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Abstract 12	
  

Airborne light detection and ranging (Lidar) measurements carried out in the southern Sierra Nevada in 13	
  

2010 in the snow-free and peak-snow-accumulation periods were analyzed for topographic and vegetation 14	
  

effects on snow accumulation. Point-cloud data were processed from four primarily mixed-conifer forest 15	
  

sites covering the main snow-accumulation zone, with a total surveyed area of over 106 km2. The 16	
  

percentage of pixels with at least one snow-depth measurement was observed to increase from 65-90% to 17	
  

99% as the sampling resolution of the Lidar point cloud was increased from 1 to 5 m. However, a coarser 18	
  

resolution risks undersampling the under-canopy snow relative to snow in open areas, and was estimated 19	
  

to result in at least a 10-cm overestimate of snow depth over the main snow-accumulation region between 20	
  

2000-3000 m, where 28% of the area had no measurements. Analysis of the 1-m gridded data showed 21	
  

consistent patterns across the four sites, dominated by orographic effects on precipitation. Elevation 22	
  

explained 43% of snow-depth variability, with slope, aspect and canopy penetration fraction explaining 23	
  

another 14% over the elevation range of 1500-3300 m. The relative importance of the four variables 24	
  

varied with elevation and canopy cover, but all were statistically significant over the area studied. The 25	
  

difference between mean snow depth in open versus under canopy areas increased with elevation in the 26	
  

rain-snow transition zone (1500-1800 m), and was about 35±10 cm above 1800 m. Lidar has the potential 27	
  

to transform estimation of snow depth across mountain basins; and including local canopy effects is both 28	
  

feasible and important for accurate assessments. 29	
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1. Introduction 30	
  

 In the western United States, ecosystem processes and water supplies for agricultural and 31	
  

urban users depend on the mountain snowpack as the primary source of late-spring and early 32	
  

summer streamflow (Bales et al., 2006). Knowledge of spring snowpack conditions within a 33	
  

watershed is essential if water availability and flood peaks following the onset of melt are to be 34	
  

accurately predicted (Hopkinson et al., 2001). California’s multi-billion dollar agricultural 35	
  

economy as well as multi-trillion dollar urban economy depend on these predictions (California 36	
  

Department of Water Resources, 2013). Both topographic and vegetation factors are important in 37	
  

influencing the snowpack conditions, as they closely interact with meteorological conditions to 38	
  

affect precipitation and snow distribution in the mountains (McMillen, 1988; Raupach, 1991; 39	
  

Wigmosta et al., 1994). However, mountain precipitation is poorly understood at multiple spatial 40	
  

scales because it is governed by processes that are neither well measured nor accurately 41	
  

predicted (Kirchner et al., 2014). Snow accumulation across the mountains is primarily 42	
  

influenced by orographic processes, involving feedbacks between atmospheric circulation and 43	
  

terrain (Roe, 2005; Roe and Baker, 2006). In most forested regions, snow distribution is highly 44	
  

sensitive to vegetation structure (Anderson et al., 1963; Revuelto et al., 2015; Musselman et al., 45	
  

2008); and canopy interception, sublimation as well as unloading result in less accumulation of 46	
  

snow beneath the forest canopies in comparison with canopy gaps (Berris and Harr, 1987; 47	
  

Golding and Swanson, 1986; Mahat and Tarboton, 2013; Sturm, 1992). 48	
  

 The Sierra Nevada serves as a barrier to moisture moving inland from the Pacific, has an 49	
  

ideal orientation for producing orographic precipitation, and thus exerts a strong influence on the 50	
  

upslope amplification of precipitation (Colle, 2004; Rotach and Zardi, 2007; Smith and Barstad, 51	
  

2004). Recent studies provide insight on how orographic and topographic factors affect snow 52	
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depth in the Alps (Grünewald et al., 2013; Grünewald, et al., 2014; Lehning et al., 2011), 53	
  

suggesting that similar studies could be extended to the Sierra Nevada. And among the forested 54	
  

regions of the mountains, the mixed-conifer and subalpine zones cover most of the high-55	
  

elevation, seasonally snow-covered area. 56	
  

 In situ, operational measurements of snow water equivalent (SWE) in the Sierra Nevada 57	
  

come from monthly manual snow surveys and daily snow-pillow observations (Rosenberg et al., 58	
  

2011). Meteorological stations and remote-sensing products also provide estimates of 59	
  

precipitation and snow accumulation (Guan et al., 2013). Cost, data coverage, accuracy (Julander 60	
  

et al., 1998) and basin-scale representativeness are issues for in situ monitoring of SWE in 61	
  

mountainous terrain (Rice and Bales, 2010). Satellite-based remote sensing, such as MODIS, has 62	
  

been used to map snow coverage in large or even global areas. However, it only provides snow-63	
  

coverage information in open areas, and no direct information on snow depths (Molotch and 64	
  

