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Abstract

We present methods to utilise Cryosat-2 (CS-2) Synthetic Aperture (SAR) mode data in
operational ice charting. We compare CS-2 data qualitatively to Synthetic Aperture Radar
(SAR) mosaics over Barents and Kara seas. Furthermore, we compare the CS-2 to archived
operational ice charts. We present distributions of four CS-2 waveform parameters for
different ice types as presented in the ice charts. We go on to present an automatic
classification method for CS-2 data which, after training with operational ice charts, is
capable of determining open water-ocean from ice with a hit rate of > 90%. The training
data is dynamically updated every five days using the most recent 15days CS-2 data and
operative ice charts. This helps the adaption of the classifier to the evolving ice/snow
conditions throughout winter. The classifier is also capable of detecting three different ice
classes (thin and thick first year ice as well as old ice) with success rates good enough for
the output to be usable to support operational ice charting. Finally, we present a near real
time CS-2 product just plotting the waveform characteristics and conclude that even such
a simple product is usable for some of the needs of ice charting.

1 Introduction

Our aim is to present new methods to utilise satellite altimeter measurements in operational
ice charting. We present an automatic classification method to derive different ice stages
of development from Cryosat-2 (CS-2) waveforms. This is different from the most common
sea ice application of satellite altimeters today, which is measuring the freeboard and the
thickness of Arctic winter sea ice, see for example (Laxon et al., 2013).

The use of altimeters to support ice mapping has been suggested already 35 years ago
by Dwyer and Godin (1980). Ice detected utilising altimeter waveforms has been compared
with sea ice extents from passive microwave satellite instruments (Laxon, 1990) and ERS-
1 altimeter based sea ice estimates were faxed to research vessels navigating in the
Southern seas in the early 90’s (Laxon, 1994). Mostly due to Synthetic Aperture Radars
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(SAR) becoming the standard tool in operational sea ice charting, altimetry has developed
into a method for climate research (Laxon et al., 2003, 2013; Giles et al., 2008; Kwok
et al,, 2009). Altimetry is, however, widely used in numerical weather prediction where
fast delivery products from different altimeters on open ocean are assimilated into weather
models (Vidard et al., 2009).

The diminishing Arctic sea ice cover is opening new sea routes. In consequence,
navigation in seasonally ice covered waters is due to increase rapidly. This calls for accurate
and timely sea ice information, especially on dangerous sea ice conditions. Vessels
navigating in or near sea ice can be roughly divided into those wanting to completely avoid
ice and those that can safely operate in medium first year ice. For the ice avoiding ships,
ice edge detection is enough but for the latter group some information on the stage of
development of the ice is needed as well. Most widely used Earth Observation (EO) data
in operational ice charting are Synthetic Aperture Radar (SAR) frames. In areas of heavy
traffic, such as the Baltic Sea for example, SAR data is virtually indispensable. However,
because the number of SAR acquisitions is limited, other instruments, such as altimeters,
may provide valuable additional information on sea ice.

Due to the number of SAR satellites flying today being reasonably small, ice services
can face incidents when fresh SAR data is simply not available. The loss of Envisat and its
ASAR instrument in April 2012 pointed out how dependent European ice charting was on
a single satellite. Furthermore, SAR images have a limited spatial coverage which results
in data gaps. For ice covered seas with little or only sporadic traffic, SAR frames are often
not acquired. This is the case with Southern ice covered seas — as the number of ground
stations in the Antarctic is small, SAR acquisitions over Southern sea ice would use costly
satellite mass storage. This is different in the Arctic seas: for example the SAR frames from
Kara and Barents seas could be directly downlinked to a ground station in northern Europe.
Thus it is convenient to study altimeter ice charting in the European sector of the Arctic
even if one of our aims is to contribute to Antarctic sea ice charting.

