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Abstract

Airborne light detection and ranging (Lidar) measurements in the southern Sierra Nevada near
peak snow accumulation in 2010, and in the snow-free season, were analyzed for topographic
and vegetation effects on snow accumulation. Point-cloud data were processed from four,
primarily mixed-conifer, forest sites separated by 10 to 64 km with a total surveyed area over
106 km?. It was observed that the percentage of pixels with at least one ground return and thus a
snow-depth measurement increases from 65-90% to 99% as the sampling resolution of Lidar
point cloud changes from 1 m to 5 m. With about 28% of the area in dense mixed-conifer forest
in the main snow-producing elevations of 2000-3000 m having no returns at 1-m resolution,
undersampling of snow depth under dense canopies resulted in at least a 10-cm overestimation
error in the average snow depth. The 1-m gridded data show consistent patterns over the four
sites, dominated by orographic effects on precipitation. Elevation explained 43% of snow-depth
variability, with slope, aspect and canopy penetration fraction explaining another 14% over the
elevation range of 1500-3300 m. Although, the relative importance of the four variables varied
with elevation and canopy cover, all were statistically significant over the area studied. The
difference in mean snow depth in open areas versus under canopy increased with elevation in the
rain-snow transition zone (1500-1800 m); and was about 35410 cm above 1800 m, with the 20-

cm fluctuation range reflecting the effects of other topographic variables.
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1. Introduction

In the western United States, ecosystem processes and water supplies for agricultural and
urban users depend on the mountain snowpack as the primary source of late-spring and early
summer streamflow (Bales et al., 2006). Knowledge of spring snowpack conditions within a
watershed is essential if water availability and flood peaks following the onset of melt are to be
accurately predicted (Hopkinson et al., 2001). California’s multi-billion dollar agricultural
economy as well as multi-trillion dollar urban economy depend on these predictions (California
Department of Water Resources, 2013). Both topographic and vegetation factors are important in
influencing the snowpack conditions, as they closely interact with meteorological conditions to
affect precipitation and snow distribution in the mountains (McMillen, 1988; Raupach, 1991;
Wigmosta et al., 1994). However, mountain precipitation is poorly understood at multiple spatial
scales because it is governed by processes that are neither well measured nor accurately
predicted (Kirchner et al., 2014). Snow accumulation across the mountains is primarily
influenced by orographic processes, involving feedbacks between atmospheric circulation and
terrain (Roe, 2005; Roe and Baker, 2006). In most forested regions, snow distribution is highly
sensitive to vegetation structure (Anderson et al., 1963; Revuelto et al., 2015; Musselman et al.,
2008); and canopy interception, sublimation as well as unloading result in less accumulation of
snow beneath the forest canopies in comparison with canopy gaps (Berris and Harr, 1987;
Golding and Swanson, 1986; Mahat and Tarboton, 2013; Sturm, 1992).

The Sierra Nevada serves as a barrier to moisture moving inland from the Pacific, has an
ideal orientation for producing orographic precipitation, and thus exerts a strong influence on the
upslope amplification of precipitation (Colle, 2004; Rotach and Zardi, 2007; Smith and Barstad,

2004). Recent studies provide insight on how orographic and topographic factors affect snow
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depth in the Alps (Griinewald et al., 2013; Griinewald, et al., 2014; Lehning et al., 2011),
suggesting that similar studies could be extended to the Sierra Nevada. And among the forested
regions of the mountains, the mixed-conifer and subalpine zones cover most of the high-
elevation, seasonally snow-covered area.

