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Abstract. Predicting the evolution of ice sheets requires numerical models able to accurately track

the migration of ice sheet continental margins or grounding lines. We introduce a physically-based

moving point approach for the flow of ice sheets based on the conservation of local masses. This

allows the ice sheet margins to be tracked explicitly. Our approach is also well suited to capture

waiting time behaviour efficiently. A finite difference moving point scheme is derived and applied5

in a simplified context (continental radially-symmetrical shallow ice approximation). The scheme,

which is inexpensive, is verified by comparing the results with steady states obtained from an analytic

solution and with exact moving margin transient solutions. In both cases the scheme is able to track

the position of the ice sheet margin with high accuracy.

1 Introduction10

Ice sheets are an influential component of the climate system whose dynamics lead to changes in

terms of ice thickness, ice velocity or migration of ice sheet continental margins and grounding

lines. Therefore numerical modelling of ice sheets needs accuracy of the physical variables but also

in the position of their boundaries. However, simulating the migration of an ice sheet margin or

a grounding line remains a complex task (Huybrechts et al., 1996; Vieli and Payne, 2005; Pattyn15

et al., 2012, 2013). This paper introduces a moving point method for the numerical simulation of

ice sheets, especially the migration of their boundaries. In this paper we focus on the migration of

continental ice sheet margins.

At the scale of an ice sheet or a glacier, ice is modelled as a flow which follows the Stokes

equations of fluid flows (Stokes, 1845), even though the flow is non-Newtonian. Solving this problem20

at that scale is costly. A 3-D finite element model called Elmer/Ice has been developed for this

purpose numerically (see Gagliardini et al., 2013 for a detailed description of Elmer/Ice). Other
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models take advantage of the very small aspect ratio of ice sheets and use a thin layer approximation

differing only in the order of the approximation. The oldest and numerically least expensive model

used for ice flow is the Shallow Ice Approximation or SIA (Hutter, 1983). It gives an analytical

formulation for horizontal velocities of ice in the sheet and for their vertically averaged counterpart.

Although simple and fast, the SIA captures well the nonlinearity of the system due to shearing at5

large scales. However, the SIA is not designed to include basal sliding and is a poor approximation

for small scales especially at the ice divide and the ice sheet margin. The SIA is, nevertheless, an

excellent resource for testing numerical approaches, since moving-margin exact solutions exist in

the literature (Halfar, 1981, 1983; Bueler et al., 2005).

Significant efforts have been invested in ice sheet modelling. These have led ice sheet modellers to10

compare results obtained by various models for the same idealistic test problems. They first started by

comparing results obtained with fixed-grid models for grounded ice sheets using the SIA (EISMINT

intercomparison project, Huybrechts et al., 1996; Payne et al., 2000). Then the focus shifted to

the simulation of grounding line migration. The MISMIP and MISMIP3d projects (Pattyn et al.,

2012, 2013) have shown that fixed-grid methods perform poorly without high resolution around15

the grounding line or by enforcing the flow at the grounding line using asymptotic results from a

boundary layer theory (Schoof, 2007, 2011). This has led ice sheet modellers to develop adaptive

and moving techniques to overcome this issue.

One approach to gain high resolution is to use automated adaptive remeshing (Durand et al., 2009;

Gudmundsson et al., 2012), forcing the resolution to stay high around the ice sheet margin. A related20

approach is to use adaptive mesh refinement (AMR) techniques, which allow improved resolution to

be achieved in key spatially and temporally evolving subregions (Goldberg et al., 2009; Gladstone

et al., 2010; Cornford et al., 2013; Jouvet and Gräser, 2013). However, even with AMR, the ice sheet

margin still falls between grid points, although by adapting the grid to increase the resolution near

the margin, the accuracy is kept high. Adapting the grid is, nevertheless, an expensive procedure, as25

areas where refinement is needed have to be regularly re-identified.

Another possibility is to transform the moving domain. The number of grid points is kept constant

in time but the accuracy is kept high by the explicit tracking of the position of the ice sheet

margin. This is done by transforming the ice domain to a fixed coordinate system via a geometric

transformation. This approach has been successfully applied by Hindmarsh (1993) and Hindmarsh30

and Le Meur (2001) to an ice sheet along a flowline. However, it is not easily translated into two

dimensions.

We consider here intrinsically moving grid methods. As in the case of transformed grids, these

methods allow explicit tracking of the ice sheet margin. There exists a number of techniques

for generating the nodal movement in moving grid methods. They can be classified into two35

subcategories, location-based methods and velocity-based methods (Cao et al., 2003). In location-

based methods the positions of the nodes are redefined directly at each time step by a mapping
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from a reference grid (Budd et al., 2009). This is generally done by choosing a monitor function.

This approach has been used by Goldberg et al. (2009), the main difficulty being the definition of

the monitor function. In velocity-based methods, on the other hand, the movement of the nodes

is defined in terms of a time-dependent velocity, which allows the nodes to be influenced by their

previous position (Baines et al., 2005; Lee et al., 2015). Currently, this approach has not been applied5

to the dynamics of ice sheets.

In this paper, we apply a particular velocity-based moving point approach based on conservation

of local mass fractions to continental ice sheets. The method is in the tradition of ALE (Arbitrary

Lagrangian Eulerian) methods (Donea et al., 2004) with the difference that, instead of seeking

a velocity intermediate between Lagrangian and Eulerian, the method uses both Eulerian and10

Lagrangian conservation to deduce the velocity and solution, respectively (see Baines et al. (2011)

and references therein). We derive a finite difference moving point scheme in a simplified context

and verify the approach with steady states obtained from an analytic solution and with exact moving

margin transient solutions in the case of radially-symmetrical ice sheets. We show in particular that

the scheme is able to track the position of the ice sheet margin accurately. The paper is organised15

as follows: in Sect. 2 we recall the SIA and detail the simplified context of our study, in Sect. 3

we describe our velocity-based moving point approach, and in Sect. 4 we verify our approach by

comparison with exact solutions before concluding in Sect. 5.

2 Ice sheet modelling

2.1 Ice sheet geometry and Shallow Ice Approximation20

We consider a single solid phase ice sheet whose thickness at position (x,y) and time t is denoted

by h(t,x,y). We assume that the ice sheet lies on a fixed bedrock and denote by b(x,y) the bed

elevation. The surface elevation, s(t,x,y), is then obtained as

s = b +h (1)

The evolution of ice sheet thickness is governed by the balance between the ice gained or lost on the25

surface, snow precipitation and surface melting, and ice flow draining ice accumulated in the interior

towards the edges of the ice sheet. This is summarised in the mass balance equation

∂h

∂t
= m−∇ · (hU) in Ω(t) (2)

where m(t,x,y) is the surface mass balance (positive for accumulation, negative for ablation),

U(t,x,y) is the vector containing the vertically averaged horizontal components of the velocity30

of the ice, and Ω(t) is the area where the ice sheet is located.