In absence of SAR data, ice services look for auxiliary data. Optical satellite images,
such as MODIS or Suomi-NPP images may mitigate the problem, but only if the lighting
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and cloud conditions are favourable. Alas the polar night and frequent cloud cover often
render optical imagery useless. In these cases ice services are bound to either use low
resolution (at the best in 10 km grid) products from, for example the EUMETSAT OSI-SAF
project (http://saf.met.no/p/ice/) or, in the worst case, inform the users that up to date ice
information is not available.

Zygmuntowska (2014) examined the possibility to distinguish between first year and
mutti-year—(FY) and multi-year (MY) ice throughout the winter using altimeter waveform
parameters. They gridded their data in a 25km grid and studied the parameters one at
a time and found that the spatial distribution of a single parameter varied strongly from
month to month from the freezing-up period to the Arctic spring. Sometimes the patterns
followed the MY/FY ice areas, other times not. This we can regard as manifestation of
sensitivity of the altimeter waveform for the ice/snow surface conditions.

2 Data

Our study area is the Barents and Kara seas in the European sector of the Arctic
Mediterranean. We chose the area because of the good availability of data, namely the
Arctic and Antarctic Research Institute (AARI) operational ice charts and an archive of SAR
data as a heritage from the Enhanced Arctic Sea Ice Information — ANISTIAMO exercise
carried out by FMI in 2014 (ANISTIAMO Reports, 2014) and its predecessor described in
Simila et al. (2013).

2.1 Cryosat-2 data

We use the CS-2 SAR mode (Wingham et al., 2006) Level 1b (L1b) data (Bouzinac, 2014)
available online from ESA. For this study we use the Near Real Time CS-2 products that
were made available by ESA for our study. This product was built using the Baseline-B CS-2
processor, and thus differs from the current Baseline-C CS-2 product. Most importantly, the
full range window in the Baseline-B product is 128 range bins whereas in Baseline-C it is
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256 range bins (Scagliola, 2014) . This should be taken into account if our methodology is

to be applied on the current Baseline-C products.
The main instrument of CS-2 is the Synthetic aperture radar/Interferometric Radar

Altimeter (SIRAL) altimeter. The CS-2 L1b product used here is, essentially, the CS-
2 SAR-processed average waveform for each point along the ground track of the
satellite. In the SAR mode, SIRAL employs the along-track beam formation (i.e.
SAR processing) to generate a resolution cell of approximately 300m by +1.65km
Wingham-et-al;20606)-(Scagliola, 2014) . The SAR mode of CS-2 is originally designed
for ice covered seas (Wingham et al., 2006) . With the along-track resolution enhancement
due to SAR processing enables smaller leads to be detected within the sea ice pack as
was possible with CS-2’s predecessor, the Envisat RA-2 (Laxon et al., 2013). Thus the
CS-2 is operated in SAR mode over the sea ice covered seas. This combined with the
polar orbit of CS-2 with an inclination of 92° results in a good coverage of CS-2 SAR mode
measurements over the ice covered Arctic oceans.

2.2 Ice charts

We take the ice stage of development from the weekly ice charts published by the Arctic
and Antarctic Research Institute (AARI) (Bushuev and Loshchilov, 2007). The AARI ice
charts are available online from http://www.aari.ru/. We downloaded the charts from the
current AARI website predecessor, an AARI FTP-server, in SIGRID3 format (SIGRID3
Manual, 2014). The ice charts for the Kara and Barents Seas provide estimates of total
ice concentration (CT), the partial concentrations (CA, CB and CC), and the stage of ice
development (SA, SB and SC) for the three thickest ice types for polygonal areas. To
quantitatively study the effect of sea ice stage of development on altimeter waveforms,
we rasterised the AARI ice maps into 2km grids in Lambert equal area projection. We
sampled these grids so that for each CS-2 measurement falling within the test area the ice
characteristics for the ice chart polygons were fetched from the temporally closest AARI
map. As the AARI maps are generated weekly, the largest time difference between the the
different data sets is three days.