Margulis, 2008). The SNOw Data Assimilation System (SNODAS) integrates data from satellite 65	
  

and in situ measurements with weather-forecast and physically based snow models, providing 66	
  

gridded SWE and snow-depth estimates (Barrett, 2003). However, since SNODAS has not been 67	
  

broadly assessed (Clow et al., 2012), its potential for evaluating snow distribution in mountain 68	
  

areas remains uncertain. Also, owing to its 1-km spatial resolution, the snow depth that 69	
  

SNODAS provides is a mixed representation of both open and canopy-covered areas.  70	
  

 An orographic-lift effect is observable in most of the above data (Howat and Tulaczyk, 71	
  

2005; Rice et al., 2011), and a binary-regression-tree model using topographic variables as 72	
  

predictors has also been used for estimating the snow depth in unmeasured areas (Erickson et al., 73	
  

2005; Erxleben et al., 2002; Molotch et al., 2005). However, regression coefficients could not be 74	
  

estimated accurately for most of the explanatory variables, except for elevation; and the 75	
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consistency of the orographic trend as well as the relative importance of these variables is still 76	
  

unknown owing to the lack of representative measurements across different slopes, aspects and 77	
  

canopy conditions. Also, the stability of the variance explained by the model needs to be tested 78	
  

with denser measurements.  79	
  

 In recent years, airborne Lidar has been used for high-spatial-resolution distance 80	
  

measurements (Hopkinson et al., 2004), and has become an important technique to acquire 81	
  

topographic data with sub-meter resolution and accuracy (Marks and Bates, 2000). Therefore, 82	
  

Lidar provides a potential tool to help understand spatially distributed snow depth across 83	
  

mountain regions. With multiple returns from a single laser pulse, Lidar has also been used to 84	
  

construct vegetation structures as well as observe conditions under the canopy, which helps 85	
  

produce fine-resolution digital elevation models (DEMs), vegetation structures, and snow-depth 86	
  

information. However, the snow depth under canopy can not always be measured because of the 87	
  

signal-intensity attenuation caused by canopy interception (Deems and Painter, 2006; Deems et 88	
  

al., 2006). A recent report applied a univariate-regression model to the snow depth measured in 89	
  

open areas using Lidar; with a high-resolution DEM used to accurately quantify the orographic-90	
  

lift effect on the snow accumulation just prior to melt (Kirchner et al., 2014). From this analysis 91	
  

it could be expected that Lidar data might also help explain additional sources of snow 92	
  

distribution variability in complex, forested terrain. 93	
  

 The objective of the work reported here is to improve our understanding of how 94	
  

topographic and vegetation attributes affect snow accumulation in mixed-conifer forests. Using 95	
  

Lidar data from four headwater areas in the southern Sierra Nevada, we addressed the following 96	
  

three questions. First, in forested mountain terrain what percentage of pixels have ground returns 97	
  

and thus provide snow-depth measurements at 1-m and coarser sampling resolutions, and what 98	
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potential error is introduced by undersampling of snow under dense canopies? Second, what new 99	
  

information about orographic effects on precipitation versus accumulation is provided by these 100	
  

Lidar data? Third, what is the effect of slope, aspect and canopy penetration fraction on snow 101	
  

accumulation, relative to elevation; and are effects consistent across sites?  102	
  

2. Methods 103	
  

2.1 Study Areas 104	
  

 Our study areas are located in the southern Sierra Nevada, approximately 80 km east of 105	
  

Fresno, California (Figure 1). The four headwater-catchment research areas, Bull Creek, 106	
  

Shorthair Creek, Providence Creek, and Wolverton Basin were previously instrumented, 107	
  

including meteorological measurements, in order to have a better knowledge of the hydrologic 108	
  

processes in this region (Bales et al., 2011; Hunsaker et al., 2012; Kirchner et al., 2014). The 109	
  

sites were chosen as part of multi-disciplinary investigations at the Southern Sierra Critical Zone 110	
  

Observatory, and are also the main instrumented sites in the observatory. Wolverton is 111	
  

approximately 64 km southeast of the other three sites (Figure 1) and is located in Sequoia 112	
  

National Park. Both snow-on and snow-off airborne Lidar were flown in 2010 (Table 1) over 113	
  

these sites. The elevation of the survey areas is from 1600-m to 3500-m elevation. Vegetation 114	
  

density generally decreases in high-elevation subalpine forest, with Wolverton also having a 115	
  

large area above treeline (Goulden et al., 2012). The precipitation has historically been mostly 116	
  

snow in the cold and wet winters for elevations above 2000 m, and a rain-snow mix below 2000 117	
  

m, where most of Providence is located. The comparison between Providence and the other sites 118	
  

can help in assessing if observed trends are consistent above and below the rain-snow transition.  119	
  