In situ, operational measurements of snow water equivalent (SWE) in the Sierra Nevada
come from monthly manual snow surveys and daily snow-pillow observations (Rosenberg et al.,
2011). Meteorological stations and remote-sensing products also provide estimates of
precipitation and snow accumulation (Guan et al., 2013). Cost, data coverage, accuracy (Julander
et al., 1998) and basin-scale representativeness are issues for in situ monitoring of SWE in
mountainous terrain (Rice and Bales, 2010). Satellite-based remote sensing, such as MODIS, has
been used to map snow coverage in large or even global areas. However, it only provides snow-
coverage information in open areas, and no direct information on snow depths (Molotch and
Margulis, 2008). The SNOw Data Assimilation System (SNODAS) integrates data from satellite
and in situ measurements with weather-forecast and physically based snow models, providing
gridded SWE and snow-depth estimates (Barrett, 2003). However, since SNODAS has not been
broadly assessed (Clow et al., 2012), its potential for evaluating snow distribution in mountain
areas remains uncertain. Also, owing to its 1-km spatial resolution, the snow depth that
SNODAS provides is a mixed representation of both open and canopy-covered areas.

An orographic-lift effect is observable in most of the above data (Howat and Tulaczyk,
2005; Rice et al., 2011), and a binary-regression-tree model using topographic variables as
predictors has also been used for estimating the snow depth in unmeasured areas (Erickson et al.,
2005; Erxleben et al., 2002; Molotch et al., 2005). However, regression coefficients could not be

estimated accurately for most of the explanatory variables, except for elevation; and the
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consistency of the orographic trend as well as the relative importance of these variables is still
unknown owing to the lack of representative measurements across different slopes, aspects and
canopy conditions. Also, the stability of the variance explained by the model needs to be tested
with denser measurements.

In recent years, airborne Lidar has been used for high-spatial-resolution distance
measurements (Hopkinson et al., 2004), and has become an important technique to acquire
topographic data with sub-meter resolution and accuracy (Marks and Bates, 2000). Therefore,
Lidar provides a potential tool to help understand spatially distributed snow depth across
mountain regions. With multiple returns from a single laser pulse, Lidar has also been used to
construct vegetation structures as well as observe conditions under the canopy, which helps
produce fine-resolution digital elevation models (DEMs), vegetation structures, and snow-depth
information. However, the snow depth under canopy can not always be measured because of the
signal-intensity attenuation caused by canopy interception (Deems and Painter, 2006; Deems et
al., 2006). A recent report applied a univariate-regression model to the snow depth measured in
open areas using Lidar; with a high-resolution DEM used to accurately quantify the orographic-
lift effect on the snow accumulation just prior to melt (Kirchner et al., 2014). From this analysis
it could be expected that Lidar data might also help explain additional sources of snow
distribution variability in complex, forested terrain.

The objective of the work reported here is to improve our understanding of how
topographic and vegetation attributes affect snow accumulation in mixed-conifer forests. Using
Lidar data from four headwater areas in the southern Sierra Nevada, we addressed the following
three questions. First, in forested mountain terrain what percentage of pixels have ground returns

and thus provide snow-depth measurements at 1-m and coarser sampling resolutions, and what
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potential error is introduced by undersampling of snow under dense canopies? Second, what new
information about orographic effects on precipitation versus accumulation is provided by these
Lidar data? Third, what is the effect of slope, aspect and canopy penetration fraction on snow

accumulation, relative to elevation; and are effects consistent across sites?

2. Methods

2.1 Study Areas

Our study areas are located in the southern Sierra Nevada, approximately 80 km east of
Fresno, California (Figure 1). The four headwater-catchment research areas, Bull Creek,
Shorthair Creek, Providence Creek, and Wolverton Basin were previously instrumented,
including meteorological measurements, in order to have a better knowledge of the hydrologic
processes in this region (Bales et al., 2011; Hunsaker et al., 2012; Kirchner et al., 2014). The
sites were chosen as part of multi-disciplinary investigations at the Southern Sierra Critical Zone
Observatory, and are also the main instrumented sites in the observatory. Wolverton is
approximately 64 km southeast of the other three sites (Figure 1) and is located in Sequoia
National Park. Both snow-on and snow-off airborne Lidar were flown in 2010 (Table 1) over
these sites. The elevation of the survey areas is from 1600-m to 3500-m elevation. Vegetation
density generally decreases in high-elevation subalpine forest, with Wolverton also having a
large area above treeline (Goulden et al., 2012). The precipitation has historically been mostly
snow in the cold and wet winters for elevations above 2000 m, and a rain-snow mix below 2000
m, where most of Providence is located. The comparison between Providence and the other sites

can help in assessing if observed trends are consistent above and below the rain-snow transition.

