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Abstract

In this study we investigate the potential of sea ice segmentation by C- and X-band
multi-polarisation synthetic aperture radar (SAR) features during late summer. Five high-
resolution satellite SAR scenes were recorded in the Fram Strait covering iceberg-fast first-
year and old sea ice during a week with air temperatures varying around zero degrees
Celsius. Sea ice thickness, surface roughness and aerial photographs were collected dur-
ing a helicopter flight at the site. Six polarimetric SAR features were extracted for each of the
scenes. The ability of the individual SAR features to discriminate between sea ice types and
their temporally consistency were examined. All SAR features were found to add value to
sea ice type discrimination. Relative kurtosis, geometric brightness, cross-polarisation ratio
and co-polarisation correlation angle were found to be temporal consistent in the inves-
tigated period, while co-polarisation ratio and co-polarisation correlation magnitude were
found to be temporally inconsistent. An automatic feature-based segmentation algorithm
was tested both for a full SAR feature set, and for a reduced SAR feature set limited to tem-
porally consistent features. In C-band, the algorithm produced a good late summer sea ice
segmentation, separating the scenes into segments that could be associated with different
sea ice types in the next step. The X-band performance was slightly poorer. Excluding tem-
porally inconsistent SAR features improved the segmentation in one of the X-band scenes.

1 Introduction

A decline in the Arctic sea ice extent has been observed during the last decades, together
with a large reduction in sea ice thickness and sea ice volume (Kwok et al., 2009a; Parkin-
son and Comiso, 2013; Laxon et al., 2013; Meier et al., 2014). The reduction in sea ice
volume has also lengthened the melt season at a rate of about five days per decade since
1979 (Stroeve et al., 2014). To understand the processes governing these changes, and
to meet the needs of shipping, oil and gas industries in an increasingly accessible Arctic,
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more detailed mapping and monitoring of the summer sea ice cover is required (Stephen-
son et al., 2013).

Synthetic aperture radar (SAR) is widely used in operational sea ice monitoring. The
Canadian Ice Service alone processes ten to twelve thousand SAR images every year
(Moen et al., 2013). Operating in the microwave frequency, SAR has the advantage of
providing all-weather and day-night imagery. At present, operational sea ice services use
single and dual polarimetric SAR images (HH + HV or VH + VV) in sea ice monitoring due
to their wide swath widthS and good temporal coverage. However, on a local scale, more
information and improved sea ice segmentation can be retrieved from full polarimetric SAR
imagery (HH + HV or VH + VV). Today, such data is in limited use mainly due to its reduced
coverage. The recent development of compact polarimetry could open the way for more
polarimetric radar information to be retrieved at larger swath widths (Raney, 2007; Dabboor
and Geldsetzer, 2014).

C-band (5.4 GHz) is considered the preferred frequency in operational sea ice satel-
lite monitoring, offering a good all-season capability (Onstott, 1992). With the launch of
TerraSAR-X (2007) and COSMO Skymed (2007) new opportunities to investigate the po-
tential use of X-band (frequency of 9,6GHz) in sea ice satellite monitoring appeared. Sev-
eral studies have investigated the application of X-band radar for sea ice mapping through
ground based, airborne and satellite borne platforms. X-band is found to have good sepa-
ration capabilities between first-year ice and old ice (Onstott, 1992), between water and sea
ice (Brath et al., 2013), and in detection of thin ice (Matsuoka et al., 2001). Results from
the Baltic Sea suggest that the information content in C- and X-band are largely equivalent
(Mäkynen and Hallikainen, 2004; Eriksson et al., 2010), while X-band was found to add
information when used in combination with C-band in the Arctic Ocean (Brath et al., 2013).

Several techniques for automatic segmentation of sea ice in SAR scenes exist. Meth-
ods consist of thresholding of polarimetric features, gamma distribution mixture models,
K-means clustering, neural networks, Markov random field models, Gaussian mixture mod-
els, Wishart classifiers and iterative region growing using sematics (see Moen et al., 2013,
and references therein). Several of these methods are feature-based methods, making use
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of a feature set in the segmentation. They have the advantage of being flexible as the
input features used can be varied with, e.g., location and seasonal conditions, and the fea-
tures offer possible post-segmentation information as an interpretation and labeling source.
Moen et al. (2013) showed promising results in segmenting a full polarimetric sea ice scene
taken under winter conditions (low temperatures and snow cover) with a simple feature-
based multi-channel SAR segmentation method described in Doulgeris and Eltoft (2010)
and Doulgeris (2013), utilising six polarimetric features derived from the covariance matrix.