Formally derived by Hutter (1983), the Shallow Ice Approximation (SIA) is one of the most

common approximations for large-scale ice sheet dynamics. Combined with Glen’s flow law (Glen,
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1955), the SIA provides (in the isothermal case) an analytical form for U as follows:

U =− 2
n +1

A(ρig)n
hn+1 |∇s|n−1 ∇s (3)

Parameters involved in this formulation are summarised in Table 1. Regarding the exponent n > 1,

its fixed value is classically set to 3 (see Cuffey and Paterson, 2010, for more details).

2.2 Radially-symmetrical ice sheets5

As a first step, we confine the study to limited area ice sheets with radial symmetry, in other words,

Ω(t) = [0, rl(t)] × [0,2π]. The ice sheet is centred on (0,0) and rl(t) denotes the position of the ice

sheet margin (edge of the ice sheet) at time t (see Fig. 1, which shows a section through the ice sheet).

The radial symmetry implies that the geometry of the sheet depends only on r, so h(t,x,y) = h(t,r),

s(t,x,y) = s(t,r) and b(x,y) = b(r). The vector U can then be written in the radial coordinate10

system as

U = U r̂, U =− 2
n +2

A (ρig)nhn+1

∣∣∣∣∂s

∂r

∣∣∣∣n−1
∂s

∂r
(4)

where r̂ is the unit radial vector, and the mass balance Eq. (2) simplifies to

∂h

∂t
= m− 1

r

∂ (rhU)
∂r

(5)

A symmetry condition is added at the ice divide (r = 0):15

U = 0 and
∂s

∂r
= 0, (6)

and the ice sheet margin rl(t) is characterised by the Dirichlet boundary condition:

h(t,rl(t)) = 0 (7)

We also assume that the flux of ice through the ice sheet margin is zero (no calving).

Under hypotheses regarding the regularity of the ice thickness near the margin (see Calvo et al.,20

2002), we can differentiate Eq. (7) with respect to time. Using the mass balance equation Eq. (5) and

h = 0 at the margin,

dh

dt
(t,rl(t)) =

∂h

∂t
+

∂h

∂r

drl

dt
= m− 1

r

∂ (rhU)
∂r

+
∂h

∂r

drl

dt
= 0 (8)

and

∂ (rhU)
∂r

= h

(
Ur + r

∂Ur

∂r

)
+ rUr

∂h

∂r
= rUr

∂h

∂r
(9)25

at the margin. Realistically, since h = 0 at the margin, ∂h/∂r will not be zero there, and hence

drl

dt
= U(t,rl(t))−m(t,rl(t))

(
∂h

∂r

)−1

(10)

This velocity (Eq. 10) will be used in the moving point approach described in the next section.
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3 A moving point approach

In the following paragraphs we describe the moving point method that we use to simulate the

dynamics of ice sheets in the context of Sect. 2.2. This method is essentially a velocity-based (or

Lagrangian) method relying on the construction of velocities for grid points at each time step. This

allows the grid to move with the flow of ice. Moving points cover the domain only where the ice5

sheet exists, so that no grid point is wasted. Adjacent points move to preserve local mass fractions

and the movement is thus based on the physics (Blake, 2001; Baines et al., 2005, 2011; Scherer and

Baines, 2012; Lee et al., 2015). This conservation method has been applied to a variety of problems

and is perfectly suitable for multi-dimensional problems (different examples are summarised in

Baines et al. (2011) and references therein; see also Partridge (2013) for the special case of ice10

sheet dynamics). The key points of the method are given in the next paragraphs and the numerical

verification of the method is carried out in Sect. 4.

3.1 Conservation of mass fraction

Moving point velocities are derived from the conservation of mass fractions (CMF). To apply this

principle we first define the total mass of the ice sheet θ(t) as15

θ(t) = 2πρi

rl(t)∫
0

rh(t,r)dr (11)

where ρi is the constant density of ice. Since only mass fractions are considered in this paper and ρi

is assumed constant, we can omit ρi without loss of generality.

Since the flux of ice through the ice sheet margin is assumed to be zero, any change in the total

mass over the whole ice sheet is due solely to the surface mass balance m(t,r), and hence the rate20

of change of the total mass, θ̇, is given by

θ̇(t) = 2π

rl(t)∫
0

rm(t,r)dr (12)

We now introduce the principle of the conservation of mass fractions. Let r̂(t) be a moving point

and define µ(r̂), the relative mass in the moving subinterval (0, r̂(t)), as

µ(r̂) =
2π

θ(t)

r̂(t)∫
0

rh(t,r)dr (13)25

The rate of change of r̂(t) is determined by keeping µ(r̂) independent of time for all moving

subdomains of [0, rl(t)]. Note that µ(r̂) ∈ [0,1] is a cumulative function with µ(0) = 0 and µ(rl) = 1.
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3.2 Trajectories of moving points

We obtain the velocity of a moving point by differentiating Eq. (13) with respect to time, giving

d
dt

2π

r̂(t)∫
0

rh(t,r)dr

= µ(r̂) θ̇(t) (14)

Carrying out the time differentiation using Leibniz’s integral rule and substituting for ∂h/∂t from

the mass balance Eq. (5) gives5

d
dt

 r̂(t)∫
0

rh(t,r)dr

=

r̂(t)∫
0

rm(t,r)dr + r̂(t)h(t, r̂(t))
(

dr̂

dt
−U(t, r̂(t))

)
(15)

with boundary conditions (Eq. 6) at r = 0. From Eqs. (14), (15) and (12), we can determine the

velocity of every interior point as

dr̂

dt
= U(t, r̂(t))+

1
r̂(t)h(t, r̂(t))

µ(r̂)

rl(t)∫
0

rm(t,r)dr−
r̂(t)∫
0

rm(t,r)dr

 (16)

The point at r = 0 is located at the ice divide, which does not move during the simulation. The10

point at rl(t) is dedicated to the ice sheet margin, which moves with the velocity obtained in Eq. (10).

We verify in Appendix A that the interior velocity calculated by Eq. (16) coincides with the boundary

velocities calculated directly from the boundary conditions (see Eq. 10).

3.3 Determination of the ice thickness profile

Once the velocities dr̂/dt of the moving points r̂(t) have been found from Eq. (16), the points are15

moved in a Lagrangian manner. In addition, the total mass θ(t) is updated from Eq. (12). The ice

thickness profile is then deduced from Eq. (13) as follows. Differentiating Eq. (13) with respect to

r̂2, we obtain

h(t, r̂(t)) =
θ(t)
π

dµ(r̂)
d(r̂2)

(17)

which allows the ice thickness profile at time t to be constructed since dµ(r̂)/d(r̂2) is constant20

in time and therefore known from the initial data. Note that the positivity of the ice thickness is

preserved since µ is by definition a strictly increasing function (see Eq. 13).