2.2 Data Collection
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All airborne Lidar surveys were performed by the National Center for Airborne Laser
Mapping (NCALM) using Optech GEMINI Airborne Laser Terrain Mapper. The scan angle and
scan frequency were adjusted to ensure a uniform along-track and across-track point spacing
(Table 2), with six GPS ground stations used for determining aircraft trajectory. The snow-on
survey date was close to April 1%, which is used by operational agencies as the date of peak snow
accumulation for the Sierra. Since the snow-on survey required four days to cover the four study
areas, time-series in situ snow-depth data measured continuously from Judd Communications
ultrasonic depth sensors at Providence, Bull and Wolverton were used to estimate changes in
snow depth during the survey period. While no snow accumulation was observed, snowpack
densification and melting observed from the time-series data were taken into considerations
(Hunsaker et al., 2012; Kirchner et al., 2014). The snow-off survey was performed in August

after snow had completely melted out in the study areas.
2.3 Data Processing

Raw Lidar datasets were pre-processed by NCALM and are available from the NSF
Open-Topography website (http://opentopography.org) in LAS format. The LAS point cloud,
including both canopy and ground-surface points, are stored and classified as ground return and
vegetation return. The 1-m resolution digital-elevation models, generated from the Lidar point-
cloud datasets, were downloaded from the OpenTopography database and further processed in
ArcMap 10.2 to generate 1-m resolution slope, aspect, and northness raster products. Northness
is an index for the potential amount of solar radiation reaching a slope on a scale of -1 to 1,
calculated from:

N = sin(S)xcos(4), (1)
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where N is the northness value; S is the slope angle and A is the aspect angle, both in degrees.
For aspect angle A4, north is either 0° or 360°. Northness is also the same as the aspect intensity
(Kirchner et al., 2014) with 0° focal aspect. Since in this analysis the snow-depth comparison is
only discussed between north and south facing slopes, northness is used instead of aspect
intensity for simplification. To construct the 1-m resolution canopy-height models from Lidar
data, the 1-m digital-elevation models were subtracted from the 1-m digital-surface models that
were rasterized from the first return of the laser pulses (Figure 2).

The snow depths were calculated directly from the snow-on Lidar data. By referring to
canopy-height models, all ground points in snow-on Lidar datasets were classified as under
canopy or in open areas. That is, if the ground point was coincident with canopy of >2-m height,
it was classified as under canopy, and otherwise in the open, i.e., a 2-m height was used to
classify shrubs versus trees. In this study we assumed that shrubs did not affect the snow depth.
After classification, snow depths were calculated by subtracting the values in the digital-
elevation model from the snow-on point-measurement values. The calculated point snow-depth
data were further assigned into 1-m raster pixels, averaged within each pixel, formatted and then
gap filled by interpolation with pixel values around it. Since not all laser pulses that generated
canopy-surface returns had ground returns (Figure 3) and the ground-return percentage varied
across the transition from the tree trunk to the edge of the canopy, interpolation was not applied
to data under the canopy. The error rate of the calculated snow depth should be mainly from the

instrumental elevation error, which is about 0.10 m (Kirchner et al., 2014; Nolan et al., 2015).
2.4 Penetration Fraction