Research has been conducted on SAR and microwave scatterometer measurements of
sea ice since the early 1990s (Onstott, 1992). Most of the conducted studies have been in
winter and late fall, and the number of studies in the melt period is limited. In winter, differ-
ences in salinity content and degree of deformation of sea ice make it possible to separate
multi-year ice (MYI) and different stages of first year ice (FYI) from each other. During sum-
mer, more limited differences in salinity between MYI and FYI and the presence of moist
snow on the sea ice surface make monitoring with SAR challenging. SAR is sensitive to the
large changes in relative permittivity connected to air temperatures close to zero degrees
Celsius (Vant, 1974; Barber et al., 1998), and to variation in moisture content in the sea ice
volume caused by freeze and thaw cycles (Scharien et al., 2010). Early studies on the use
of SAR and microwave scatterometer data for summer sea ice applications can be found
in, e.g., Onstott (1992); Gogineni et al. (1992); Carlstrom and Ulander (1993); Jeffries et al.
(1997) and Yackel and Barber (2000). Newer studies include examination of backscatter
signatures of multiyear sea ice with ship-based scatterometer (Isleifson et al., 2009) and
investigation of the use of a supplementary frequency of either X- or Ku-band in addition to
C-band in late summer sea ice classification with an airborne scatterometer (Brath et al.,
2013). Satellite based studies include separation of MYI and FYI by dual polarisation in-
tensity data from Radarsat-2 (Warner et al., 2013), classification potential of polarimetric
features from Radarsat-2 (Gill et al., 2013) and investigations of melt pond fraction retrieval
from co-polarisation ratio data acquired by Radarsat-2 (Scharien et al., 2012, 2014b). Sep-
arating different sea ice types during summer-melt is still a challenge.
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The objective of this study is to investigate the potential of sea ice segmentation using
C- and X-band multi-polarisation SAR features during late summer. A dataset consisting of
five high resolution C- and X-band scenes recorded on iceberg-fast first-year and old ice in
the Fram Strait in August and September 2011 is employed in our study. The satellite data
is combined with airborne measurements from a helicopter flight at the site. We explore
how the features and feature-based automatic segmentation successfully employed on FYI
during winter conditions in Moen et al. (2013) perform on late summer sea ice with temper-
atures around the freezing point. Our study consists of two parts: firstly, the suitability of the
individual features for use in late summer sea ice segmentation is evaluated. This is done by
investigating the ability of the individual features to discriminate between sea ice types and
their temporal consistency during changing temperature conditions. A reduced set of the
four most temporally consistent features is suggested for use in segmentation. Secondly,
a feature-based automatic segmentation algorithm is tested on the dataset. We investigate
whether it groups the scenes into reasonable segments, possible to associate with distinct
sea ice types. The algorithm is tested both with a full feature set, and with the reduced fea-
ture set suggested in the first part of the study. The segmented images are evaluated both
visually, and by pixelvise evaluation of regions with known geophysical properties.

2 Methods

In this study, we examine the potential of six polarimetric SAR features for use in late sum-
mer sea ice segmentation. To simplify the study, five regions of interest (ROIs) with different
sea ice types were defined based on information from the satellite scenes and the heli-
copter flight at the site. The first part of this section describes the dataset utilized in our
study. In the second part we explain the design of the study, including the choice of ROIs,
the generation of polarimetric SAR features and the methodology of the analysis.
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2.1 Study site

Fram Strait is a dynamic region characterised by the outflow of sea ice from the central
Arctic Ocean (e.g. Kwok (2009b); Renner et al. (2014)). The sea ice cover is therefore
highly variable with both FYI and MYI, and contains a large fraction of deformed ice. In late
summer, the snow cover has usually melted completely, leading to melt ponds on top of the
ice (e.g. Renner et al. (2013)). While in most parts of Fram Strait, southward drift leads to
fast movement of the sea ice, a region with iceberg-fast ice forms in some years in western
Fram Strait (Hughes et al., 2011). In this region, the ice cover varies between rough ice due
to deformation and very level ice where the ice is formed during winter and protected from
impact (Beckers et al., 2015; unpublished data). The study site was situated in this area
(Fig. 1). Both FYI and old sea ice in different stages of development were represented at
the site.

2.2 Dataset

The data used in this study were collected from ship, helicopter and satellite platforms dur-
ing a coordinated campaign in the Fram Strait in late summer 2011. The dataset consists of
several high resolution multi-polarimetric SAR scenes, together with airborne observations
collected from a helicopter (Table 1). In addition, meteorological observations from the sci-
entific vessel R/V Lance provided information about the changing weather conditions during
the campaign. The area covered by the satellite scenes could not be reached by the ship,
and the helicopter did not have the opportunity to land within the area, therefore no in situ
measurements from the sea ice surface were retrieved.

2.2.1 Satellite measurements

For this study, three quad polarimetric C-band scenes from the Canadian Radarsat-2 (RS-
2) satellite (denoted R1, R2 and R3) and two dual polarimetric X-band scenes from the
German TerraSAR-X (TS-X) satellite (denoted T1 and T2) are used. More details about the
scenes can be found in Table 1, and the positions of the scenes are displayed in Fig. 1.
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All scenes were acquired during ascending orbits. The RS-2 scenes have a coverage of
25km (range)×25km (azimuth), while the TS-X scenes have a coverage of 15km (range)×
50km (azimuth).

2.2.2 Airborne measurements

Airborne measurements were conducted during a helicopter flight out from R/V Lance within
the period of the satellite campaign (see Table 1). They include sea ice thickness, relative
surface roughness and classified aerial images. The track of the flight is displayed together
with the location of the satellite scenes in Fig. 1.

Measurements of total snow plus sea ice thickness (from now on referred to as sea ice
thickness) were performed with an electromagnetic induction sounder (EM-bird), which was
towed underneath the helicopter and flown at a height of about 15m above the surface.
More details about the EM-bird can be found in Haas et al. (2009); Renner et al. (2013,
2014). From this device, the difference in conductivity between sea ice and water is used to
find the height of the EM-bird above the ice/water interface, and a laser altimeter integrated
in the EM-bird detects the distance between the EM-bird and the snow/ice surface. The
difference between the two measures gives the sea ice thickness. The footprint of the EM-
bird has a diameter of about 50m (depending on the height of the instrument). At the time
of the acquisition there was very little or no snow on top of the sea ice, confirmed by the
arial photos and observations from scientists onboard the helicopter.

The data from the laser altimeter mounted on the EM-bird can be used to extract surface
roughness (von Saldern et al., 2006; Beckers et al., 2015). Calibration is needed to remove
helicopter altitude variations. This was done by the three-step high- and low-pass filtering
method described in Hibler (1972). The resulting surface elevation profiles are relative to
the level ice. Surface roughness is in this study presented as the standard deviation of the
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profile surface elevation about the mean (root mean square height), Rq,

Rq =

√√√√ 1

N

N∑
i=1

(yi− y)2, (1)

where N represents the number of measurements, y the mean height above level ice, and
yi the height above level ice of sample i. Each ROI profile is 400m long, and N varies
between 960 and 1067, depending on the speed of the helicopter.