2.2 Data Collection 120	
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 All airborne Lidar surveys were performed by the National Center for Airborne Laser 121	
  

Mapping (NCALM) using Optech GEMINI Airborne Laser Terrain Mapper. The scan angle and 122	
  

scan frequency were adjusted to ensure a uniform along-track and across-track point spacing 123	
  

(Table 2), with six GPS ground stations used for determining aircraft trajectory. The snow-on 124	
  

survey date was close to April 1st, which is used by operational agencies as the date of peak snow 125	
  

accumulation for the Sierra. Since the snow-on survey required four days to cover the four study 126	
  

areas, time-series in situ snow-depth data measured continuously from Judd Communications 127	
  

ultrasonic depth sensors at Providence, Bull and Wolverton were used to estimate changes in 128	
  

snow depth during the survey period. While no snow accumulation was observed, snowpack 129	
  

densification and melting observed from the time-series data were taken into considerations 130	
  

(Hunsaker et al., 2012; Kirchner et al., 2014). The snow-off survey was performed in August 131	
  

after snow had completely melted out in the study areas.  132	
  

2.3 Data Processing 133	
  

 Raw Lidar datasets were pre-processed by NCALM and are available from the NSF 134	
  

Open-Topography website (http://opentopography.org) in LAS format. The LAS point cloud, 135	
  

including both canopy and ground-surface points, are stored and classified as ground return and 136	
  

vegetation return. The 1-m resolution digital-elevation models, generated from the Lidar point-137	
  

cloud datasets, were downloaded from the OpenTopography database and further processed in 138	
  

ArcMap 10.2 to generate 1-m resolution slope, aspect, and northness raster products. Northness 139	
  

is an index for the potential amount of solar radiation reaching a slope on a scale of -1 to 1, 140	
  

calculated from: 141	
  

𝑁 = sin(𝑆)×cos(𝐴),                                                                                                             (1) 142	
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where N is the northness value; S is the slope angle and A is the aspect angle, both in degrees. 143	
  

For aspect angle A, north is either 0° or 360°. Northness is also the same as the aspect intensity 144	
  

(Kirchner et al., 2014) with 0° focal aspect. Since in this analysis the snow-depth comparison is 145	
  

only discussed between north and south facing slopes, northness is used instead of aspect 146	
  

intensity for simplification. To construct the 1-m resolution canopy-height models from Lidar 147	
  

data, the 1-m digital-elevation models were subtracted from the 1-m digital-surface models that 148	
  

were rasterized from the first return of the laser pulses (Figure 2). 149	
  

 The snow depths were calculated directly from the snow-on Lidar data. By referring to 150	
  

canopy-height models, all ground points in snow-on Lidar datasets were classified as under 151	
  

canopy or in open areas. That is, if the ground point was coincident with canopy of >2-m height, 152	
  

it was classified as under canopy, and otherwise in the open, i.e., a 2-m height was used to 153	
  

classify shrubs versus trees. In this study we assumed that shrubs did not affect the snow depth. 154	
  

After classification, snow depths were calculated by subtracting the values in the digital-155	
  

elevation model from the snow-on point-measurement values. The calculated point snow-depth 156	
  

data were further assigned into 1-m raster pixels, averaged within each pixel, formatted and then 157	
  

gap filled by interpolation with pixel values around it. Since not all laser pulses that generated 158	
  

canopy-surface returns had ground returns (Figure 3) and the ground-return percentage varied 159	
  

across the transition from the tree trunk to the edge of the canopy, interpolation was not applied 160	
  

to data under the canopy. The error rate of the calculated snow depth should be mainly from the 161	
  

instrumental elevation error, which is about 0.10 m (Kirchner et al., 2014; Nolan et al., 2015). 162	
  

2.4 Penetration Fraction 163	
  

 The open-canopy fraction is a factor that represents the forest density above a given pixel 164	
  

and is used to describe the influence of vegetation on snow accumulation and melt. However 165	
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there is no algorithm to directly extract this information from Lidar data. Here we use a novel 166	
  

approach that we call penetration fraction to approximate the open-canopy fraction from the 167	
  

Lidar point cloud. With it we were able to quantify the impact of canopy on snow depth using 168	
  

linear regression. Penetration fraction is the ratio of the number of ground points to number of 169	
  

total points within each pixel (Figure 4a). Whereas pixels are generally classified as under 170	
  

canopy or in the open (Kirchner et al., 2014), penetration fraction is an index of fraction open in 171	
  

a pixel. Because the electromagnetic radiation from both Lidar and sunlight beams are 172	
  

intercepted by canopies, the open-canopy fraction is used here as an index to represent the 173	
  

fraction of sunlight radiance received on the ground under vegetation. Therefore, penetration 174	
  

fraction of Lidar is actually another form of estimating the open-canopy fraction (Musselman et 175	
  

al., 2013). However, under-canopy vegetation can also intercept the Lidar beam, causing a bias. 176	
  

