a) ROI1, (b) ROI2, (c) ROI3, (d) ROI4 and (e)

ROI5. The photos are captured during the helicopter flight on 3 September 2011, and the EM-bird can be seen

in the lower center part of each photo.
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Figure 5. Histograms of sea ice thickness (m) measured during the helicopter flight 3 September 2011 for each

of the five regions of interest (ROI).
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Figure 6. Mean values of the features in the regions of interest in the three Radarsat-2 scenes (R1, R2 and R3).

The error bars are two standard deviations long.
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Figure 7. Mean values of the features in the regions of interest in the two TerraSAR-X scenes (T1 and T2). The

error bars are two standard deviations long.
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Figure 8. Segmentations of the three Radarsat-2 scenes (R1, R2 and R3) into six segments. To the left: segmen-

tation with full feature set. To the right: segmentation with reduced feature set consisting of relative kurtosis,

geometric brightness, cross-polarisation ratio and co-polarisation angle.

29



ROI1 ROI2 ROI3 ROI4 ROI5

F
re

qu
en

cy
 (

%
)

71

100
85

100

15

12

100

17

(a) R1

ROI1 ROI2 ROI3 ROI4 ROI5

F
re

qu
en

cy
 (

%
)

100

50

100100

50

100

(c) R2

ROI1 ROI2 ROI3 ROI4 ROI5

F
re

qu
en

cy
 (

%
)

26

9851

24

4

100

2

96 100

(e) R3

ROI1 ROI2 ROI3 ROI4 ROI5

F
re

qu
en

cy
 (

%
)

70

100
86

100

7

100

14 24

(b) R1

ROI1 ROI2 ROI3 ROI4 ROI5

F
re

qu
en

cy
 (

%
)

3

100

50

100100

50

97

(d) R2

ROI1 ROI2 ROI3 ROI4 ROI5

F
re

qu
en

cy
 (

%
)

21

98

11
31

49

100

69 4368

8 2

(f) R3

Full feature set Reduced feature set

Figure 9. The segments assigned to the pixels in the five regions of interest by the segmentation of the three

Radarsat-2 scenes (R1, R2 and R3). To the left: segmentation with full feature set. To the right: segmentation

with reduced feature set.
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Figure 10. Segmentations of the two TerraSAR-X scenes (T1 and T2) into six segments. To the left: segmen-

tation with full achievable feature set. For T1 the feature set consists of relative kurtosis, geometric brightness,

co-polarisation ratio, co-polarisation correlation magnitude and co-polarisation correlation angle. For T2 the

feature set consists of relative kurtosis, geometric brightness and cross-polarisation ratio. To the right: segmen-

tation of T1 with the reduced feature set consisting of relative kurtosis, geometric brightness and co-polarisation

correlation angle.
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Figure 11. The segments assigned to the pixels in the four regions of interest by the segmentation of the two

TerraSAR-X scenes (T1 and T2). To the left: segmentation of T1 and T2 with full achievable feature set. To the

right: segmentation of T1 with reduced feature set.
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