The helicopter was equipped with a digital camera (GoPro YHDC5170, focal length 5mm,
view angle 127◦), taking downward looking photographs of the sea ice surface. The area
covered by each image was about 85m (length)× 110m (width) and the sampling rate was
0.5Hz. The images were processed with a semi-automatic classification algorithm, sepa-
rating classes of open water, submerged ice, melt ponds, very thin ice and thicker ice, as
described in Pedersen et al. (2009) and Renner et al. (2013). In an accuracy assessment of
the method performed in Renner et al. (2013), 76% of the melt pond pixels were correctly
classified. The melt pond fraction, i.e., the percentage coverage of melt ponds retrieved
from each image, is used in our description of the sea ice types in this study. No additional
ground information could be retrieved about the state of the melt ponds at the site of the
satellite scenes during the campaign; hence we do not know whether the melt ponds were
open or refrozen at the time of the acquisitions. According to the cruise report, open melt
ponds were observed during the first days of the cruise, but from 26 August a major part of
the melt ponds had started to freeze over. Melt pond measurements in open melt ponds at
the ice edge were however performed until 31 August.

2.2.3 Meteorological information

SAR scattering properties of sea ice are highly affected by temperature and humidity, and
meteorological information can therefore aid the interpretation of SAR satellite scenes. Me-
teorological measurements were performed on the scientific vessel R/V Lance during the
campaign (Fig. 2). An automatic weather station at R/V Lance consisting of an air temper-
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ature sensor (3455), an air pressure sensor (2810) and a relative humidity sensor (3445),
all from Aanderaa, were recording metorological information during the campaign (Fig. 2).
The height of the station was 22 meters above sea level.S R/V Lance was sailing during
this period and its route was located in the Fram Strait within 100 km west and north of the
position of satellite scenes. During the week of data collection, the weather conditions were
varying and the temperature was fluctuating around zero degrees Celsius. We have no
recorded information about the amount of precipitation during the campaign, but the cruise
report describes long periods with fog until 2 September. To investigate how the distance
between R/V Lance and the position of the satellite scenes influenced the meteorological in-
formation, 2 meter air temperature and surface pressure were extracted from the European
Center for Medium-Range Weather Forecastes (ECMWF) re-analysis (ERA-Interim) (Dee
et al., 2011). The parameters were extracted in 6-hours increments for both the position
of R/V Lance and the satellite scenes (79.25◦N 14.25◦W). There was good agreement be-
tween ERA-interim air temperature and surface pressure at the two locations (Fig. 2). The
re-analysis seemed to overestimate the air temperature during the start of the campaign.

2.3 Study design

In the following subsections, the design of our study is presented.

2.3.1 Regions of interest

The area covered by the satellite scenes consists of sea ice with different geophysical
properties. Some regions were homogeneous and some contained mixtures of different
sea ice types. To simplify our study we focus on five different sea ice regions, repre-
senting the most typical sea ice types in the scenes (Fig. 3). The regions of interest
(ROIs) were chosen to be as homogeneous as possible, and to represent five distinctly
different sea ice types. All ROIs are situated along the helicopter flight track and are
400m (along track)×200m (across track) in size. The selection of the ROIs was performed
manually, based on color coded polarimetric images (Pauli and composite-representations)
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of the satellite scenes together with photos, sea ice thickness, surface roughness and melt
pond fraction retrieved from the helicopter overpass. Example photos from each ROI are
presented in Fig. 4 and sea ice thickness histograms for each ROI can be found in Fig. 5.
Table 2 presents helicopter measurements for each ROI, including mean and modal sea ice
thickness, mean melt pond fraction, surface roughness, and sea ice class labels according
to WMO sea ice nomenclature (World Meteorological Organisation, 1989). ROI1 represents
an area with level medium thick FYI, found in the upper left part of the scene in Fig. 3. The
sea ice in ROI1 was relatively smooth and had a moderate melt pond fraction. ROI2 rep-
resents the area of level thin FYI located in the middle of the scene. The sea ice in ROI2
was smooth with a high melt pond fraction. ROI3 and ROI4 represents areas of weathered
deformed old ice, situated in the lower middle part of the scene. ROI3 represents thinner
ice with a higher melt pond fraction than ROI4. ROI5 represents heavily deformed old ice,
located in the lower part of the scene. Note that other areas of deformed ice can be seen
as light-coloured regions in the right part of the scene possibly forming a shear ridge.

2.3.2 Polarimetric SAR features

Polarimetric SAR features combine information from the channels of a multi-polarisation
SAR system, and they represent information about the scattering properties of the sur-
face. The features studied were previously successfully used in segmentation of a winter
time sea ice scene (Moen et al., 2013). An overview of the features and their definitions
is presented in Table 3. The features consist of relative kurtosis (RK) geometric brightness
(B), cross-polariation ratio (RVH/VV), co-polarisation ratio (RVV/HH), co-polarisation corre-
lation magnitude (|ρ|) and co-polarisation correlation angle (∠ρ). RVH/VV is used instead
of RHV/HH as T2 has the polarisation combination VH−VV. By inspection, these two fea-
tures show similar values in our dataset. ∠ρ is equivalent to the more frequently used term
co-polarisation phase difference (φHH−VV).

A full-polarimetric SAR system is transmitting and receiving both horizontal (H) and ver-
tical (V) polarised electromagnetic waves, resulting in d= 4 possible polarimetric channels
(SHH, SHV, SVH and SVV). Assuming reciprocity (SHV = SVH), the Lexicographic feature vec-
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tor, s, is given by (Lee and Pottier, 2009)

s=
[
SHH

√
2SVH SVV

]T
, (2)

where T denotes transpose. The covariance matrix, C, is defined as the mean outer product
of the Lexiographic feature vector (Lee and Pottier, 2009)

C=
1

L

L∑
i=1

sis
∗T
i , (3)

where si is the single look complex vector corresponding to pixel i, L is the number of scat-
tering vectors in a local neighbourhood and ∗T denotes the Hermitian transpose. Hence, C
can be written as

C=

〈SHHS
∗
HH〉 〈SHHS

∗
VH〉 〈SHHS

∗
VV〉

〈SVHS
∗
HH〉 〈SVHS

∗
VH〉 〈SVHS

∗
VV〉

〈SVVS
∗
HH〉 〈SVVS

∗
VH〉 〈SVVS

∗
VV〉

 , (4)

where the 〈·〉 is the sample mean over L scattering vectors and ∗ denotes the complex
conjugate.