To eliminate this bias, the canopy-height model was used to check if the pixel was canopy 177	
  

covered by using the 2-m threshold value; and if not, the local penetration fraction of the pixel 178	
  

was reset to 1 because the open-canopy fraction of a pixel could not be entirely represented by 179	
  

the penetration fraction. A spatial moving-average process was applied using a 2-D Gaussian 180	
  

filter to account for the effect of the vegetation around each pixel. Since the radius of the 181	
  

Gaussian filter needs to be specified by the user, we tested the sensitivity of smoothing results to 182	
  

the radius of the filter and found it is not sensitive when the radius is greater than 1.5 m (Figure 183	
  

4b). Therefore, we specified a radius of 5 m in the Gaussian filter. 184	
  

2.5 Statistical Analysis 185	
  

 The 1-m resolution snow-depth raster datasets were resampled into 2-m, 3-m, 4-m and 5-186	
  

m resolution. The percentage of pixels with snow-depth measurements was calculated by using 187	
  

the number of pixels with at least one ground return divided by the total number of pixels inside 188	
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each site. The sensitivity of the percentage changes across different resampling resolutions and 189	
  

the consistency of the percentages across study sites at the same resampling resolution were 190	
  

analyzed by visualizing the percentages against sampling resolutions at all sites. 191	
  

 Using elevation, slope, aspect, penetration fraction and snow depth retrieved from Lidar 192	
  

measurements, topographic and vegetation effects on snow accumulation were observed using 193	
  

residual analysis. Owing to orographic effects, there is increasing precipitation along an 194	
  

increasing elevation gradient in this area (Kirchner et al., 2014). Therefore, elevation was 195	
  

selected as the primary variable to fit the linear-regression model for calculating the residual of 196	
  

snow depth. All snow-depth measurements from Lidar were first separated by either under 197	
  

canopy or in open areas, and then were binned by elevation of the location where they were 198	
  

measured, with a bin size of 1-m elevation. As each elevation band had hundreds of snow-depth 199	
  

measurements after binning, the average of all snow depths was chosen as the representative 200	
  

snow depth, and the standard deviation calculated to represent the snow-depth variability within 201	
  

each elevation band. Coefficients of determination between snow depth and elevation of each 202	
  

site were calculated by linear regression. The fitted linear-regression model of each site was 203	
  

applied to the DEM to estimate the snow depth. The residual of snow depth was calculated by 204	
  

subtracting the modeled snow depth from Lidar-measured snow depth. The slope, aspect and 205	
  

penetration fraction were binned into 1∘ slope, 1∘ aspect, and 1% penetration-fraction bins with 206	
  

snow-depth residuals corresponding to each bin of every physiographic variable averaged and 207	
  

visualized along the variable gradient to check the existence of these physiographic effects. 208	
  

 For the variables found to correlate with the snow accumulation, the relative importance 209	
  

of each variable was calculated using the Random Forest algorithm (Breiman, 2001; Pedregosa 210	
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et al., 2011). A multivariate linear-regression model was also applied to quantify the influence of 211	
  

the various physiographic variables on the snowpack distribution. 212	
  

 To calculate the snow-depth difference between open and canopy-covered areas along an 213	
  

elevation gradient, the 1-m resolution snow-depth data of the two conditions, open and canopy 214	
  

covered, were smoothed separately against elevation using locally weighted scatterplot 215	
  

smoothing (LOESS) (Cleveland, 1979). The snow-depth difference was then calculated by 216	
  

subtracting the smoothed canopy-covered snow depth from that in the open. 217	
  

3. Results 218	
  

 The percentage of pixels having snow-depth measurements is sensitive to the sampling 219	
  

resolution used in processing the Lidar point cloud to produce the raster data. Values go from 220	
  

about 65-90% across the 4 sites for 1-m resolution and gradually increase to 99% at 5-m 221	
  

resolution (Figure 5). Note that the percentage increases in going from the lower- to higher-222	
  

elevation sites, reflecting lower forest density at higher elevation. 223	
  

 The snow depths in open areas and under canopy show consistent increases with 224	
  

elevation across all sites (Figure 6a, 6b). Although orographic effects may vary between 225	
  

individual storms across sites, these data suggest that the cumulative effect of the 4 main 226	
  

snowfall events prior to the Lidar flight (Kirchner, 2013) resulted in similar patterns. The 227	
  

variability within an elevation band for open areas (Figure 6c) is highest at about 1500 m, and 228	
  

gradually decreases within the rain-snow transition up to 2000-m elevation. However, above 229	
  