The ice stage of development in the AARI ice charts follows the World Meteorological
Organisation (WMQO) sea ice nomenclature. The WMO nomenclature defines seven
different stages of development: nilas, grey ice, gray-white ice, thin first year (FY) ice,
medium FY ice, thick FY ice and old ice. Three first stages are thin ice, which are defined
as ice that does not form pressure ridges. The three FY ice categories are ice which is
thick enough to ridge and has not experienced a whole melt season. The last stage, old
ice, is ice that has survived at least one whole summer melt season. In the cryospheric
community, old ice is often referred to as multi year (MY) ice. In this study we use only three
different stages of development: thin (< 70 cm) FY (WMO categories nilas, gray, gray-white
and thin FY), thick (> 70cm) FY (WMO categories medium and thick FY) and MY ice (WMO
category old ice).

The AARI ice charts are based on SAR and optical satellite images as well as reports
from coastal stations and ships. The segmentation of images and subsequent interpretation
and mapping of ice conditions are carried out by ice experts. The main purpose of the
weekly ice chart is to show the spatial distribution and characteristics of sea ice. We have
not found English language scientific publications discussing the accuracy of the AARI
weekly ice charts. However, they are the only source of ice information for this area with
adequate spatial coverage and temporal resolution for our study. Furthermore they are
completely independent of CS-2 data, which makes comparing the two meaningful.

The area of the polygons in the AARI ice chart varies largely. In some cases the
smallest diameter of the polygon is around 10-20 km, in some cases the largest diameter
of a polygon is up to 100—200 km. Even if the AARI charts provides partial concentrations
for up to three ice types for each polygon, we assign just one ice type to a single polygon. In
the Sect. -3-1-3.3 we need to apply threshold for the partial concentration of the dominant
ice class. For the automatic classifier discussed in Sects. 3.3 and 4.2, this threshold is 75 %.
When we assign an ice class to a polygon in the test phase, no threshold is used and the
partial concentration of the dominant ice type is often below 75%. Thus a large fraction
of the polygon represents in reality some other ice development stage than what we have
labelled it to be. In consequence, an inherent inaccuracy is present in our reference data.
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2.3 SAR composites

To visualise CS-2 waveform characteristics, we use synthetic aperture radar composites
compiled from Radarsat-2 frames. These composites were originally compiled to be used
as input data for a multisensor ice thickness chart for the Barents and Kara seas in the
ANISTIAMO demonstration project in spring 2014, see www.arcice.org. The SAR data in
Figs. 1 and 2 is used for visualisation only and is included because it is the most widely
used EO data in operational ice charting and we assume most of our readers to be familiar
with it.

3 Methods

We set out to build a classifier to retrieve the ice stage of development using only CS-2
waveforms and past AARI ice charts as input. In this section we introduce all the waveform
characteristics which we have utilized in our analysis (Section 3.1). Then we review the

also describe the preprocessing and postprocessing steps of our classification procedure

3.1 Waveform statistics

We chose four characteristics, pulse peakiness (PP), leading edge width (LEW), late tail
to peak power ratio (FPPLTPP) and stack standard deviation (SSD) to describe the CS-2
waveform. The PP, FPP-LTPP and LEW are easily derived from the waveform and the SSD
is delivered in the L1B data product (Bouzinac, 2014).

The PP is defined as:

2128 P
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where P; is the power in the ith range bin and Ppax is the maximum power in one range bin
in the waveform.

PP has been used previously to distinguish leads from ice floes in pulse limited radar
altimeter data (Laxon et al., 2003). Classifying waveforms with high PP as leads is an
integral step in traditional radar altimeter sea ice freeboard processing.

The SSD is taken from the CS-2 L1b data product. The SSD is essentially the standard
deviation of a—set-of-Doppler—echoes—power values from a common surface fecation
priorto—stackingformed from a set of Doppler waveforms over different incidence angles
(Wingham et al., 2006) . SSD has bee-been used, in conjunction with PP, in the lead
detection, e.g. by Laxon et al. (2013); Ricker et al. (2014) and Kurtz et al. (2014).

For the LEW, we use the difference between the bins retracked with p =10% and
p =90% percentage —using an Offset Center of Gravity (OCOG) retrackersretracker. The
OCOG retracker returns the bin number where the received power count rises for the first
time over the threshold value t of:

128 P4
T(P) 180 \/ glzs p2 @)

There the p is the percentage.