3.4 Asymptotic behaviour at the ice sheet margin

As pointed out by Fowler (1992) and Calvo et al. (2002), singularities can appear with the SIA at the

margin of grounded ice sheets. The singularity arises because of the vanishing of h at the margin and25

the steepening of the slope ∂h/∂r. Nevertheless the ice velocity U defined by Eq. (4) can remain
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finite even if the slope is infinite. We give more details on this subject in this subsection. We also

detail the influence of the singularity on the movement of the ice sheet margin.

At a fixed time and for points r sufficiently close to rl, we can write the ice thickness profile h(r)

as the first term in a Frobenius expansion

h(r) = (rl − r)γφl (18)5

to leading order, where φl = O(1). If γ = 1, then h(r) is locally linear with slope φl, but if γ < 1

the slope ∂h/∂r is unbounded. Hence in the asymptotic region near the margin, in the case where

the bedrock topography b(r) is constant, from Eq. (4)

U =
2

n +2
A (ρig)nγn(rl − r)(2n+1)γ−nφl

2n+1 (19)

which vanishes as r tends to rl if γ > n/(2n +1) and remains finite if γ = n/(2n +1).10

Suppose that in the evolution of the solution over time, γ(t) > n/(2n +1) initially so that rl(t)

is constant and the boundary is stationary (waiting). If r̂(t) follows a CMF trajectory then, in the

absence of accumulation/ablation, the velocity of the moving coordinate r̂(t) is given by

U =
2

n +2
A (ρig)nγ(t)n(rl(t)− r̂(t))(2n+1)γ(t)−nφl(t)

2n+1 (20)

Asymptotically, except at the boundary itself, this velocity is finite and positive, since U > 0 and its15

spatial derivative ∂U/∂r < 0 sufficiently close to the boundary, showing that the distance rl(t)−r̂(t)

decreases with time.

In the absence of accumulation/ablation, therefore, the conservation of mass fractions from Eq.

(13) implies that (rl
2(t)− r̂2(t))h(t, r̂(t)) is constant in time. Thus, from Eq. (18), for points r̂(t)

sufficiently close to the boundary (rl(t) + r̂(t))(rl(t)− r̂(t))γ(t)+1φl(t) is constant in time. Hence,20

since (rl(t)−r̂(t)) is decreasing, γ(t) is also decreasing. When γ(t) reaches n/(2n+1) the boundary

moves.

It is a technical exercise to show that this property extends to cases with accumulation/ablation and

with a general bedrock with a finite slope ∂b/∂r at the margin (see Partridge, 2013). The key point

to notice is that the asymptotic behaviour depends on an infinite slope of h at the margin whereas25

b(r) always has a finite slope.

3.5 Numerics

We now implement a numerical scheme using a finite difference method. The complete algorithm is

detailed in Appendix B. In addition, we explain in Appendix B6 why our implementation respects

the asymptotic behaviour of the ice sheet at its margin.30
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4 Numerical results

This section is dedicated to the verification of the numerical scheme derived from the moving point

method detailed in Sect. 3 and to the study of its behaviour. Every numerical experiment is performed

with the parameter values given in Table 1.

4.1 Verification with steady states on flat bedrock5

4.1.1 Accurate estimation of steady ice thickness profile

We consider a surface mass balance m(r) independent of time. The steady state of an ice sheet occurs

when the temporal change in ice thickness ∂h/∂t is zero. In that case, from Eq. (5), the following

relationship is valid:

rm =
∂

∂r
(rh∞U∞r ) (21)10

with h∞(r) the thickness of the steady ice sheet and U∞(r) its ice velocity. By integrating the

previous equation and by including the boundary conditions (Eqs. 6 and 7), the position of the

margin r∞l can be obtained from

r∞l∫
0

rm(r)dr =

r∞l∫
0

∂

∂r
(rh∞U∞r )dr = [rh∞U∞r ]∞0 = 0 (22)

If the bedrock is flat, the profile of the steady ice sheet, from Eqs. (21) and (4), is15

h(r)∞ =
((

2(n +1)
nρi g

)n
n +2
2A

) 1
2(n+1)


r∞l∫
r

 1
r′

r′∫
0

m(s)sds


1
n

dr′


n

2(n+1)

(23)

This approach was already in use in the EISMINT intercomparison project (Huybrechts et al., 1996)

with the following constant-in-time surface mass balance.

20

m(r) = min
(
0.5m a−1,10−2 m a−1 km−1 · (450km− r)

)
(24)

Eq. (22) has an analytical formulation with this surface mass balance. Therefore, r∞l is determined

with machine precision by numerical root-finding algorithms (r∞l ≈ 579.81km) and the profile of

the steady state is accurately estimated from Eq. (23) by a single numerical integration (
∫ r′

0
m(s)sds

in Eq. (23) has an analytical form) using a composite trapezoidal rule (we take enough grid points to25

ensure that the error of the estimates is smaller than 0.01m).

4.1.2 Runs with different initial profiles

We check the ability of the CMF method to track either advancing or retreating ice sheet margins by

performing three different model runs. In each case, the numerical model has a grid with 21 points,
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uses the EISMINT surface mass balance and is initialised using the following profile

h(t0, r) = h0

(
1−

(
r

rl(t0)

)2
)p

(25)

For each of the three different runs, we take

(a) a uniformly distributed initial grid with rl(0) = 450km, h0 = 1000 m and p = 3/7

(b) an initial grid with rl(0) = 500km and with higher resolution near the margin, h0 = 1000 m5

and p = 1

(c) a uniformly distributed initial grid with rl(0) = 600km, h0 = 4000 m and p = 1/4

The model is run for 25000a with a constant time step ∆t = 0.1a.

Fig. 2 shows the evolution of the geometry and the overall motion of the grid points for each run.

In run (a) the margin is staying at its initial position until the ice sheet is large enough and the sheet10

front steep enough to make it advance. Run (b) shows a retreating margin at an early stage before

advancing and run (c) captures the opposite behaviour.