2000 m the pattern of variability with increasing elevation varies across sites. Note that values at 230	
  

the upper or lower ends of elevation at each site have few pixels and thus may not have a 231	
  

representative distribution of other physiographic attributes (Figure 6d). The forested area of all 232	
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four sites combined spans the rain-snow transition zone in lower mixed-conifer forest through 233	
  

snow-dominated subalpine forest, with significant areas above treeline higher up. 234	
  

 For each individual site, a least-squares linear regression of averaged snow depth versus 235	
  

elevation was used to investigate the spatial variability of snow depth (Table 3). The median 236	
  

elevation of the three sites increases from Providence to Bull to Shorthair. The lowest elevation 237	
  

at Providence Creek is less than 1400 m, and snow depth increases steeply in this region at a rate 238	
  

of 38 cm per 100 m in open areas and 28 cm per 100 m under the canopy. Bull Creek has an 239	
  

elevation range of 2000-2400 meters, which is slightly higher than Providence, and has snow 240	
  

depth increasing at 21 cm per 100 m in open areas and 19 cm per 100 m under the canopy. For 241	
  

Shorthair Creek site, which is the highest of the three, the snow depth increases at 17 cm per 100 242	
  

m in open areas and 16 cm per 100 m under the canopy. Wolverton is 64 km further south and 243	
  

spans a wider elevation range, going from the rain-snow transition in mixed conifer, to subalpine 244	
  

forest, to some area above treeline. The average snow-depth increase is smallest among all four 245	
  

study sites, 15 cm per 100 m in open areas and 13 cm per 100 m under the canopy. Unlike the 246	
  

other three lower-elevation sites, the snow depth at Wolverton decreases above 3300-m elevation 247	
  

and these high-elevation data were not included in the linear regression. The amount of area 248	
  

above this elevation is relatively small, and factors such as wind redistribution and the 249	
  

exhaustion of perceptible water can also affect snow depth at these elevations (Kirchner et al., 250	
  

2014). 251	
  

 The residuals for snow in open areas were further analyzed for effects of slope, aspect 252	
  

and penetration fraction. The snow-depth residuals are negative and larger in magnitude on 253	
  

steeper slopes, i.e. less snow on steeper slopes (Figure 7a). The residual also changes from 254	
  

positive to negative with aspect, reflecting deeper snow on north-facing versus south-facing 255	
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slopes (Figure 7b). The topographic effect can also be seen from the color pattern of northness 256	
  

observed in the scatterplots (Figure 6a, 6b). The residual also changes from negative 20-40 cm to 257	
  

positive 20-40 cm as penetration fraction increases from 0% to 80%, reflecting less snow under 258	
  

canopy (Figure 7c). Considering all of these variables together, elevation is the most important 259	
  

variable at all sites except for Shorthair, which has a relatively small elevation range (Figure 8). 260	
  

Aspect exerts a stronger influence than do slope and penetration fraction in open areas. However, 261	
  

for under-canopy areas, penetration is more dominant than aspect at two sites. The multivariate 262	
  

regression model was fitted to the data with aspect transformed into 0° to 180° range (north to 263	
  

south). Fitted models can be represented as the following two equations for open area and under 264	
  

canopy respectively: 265	
  

𝑆𝐷 = 0.0011×𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 0.0112×𝑆𝑙𝑜𝑝𝑒 − 0.0057×𝐴𝑠𝑝𝑒𝑐𝑡 + 0.1802×𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛    (2) 266	
  

𝑆𝐷 = 0.0009×𝐸𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 − 0.0128×𝑆𝑙𝑜𝑝𝑒 − 0.0046×𝐴𝑠𝑝𝑒𝑐𝑡 + 0.9891×𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛    (3) 267	
  

where 𝑆𝐷 is snow depth and p-values of all regression coefficients of the two models are all 268	
  

smaller than 0.01. The effects quantified in these two equations are mixtures of influences that 269	
  

affected both precipitation and post-deposition processes. 270	
  

 The snow-depth difference between open and canopy-covered areas was calculated with 271	
  

elevation from locally smoothed snow depth. It generally increases from near zero at 1500 m, 272	
  

where there is little snow but dense canopy, to 40 cm in the range of 1800-2000 m, and varies 273	
  

from near zero to 60 cm at higher elevations where snow is deeper and the canopy less dense 274	
  

(Figure 9). It is apparent that the snow-depth difference increases with elevation in the rain-snow 275	
  

transition zone, but lacks a clean pattern along either elevation gradient or penetration-fraction 276	
  

gradient when the elevation is higher. 277	
  

4. Discussion 278	
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4.1 Sensitivity of measurements to sampling resolution 279	
  