The OCOG retrackers have been widely used in altimetry, see for example Wingham
et al. (1986), Bamber (1994) or Soussi and Femenias (2006).

FheTPP-In our classification experiments we chose to experiment with the two features
suggested by Kurtz et al. (2014) .The ratio of late tail to peak power is defined as:

max+70
21 Zz max+50
Pmax

TPPLIPP = 3)

where max is the index of the range bin with the maximum power.
FPP-LTPP tells us how much off-nadir power there is present in the tail of the waveform.
Typically FPP-LTPP is high for surface with large roughness.
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We also studied the feasibility of another waveform charasteristic suggested by Kurtz
et al. (2014);butfound-thatTPPyield-betterresultsinthe-automaticelassification—The
rationale-of choosing-isdiscussed-in-Seet—4-2. This is the ratio of early tail to peak power
(denoted here ETPP):

max+6
ETPP — 6 Zszax—l—l ’ (4)
ISV UL SO

The ETPP describes _how rapidly the power P declines immediately after the maximum
value.

On the detection of potential leads we employ three slightly different statistics to
characterize specular reflections. These three features consist of PP_and two statistics
presented in Ricker et al. (2014) . They are are defined as follows:

Pmax

PPet =9 ————— 5
left Z?::]a_j_l PZ ( )
and.
P
PPright =9 a3 ©)
Zi:m:xa—l—l P

determined experimentally the thresholds: PP > 40 and either PPies > 20 or PPright > 15.
Ricker et al. (2014) also used a SSD threshold for lead detection. However, in our data set
when the PP conditions were met, SSD was almost always below 4 and we did not set an
additional condition.

Itis important to note here that we rely only on the feurwaveform-characteristies: PRP-SSB;
FPP-and-LEWwaveform characteristics. We do not do freeboard processing in the style of
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Laxon et al. (2013) or use the freeboard values in the higher level CS-2 data products. This
is because we want the CS-2 methods to be simple as well as independent from any other
data sources.

3.2 Autematie k-Nearest Neighbors classifier

waveforms-and pastAARHeeeharts-asinput-review shortly the basic ideas of the k-Nearest
Neighbors (k-NN) classifier. The k-NN classifier is a simple, memory based classifier which
achieve the error rates similar to the Bayesian classifier which is the statistically best
classifier (Hastie et al., 2001) but a significantly more complicated one than the £-NN.

At the first phase we collect the training data together into a set of feature vectors and
corresponding classes. In our case the features were the waveform based statistics (SSD,
LEW, PP and LTPP) and the classes are the ice stages of development (open ocean, thin
EY, thick FY and MY ice)._
samples from the training data and perform a majority vote among them. The mode class
more classes have the same amount of samples in the group of % closest neighbors, then
the class is selected randomly from those classes.

1. The training set must represent well the data to be classified.

2. Dimension of the feature space can not be very large.

3. The number /. of the neighbors must be determined soundly.

4. The distance between the measurements must be a proper metric.

The class boundaries in k-NN are determined totally by the data. Hence, the first

requirement is of major importance. The second requirement is natural for all classifiers.
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One manifestation of the “curse of dimensionality” is that in_high dimensions, almost all
airs of points are equally far away from each other (see Hastie et al. (2001) ). The suitable
the training data. Here £ is determined empirically. We used the ordinary Euclidean metric
It is worth to emphasize that the distance between the sample points is_ measured in

kilometers away from each other. Closeness in feature space only implies the similarity of
waveforms.

3.3 Classification procedure

Due to the reasons discussed below we selected a k-nearest neighbours (k-NN) classifier
for our classification method. The adopted classifier is able to classify four different ice
classes (open waterocean, thin FY, thick FY and MY ice) with a reasonable accuracy.