The open-canopy fraction is a factor that represents the forest density above a given pixel

and is used to describe the influence of vegetation on snow accumulation and melt. However
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there is no algorithm to directly extract this information from Lidar data. Here we use a novel
approach that we call penetration fraction to approximate the open-canopy fraction from the
Lidar point cloud. With it we were able to quantify the impact of canopy on snow depth using
linear regression. Penetration fraction is the ratio of the number of ground points to number of
total points within each pixel (Figure 4a). Whereas pixels are generally classified as under
canopy or in the open (Kirchner et al., 2014), penetration fraction is an index of fraction open in
a pixel. Because the electromagnetic radiation from both Lidar and sunlight beams are
intercepted by canopies, the open-canopy fraction is used here as an index to represent the
fraction of sunlight radiance received on the ground under vegetation. Therefore, penetration
fraction of Lidar is actually another form of estimating the open-canopy fraction (Musselman et
al., 2013). However, under-canopy vegetation can also intercept the Lidar beam, causing a bias.
To eliminate this bias, the canopy-height model was used to check if the pixel was canopy
covered by using the 2-m threshold value; and if not, the local penetration fraction of the pixel
was reset to 1 because the open-canopy fraction of a pixel could not be entirely represented by
the penetration fraction. A spatial moving-average process was applied using a 2-D Gaussian
filter to account for the effect of the vegetation around each pixel. Since the radius of the
Gaussian filter needs to be specified by the user, we tested the sensitivity of smoothing results to
the radius of the filter and found it is not sensitive when the radius is greater than 1.5 m (Figure

4b). Therefore, we specified a radius of 5 m in the Gaussian filter.
2.5 Statistical Analysis

The 1-m resolution snow-depth raster datasets were resampled into 2-m, 3-m, 4-m and 5-
m resolution. The percentage of pixels with snow-depth measurements was calculated by using

the number of pixels with at least one ground return divided by the total number of pixels inside
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each site. The sensitivity of the percentage changes across different resampling resolutions and
the consistency of the percentages across study sites at the same resampling resolution were
analyzed by visualizing the percentages against sampling resolutions at all sites.

Using elevation, slope, aspect, penetration fraction and snow depth retrieved from Lidar
measurements, topographic and vegetation effects on snow accumulation were observed using
residual analysis. Owing to orographic effects, there is increasing precipitation along an
increasing elevation gradient in this area (Kirchner et al., 2014). Therefore, elevation was
selected as the primary variable to fit the linear-regression model for calculating the residual of
snow depth. All snow-depth measurements from Lidar were first separated by either under
canopy or in open areas, and then were binned by elevation of the location where they were
measured, with a bin size of 1-m elevation. As each elevation band had hundreds of snow-depth
measurements after binning, the average of all snow depths was chosen as the representative
snow depth, and the standard deviation calculated to represent the snow-depth variability within
each elevation band. Coefficients of determination between snow depth and elevation of each
site were calculated by linear regression. The fitted linear-regression model of each site was
applied to the DEM to estimate the snow depth. The residual of snow depth was calculated by
subtracting the modeled snow depth from Lidar-measured snow depth. The slope, aspect and
penetration fraction were binned into 1° slope, 1° aspect, and 1% penetration-fraction bins with
snow-depth residuals corresponding to each bin of every physiographic variable averaged and
visualized along the variable gradient to check the existence of these physiographic effects.

For the variables found to correlate with the snow accumulation, the relative importance

of each variable was calculated using the Random Forest algorithm (Breiman, 2001; Pedregosa
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et al., 2011). A multivariate linear-regression model was also applied to quantify the influence of
the various physiographic variables on the snowpack distribution.

To calculate the snow-depth difference between open and canopy-covered areas along an
elevation gradient, the 1-m resolution snow-depth data of the two conditions, open and canopy
covered, were smoothed separately against elevation using locally weighted scatterplot
smoothing (LOESS) (Cleveland, 1979). The snow-depth difference was then calculated by

subtracting the smoothed canopy-covered snow depth from that in the open.
3. Results

The percentage of pixels having snow-depth measurements is sensitive to the sampling
resolution used in processing the Lidar point cloud to produce the raster data. Values go from
about 65-90% across the 4 sites for 1-m resolution and gradually increase to 99% at 5-m
resolution (Figure 5). Note that the percentage increases in going from the lower- to higher-
elevation sites, reflecting lower forest density at higher elevation.