The TS-X scenes included in our study are dual-polarimetric. The covariance matrix then
reduces to a 2× 2 matrix. This implies that the full feature set of six features could not
be achieved for these scenes since the achievable feature set depends on the scenes’
polarimetric channel combination (see Table 3). Note that RK and B in the TS-X scenes
are calculated from reduced covariance matrices, and should not be directly compared to
the similar RS-2 features.
RVH/VV, RVV/HH, |ρ| and ∠ρ are well known polarimetric features in sea ice applica-

tions (Drinkwater et al., 1992), while RK and B have seen less attention in the literature.
RK is a measure of non-Gaussianity, and is defined as Mardia’s multivariate kurtosis of
a sample divided by the expected multivariate kurtosis of a complex normal distribution
(d(d+1)) (Mardia, 1970; Doulgeris and Eltoft, 2010). RK< 1 points towards a distribution

11
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with broader shoulders and lighter tails than for Gaussian data, while RK> 1 implies a sharp
peak close to the mean, and heavy tails relative to Gaussian distribution (DeCarlo, 1997).
Large values of RK are expected for deformed sea ice due to scattering from a few strong re-
flections, and for inhomogeneous areas due to differences in intensity mixtures (Moen et al.,
2013). B represents the intensity of the multichannel radar backscatter. It is closely related
to the more familiar feature SPAN, i.e. trace(C), as they both represent the eignevalues of
the covariance matrix. B is however more sensitive to the smaller eigenvalues.RV H/V V is
known as a measure of depolarization (Drinkwater et al., 1992). In microwave scattering of
sea ice, depolarization is expected related to multiple scattering within the sea ice volume
or to surface roughness (Scharien et al., 2012; Moen et al., 2013). RV V/HH is only depen-
dent on the relative permittivity for very smooth surfaces within the Brag regime (Hajnsek
et al., 2003). For rougher surfaces, the feature is expected to increase with incidence angle
and relative permittivity, and decrease with increasing surface roughness (Drinkwater et al.,
1991; Fung, 1994). With volume scattering, RV V/HH (dB) tends toward zero (Scharien
et al., 2012). |ρ| is a measure of the proportion of polarised backscatter, reaching unity
when the co-polarisation channels are perfectly correlated (Drinkwater et al., 1992). The
feature is expected to decrease with incidence angle, at an increasing rate for high salinity
ice (Drinkwater et al., 1992; Gill et al., 2012). ∠ρ is the relative difference in phase between
the co-polarisation channels, describing the sea ice scattering history (Drinkwater et al.,
1992). The feature depends on both the sea ice relative permittivity and surface roughness.

2.3.3 Data analysis

In the first part of our study, we examine the ability of the individual features to discriminate
sea ice types, and their temporal consistency.

The sea ice type discrimination ability is evaluated through a maximum a posteriori (MAP)
supervised classifier, using Bayes’ decision rule (Theodoridis and Koutroumbas, 2009). The
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classifier assigns pixel x to class ωj if

P (ωj |x)> P (ωi|x) ∀j 6= i. (5)

where P (ωj |x) is the probability of class ωj given the feature value x. The probability density
functions (PDFs) were estimated with a Parzen kernel density estimator, using a Gaussian
kernel function (Theodoridis and Koutroumbas, 2009). The bandwidth used is a function
of the number of points in the sample and their distribution, as described in Bowman and
Azzalini (1997). The pixels in the five ROIs were used as training areas, and each of the
satellite scenes were classified inidvidually. As the ROIs investigated were small, resulting
in small sample sizes, leave-one-out cross validation was used in training and testing the
classifier. A 7× 7 pixels neighbourhood, L= 49, was used in the classification and a step-
ping window with steps of 5×5 pixels was employed to reduce neighbourhood overlap. The
resulting classification accuracies obtained for each individual feature were used to evaluate
the discrimination abilities of the features in each of the five scenes.

The temporal consistency of the individual features is studied qualitatively for the three
RS-2 scenes, by inspecting the mean ROI values of each feature. We consider a feature
temporally consistent if the ranking of the mean ROI values of the feature are similar in
all three scenes. E.g., the ROI with the highest mean value for a specific feature has the
highest mean value of that feature in all the three investigated scenes. Based on the result
on temporal consistency, a reduced feature set of four features is suggested.

In the second part of our study, a feature-based automatic segmentation algorithm is
tested on the five scenes in the dataset. It is tested both with the original full feature set,
and with a reduced feature set excluding the most temporally inconsistent features. The
segmentation uses multivariate Gaussian mixture models to model the features’ PDF, and
employs an expectation-maximization algorithm. Markov random fields are used for con-
textual smoothing. Further description of the segmentation approach is given in Doulgeris
(2013) and Moen et al. (2013). A 21×21 pixels neighbourhood, L= 441, was used perform-
ing the segmentation. The large neighbourhood reduced the pixel resolution, but improved
the results of the segmentation compared to a smaller neighbourhood, giving less granular
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segmentations. The size of the neigbourhood does not take into account the difference in
resolution between the scenes, but assure an equal sample size in the extraction of the
features. The algorithm was set to segment the scenes into six different segments. The
number was chosen to allow for the five sea ice types described by the ROIs, in addition to
one extra segment to allow for detection of other sea ice types and to assure some flexibility
for the algorithm. For easier comparison, the area used in the segmentation was confined
to the intersection of the individual scenes’ geographical location (see the pink patch in Fig.
1). For each scene, the segmentation’s performance is evaluated visually on its ability to
separate the four main sea ice types represented in the ROIs (medium thick FYI, thin FYI,
old ice and old deformed ice), and based on its ability to discriminate the pixels of the five
ROIs into different segments.