 The results of analyzing the percentage of pixels with snow depth measured by Lidar at 280	
  

different sampling resolutions illustrate that even high-density airborne Lidar measurements do 281	
  

not have 100% coverage of the surveyed area at 1-m resolution, especially in densely forested 282	
  

areas. According to the snow-depth difference between snowpack in open areas and under 283	
  

canopy, a trade-off between accuracy and coverage happens when adjusting the resolution; and 284	
  

lower sampling resolutions can introduce overestimation into the results. This is because upon 285	
  

averaging, sub-pixel area under the canopy that was not measured may be represented by the 286	
  

open area that is measured, introducing an overestimation error into the averaged snow depth of 287	
  

the pixel. In order to estimate that bias for each pixel, we would need more under-canopy snow-288	
  

depth measurements at 1-m resolution. In our survey areas, 28% of the total area in the main 289	
  

snow-producing elevations of 2000-3000 m has no returns at 1-m resolution. Assuming that 290	
  

using open rather than under-canopy values would introduce a bias of at least 35 cm for these 291	
  

unmeasured areas, a 2-m mean snow depth will have about 10 cm or 5% overestimation over the 292	
  

whole area. The overestimation could be higher if the area with no returns represents denser 293	
  

canopy with less snow than the under-canopy areas measured; and could also be more significant 294	
  

for shallower snowpacks. It would also be higher for a less-dense point cloud, which would 295	
  

introduce uncertainty into both percentage canopy cover and open versus under-canopy snow-296	
  

depth differences. Therefore, the sampling resolution for processing the Lidar point cloud needs 297	
  

to be chosen according to the objective and accuracy tolerance of the study and the average 298	
  

overestimation bias needs to be corrected for the study results. 299	
  

4.2 Physiographic effects on snow accumulation 300	
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 Below 3300 m, the increasing trend of snow accumulation with elevation was observed 301	
  

for all sites (Figure 6). Linear regression is applicable to model the relationship between snow 302	
  

depth and elevation when the study area has a broad elevation range. This holds true for all of 303	
  

our sites with the exception of Shorthair, where the elevation range is about 200 m and the 304	
  

coefficient of determination for this linear-regression model is much smaller than for the other 305	
  

three sites, which have ranges greater than 500 m. The bias of mean snow depth in the same 306	
  

elevation band between different sites is acceptable if the standard error is added to or subtracted 307	
  

from the mean (Figure 6a, 6b, 6c). The data-collection time, spatial variation and variations of 308	
  

other topographic features can also introduce bias across sites. However, as data-collection time 309	
  

in this study only differed by a few days, in situ snow-depth sensor data suggest that the melting 310	
  

and densification effect was under 2 cm (https://czo.ucmerced.edu/dataCatalog_sierra.html). As 311	
  

for other topographic variables, the observation of a slope effect, shown as the trend lines in 312	
  

Figure 7a and the negative regression coefficients of the two linear-regression models, could be 313	
  

explained by steeper slopes having higher avalanche potential, fewer trees and thus more wind; 314	
  

and thus some snow is more likely to be lost from these slopes. Snowpack located in south-315	
  

facing slopes receives higher solar radiation, with the snowmelt being accelerated (Kirchner et 316	
  

al., 2014). This explains the trends observed in Figure 7b and the negative regression coefficients 317	
  

of the multivariate models. Although Lidar has measurement errors caused by slope and aspect 318	
  

(Baltsavias, 1999; Deems et al., 2013; Hodgson and Bresnahan, 2004), the error is not able to be 319	
  

quantitatively traced back to each variable; and we assumed that its influence on the trends could 320	
  

be neglected. As canopy interception results in reduced snow depth under canopy, the snow-321	
  

depth residuals are found changing from negative to positive with penetration fraction and the 322	
  

regression coefficients are positive (Figure 7c). The multivariate linear-regression model built 323	
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from the Lidar data is a significant improvement, as the variability of the snow distribution could 324	
  

explain 15-25% more than the univariate linear-regression model with elevation as the only 325	
  

predictive variable (Table 4) and the estimation bias has a narrower distribution (Figure 10a, 326	
  

10b). Also, fitting an individual linear-regression model for each site is slightly better than using 327	
  

a general model with all data combined (Figure 10c, 10d). This may be because an individual 328	
  

model can capture regional micro-climate within a site better than a general model. The opposite 329	
  

trend of the relative importance of predictive variables observed in Shorthair is because it is a 330	
  

relatively flat site (Figure 1, Figure 8), which implies that topographic variables other than 331	
  

elevation need to be considered when studying areas with small elevation ranges.  332	
  

4.3 Vegetation effects on snow distribution along elevation 333	
  

Under-canopy snow distribution is governed by multiple factors that affect the energy 334	
  

environment, as observed by melting (Essery et al., 2008; Gelfan et al., 2004) and accumulation 335	
  

rates (Pomeroy et al., 1998; Schmidt and Gluns, 1991; Teti, 2003). Our results show different 336	
  

responses when comparing the snow-depth difference between open and canopy-covered areas 337	
  

between study sites (Figure 9a). In the rain-snow transition zone from 1500 to 2000 m at 338	
  