The snow depths in open areas and under canopy show consistent increases with
elevation across all sites (Figure 6a, 6b). Although orographic effects may vary between
individual storms across sites, these data suggest that the cumulative effect of the 4 main
snowfall events prior to the Lidar flight (Kirchner, 2013) resulted in similar patterns. The
variability within an elevation band for open areas (Figure 6¢) is highest at about 1500 m, and
gradually decreases within the rain-snow transition up to 2000-m elevation. However, above
2000 m the pattern of variability with increasing elevation varies across sites. Note that values at
the upper or lower ends of elevation at each site have few pixels and thus may not have a

representative distribution of other physiographic attributes (Figure 6d). The forested area of all
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four sites combined spans the rain-snow transition zone in lower mixed-conifer forest through
snow-dominated subalpine forest, with significant areas above treeline higher up.

For each individual site, a least-squares linear regression of averaged snow depth versus
elevation was used to investigate the spatial variability of snow depth (Table 3). The median
elevation of the three sites increases from Providence to Bull to Shorthair. The lowest elevation
at Providence Creek is less than 1400 m, and snow depth increases steeply in this region at a rate
of 38 cm per 100 m in open areas and 28 cm per 100 m under the canopy. Bull Creek has an
elevation range of 2000-2400 meters, which is slightly higher than Providence, and has snow
depth increasing at 21 cm per 100 m in open areas and 19 cm per 100 m under the canopy. For
Shorthair Creek site, which is the highest of the three, the snow depth increases at 17 cm per 100
m in open areas and 16 cm per 100 m under the canopy. Wolverton is 64 km further south and
spans a wider elevation range, going from the rain-snow transition in mixed conifer, to subalpine
forest, to some area above treeline. The average snow-depth increase is smallest among all four
study sites, 15 cm per 100 m in open areas and 13 cm per 100 m under the canopy. Unlike the
other three lower-elevation sites, the snow depth at Wolverton decreases above 3300-m elevation
and these high-elevation data were not included in the linear regression. The amount of area
above this elevation is relatively small, and factors such as wind redistribution and the
exhaustion of perceptible water can also affect snow depth at these elevations (Kirchner et al.,
2014).

The residuals for snow in open areas were further analyzed for effects of slope, aspect
and penetration fraction. The snow-depth residuals are negative and larger in magnitude on
steeper slopes, i.e. less snow on steeper slopes (Figure 7a). The residual also changes from

positive to negative with aspect, reflecting deeper snow on north-facing versus south-facing
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slopes (Figure 7b). The topographic effect can also be seen from the color pattern of northness
observed in the scatterplots (Figure 6a, 6b). The residual also changes from negative 20-40 cm to
positive 20-40 cm as penetration fraction increases from 0% to 80%, reflecting less snow under
canopy (Figure 7c). Considering all of these variables together, elevation is the most important
variable at all sites except for Shorthair, which has a relatively small elevation range (Figure 8).
Aspect exerts a stronger influence than do slope and penetration fraction in open areas. However,
for under-canopy areas, penetration is more dominant than aspect at two sites. The multivariate
regression model was fitted to the data with aspect transformed into 0° to 180° range (north to
south). Fitted models can be represented as the following two equations for open area and under
canopy respectively:

SD = 0.0011XElevation — 0.0112X%Slope — 0.0057xAspect + 0.1802XPenetration (2)
SD = 0.0009%Elevation — 0.0128%Slope — 0.0046XAspect + 0.9891XPenetration (3)
where SD is snow depth and p-values of all regression coefficients of the two models are all
smaller than 0.01. The effects quantified in these two equations are mixtures of influences that
affected both precipitation and post-deposition processes.

The snow-depth difference between open and canopy-covered areas was calculated with
elevation from locally smoothed snow depth. It generally increases from near zero at 1500 m,
where there is little snow but dense canopy, to 40 cm in the range of 1800-2000 m, and varies
from near zero to 60 cm at higher elevations where snow is deeper and the canopy less dense
(Figure 9). It is apparent that the snow-depth difference increases with elevation in the rain-snow
transition zone, but lacks a clean pattern along either elevation gradient or penetration-fraction

gradient when the elevation is higher.