3 Results

This section consists of three parts. The first two parts examine the individual sea ice type
discrimination ability and the temporal consistency of six polarimetric SAR features. In the
third part, an automatic segmentation algorithm based on the investigated features is tested
on the data set. Results for C- and X-band are presented separately, as differences in inci-
dence angle, resolution and polarimetric channel combinations make a direct comparison
inappropriate (see Table 1). The features in C-band are based on the full covariance matrix,
while those in X-band are based on reduced covariance matrices as the TS-X scenes are
dual polarisation scenes (see Table 3). Note that ROI5 is only present in the RS-2 scenes.

3.1 Individual features discrimination ability

In this section, we search for features that are suitable for use in late summer sea ice
segmentation. We study both the ability of six individual features to discriminate sea ice
types, and their temporal consistency during changing temperature conditions. Finally, we
suggest a reduced feature set consisting on the four most temporally consistent features.
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The polarimetric features’ individual capacity of classifying the investigated ROIs into
separate classes are presented in Table 4 and 5, for RS-2 and TS-X respectively. The pre-
sented values represent the diagonal values of the confusion matrices, i.e., the precentage
of true classfication. The best result for each ROI is highlighted in bold. All pixels from the
five ROIs were included in the classification, and the experiment was performed separately
for each of the scenes included in the study. From the two tables we note that none of the
features individually were able to classify all the five ROIs in a single scene with high ac-
curacy. All features do however give satisfying classification results for some of the sea ice
types represented by the ROIs, in some of the scenes. Hence, by combining the features,
all features could add value to a feature-based sea ice type segmentation algorithm. The
best feature for discriminating a given ROI varies from scene to scene. In all scenes except
T1, ROI4 seems to be the most challenging to separate from the others. ROI4 consisted of
old ice, as did ROI3. An overlap between the PDFs of these two ROIs could be a reason for
the poor discrimination result of ROI4.

In general, the result of the MAP classification for C- and X-band does not show large
differences. The best classification accuracies in the C-band scenes are slightly higher than
those in the X-band scenes, indicating a larger discrimination potential in C-band. This dif-
ference is not necessarily a result of different frequency. RK and B are calculated from
a reduced covariance matrix in the X-band scenes, and therefore contains less informa-
tion. The lower incidence angles of the TS-X scenes could also contribute to the observed
differences.

3.2 Temporal consistency of features

The temporal evolution of the feature means from each ROI are displayed in Figs. 6 and 7 for
RS-2 and TS-X, respectively. The variances of the features within each ROI are displayed
as error bars equivalent to two standard deviations. Due to different polarisation channel
combinations (see Table 1), different features are displayed for T1 and T2 in Fig. 7. This
also limits a temporal investigation in X-band, and we will in the following focus on the
results in C-band.
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As weather conditions and incidence angles are different for the RS-2 scenes in the
dataset (see Table1), the mean ROI values of the features are expected to vary between the
scenes even if sea ice conditions would be the same or very similar. Hence, when searching
for temporally consistent features, we look at the evolution of the ranking of the mean ROI
values of each feature. For instance, studying RK in Fig. 6, the mean value within each ROI
varies between the scenes. However, the relative relationship between the different mean
values is almost constant. The RK of ROI5 does for instance take values between 1.05 and
1.15, but the RK value is always highest in this ROI. The same between-ROI-consistency
during the investigated period can also be found for B, RVH/VV and ∠ρ (Fig. 6). The relative
relationship of the mean ROI value of RVV/HH and |ρ| changes from scene to scene, hence
no temporal consistency can be observed.

T2 shows similar relationships between the mean ROI values of the features as the RS-2
scenes for all three features extracted (Figs. 6 and 7). The same between-ROI relationship
can not be found for T1. The error bars in the TS-X ROIs are in general larger than in the
RS-2 ROIs, which may indicate slightly poorer discrimination ability of the TS-X scenes.

A feature-based sea ice segmentation algorithm is dependent on features with good dis-
crimination ability and temporal consistency to give consistent results during changing geo-
physical conditions. This is especially important as in situ information is often not available
in the Arctic. Excluding temporally inconsistent features could help achieve a more tem-
porally stable segmentation during changing conditions. We therefore suggest a reduced
feature set, consisting of RK, B, RV H/V V and ∠ρ for late summer sea ice segmentation.
A reduction of features in the feature set could of course also imply loss of important infor-
mation and hence degradation in the segmentation performance. The following subsection
will further explore the use of a reduced feature set.

3.3 Segmentation

From Fig. 8, the segmentations of R1 and R2 look reasonable compared to the information
from the helicopter flight, both for the full (right) and reduced (left) feature set. The different
segments seem to be associated with distinct sea ice types. One can recognise the thin
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FYI ice area in the middle of the scenes (violet), the heavily deformed old ice areas in
the diagonal bottom-left part of the scenes (blue and turquoise), and two different sea ice
types north (medium thick FYI, orange) and south (old ice, yellow) of the middle region.
The segmentation of R3 (Fig. 8e) has a more granular appearance, and the areas with
medium thick FYI are confused with the areas consisting of old ice (yellow, orange, grey).
The differences between the segmentations with full and reduced feature sets for the three
RS-2 scenes are small. The segmentation of R3 becomes slightly noisier with the reduced
feature set.