Providence we see a sharp linear increase between open and under-canopy snow depth that is 339	
  

likely governed by the under-canopy energy environment and the canopy-interception effect on 340	
  

precipitation, which accelerate snowmelt and prevent accumulation of under-canopy snow. 341	
  

Above 2000 m, the snow-depth difference observed at Bull and Shorthair stabilized around 40 342	
  

cm and 20 cm respectively, with fluctuations less than 10 cm along elevation. Breaking from this 343	
  

pattern, the large dip in snow-depth difference, down to 10 cm, observed at Wolverton at 344	
  

elevations of 2250-2750 m deviates from the 35-40 cm plateau. Also, the snow-depth difference 345	
  

at Shorthair stabilizes around 20 cm, which is 20 cm lower than the stabilized value at Bull. 346	
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Based on the scatterplots shown in Figures 6a and 6b that are color coded by northness, at an 347	
  

elevation range of 2300-2700 m, there are a lot more data points with both low snow depth and 348	
  

extremely negative northness in the open area than under the canopy, which implies that 349	
  

anisotropic distribution of other topographic variables is affecting the snow-depth difference. 350	
  

This is further shown by filtering out the data points not within a small certain range (-0.1 to 0.1) 351	
  

of northness, and then reproducing Figure 9a using the filtered data. As presented in Figure 11, it 352	
  

is apparent that the large dip at Wolverton is flattened out owing to a canopy effect of around 25-353	
  

45 cm. Thus a sigmoidal function was used to characterize the snow-depth difference changes 354	
  

with elevation, excluding topographic interactions. The interactions between topographic 355	
  

variables and vegetation is most likely attributable to the under-canopy snowpack being less 356	
  

sensitive to solar radiation versus snowpack in the open area (Courbaud et al., 2003; Dubayah, 357	
  

1994; Essery et al., 2008; Musselman et al., 2008, 2012).  358	
  

 In spite of filtering the topographic effect, there is still about a 20-cm magnitude of 359	
  

fluctuation in the snow-depth difference, which might be attributed to various clearing sizes of 360	
  

open area at different locations and various vegetation types in forests (Hedstrom and Pomeroy, 361	
  

1998; Pomeroy et al., 2002; Schmidt and Gluns, 1991); however, we were not able to explore 362	
  

these features of the sites from the current Lidar dataset. 363	
  

5. Conclusions 364	
  

 The rasterized Lidar data show that the percentage of pixels with at least one ground 365	
  

return, and thus a snow-depth measurement, increases from 65-90% to 99% as the sampling 366	
  

resolution increases from 1 m to 5 m. However, this coarser resolution may mask undersampling 367	
  

of under-canopy snow relative to snow in open areas. With about 28% of the area in dense 368	
  

mixed-conifer forest having no returns, using snow depths in open areas as estimates of snow 369	
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depth under dense canopies would result in at least a 10-cm overestimation error in the average 370	
  

snow depth in the main snow-producing elevations of 2000-3000 m. 371	
  

 Using Lidar data gridded at 1-m resolution, average snow depth within each 1-m 372	
  

elevation band shows a strong correlation with elevation and consistent pattern across all sites. 373	
  

The linear-regression models show that elevation explains 43% of snow-depth variability; and 374	
  

that over 57% of the variability is explained when including all physiographic variables. This 375	
  

indicates that snow distribution in the southern Sierra Nevada is primarily influenced by an 376	
  

orographic-lift effect on precipitation. Snow-depth residuals calculated by de-trending the 377	
  

elevation dependency are correlated with slope, aspect and penetration fraction; and the 378	
  

regression coefficients of these variables in the multivariate linear-regression model show that 379	
  

they are statistically significant in explaining the snow-depth variability, all with p-values 380	
  

smaller than 0.01. Over the elevation range of 1500-3300 m, snow depth decreases 1 cm per 1° 381	
  

slope, and decreases 0.5 cm per 1° aspect in going from north to south. In open areas, snow 382	
  

depth increases 2 cm per 10% increase in penetration fraction, while under canopy the snow 383	
  

depth increases 10 cm per 10% penetration-fraction increase. Although the latter three variables 384	
  

were observed to be less important than elevation, the relative importance of all four variables 385	
  

varies with local elevation range and canopy. 386	
  

 The snow-depth difference between open and canopy-covered areas increased in the rain-387	
  

snow transition elevation range and then stabilized around 25-45 cm at high elevation. 388	
  

Fluctuations in certain elevation ranges are attributed part to interactions from other topographic 389	
  

variables. Evidence of this is found by filtering northness into a narrow band, which results in 390	
  

these fluctuations flattening out. 391	
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 Table 1. Lidar data collection information 565	
  