4. Discussion
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4.1 Sensitivity of measurements to sampling resolution

The results of analyzing the percentage of pixels with snow depth measured by Lidar at
different sampling resolutions illustrate that even high-density airborne Lidar measurements do
not have 100% coverage of the surveyed area at 1-m resolution, especially in densely forested
areas. According to the snow-depth difference between snowpack in open areas and under
canopy, a trade-off between accuracy and coverage happens when adjusting the resolution; and
lower sampling resolutions can introduce overestimation into the results. This is because upon
averaging, sub-pixel area under the canopy that was not measured may be represented by the
open area that is measured, introducing an overestimation error into the averaged snow depth of
the pixel. In order to estimate that bias for each pixel, we would need more under-canopy snow-
depth measurements at 1-m resolution. In our survey areas, 28% of the total area in the main
snow-producing elevations of 2000-3000 m has no returns at 1-m resolution. Assuming that
using open rather than under-canopy values would introduce a bias of at least 35 cm for these
unmeasured areas, a 2-m mean snow depth will have about 10 cm or 5% overestimation over the
whole area. The overestimation could be higher if the area with no returns represents denser
canopy with less snow than the under-canopy areas measured; and could also be more significant
for shallower snowpacks. It would also be higher for a less-dense point cloud, which would
introduce uncertainty into both percentage canopy cover and open versus under-canopy snow-
depth differences. Therefore, the sampling resolution for processing the Lidar point cloud needs
to be chosen according to the objective and accuracy tolerance of the study and the average

overestimation bias needs to be corrected for the study results.

4.2 Physiographic effects on snow accumulation
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Below 3300 m, the increasing trend of snow accumulation with elevation was observed
for all sites (Figure 6). Linear regression is applicable to model the relationship between snow
depth and elevation when the study area has a broad elevation range. This holds true for all of
our sites with the exception of Shorthair, where the elevation range is about 200 m and the
coefficient of determination for this linear-regression model is much smaller than for the other
three sites, which have ranges greater than 500 m. The bias of mean snow depth in the same
elevation band between different sites is acceptable if the standard error is added to or subtracted
from the mean (Figure 6a, 6b, 6¢). The data-collection time, spatial variation and variations of
other topographic features can also introduce bias across sites. However, as data-collection time
in this study only differed by a few days, in situ snow-depth sensor data suggest that the melting
and densification effect was under 2 cm (https://czo.ucmerced.edu/dataCatalog_sierra.html). As
for other topographic variables, the observation of a slope effect, shown as the trend lines in
Figure 7a and the negative regression coefficients of the two linear-regression models, could be
explained by steeper slopes having higher avalanche potential, fewer trees and thus more wind;
and thus some snow is more likely to be lost from these slopes. Snowpack located in south-
facing slopes receives higher solar radiation, with the snowmelt being accelerated (Kirchner et
al., 2014). This explains the trends observed in Figure 7b and the negative regression coefficients
of the multivariate models. Although Lidar has measurement errors caused by slope and aspect
(Baltsavias, 1999; Deems et al., 2013; Hodgson and Bresnahan, 2004), the error is not able to be
quantitatively traced back to each variable; and we assumed that its influence on the trends could
be neglected. As canopy interception results in reduced snow depth under canopy, the snow-
depth residuals are found changing from negative to positive with penetration fraction and the

regression coefficients are positive (Figure 7c). The multivariate linear-regression model built
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from the Lidar data is a significant improvement, as the variability of the snow distribution could
explain 15-25% more than the univariate linear-regression model with elevation as the only
predictive variable (Table 4) and the estimation bias has a narrower distribution (Figure 10a,
10b). Also, fitting an individual linear-regression model for each site is slightly better than using
a general model with all data combined (Figure 10c, 10d). This may be because an individual
model can capture regional micro-climate within a site better than a general model. The opposite
trend of the relative importance of predictive variables observed in Shorthair is because it is a
relatively flat site (Figure 1, Figure 8), which implies that topographic variables other than

elevation need to be considered when studying areas with small elevation ranges.
4.3 Vegetation effects on snow distribution along elevation