Figure 9 displays which segments the pixels of each of the ROIs were assigned to in all
three RS-2 scenes, both for the full (left) and the reduced (right) feature sets. In general,
the segmentations with the full feature set give good distinction between the different ROIs
included in this study. In particular, the thin FYI in ROI2 and the deformed old ice in ROI5
were separated with an accuracy above 71 % from the other ROIs in all of the three scenes.
In R1 and R2 the segmentation was not able to separate ROI3 and ROI4 clearly (Fig. 9a and
c). These ROIs do both contain old ice, with different thicknesses and melt pond fractions,
hence the ice types in the ROIs are quite similar. In R3 the medium thick FYI in ROI1 was
segmented to three different segments. Reducing the feature set by exluding the temporally
inconsistent features does not affect the results for R1 and R2 (Fig. 9b and d). In R3,
it improves the separation of medium thick FYI in ROI1, and reduces the discrimination
between the thin FYI in ROI2 and the old ice in ROI3 (Fig. 9f).

The segmentations of the two TS-X scenes, based on the achievable features limited by
their polarisation channels (see Table 3), are presented to the left in Fig. 10. In addition,
T1 was segmented with a reduced feature set presented to the right in the same Fig. The
segmentation of T1 with a full achievable feature set gives a poor and granular impression.
The area of thin FYI in the middle of the scene was not discriminated from the rest of the
scene, and the deformed sea ice areas in the low left diagonal were not fully segmented
(sea green). The segmentation of T2 also gives a slightly granular impression, but the areas
of thin FYI in the middle of the scene (violet), and the areas of deformed ice in the diagonal
bottom-left part of the scene (blue and turquoise) were well segmented. Reducing the fea-
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ture set in the segmentation of T1 improves the segmentation of the area with thin first year
ice in the middle of the scene (violet), even if granular noise is still present.

Figure 11 displays which segments the pixels in each of the ROIs were assigned to in
the segmentation of the two TS-X scenes. For T1 both for the full achievable (left) and the
reduced (right) feature set. Fig. 11a confirm the poor impression of the segmentation of T1
with full achievable feature set, giving minimal discrimination between the four ROIs. In the
segmented image of T2, the thin FYI in ROI2 can be separated from the other ROIs, but the
rest of the ROIs were mainly segmented into the same segment. Reducing the feature set
in the segmentation of T1 (see Fig. 11b) does not improve the segmentation performance,
even if the visual inspection of Fig. 10b gave a slight improvement for the whole scene.

4 Discussion

Among the six investigated features,RV V/HH and |ρ| were found temporal inconcistent dur-
ing the study. The temporal inconcistency could have several reasons. These features might
have a stronger sensitivity to sea ice relative permittivity than the others. As stated in the
introduction, relative permittivity will vary largely with temperature during warm conditions
(Vant, 1974; Barber et al., 1998), and small temperature differences between the scenes
could cause large differences in relative permittivity. In Bragg-scattering theory RV V/HH

is only dependent on the relative permittivity of the surface for a smooth surfaces (Fung,
1994). Another possible reason for the inconsistency of these two features is a stronger
sensitivity to changes in incidence angles than for the rest of the features. The incidence
angle of the three RS-2 scenes varies between 38 and 48 degrees (see Table 1). |ρ| varies
linearly with incidence angle, according to Fig. 6, but the same dependency cannot be seen
for RV V/HH . Gill et al. (2013) did a study on feature temporal consistency in C-band be-
tween a winter and a spring scene on FYI north of Canada. They found, similar to this study,
that ∠ρ showed high consistency during changing temperature conditions. In contradiction
to our findings, they also found RV V/HH to have high temporal consistency. RK and B
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were not included in their study. The differences in results may be explained by different
incidence angles, sea ice types, snow conditions and season.

Choice of features and their temporal consistency is not the only factor affecting the re-
sults of the segmentation algorithm. Differences in incidence angle and resolution between
the scenes, changing meteorological conditions and choice of segmentation parameters do
all affect the outcome of our study. The incidence angles in our study vary between 26◦ (T2)
and 48◦ (R2). As the backscatter signature from a sea ice surface depends on incidence
angle, this is expected to affect the results. Between the RS-2 scenes, the incidence an-
gle variation is small with a 10 ◦difference. From Fig. 6, it seems like the influence of the
changing incidence angle is limited, except for |ρ|. The pronounced difference in incidence
angle between the RS-2 and TS-X scenes could contribute to the poorer performance of
the segmentation algorithm in X-band, but a larger number of scenes with overlapping in-
cidence angle is needed to confirm this. To gain equal sample sizes in our study, the same
neighbourhood size was used in filtering all scenes even if the scenes resolution differed.
The scenes with highest resolution would therefore have smaller spatial filter sizes. This
difference in scale possibly influences the signature of physical properties of the surface,
like surface roughness variation. We did, however, during our investigations, also try to use
filter sizes adjusted to the resolution, but this made little difference to the results.

During the week of data collection, the air temperature was varying around zero degrees
Celsius, introducing difficult conditions for sea ice information retrieval from SAR. The dis-
tance between the meteorological measurements retrieved from R/V Lance and the study
site makes detailed analysis of SAR weather dependence difficult. Some general meteoro-
logical events observed in the meteorological data could however help explain our results.
Both T1 and R2 were acquired during a period with air temperatures close to or above zero
degrees Celsius, conditions which is on the limit of suitable for sea ice type discrimination
by SAR. As reported by Scharien et al. (2010), moisture in the upper sea ice layer could
mask out volume scattering and hence lower the backscatter contrast between different sea
ice types. The difficult conditions could explain the poor segmentation performance of T1.
However, R2 was acquired during similar meteorological conditions with good segmenta-
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tion results. Lower frequency, higher incidence angle and extra information contained in the
cross-pol channel (lacking for T1) could all have contributed to a better segmentation of R2.
The segmentation of R3 was poorer than those of the two other RS-2 scenes. Prior to the
acquisition of R3, a drop in temperature and relative humidity could have caused rime on
the sea ice surface (Drinkwater, 1995) or draining and refreezing of freshwater in the upper
layers of the sea ice (Scharien et al., 2010). Both of which could cause a lower contrast
between different sea ice types, and hence hamper the segmentation results. A refreeze of
the sea ice could however also possibly result in the opposite, enhanced volume scattering
could lead to increased sea ice type discrimination.