We also note that run (b) has no difficulty with a non-uniform initial grid and keeps the resolution

high close to the margin. This stresses the flexibility of the CMF method to deal with various

resolutions at the same time.15

We then check the convergence of the three initial states to the same steady state. The calculated

ice thickness at the ice divide and the position of the margin at the final time are compared with

reference values in Table 2. In each case our numerical model has been able to approach the position

of the margin with high accuracy (less than 400 m) at low resolution, as only 21 grid points have

been employed.20

4.1.3 EISMINT moving margin experiment

We now perform the moving-margin experiment described in the EISMINT benchmark in order to

both verify our numerical model in this case and compare our results with those obtained by 2-D

fixed grid models used in Huybrechts et al. (1996). Compared with the experiments performed in

section 4.1.2, the only differences are that we use an initial uniformly distributed grid with 28 nodes,25

an initial domain of length rl(0) = 450km and an initial ice thickness profile h(0, r) = ∆t ·m(r),

where ∆t = 0.1a is the constant model time step and m(r) is given by Eq. (24). Then we run the

model as in the EISMINT experiment for 25000a to reach the steady state.

We first verify the result of our run with the steady state obtained in section 4.1.1. As shown in

Fig. 3, absolute errors in the ice thickness profile mostly occur near the ice sheet margin rising to30

58.23m at the last grid point (compared to an RMS error of 15.71m and an absolute error at the

ice divide of 18.81m). Regarding the ice sheet margin, its position is again well estimated (with an

absolute error of only 138.5m).
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We next compare these results with results from fixed grid models involved in the EISMINT

intercomparison project. We confine our comparison to 2-D fixed grid models as we only use radial

symmetry (see Huybrechts et al., 1996). Regarding the ice thickness at the ice divide, our model

result 3005.76m is within the range of estimation given by the intercomparison 2982.3± 26.4m.

These results are summarised in Table 3 showing that our moving point method is able to achieve as5

good an equivalent estimation as classical fixed-grid methods with a small number of nodes while

providing accurate tracking of the movement of the margin, in the context of a shallow grounded ice

sheet.

4.1.4 Rates of convergence with EISMINT moving margin experiment

We now study the rate of convergence of our method towards the reference solution in the EISMINT10

experiment. Rates of convergence are generally expressed in the form O((∆r)γ) with ∆r some

mesh spacing. However, this approach is not appropriate in our case since the moving point method

has mesh spacings varying in time and space. Instead we present our estimated rate of convergence

as function of the number of grid points.

We calculate the absolute error for both the margin position and ice thickness at the ice divide15

from the results obtained in the EISMINT framework using an initial uniformly spaced grid with

nr = 20,30,40,60 and 80 grid points. From those results we estimate the rate of convergence for

both errors. Results are summarised in Table 4. We observe that the error for the margin position

decreases at an almost quadratic rate O(n−1.95
r ) and the error in the ice thickness at the ice divide

at a linear rate O(n−1.16
r ). This confirms that our CMF method is well able to track the ice sheet20

margin without losing accuracy in the ice thickness profile.

4.2 Steady states with non-flat bedrock

The steady state approach of section 4.1.1 is still valid for an ice sheet lying on a non-flat bedrock.

However, the experiments in such cases are quite limited as we only have the position of the steady

margin from Eq. (22). Nevertheless we carry out a few experiments in this context in order to25

demonstrate that the CMF moving point approach is perfectly suitable for non-flat bedrock.

We consider the following fixed bedrock elevation:

b(r) = 2000m− 2000m ·
( r

300km

)2

+1000m ·
( r

300km

)4

− 150m ·
( r

300km

)6
(26)

As in the previous section, experiments are performed with the EISMINT surface mass balance

(Eq. 24). At an initial time t = 0 we prescribe a uniformly distributed grid with a margin located at30

rl(0) = 450km and an initial ice thickness h(0, r) = ∆t·m(r) for the constant time step ∆t = 0.1a.

The model is run for 25000a. The resulting evolution of the geometry and the overall motion of the

grid points are shown for a grid of 20 points in Fig. 4. Regarding the position of the margin at steady
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state, our run has an absolute error of 127.7m. This is even better than the previous result obtained

for a flat bedrock.

We also check the convergence of the estimated margin position at steady state towards its

reference value by performing the same experiment with an initial uniformly spaced grid and nr

grid points, nr = 20,30,40,60 and 80. Absolute errors are summarised in Table 5. As in section5

4.1.4 we observe that the absolute error for the margin position decreases at a nearly quadratic rate

O(n−1.83
r ). This corroborates the ability of the moving point method to track the ice sheet margin

even for non-flat bedrocks.

4.3 Verification with time-dependent solutions

In the previous paragraphs, steady states were used to verify our numerical CMF moving point10

numerical method. However these experiments did not verify the transient behaviour of the ice sheet

margin. To do so, we use exact time-dependent solutions.

4.3.1 Similarity solutions

Few exact solutions for isothermal shallow ice sheets have been derived in the literature. Most are

based on the similarity solutions established by Halfar (1981, 1983) for a zero surface mass balance.15

Bueler et al. (2005) extended this work to non-zero surface mass balance and established a new

family of similarity solutions by adopting the following parameterised form for the surface mass

balance,

m(ε)(t,r) =
ε

t
h(ε)(t,r) (27)

with ε a real parameter in the interval
(
−1

2n+1 ,+∞
)

. Assuming that t > 0 this leads to the following20

family of similarity solutions

h(ε)(t,r) =
1

tα(ε)

(
h

2n+1
n

0,1 −Λ(ε)
( r

tβ(ε)

)n+1
n

) n
2n+1

for r ∈
[
0, tβ(ε)Θ(ε)

]
(28)

with

α(ε) =
2− (n +1)ε

5n +3
, β(ε) =

1 + (2n +1)ε
5n +3

(29)

and25

Λ(ε) =
2n +1
n +1

(
(n +2)β(ε)
2A(ρi g)n

) 1
n

, Θ(ε) = h
2n+1
n+1

0,1 Λ(ε)−
n

n+1 (30)

The total mass of such ice sheets, as defined in Eq. (11), is

θ(ε)(t) = β(ε)−
2

n+1 tε W1 (31)
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where W1 is a constant independent of ε

W1 = 2π

Θ(1)∫
0

s
(
h

2n+1
n

0,1 −Λ(1)s
n+1

n

) n
2n+1

ds (32)

4.3.2 Results

We study in this section the accuracy of transient model runs in comparison with the time-dependent

exact solutions. The initialisation of every experiment is done by using the exact time-dependent5

solution (Eq. 28) and, at each time step, the surface mass balance is evaluated at each moving node

by using the relationship m = ε
t h from Eq. (27). When ε is non-zero, some feedback between the

surface mass balance and the ice thickness is expected (Leysinger Vieli and Gudmundsson, 2004).

Each model run in this section uses a fixed time step of ∆t = 0.01a.

The first experiment is conducted with the constant mass similarity solution (ε = 0) between t =10

100a and t = 20000a for the reference period. Rapid changes occur in the state of the similarity

solution between t = 100a and t = 1000a ; then the dynamics dramatically slow (see Fig. 5 for the

evolving ice thickness profile of the similarity solution). The ice thickness at the ice divide decreases

at a rate t−1/9 and the position of the margin increases at a rate t1/18.