The results of Zygmuntowska (2014) lead us to adopt an approach where we dynamically
update the training set for the classifier. The training data was gathered from the CS-2
acquisitions and the AARI charts during a 15 days period. Thern-Only the AARI polygons

where the partial concentration of the dominant ice class was > 75 % were used for training.
The data was divided into four different ice classes. Using the k-NN classifier we then

determined the class boundaries for the training data set.
Finally we used these class boundaries i-anatysing-to_process the CS-2 data of the

following five gays—day period, called here test data. The training dataand,—henee, and
hence also the class boundaries, were recalculated at intervals of five days. We chose to do
this, instead of applying fixed class boundaries all the time—Fhe-, because the constantly
updated class boundaries help the classifier to adapt to ice/snew-conditionswhich-evelve

eontintoustycontinuously evolving ice and snow conditions. The magnitude of the change

in_the training data can be seen in Figs. 3 and 4 as the difference between the dashed

and solid lines. The difference is subtle, but according to our study, large enough to cause
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As one can see from Figs. 3 and 4 the waveform parameters of different ice categories
are often very close each other. In our data set this is true especially in November during
the freeze-up period. It is obvious that we cannot separate the ice types using just one
parameter. Instead a set of parameters should be utilised simultaneously. The shape of
distribution of a single parameter for ice class deviated in most cases essentially from the
normal distribution. The task to non-parametrically model a non-Gaussian multidimensional
distribution is very challenging. Hencewe-chose-notto-use-a-Bayesian-classifier-which-is
the-theoretically-optimat-classification-method-(Hastie-et-at-200+)—

We avoided the difficulty to deal—with—nen-Gaussian—muttidimensional—model the
MW dlstrlbutlons by applylng the k—ﬁearesthﬁemtghbefs—eiassrﬁef

see Section 3.2,
In order to calculate the distance between the measurements-mustbe-apropermetrie—
We-first-discuss-the distance metricfeature vectors we used the Euclidean distance with
equal weights. We scaled the distribution of each parameter on the interval [0, 2]. Thejyﬂ

range interval [0,2] corresponds the PP value range [0,40], LEW range [0,8], SSD ran
0,50] and finally LTTP range [0,0.18]. The ranges were determined empirically. The values
of rare events were truncated. Na%&ra#y—we—ee&ld—have—used—a}se—tm—uﬁﬁ—m%ewal—&—}]—

During the 15 days training period we collect a rather extensive data set. In most cases
this set covers the variation occurring in the following five days CS-2 data. To characterize
the waveform we selected first the standard features (PP, LEW, SSD) as a part of a feature
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vector. Increasing the dimension of the feature space always reduces-the-amount-ottraining
ncreases the mean distance between sample pomts inside a unlt cube —FH—GGHSGQ‘H&HGG—

EWWWWWQWWWWMW
This implies that even small changes in the training data and, hence, in the class boundaries

may have a significant impact on the classification result.
On the other hand, the discrimination between feature vectors is, in principle, more

efficient if the description of a waveform is more versatile, i.e. the number of features is
larger. Keeping in mind these these two eenflicting-consequences of adding features,we

studied if an addltlonal feature would mdeed—ﬂﬁpfeveﬁmramgke&the results We
chose to € Rentw y :

+6
Kfl — 6 Z;ﬂa;aX‘Fl
Pmax ’

er»iFPPﬂs—deﬂﬂe&rF%Eq—GB)—rﬁ—Seet—S est the |anuence of addm the LTPP and/or ETP
characteristics.

A way to measure dependence between two random variables is to utilize the mutual
information (MI) (Cover and Thomas, 1991). Ml measures the overall dependency between
two random variables, not just the linear dependency like the correlation coefficient. We
calculated the pairwise values of MI between features Kft+-and—+PP-ETPP and LTPP and
the set of standard parameters (PP, LEW, and SSD). The Ml values were consistently lower
for FRPP-thaniLTPP than ETPP. This implies that the FPP-LTPP contains less overlapping
information with the standard three parameters than KH+ETPP.