Choice of sliding window size and number of segments are important for the segmenta-
tion results. The use of window size of 21× 21 pixels or larger showed the best results in
our dataset. The size of the window was in our case a trade-off between resolution details
(small window) and segmentation with little speckle and larger continuous regions (large
window). The choice of window size will also determine which kind of information one re-
trieve about the sea ice surface. If information about small-scale structure like ridges, melt
ponds and small leads are important, this requires a small window. For more general in-
formation for instance about sea ice age, larger window sizes could be more appropriate.
Choice of sensor would set restrictions on how high resolution it is possible to achieve, and
high resolution is at the moment coupled to small swath width. The number of segments
was set in advance, based on visual inspection of the scenes and information retrieved from
the helicopter-borne measurements. Choosing too few segments could force different sea
ice types into a common segment, while increasing the number of segments could split an
ice type into several segments.

5 Conclusions

This study examined the potential of sea ice segmentation by C- and X-band multi-
polarisation SAR features during late summer in the Fram Strait. Firstly, the individual fea-
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tures sea ice type discrimination ability and their temporal consistency were investigated.
Secondly, an automatic feature-based segmentation was tested.

The ability of the individual features to discriminate five sea ice types during changing
temperature conditions was evaluated by a MAP supervised classifier, and by a qualitative
study of the temporal consistency of the features. The classification results revealed a po-
tential in all individual features for discriminating some of the sea ice types from each other,
but none of the individual features could separate the total set of sea ice types in any of the
scenes. Hence, a combination of the features has the potential of segmenting the different
sea ice types included in our study. Temporal consistency was evaluated by studing the
ability of the features to rank the mean value of the five sea ice types in the same order
through the three RS-2 scenes. Relative kurtosis, geometric brightness, cross-polarisation
ratio and co-polarisation correlation angle were found to give good temporal consistency
during changing temperature conditions. These features were suggested as a reduced fea-
ture set. Co-polarisation ratio and co-polarisation correlation magnitude were found to be
inconsistent through the period investigated. Possible reasons for the two features incon-
sistency could be a higher sensitivity to changes in relative permittivity or incidence angles.
Our study demonstrates some of the difficulties of sea ice type discrimination at tempera-
tures close to zero degree Celcius, and highlights that it is important to cautiously select
features for consistent sea ice monitoring during late summer. Our study shows as well
that it is possible to retrieve valuable information from multi-polarisation SAR imagery, even
under these difficult conditions.

An automatic feature-based segmentation algorithm was tested on the dataset and eval-
uated for its ability to discriminate the five investigated sea ice types. The segmentation
was tested for a full feature set of six features and for a reduced feature set of the four
features showing best temporal consistency. The segmentation in general performed well
on the three RS-2 scenes. It showed good temporal consistency between the scenes, both
for the full and for the reduced feature set. However, reducing the feature set did slightly
degrade the sementation performance of one of the scenes. The segmentation succeeded
in segmenting some of the sea ice types in one of the two TS-X scenes. In the other scene
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the segmentation performed poorly. The poor performance might be a result of air tem-
peratures above zero degrees Celsius combined with low incidence angle and polarimetric
channel combination (HH-VV). Reducing the feature set introduced a slight improvement
in this poorest segmented scene. In total, the automatic feature-based segmentation al-
gorithm demonstrates a potential of sea ice type discrimination during late summer, and
our results indicate that an exclusion of temporally inconsistent features could improve the
segmentation results in some cases. To confirm this, more scenes need to be investigated.

Both C- and X-band scenes were included in the study, but differences in incidence an-
gles, resolution and number of polarisation channels made a direct comparison with respect
to frequency inappropriate. One of the X-band scenes showed promising results when it
came to sea ice type discrimination, close to those achieved for the quad polarimetric RS-2
scenes, even if it was a dual polarimetric scene. However investigations of more scenes
with different incidence angle and polarisation combinations are necessary to reveal the
potential of X-band in sea ice discrimination.

Future studies should also focus on a better physical understanding of the relation be-
tween SAR polarimetric features and geophysical properties. This could improve the inter-
pretation of the segmented sea ice scenes, and possibly lead to an automatically labeling
the segments, a classification. The suitability of other features in late summer sea ice seg-
mentation should also be explored. Multi-polarisation SAR images offer good possibilities
for sea ice segmentation, but due to their limited swath width they are not suitable for op-
erational ice charting. The development of compact polarimetry modes on new satellite
missions like, e.g, RISAT-1, PALSAR-2, and Radarsat Constellation Mission, and the new
wide quad polarimetric mode in RS-2, could increase the amount of polarimetric information
on larger swath widths, and the possibilities of late summer sea ice investigations in these
modes should be investigated.
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Table 1. Overview of the data set.

Date Time
(UTC)

Scene
ID

Satellite, mode and polarisation Incidence
angle (◦)

Pixel spacing (m)
(azimuth× slant
range)

29 Aug 2011 17:41 R1 Radarsat-2, Fine Quad, HH,HV,VH,VV 38.2◦ 5.0m× 5.0m
30 Aug 2011 18:23 T1 TerraSAR-X, StripMap, HH,VV 29.4◦ 2.4m× 1.9m
31 Aug 2011 18:23 R2 Radarsat-2, Fine Quad, HH,HV,VH,VV 48.2◦ 4.7m× 5.1m
3 Sep 2011 14:09 – Helicopter fligth – –
4 Sep 2011 18:07 R3 Radarsat-2, Fine Quad, HH,HV,VH,VV 44.4◦ 5.1m× 6.8m
5 Sep 2011 17:00 T2 TerraSAR-X, StripMap, VH,VV 25.9◦ 2.3m× 2.1m
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Table 2. Detailed information about the regions of interest (ROIs) from helicopter-borne measur-
ments and the corresponding sea ice class labels (WMO nomenclatura).