We begin by analysing the results obtained with a grid made up of 100 nodes, uniformly15

distributed at the initial time. In terms of thickness, errors mostly occur near the ice sheet margin as is

the case with fixed grid methods (see Bueler et al., 2005). For example, at the final time t = 20000a,

a maximum error of 134m in the ice thickness is obtained at the margin while the interior of the

sheet has errors less than 10m (see Fig. 6). We also notice that errors in the ice thickness (both

maximum and RMS errors) decrease as the ice sheet slows down (see Fig. 7). Regarding the margin,20

even if the absolute error in its position increases in time, it is kept under one kilometer (880m at

the final time t = 20000a). This confirms the combined ability of our method to model accurately

the evolution of the ice thickness profile and to track precisely the movement of the ice sheet margin

in transient behaviour.

We then study the convergence of our scheme at a final time t = 20000a when the number of grid25

points is increased. We perform the same analysis for ε =−1/8,1/4 and 3/4. Rates of convergence

for different errors (RMS error and maximum error for ice thickness profile, absolute error for the

position of the margin and the volume of the ice sheet) are summarised in Table 6. These demonstrate

the ability of the scheme to achieve accurate results for the position of the margin and the ice

thickness profile for transient behaviour even with a small number of nodes.30

5 Conclusions

In this paper, we have introduced a moving point approach for ice sheet modelling using the SIA

(including non-flat bedrock) based on the conservation of local mass. From this principle we derived

12



an efficient finite-difference moving point scheme. The scheme was verified by comparing results

with steady states from the EISMINT benchmark (Huybrechts et al., 1996) and time-dependent

solutions from Bueler et al. (2005). Accurate results have been achieved with a small number of grid

points in both cases. In particular our approach has been able to track the position of the ice sheet

margin with high accuracy without compromising the estimation of the ice thickness profile. Hence5

the comparison shows that the approach has considerable potential for future investigations.

Whilst this paper uses a vertically averaged horizontal ice velocity given by the shallow ice

approximation, the moving mesh scheme is independent of the form of the ice velocity used here

and could be used as a solver for mass balance alongside more complex vertically-integrated

approximations (see e.g. Schoof and Hindmarsh, 2010).10

As mentioned earlier, the conservation approach is suitable not only for 1-D-cases (flowline or

radial) but also for 2-D-scenarios. A first application has been demonstrated in Partridge (2013)

and will be the subject of a new paper. The conservation approach can also be applied to marine

ice sheets. In these cases, different kinds of boundaries have to be considered: e.g. grounding

line, shelf front, and continental margin. Preliminary results with the moving point method have15

been obtained in Dodd (2013). However, the problem of initialisating such a model for use in real

applications remains open. The incorporation of various data assimilation procedures is currently

being investigated in this context.

Appendix A: Consistency of the moving point approach at boundaries

We now verify that dr̂/dt tends to the velocity obtained from Eq. (10) at the ice margin when r̂(t)20

tends to rl(t). Assuming the continuity of ∂h/∂r and m in the vicinity of the ice sheet margin, by

L’Hôpital’s rule

lim
r̂(t)→rl(t)

dr̂

dt
= U(t,rl) + lim

r̂(t)→rl(t)

(
θ̇
θ r̂h(t, r̂)− r̂m(t, r̂)
h(t, r̂) + r̂ ∂h

∂r (t, r̂)

)
(A1)

This gives

lim
r̂(t)→rl(t)

dr̂

dt
= U(t,rl)−m(t,rl)

(
∂h

∂r
(t,rl)

)−1

(A2)25

The limit is consistent with the velocity of the moving margin obtained in Eq. (10). The same

approach can be used to show that dr̂/dt tends to 0 when r̂(t) tends to the ice divide r = 0.

Appendix B: A finite difference algorithm

The moving point method is discretised on a radial line using finite differences on the grid {r̂i},

i = 1, . . .,nr where30

0 = r̂1(t) < r̂2(t) < .. . < r̂nr−1(t) < r̂nr (t) = rl(t), (B1)
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The approximation of h(t,r) at r̂i(tk) = r̂k
i is written hk

i and that of the ice velocity U(t,r) as

Uk
i . The velocity of the points is represented by vk

i . The symbol θk designates the numerical

approximation of the total mass and the constant mass fractions are represented by µi for every

µ(r̂k
i ).

Before giving the formula for every quantity calculated, we give the structure of the finite5

difference algorithm in Algorithm 1.

Algorithm 1 Finite difference moving point algorithm

Require:
˘
r̂0

i

¯
and

˘
h0

i

¯
, i = 1, . . . ,nr with r̂0

1 = 0 and h0
nr

= 0.

1: Compute total mass θ0 with eq. (B2)

2: Compute mass fractions µi, i = 1, . . . ,nr , with eq. (B3)

3: while t < tend do

4: Compute ice velocities Uk
i with eq. (B4) and eq. (B5)

5: Compute point velocities vk
i with eq. (B6) and eq. (B7)

6: Update total mass θk+1 with eq. (B8)

7: Update moving point positions r̂k+1
i with eq. (B9)

8: Update ice thickness hk+1
i with eq. (B10) and (B11)

9: k← k + 1

10: t← t + ∆t

11: end while

B1 Initialisation

At the initial time the user needs to provide the initial location of each grid point {r̂0
i } and the initial

ice thickness {h0
i } there. By definition, we assume that r̂0

1 = 0 and h0
nr

= 0. We estimate the total

mass of the ice sheet at the initial time by using a composite trapezoidal rule approximating Eq. (11).10

This gives:

θ0 =
π

2

nr−1∑
j=1

(
h0

j +h0
j+1

)((
r̂0
j+1

)2− (r̂0
j

)2)
(B2)

We derive the numerical approximation for the mass fractions µi by discretising Eq. (13) following

the same principle:

µ1 = 0, µi =
π

2θ0

i−1∑
j=1

(
h0

j +h0
j+1

)((
r̂0
j+1

)2− (r̂0
j

)2)
(B3)15
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B2 Ice velocities

We confine the algorithm to n = 3 for the creep exponent in the Glen flow law. Then Eq. (4) giving

the ice velocity can be expanded by using the binomial theorem:

|U(t,r)|= 2
5

A (ρig)3
∣∣∣∣∣h4

(
∂b

∂r

)3

+
3
5

∂(h5)
∂r

(
∂b

∂r

)2

+
1
3

(
∂(h3)
∂r

)2
∂b

∂r
+

27
343

(
∂(h7/3)

∂r

)3
∣∣∣∣∣

(B4)

We choose to rewrite the radial form of Eq. (4) in this way in order to ensure that the ice velocity at5

the ice sheet margin computed with a finite difference scheme can be non-zero as noted in Sect. 3.4.