Next we checked if the addition of TPP-LTPP to the three previous parameters (PP, LEW
and SSD) actually improves the k-NN classification. The result was that the addition of PP
LTPP increased the correct classification accuracy from 0 to 5 % for a single class depending
on the ice class and the test set. This was more than the improvement after addition of
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KHETPP. We also tested a 5-dimensional (5-D) feature vector containing the parameters
(KH—TFPPETPP, LTPP, PP, LEW, SSD). The addition of Ki+ETPP had a negative impact
on the accuracy compared to the tested 4-dimensional (4-D) feature vector. Hence, we
selected the features (PP, LEW, SSD, TPPLTPP) as our feature vector.

Prior to the classification we preprocess the data. All waveforms with LEW larger than
14 are excluded from analysis. We regard these waveforms too noisy to be useful. We-alse
watt

We also wanted to remove potential leads from data to limit the confusion between
different ice types

ane-
Pmax
IDPright =9 3
Z?::gxﬂ P

o O he A i it H BOWE Ae—dete ---

experimentalty-the-threshelds=This was done by removin aII waveforms W|th PP > 40 and
either PP|eft > 20 or PP,.ght > 15 —F}iekeleet—al—ezeir%—alee—ueed—a—SSD—thfeehad—fer—lead

WQ%MW
Ieads The amount of pe%emra—lead—ﬁgﬁalswvas—ueuak%#(mmjwlegpwmwswﬂu
5-13 % from the measurements—Way ii

W&WM
larger in November than in March. Also the number of potential leads was larger for thin ice
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To reduce speckle, we average the CS-2 waveform parameters over the five consecutive
footprints and assign the value to a single footprint area, i.e. we use the running mean
method for each parameter separately. Al-The CS-2 measurements are subject to speckle
like any other SAR signature. The speckle influence is most obvious for PP but it is also
present in other waveform parameters. In this step we implicitly assume that the five
consecutive footprints covering a track of 1900 m belong to the same ice class. Considering
our coarse typing of ice classes (3—4 ice types) this is a reasonable assumption.

We classify the running means of the waveform parameters using the k-NN classifier. At
the first phase we perform the classification for each 4-D feature vector separately. Then
we take the mode of 50 consecutive ice class labels. The resulting mode is then regarded
as the estimated ice type and it has a resolution of 19km. If we take into account the
spatial averaging the true resolution is about 20 km along the track. We examined also the
possibility to use only 30 consecutive class labels to achieve a better—spatial-resolution
spatial resolution of about 12km. In our test runs the 20 km resolution yielded, however,
slightly more accurate results than the 12 km resolution. Although the difference was not
large we chose the coarser resolution data because of slightly better reliability.

The mode operation is also applied for our ground truth data points extracted from the
AARI ice charts (50 consecutive points corresponding the CS-2 points). When we assess
the classification accuracy using the ground truth data, it takes place comparing these 19—
20 km long segment tracks. In the classification maps in the Sect. 4.2 we show the results
using a sliding window technique, i.e. the consecutive the class labels have just a distance
of 0.38 km between them.

We still must determine a reasonable value for k. That is, how many feature vectors
from the training data do we use to build class boundaries. The value k =1 yielded highly
variable results for the test sets and was deemed unpractical for our purposes. When we
compared the values k = 3 and k = 5 we noticed that the results were close to each other
for the-Nevembertestsets{(3-setsj-November, although k& = 3 yielded slightly better results.
In March the results more clearly favored k = 3 over k =5. Increasing k to a larger value
than k =5 lead to poorer results. The difference between the November and March data
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sets was that the number of ice types was four in March and three in November. Hence
the classification task in March was more challenging than in November. We have used the
value k£ = 3 in our classifications.