 Bull Shorthair Providence Wolverton 

Snow-off flight date August 15, 2010 August 13, 2010 August 5, 2010 August 13-15, 
2010 

Snow-on flight date March 24, 2010 March 23, 2010 March 23, 2010 March 21-22, 
2010 

Area, km2 22.3 6.8 18.4 58.9 

Mean elevation, m 2264 2651 1850 2840 

Elevation range, m 1925-2490 2436-2754 1373-2207 1786-3523 

Canopy cover, % 51 43 62 30 

 566	
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Table 2. Flight parameters and sensor settings 567	
  

Flight parameters Equipment settings 

Flight altitude 

Flight speed 

Swath width 

Swath overlap 

Point density 

Cross-track resolution 

Down-track resolution 

600 m 

65 m s-1 

233.26 m 

50% 

10.27 m-2 

0.233 m 

0.418 m 

Wavelength 

Beam divergence 

Laser PRF 

Scan frequency 

Scan angle 

Scan cutoff 

Scan offset 

1047 nm 

0.25 mrad 

100 kHz 

55 Hz 

±14° 

3° 

0° 
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Table 3. Linear-regression results, averaged snow depth vs. elevation in four sites 568	
  

 Bull Shorthair Providence Wolverton 

R2, open 0.968 0.797 0.931 0.914 

R2, vegetated 0.978 0.737 0.921 0.972 

Slope, open, cm per 100 m 21.6 16.1 37.8 15.3 

Slope, vegetated, cm per 100 m 19.9 13.1 26.0 13.4 

 569	
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Table 4. Coefficients of determination of univariate and multivariate linear-regression models 570	
  

 Univariate model R2 Multivariate model R2 

Bull 

Shorthair 

Providence 

Wolverton 

All sites 

0.23 

0.06 

0.39 

0.16 

0.43 

0.37 

0.32 

0.53 

0.38 

0.57 
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 572	
  
Figure 1.  Study area and Lidar footprints. (Left) California with Sierra Nevada. (Center) Zoomed view to 573	
  

show the locations of Lidar footprints. (Right) Elevation and 200-m contour map (100-m for Bull) of 574	
  

Lidar footprints 575	
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 576	
  
Figure 2. Subtracting the digital-elevation model from the digital-surface model will result in the canopy-577	
  

height model. In this study the height of shrub vegetation is assumed smaller than 2 m while tree 578	
  

vegetation is taller than 2 m. 579	
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  580	
  

Figure 3. Normalized histogram of the number of ground points for (a) under-canopy and (b) open 1-m 581	
  
pixels. 582	
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 583	
  

Figure 4. (a) Dividing the number of ground points of each 1-m pixel by the total number of points in the 584	
  
pixel gives the penetration fraction of the local pixel. (b) Sensitivity of the smoothed penetration fraction 585	
  
to the smoothing radius. 586	
  

(a)

(b)
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 587	
  

Figure 5. Sensitivity of the percent of pixels with snow depth measured to the sampling resolution used in 588	
  
processing the Lidar point cloud at each site. 589	
  



	
   34	
  

	
  590	
  

Figure 6. LOESS smoothed snow depth with northness color coded scatterplot of raw-pixel snow depth 591	
  
against elevation for (a) open and (b) under-canopy areas. (c) Standard error of the snow depth within 592	
  
each 1-m elevation band for open area. (d) Total area of each elevation band for both open and under-593	
  
canopy areas. Values above 3300 m not shown, where there are few data. 594	
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 595	
  

Figure 7. Average snow-depth residual, calculated as difference between Lidar-measured snow depth and 596	
  
snow depth from the linear-regression models (open areas) versus: (a) slope, aspect, and (c) penetration 597	
  
fraction. 598	
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 599	
  

Figure 8. Relative importance of each physiographic variable in predicting the snow depth from each site 600	
  
for (a) open area (b) under-canopy area 601	
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  602	
  

Figure 9. (a) Snow-depth difference along elevation for each site calculated from the LOESS smoothed 603	
  
snow depth. (b) Average penetration fraction versus elevation for each site. 604	
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 605	
  

Figure 10. Normalized density of estimation bias for (a) open (b) under-canopy areas. Estimation bias 606	
  
boxplots of using one general linear-regression model with all sites’ data combined and four linear-607	
  
regression models of each individual site for (c) open (d) under-canopy areas. 608	
  

	
  609	
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  610	
  

Figure 11. Snow-depth difference between open and under-canopy areas versus elevation, calculated as 611	
  
difference between raw 1-m pixel snow depth and northness-filtered 1-m pixel snow depth, together with 612	
  
the sigmoidal fit of the snow-depth difference. 613	
  

	
  614	
  