The bedrock elevation b and its derivative are known for every location of the domain. The sign of

Uk
i (Uk

1 = 0) is obtained by calculating the sign of sk
i − sk

i−1 (approximating the sign of the surface

slope by an upwind scheme). We also approximate the derivatives of hp for any p > 0 by an upwind

scheme:10

∂(hp)
∂r

∣∣∣∣
r=rk

i

=

(
hk

i

)p− (hk
i−1

)p
rk
i − rk

i−1

(B5)

B3 Approximate nodal velocities

The velocity of interior nodes is obtained by discretising Eq. (16) as

vk
1 = 0, vk

i = Uk
i +

1
2 r̂k

i hk
i

µi

r̂k
nr∫

0

m(tk, r)d
(
r2
)
−

r̂k
i∫

0

m(tk, r)d
(
r2
) (B6)

where the integrals in Eq. (B6) are approximated by a composite trapezoidal rule. For the velocity15

of the ice sheet margin, Eq. (10) is discretised by using a first order upwind scheme, namely,

vk
nr

= Uk
nr
−m

(
tk, rk

nr

) r̂k
nr
− r̂k

nr−1

hk
nr
−hk

nr−1

(B7)

B4 Time stepping

The total mass θk+1 is updated by using an explicit Euler scheme

θk+1 = θk +∆t θ̇k = θk +∆tπ

r̂k
nr∫

0

m(t,r)d
(
r2
)

(B8)20

Again the integral is approximated by a composite trapezoidal rule.

As in the case of the total mass, the position of the nodes is updated by using an explicit Euler

scheme

r̂k+1
i = r̂k

i +∆tvk
i (B9)
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∆t is taken small enough to preserve the node order in Eq. (B1) and to avoid oscillations in the ice

thickness profile. In practice we have never observed node overtaking since spurious oscillations

always appear first. This behaviour is similar to that observed with explicit schemes for fixed

staggered grid methods (Hindmarsh and Payne, 1996).

B5 Approximate ice thickness5

The ice thickness for interior nodes hk+1
i is recovered algebraically at the new time using a second

order midpoint approximation of Eq. (17), namely,

hk+1
i =

θk+1

π

µi+1−µi−1(
r̂k+1
i+1

)2− (r̂k+1
i−1

)2 (B10)

The ice thickness at the ice divide hk+1
1 is obtained by using the first order upwind scheme.

hk+1
1 =

θk+1

π

µ2−µ1(
r̂k+1
2

)2− (r̂k+1
1

)2 (B11)10

B6 Behaviour of the approximate ice velocity at the ice margin

As in Sect. 3.4, assuming that the topography of the bedrock is flat in the vicinity of the margin, the

asymptotic form of the radial ice velocity is

U =
2

n +2
A (ρig)nγn(rl − r)(2n+1)γ−nφl

2n+1 (B12)

Hence the leading term in the numerical approximation (Eq. B4) to the ice velocity at the15

approximation hl to the ice margin is

− 2
5

sgn(snr
− snr−1)A (ρig)3

(
3
7

)3
∣∣∣∣∣h

7/3
nr −h

7/3
nr−1

r̂nr
− r̂nr−1

∣∣∣∣∣
3

=−2
5

sgn(snr − snr−1)A (ρig)3
(

3
7

)3
∣∣∣∣∣ h

7/3
nr−1

r̂nr − r̂nr−1

∣∣∣∣∣
3

(B13)

since hnr = 0. But from Eq. (B12) the asymptotic analytic ice velocity (when n = 3) is

2
5

A (ρig)3
(

3
7

)3

(rnr − r)7γ−3φl
7 =

2
5

A (ρig)3
27
343

(
h(r)7/3

rnr
− r

)3

(B14)

by Eq. (18). Hence the numerical approximation to the ice velocity has the same asymptotic20

behaviour as the asymptotic analytic ice velocity with n = 3. The result also holds for general creep

exponent n.

Acknowledgements. This research was funded in part by the Natural Environmental Research Council National

Centre for Earth Observation (NCEO) and the European Space Agency (ESA).

16



References

Baines, M. J., Hubbard, M. E., and Jimack, P. K.: A moving mesh finite element algorithm for the adaptive

solution of time-dependent partial differential equations with moving boundaries, Appl. Numer. Math., 54,

450–469, doi:10.1016/j.apnum.2004.09.013, 2005.

Baines, M. J., Hubbard, M. E., and Jimack, P. K.: Velocity-based moving mesh methods for nonlinear partial5

differential equations, Commun. Comput. Phys., 10, 509–576, doi:10.4208/cicp.201010.040511a, 2011.

Blake, K. W.: Moving Mesh Methods for Non-Linear Parabolic Partial Differential Equations, PhD thesis,

available at: http://www.reading.ac.uk/web/FILES/maths/Kw_blake.pdf (last access: 4 August 2015),

University of Reading, Reading, Berks, UK, 2001.

Budd, C. J., Huang, W., and Russell, R. D.: Adaptivity with moving grids, Acta Numerica, 18, 111–241,10

doi:10.1017/S0962492906400015, 2009.

Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and Bowman, L. N.: Exact solutions and verification

of numerical models for isothermal ice sheets, J. Glaciol., 51, 291–306, doi:10.3189/172756505781829449,

2005.

Calvo, N., Díaz, J. I., Durany, J., Schiavi, E., and Vázquez, C.: On a doubly nonlinear parabolic obstacle problem15

modelling ice sheet dynamics, SIAM J. Appl. Math., 63, 683–707, doi:10.1137/S0036139901385345, 2002.

Cao, W., Huang, W., and Russell, R. D.: Approaches for generating moving adaptive meshes: location versus

velocity, Appl. Numer. Math., 47, 121–138, doi:10.1016/S0168-9274(03)00061-8, 2003.

Cornford, S. L., Martin, D. F., Graves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne, A. J.,

Ng, E. G., and Lipscomb, W. H.: Adaptive mesh, finite volume modeling of marine ice sheets, J. Comput.20

Phys., 232, 529–549, doi:10.1016/j.jcp.2012.08.037, 2013.

Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers (fourth edition), Butterworth-

Heinemann/Elsevier, Burlington, MA, USA and Oxford, UK, 2010.

Dodd, J.: A Moving Mesh Approach to Modelling the Grounding Line in Glaciology, Master’s thesis, available

at: http://www.reading.ac.uk/web/FILES/maths/Dissertation_Dodd.pdf (last access: 19 November 2015),25

University of Reading, Reading, Berks, UK, 2013.