4 Results and discussion
4.1 Qualitative comparison

To visualise the behaviour of PP, Fig. 1 below shows PP drawn over a SAR composite from
the same area on the 05 March 2014. The figure shows an increase from the low (PP < 3,
blue) values over open ocean to high (PP > 7, red) values over ice. The increase coincides
with the ice edge visible in the SAR frame. Analogously to the Fig. 1 and PP, Fig. 2 shows the
CS-2 SSD over a SAR frame. Again the ice edge is clearly visible as SSD changes from high
values (SSD > 20, blue) over open water-ocean to small (SSD < 10, red) on ice. However,
SSD seems to exhibit more variation over ice than PP does. There are areas of high SSD
within the ice pack, some of which coincide with features in SAR data. The interpretation
of a SAR frame to ice characteristics is subjective due to the multitude of factors affecting
the backscattering. Areas of high backscatter can be thick heavily deformed ice or, in some
cases, broken thin ice with varying amount of open water-ocean e.g. brash ice. Detailed
information on SAR backscattering statistics in our test region can be found in Lundhaug
(2002). Due to the ambiguity in SAR signature, it is impossible to derive the ice thickness
from a single SAR frame alone. Because of this we de—did not carry out a quantitative
comparison of SAR and CS-2 data.

To further study the effect of ice stage of development on the CS-2 waveform, we sampled
the AARI ice charts at a point closest to the CS-2 measurement as described in Sect. 2.2.
The distributions of waveform parameters for different stages of development are shown in
Figs. 3 and 4. Open waterocean, as expected from the SAR/CS-2 comparison above, shows
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peaks in high (SSD > 50) SSD and low (PP < 5) PP. In March thin FY ice has a bimodal
PP distibution, possibly due to the polygons labeled with thin ice often having a total ice
concentration of less than 100 %, ie. there are areas-ofopen-wateropen water areas present
in addition to the ice. Overall, the distributions show promise for distinguishing different ice
classes based on the four waveform parameters. The—resultsfrom-out-automatic-classitfier
Our automatic classifier results are presented in the next subsection.

4.2 Automatic classification

The classification methodology is presented in Sect. 3.3. The waveform parameters are
correlated but have also differences in their distributions as shown in Figs. 3 and 4. We
utilised three different ice categories in November (open waterocean, thin FY, and MY ice)
during the freeze-up period and four ice categories in the middle of winter in March (open
waterocean, thin FY, thick FY, and MY ice).

In the training data the dominant ice type from AARI charts was used as the true ice
type for all CS-2 waveforms falling within the ice chart polygon if the partial concentration
of the dominant ice type was > 75%. Only measurements from this kind of polygons were
accepted for training. Then the CS-2 data for the following five days test set (see Sect. 3.3)
was classified using the system. The results of the CS-2 classification were then compared
to the stages of development taken from the temporally closest AARI chart during the test
period. In the test set we do not use the 75% rule for the dominant ice class, but use the
stage of development which has the highest concentration as the truth for all of the CS-2
measurements falling within the polygon. Tables 1 and 2 show the classification matrices
for November and March, respectively. Maps of the classification results are presented in
Figs. 5 and 6 for November and March, respectively.

In November thin FY ice, MY ice and open water-ocean are present both in the CS-2 data
as well as in the AARI chart (Fig. 5 and Table 1). Thick FY ice was absent in the AARI charts
we used as training for November, and thus we only have three classes: open waterocean,
thin FY and MY ice. The open water-ocean is classified right in 98% of the cases. The
thin FY ice mixes somewhat with MY ice: 46 % of CS-2 measurements in polygons marked
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to consist mostly of thin FY ice in the AARI charts are classified to be MY ice based on
CS-2. Analogously 8% of CS-2 measurements from polygons where MY ice is dominant is
classified as thin FY ice. Part of the inconsistecy is natural. In reality there are inclusions of
FY ice within the old ice area as well as inclusions of MY ice in the FY ice area. However,
there are CS-2 measurements classified as MY ice south of 80° N. It is unlikely that these
are in reality MY ice. We assume these to be areas of deformed ice where the large scale
surface roughness is more akin to MY ice than recently formed FY ice. If this is the case,
the information about deformed ice, most likely an obstacle to navigation, would be valuable
for operational ice charting. Sadly, we have no means to test our assumption.