ROI
ID

Mean (modal) sea
ice thickness (m)

Mean melt pond
fraction (%)

Surface roughness,
Rq (m)

Sea ice class labels

ROI1 1.3 (1.2)m 17% 0.098m Medium thick first year ice
ROI2 0.6 (0.6)m 38% 0.062m Thin first year ice
ROI3 2.1 (2.0)m 26% 0.231m Old ice
ROI4 3.7 (3.3)m 11% 0.204m Old ice
ROI5 11.7 (8.9)m 3% 0.575m Old ice
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Table 3. Polarimetric SAR features included in the study.

Polarimetric feature Definition Extracted for scene

Relative kurtosis RK = 1
L

1
d(d+1)

∑L
i=1

[
s∗Ti C−1si

]2
All scenes

Geometric brightness B = d
√

det(C) All scenes

Cross-polarisation ratio RVH/VV =

〈
SVHS

∗
VH

〉〈
SVVS∗

VV

〉 R1, R2, R3, T2

Co-polarisation ratio RVV/HH =

〈
SVVS

∗
VV

〉〈
SHHS∗

HH

〉 R1, R2, R3, T1

Co-polarisation correlation magnitude |ρ|=

∣∣∣∣∣∣
〈
SHHS

∗
VV

〉
√〈

SHHS∗
HH

〉〈
SVVS∗

VV

〉
∣∣∣∣∣∣ R1, R2, R3, T1

Co-polarisation correlation angle ∠ρ= ∠
(〈
SHHS

∗
VV

〉)
R1, R2, R3, T1
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Table 4. Classification accuracy of individual polarimetric features in the three Radarsat-2 scenes
derived from MAP classification. The best result for each ROI in each scene are highlighted in bold.

Scene ID Feature Sea ice type classification accuracy (%)
ROI1 ROI2 ROI3 ROI4 ROI5

R1 RK 5 22 42 0 64
B 1 69 71 10 78
RVH/VV 23 0 38 0 51
RVV/HH 7 49 15 0 40
|ρ| 0 41 31 5 46
∠ρ 0 30 70 0 41

R2 RK 41 28 0 7 8
B 31 63 75 32 23
RVH/VV 19 87 0 18 44
RVV/HH 0 70 40 0 26
|ρ| 57 0 0 0 34
∠ρ 5 11 19 27 44

R3 RK 0 20 60 40 55
B 38 45 24 26 54
RVH/VV 3 40 2 40 74
RVV/HH 61 35 0 41 0
|ρ| 31 50 6 2 58
∠ρ 14 0 0 23 51
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Table 5. Classification accuracy of individual polarimetric features in the two TerraSAR-X scenes
derived from MAP classification. The best result for each ROI in each scene is highlighted in bold.

Scene ID Feature Sea ice type classification accuracy (%)
ROI1 ROI2 ROI3 ROI4

T1 RK 35 3 24 17
B 54 0 21 60
RVV/HH 54 17 16 19
|ρ| 51 44 0 19
∠ρ 59 12 22 18

T2 RK 44 0 32 6
B 41 23 59 10
RVH/VV 16 61 19 23
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Figure 1. Map of the western Fram Strait showing the location of the satellite scenes included in
the study and the track of the helicopter flight collecting airborne measurements for the study. The
red box in the inset map of the Northern Hemisphere displays the geographical position of the area
displayed. At the time of the flight, R/V Lance was slightly north of this map section.
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Figure 2. Air temperature (a), air pressure (b) and relative humidity (c) during the campaign. The
gray vertical lines represent the time of the acquisition of the satellite scenes.
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Figure 3. Position of regions of interest and helicopter thickness measurements displayed on the
Radarsat-2 scene from 31 August 2011 (R2). The polarimetric image is a Pauli composite, the
intensity channel combinations |HH−VV|, 2|HV| and |HH+VV| are assigned to the red, green and
blue (RGB) channels, respectivly.
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Figure 4. Example photos from the five regions of interest: (a) ROI1, (b) ROI2, (c) ROI3, (d) ROI4
and (e) ROI5. The photos are captured during the helicopter flight on 3 September 2011, and the
EM-bird can be seen in the lower center part of each photo.
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Figure 5. Histograms of sea ice thickness (m) measured during the helicopter flight 3 Septem-
ber 2011 for each of the five regions of interest.
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Figure 6. Mean values of the features in the regions of interest in the three Radarsat-2 scenes (R1,
R2 and R3). The error bars are two standard deviations long.
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Figure 7. Mean values of the features in the regions of interest in the two TerraSAR-X scenes (T1
and T2). The error bars are two standard deviations long.
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Figure 8. Segmentations of the three Radarsat-2 scenes (R1, R2 and R3) into six segments. To the
left: segmentation with full feature set. To the right: segmentation with reduced feature set consisting
of relative kurtosis, geometric brightness, cross-polarisation ratio and co-polarisation angle.
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Figure 9. The segments assigned to the pixels in the five regions of interest by the segmentation of
the three Radarsat-2 scenes (R1, R2 and R3). To the left: segmentation with full feature set. To the
right: segmentation with reduced feature set.
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Figure 10. Segmentations of the two TerraSAR-X scenes (T1 and T2) into six segments. To the
left: segmentation with full achievable feature set. For T1 the feature set consists of relative kurtosis,
geometric brightness, co-polarisation ratio, co-polarisation correlation magnitude and co-polarisation
correlation angle. For T2 the feature set consists of relative kurtosis, geometric brightness and cross-
polarisation ratio. To the right: segmentation of T1 with the reduced feature set consisting of relative
kurtosis, geometric brightness and co-polarisation correlation angle.
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Figure 11. The segments assigend to the pixels in the five regions of interest by the segmentation of
the two TerraSAR-X scenes (T1 and T2). To the left: segmentation of T1 and T2 with full achievable
feature set. To the right: segmentation of T1 with reduced feature set.
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