Donea, J., Huerta, A., Ponthot, J.-P. and Rodríguez-Ferran, A.: Arbitrary Lagrangian-Eulerian Methods, in:

Encyclopedia of Computational Mechanics, Volume 1: Fundamentals, Chapter 14, edited by: Stein, E., de

Borst, R. and Hughes, T. J. R., John Wiley & Sons Ltd., Chichester, UK, 1–25, 2004.

Durand, G., Gagliardini, O., Zwinger, T., Le Meur, E. and Hindmarsh, R. C. A.: Full Stokes modeling of marine30

ice sheets: influence of the grid size, Ann. Glaciol., 50(52), 109–114, doi:10.3189/172756409789624283,

2009.

Fowler, A. C.: Modelling ice sheet dynamics, Geophys. Astro. Fluid, 63, 29–65,

doi:10.1080/03091929208228277, 1992.

Gagliardini, O., Zwinger, T., Gillet-Chaulet, F., Durand, G., Favier, L., de Fleurian, B., Greve, R., Malinen, M.,35

Martín, C., Råback, P., Ruokolainen, J., Sacchettini, M., Schäfer, M., Seddik, H., and Thies, J.: Capabilities

and performance of Elmer/Ice, a new-generation ice sheet model, Geosci. Model Dev., 6, 1299–1318,

doi:10.5194/gmd-6-1299-2013, 2013.

Gladstone, R. M. and Lee, V. and Vieli, A. and Payne, A. J.: Grounding line migration in an adaptive mesh ice

sheet model, J. Geophys. Res., 115, F04014, doi:10.1029/2009JF001615, 2010.40

17

http://dx.doi.org/10.1016/j.apnum.2004.09.013
http://dx.doi.org/10.4208/cicp.201010.040511a
http://www.reading.ac.uk/web/FILES/maths/Kw_blake.pdf
http://dx.doi.org/10.1017/S0962492906400015
http://dx.doi.org/10.3189/172756505781829449
http://dx.doi.org/10.1137/S0036139901385345
http://dx.doi.org/10.1016/S0168-9274(03)00061-8
http://dx.doi.org/10.1016/j.jcp.2012.08.037
http://www.reading.ac.uk/web/FILES/maths/Dissertation_Dodd.pdf
http://dx.doi.org/10.3189/172756409789624283
http://dx.doi.org/10.1080/03091929208228277
http://dx.doi.org/10.5194/gmd-6-1299-2013
http://dx.doi.org/10.1029/2009JF001615


Glen, J. W.: The creep of polycrystalline ice, P. Roy. Soc. A.-Math. Phy., 228, 519–538, 1955.

Goldberg, D., Holland, D. M. and Schoof, C.: Grounding line movement and ice shelf buttressing in marine ice

sheets, J. Geophys. Res., 114, F04026, doi:10.1029/2008JF001227, 2009.

Gudmundsson, G. H., Krug, J., Durand, G., Favier, L. and Gagliardini, O.: The stability of grounding lines on

retrograde slopes, The Cryosphere, 6, 1497–1505, doi:10.5194/tc-6-1497-2012, 2012.5

Halfar, P.: On the dynamics of the ice sheets, J. Geophys. Res.-Oceans, 86, 11065–11072,

doi:10.1029/JC086iC11p11065, 1981.

Halfar, P.: On the dynamics of the ice sheets 2, J. Geophys. Res., 88, 6043–6051,

doi:10.1029/JC088iC10p06043, 1983.

Hindmarsh, R. C. A.: Qualitative dynamics of marine ice sheets, in: Ice in the Climate System, Springer, Berlin,10

Heidelberg, Germany, 67–99, 1993.

Hindmarsh, R. C. A. and Le Meur, E.: Dynamical processes involved in the retreat of marine ice sheets,

J. Glaciol., 47, 271–282, doi:10.3189/172756501781832269, 2001.

Hindmarsh, R. C. A. and Payne, A. J.: Time-step limits for stable solutions of the ice-sheet equation, Ann.

Glaciol., 23, 74–85, 1996.15

Hutter, K.: Theoretical Glaciology, D. Reidel, Dordrecht, the Netherlands, 1983.

Huybrechts, P., Payne, A. J. and The EISMINT Intercomparison Group: The EISMINT benchmarks for testing

ice-sheet models, Ann. Glaciol., 23, 1–12, 1996.

Jouvet, G. and Gräser, C.: An adaptive Newton multigrid method for a model of marine ice sheets, J. Comput.

Phys., 252, 419–437, doi:10.1016/j.jcp.2013.06.032, 2013.20

Lee, T. E., Baines, M. J., and Langdon, S.: A finite difference moving mesh method based on conservation for

moving boundary problems, J. Comput. Appl. Math., 288, 1–17, doi:10.1016/j.cam.2015.03.032, 2015.

Leysinger Vieli, G. J. and Gudmundsson, G. H.: On estimating length fluctuations of glaciers caused by changes

in climatic forcing, J. Geophys. Res., 109, F01007, doi:10.1029/2003JF000027, 2004.

Partridge, D.: Numerical Modelling of Glaciers: Moving Meshes and Data Assimilation, PhD thesis, available25

at: http://www.reading.ac.uk/web/FILES/maths/DP_PhDThesis.pdf (last access: 4 August 2015), University

of Reading, Reading, Berks, UK, 2013.

Pattyn, F., Schoof, C., Perichon, L., Hindmarsh, R. C. A., Bueler, E., de Fleurian, B., Durand, G.,

Gagliardini, O., Gladstone, R., Goldberg, D., Gudmundsson, G. H., Huybrechts, P., Lee, V., Nick, F. M.,

Payne, A. J., Pollard, D., Rybak, O., Saito, F. and Vieli, A.: Results of the marine ice sheet model30

intercomparison project, MISMIP, The Cryosphere, 6, 573–588, doi:10.5194/tc-6-573-2012, 2012.

Pattyn, F., Périchon, L., Durand, G., Favier, L., Gagliardini, O., Hindmarsh, R. C. A., Zwinger, T., Albrecht, T.,

Cornford, S., Docquier, D., Fürst, J. J., Goldberg, D., Gudmundsson, G. H., Humbert, A., Hütten, M.,This

ice loss modifies the ice flow but also translates into the retreat of continental margins (in Greenland) and

grounding lines (mainly in Antarctica). Huybrechts, P., Jouvet, G., Kleiner, T., Larour, E., Martin, D.,35

Morlighem, M., Payne, A. J., Pollard, D., Rückamp, M., Rybak, O., Seroussi, H., Thoma, M., and

Wilkens, N.: Grounding-line migration in plan-view marine ice-sheet models: results of the ice2sea

MISMIP3d intercomparison, J. Glaciol., 59, 410–422, doi:10.3189/2013JoG12J129, 2013.