Under-canopy snow distribution is governed by multiple factors that affect the energy
environment, as observed by melting (Essery et al., 2008; Gelfan et al., 2004) and accumulation
rates (Pomeroy et al., 1998; Schmidt and Gluns, 1991; Teti, 2003). Our results show different
responses when comparing the snow-depth difference between open and canopy-covered areas
between study sites (Figure 9a). In the rain-snow transition zone from 1500 to 2000 m at
Providence we see a sharp linear increase between open and under-canopy snow depth that is
likely governed by the under-canopy energy environment and the canopy-interception effect on
precipitation, which accelerate snowmelt and prevent accumulation of under-canopy snow.
Above 2000 m, the snow-depth difference observed at Bull and Shorthair stabilized around 40
cm and 20 cm respectively, with fluctuations less than 10 cm along elevation. Breaking from this
pattern, the large dip in snow-depth difference, down to 10 cm, observed at Wolverton at
elevations of 2250-2750 m deviates from the 35-40 cm plateau. Also, the snow-depth difference

at Shorthair stabilizes around 20 cm, which is 20 cm lower than the stabilized value at Bull.

16



347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

Based on the scatterplots shown in Figures 6a and 6b that are color coded by northness, at an
elevation range of 2300-2700 m, there are a lot more data points with both low snow depth and
extremely negative northness in the open area than under the canopy, which implies that
anisotropic distribution of other topographic variables is affecting the snow-depth difference.
This is further shown by filtering out the data points not within a small certain range (-0.1 to 0.1)
of northness, and then reproducing Figure 9a using the filtered data. As presented in Figure 11, it
is apparent that the large dip at Wolverton is flattened out owing to a canopy effect of around 25-
45 cm. Thus a sigmoidal function was used to characterize the snow-depth difference changes
with elevation, excluding topographic interactions. The interactions between topographic
variables and vegetation is most likely attributable to the under-canopy snowpack being less
sensitive to solar radiation versus snowpack in the open area (Courbaud et al., 2003; Dubayah,
1994; Essery et al., 2008; Musselman et al., 2008, 2012).

In spite of filtering the topographic effect, there is still about a 20-cm magnitude of
fluctuation in the snow-depth difference, which might be attributed to various clearing sizes of
open area at different locations and various vegetation types in forests (Hedstrom and Pomeroy,
1998; Pomeroy et al., 2002; Schmidt and Gluns, 1991); however, we were not able to explore
these features of the sites from the current Lidar dataset.

S. Conclusions

The rasterized Lidar data show that the percentage of pixels with at least one ground
return, and thus a snow-depth measurement, increases from 65-90% to 99% as the sampling
resolution increases from 1 m to 5 m. However, this coarser resolution may mask undersampling
of under-canopy snow relative to snow in open areas. With about 28% of the area in dense

mixed-conifer forest having no returns, using snow depths in open areas as estimates of snow
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depth under dense canopies would result in at least a 10-cm overestimation error in the average
snow depth in the main snow-producing elevations of 2000-3000 m.

Using Lidar data gridded at 1-m resolution, average snow depth within each 1-m
elevation band shows a strong correlation with elevation and consistent pattern across all sites.
The linear-regression models show that elevation explains 43% of snow-depth variability; and
that over 57% of the variability is explained when including all physiographic variables. This
indicates that snow distribution in the southern Sierra Nevada is primarily influenced by an
orographic-lift effect on precipitation. Snow-depth residuals calculated by de-trending the
elevation dependency are correlated with slope, aspect and penetration fraction; and the
regression coefficients of these variables in the multivariate linear-regression model show that
they are statistically significant in explaining the snow-depth variability, all with p-values
smaller than 0.01. Over the elevation range of 1500-3300 m, snow depth decreases 1 cm per 1°
slope, and decreases 0.5 cm per 1° aspect in going from north to south. In open areas, snow
depth increases 2 cm per 10% increase in penetration fraction, while under canopy the snow
depth increases 10 cm per 10% penetration-fraction increase. Although the latter three variables
were observed to be less important than elevation, the relative importance of all four variables
varies with local elevation range and canopy.

The snow-depth difference between open and canopy-covered areas increased in the rain-
snow transition elevation range and then stabilized around 25-45 cm at high elevation.
Fluctuations in certain elevation ranges are attributed part to interactions from other topographic
variables. Evidence of this is found by filtering northness into a narrow band, which results in

these fluctuations flattening out.
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Table 1. Lidar data collection information

Bull

Shorthair

Providence

Wolverton

Snow-off flight date
Snow-on flight date
Area, km?

Mean elevation, m
Elevation range, m

Canopy cover, %

August 15, 2010
March 24, 2010
223
2264
1925-2490

51

August 13, 2010
March 23, 2010
6.8
2651
2436-2754

43

August 5, 2010
March 23, 2010
18.4
1850
1373-2207

62

August 13-15,
2010
March 21-22,
2010
58.9

2840
1786-3523

30
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Table 2. Flight parameters and sensor settings

Flight parameters Equipment settings
Flight altitude 600 m Wavelength 1047 nm
Flight speed 65ms’ Beam divergence 0.25 mrad
Swath width 233.26 m Laser PRF 100 kHz
Swath overlap 50% Scan frequency 55 Hz
Point density 10.27 m™ Scan angle +14°
Cross-track resolution 0.233 m Scan cutoff 3°
Down-track resolution 0.418 m Scan offset 0°
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Table 3. Linear-regression results, averaged snow depth vs. elevation in four sites

Bull Shorthair Providence Wolverton
R’, open 0.968 0.797 0.931 0914
R?, vegetated 0.978 0.737 0.921 0.972
Slope, open, cm per 100 m 21.6 16.1 37.8 15.3
Slope, vegetated, cm per 100 m 19.9 13.1 26.0 13.4
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Table 4. Coefficients of determination of univariate and multivariate linear-regression models

Univariate model R?

Multivariate model R>

Bull
Shorthair
Providence
Wolverton

All sites

0.23
0.06
0.39
0.16
0.43

0.37
0.32
0.53
0.38
0.57
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Figure 1. Study area and Lidar footprints. (Left) California with Sierra Nevada. (Center) Zoomed view to
show the locations of Lidar footprints. (Right) Elevation and 200-m contour map (100-m for Bull) of
Lidar footprints
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Figure 5. Sensitivity of the percent of pixels with snow depth measured to the sampling resolution used in
processing the Lidar point cloud at each site.
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Figure 6. LOESS smoothed snow depth with northness color coded scatterplot of raw-pixel snow depth
against elevation for (a) open and (b) under-canopy areas. (c) Standard error of the snow depth within
each 1-m elevation band for open area. (d) Total area of each elevation band for both open and under-
canopy areas. Values above 3300 m not shown, where there are few data.
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Figure 7. Average snow-depth residual, calculated as difference between Lidar-measured snow depth and

snow depth from the linear-regression models (open areas) versus: (a) slope, aspect, and (c) penetration
fraction.
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Figure 8. Relative importance of each physiographic variable in predicting the snow depth from each site

for (a) open area (b) under-canopy area
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603  Figure 9. (a) Snow-depth difference along elevation for each site calculated from the LOESS smoothed
604  snow depth. (b) Average penetration fraction versus elevation for each site.
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605

606  Figure 10. Normalized density of estimation bias for (a) open (b) under-canopy areas. Estimation bias
607  boxplots of using one general linear-regression model with all sites’ data combined and four linear-
608  regression models of each individual site for (c) open (d) under-canopy areas.
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Figure 11. Snow-depth difference between open and under-canopy areas versus elevation, calculated as
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difference between raw 1-m pixel snow depth and northness-filtered 1-m pixel snow depth, together with

the sigmoidal fit of the snow-depth difference.
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