18

http://dx.doi.org/10.1029/2008JF001227
http://dx.doi.org/10.5194/tc-6-1497-2012
http://dx.doi.org/10.1029/JC086iC11p11065
http://dx.doi.org/10.1029/JC088iC10p06043
http://dx.doi.org/10.3189/172756501781832269
http://dx.doi.org/10.1016/j.jcp.2013.06.032
http://dx.doi.org/10.1016/j.cam.2015.03.032
http://dx.doi.org/10.1029/2003JF000027
http://www.reading.ac.uk/web/FILES/maths/DP_PhDThesis.pdf
http://dx.doi.org/10.5194/tc-6-573-2012
http://dx.doi.org/10.3189/2013JoG12J129


Table 1. Parameters involved in the computation of the vertically averaged horizontal components of the

velocity of the ice.

Parameter Meaning Value

n creep exponent in Glen’s flow law 3

A creep parameter in Glen’s flow law 10−16 Pa−3 a−1

ρi density of ice 910 kg m−3

g gravitational acceleration 9.81m s−2

Table 2. Comparison between reference steady state described in Section 4.1.1 and results obtained after a

25,000a run using 21 moving points with the EISMINT surface mass balance and initial profile described by

Eq. (25). Exp 1(a): initial uniform grid with rl(0) = 450km, h0 = 1000m and p = 3/7, Exp 1(b): initial grid

with higher resolution near the margin with rl(0) = 500km, h0 = 1000m and p = 1, Exp 1(c): initial uniform

grid with rl(0) = 600km, h0 = 4000m and p = 1/4.

ice thickness at r = 0 (in m) position of the margin (in km)

Reference 2986.95± 0.01 579.81± 0.01

Exp 1(a) 3019.59 579.99

Exp 1(b) 3040.28 579.77

Exp 1(c) 3017.75 579.43
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Figure 1. Section of a grounded radially-symmetrical ice sheet.
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Figure 2. Evolution of the geometry (on the left) and overall motion of the grid points (on the right) for three

experiments with the EISMINT surface mass balance and initial profile described by Eq. (25). Top: initial

uniform grid with rl(0) = 450km, h0 = 1000m and p = 3/7, middle: initial grid with higher resolution near

the margin with rl(0) = 500km, h0 = 1000m and p = 1, bottom: initial uniform grid with rl(0) = 600km,

h0 = 4000m and p = 1/4.
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Table 3. Comparison between intercomparison results for the EISMINT moving-margin experiment in steady

state (see Table 5 in Huybrechts et al., 1996) and results obtained for the same experiment with the moving point

method with an identical number of grid points nr = 28. The reference values are obtained from the accurate

evaluation described in section 4.1.1.

ice thickness at r = 0 (in m) position of the margin (in km)

Reference 2986.95± 0.01 579.81± 0.01

EISMINT / 2d 2982.3± 26.4 593.3± 9.0

Moving point 3005.76 579.68

Table 4. Estimation of absolute errors from results obtained in the EISMINT framework using the moving point

method with an initial uniformly spaced grid with nr = 20,30,40,60 and 80 grid points. Rates of convergence

are estimated directly from the calculated absolute errors.

number of absolute error in absolute error in

gridpoints nr the ice thickness at r = 0 (in m) the position of the margin (in m)

20 29.46 233.58

30 17.29 139.02

40 12.51 62.17

60 7.97 28.49

80 5.86 16.33

rate of convergence O(n−1.16
r ) O(n−1.95

r )

Table 5. Estimation of absolute error from results obtained with the non-flat bedrock described by Eq. (26)

using the moving point method with an initial uniformly spaced grid with nr = 20,30,40,60 and 80 grid

points. Rates of convergence are estimated directly from the calculated absolute errors.

number of absolute error in

gridpoints nr the position of the margin (in m)

20 127.74

30 98.44

40 43.96

60 18.23

80 12.39

rate of convergence O(n−1.83
r )
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Table 6. Rate of convergence of different errors between numerical results obtained for time-dependent

solutions at time t = 20000a. The different estimated rates of convergence are obtained by performing

experiments with nr = 10,20,40,60,80,100 and 200 grid points for different configurations of surface mass

balance (Eq. 27).

ε = 0 ε =−1/8 ε = 1/4 ε = 3/4

RMS error on h O(n−1.07
r ) O(n−1.10

r ) O(n−1.10
r ) O(n−1.12

r )

Max. error on h O(n−0.57
r ) O(n−0.60

r ) O(n−0.59
r ) O(n−0.60

r )

Error in rl O(n−1.32
r ) O(n−1.41

r ) O(n−1.38
r ) O(n−1.41

r )

Error in total volume – O(n−1.24
r ) O(n−1.43

r ) O(n−1.43
r )
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Figure 3. The steady state from the EISMINT moving-margin experiment compared with our 25000a model

run with 28 nodes, uniformly distributed at the initial time. The reference profile is obtained by a numerical

integration of Eq. (23) using a composite trapezoidal rule. The error in the ice thickness occurs mostly near the

ice sheet margin, as in other experiments (RMS error is 15.71m and maximum error is 58.23m). The position

of the margin is well determined as the absolute error is only 138.5m.
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Figure 4. Evolution of the geometry and overall motion of the grid points for the non-flat bedrock (topography

given in Eq. 26) with the EISMINT surface mass balance. At steady state, the observed error for the position of

the margin is 127.7m.
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Figure 5. The reference ice sheet profile (ε = 0) obtained from transient similarity solutions (see section 4.3.1)

is displayed for t = 100 years, t = 1000 years, and at 1000 year intervals thereafter. Rapid changes occur in

the state of the sheet at the beginning of the simulation, then the dynamics dramatically slow. The ice thickness

at the ice divide decreases at a rate t−1/9 and the position of the margin increases at a rate t1/18.
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Figure 6. The result obtained at final time t = 20000a with 100 nodes equally distributed at initial time t =

100 a and a fixed time step ∆t = 0.01 a is compared to the reference transient similarity solution with ε = 0

(see section 4.3.1). A maximum error of 134m on the ice thickness is obtained at the margin, while the interior

of the sheet has errors less than 10m. The position of the margin is obtained with an error of 880m.
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Figure 7. Evolution of the RMS error and maximum absolute error in the ice thickness, and absolute error in

the position of the margin between the run obtained with 100 nodes equally distributed at initial time t = 100a

and a fixed time step ∆t = 0.01a and the reference transient similarity solution with ε = 0 (see section 4.3.1).

Errors in the ice thickness decrease as the ice sheet slows down. The errors in the position of the margin increase

in time but their evolution is slower when the dynamics are slower.
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