For March (Fig. 6 and Table 2) the results are similar to November. The overall
correspondence of AARI maps and the CS-2 classification is good. The two FY ice classes
mix considerably. This is not an unsurprising result because the thickness of 70 cm is not
a threshold which would abruptly change the characteristics of ice. Instead the division of
ice thickness of less or larger than 70 cm is mostly based on the needs of ice navigation.
Furthermore there are inclusions of thin FY ice within the thick FY and vice versa. The
results for open water-ocean (93% right) and MY ice (83 % right) are good. A notable
feature in the chart is MY ice appearing in the CS-2 measurements at about 78°N and
95° E, West of Vilkitsky Strait. There were small amounts of MY ice near the coast marked
in the AARI charts too;-especiallynearthe-coasts. Thus it may be that our classification
exaggerates the amount of MY ice, especially in the areas where heavy deformation is
likely to occur. However, for the purposes of operational ice charting, a cautious approach
is often preferred.

Our classification results are similar to those of Zygmuntowska et al. (2013), obtained
for an airborne altimeter in a smaller scale. Zygmuntowska et al. (2013) used a Bayesian
classifier and presented a comparison of CS-2 derived sea ice types and OSI-SAF ice
types. They showed that ice type classification with satellite altimeter data is possible but
also found regions where clear discrepancies occur between the CS-2 derived ice type
and their validation data. They attributed these discrepancies to areas of FY ice with large
surface roughness. We also found false positive MY ice classifications. As discussed before,
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for our application, classifying heavily deformed FY ice as MY ice is not a problem since
both present similar threat to navigation.

Detection of MY ice has implications to sea ice thickness retrieval from GS-2. Most of the
current altimeter sea ice thickness processors apply some kind of a MY ice mask, firstly to
modify the snow climatology used (for example Laxon et al. (2013) ) and then to modulate
the ice density for freeboard to thickness conversion (Kern et al.. 2014) . Often used source
for the ice type is the OSI-SAF ice type product (for example Laxon et al. (2013) and
Ricker et al. (2014) ). Our methodolo roduces realistic results, especially in March, for

here the false positive MY detections would be a larger problem than they are for the ice
Furthermore, the MY mask could easily be derived from the operational ice charts directly,
prove that the C-S2 waveforms contain information about the sea ice type. For near real time

MY products for the time of the measurement are yet available.
When we inspect the classification results, the detection of thin ice (here FY ice thinner

than 70 cm) has been least successful. As seen in Figs. 3 and 4 the waveforms originating
from thin ice exhibit a wide range of variation for all used features. This is understandable.
Very thin ice (thickness less than 10 cm) has often ice concentration well below 100 %. Due
to this, part of the waveforms assigned to thin ice are actually waveforms from open water.
This can be seen especially clearly in the behaviour of SSD in Fig. 2. Processes such as
rafting and ridging increase surface roughness, and thin ice as defined in this work can be
easily ridged. The thin ice is mostly mixed with thick FY ice (thickness larger than 70.cm)
but to a lesser degree also with open waterocean.
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5 Cryosat-2 product to support FMI operational ice charting

We built a CS-2 ice product based on near real time waveform characteristics to test if
the Finnish ice service would benefit from CS-2 data. The product is basically maps of
Near Real Time (NRT) CS-2 PP, LEW and SSD. A comparably simple system was built to
download the data from an ESA server and to calculate and plot PP, LEW and SSD. All of
the CS-2 data acquired during the past two days is used for each product. The prototype
system has been running at the Sodankyl& satellite receiving station since September 2014.
The FMI CS-2 product is available online at http://ice.fmi.fi/Cryosat/. The ice experts were
told to look for abrupt changes in the PP to detect the ice edge and to interpret areas of
constant low PP as open waterocean. The analysts were also briefed that in addition to
open waterocean, heavily deformed sea ice may result in low PP. We did not endeavour to
make an automated ice edge detection since the ground tracks are rather sparse and we
did not want to interpolate between them.

The product was received well. During the fall the Finnish ice service provided ice
information to ships in the Kara Sea and the CS-2 product was used as an independent
reality check for Sentinel-1 and COSMO-Skymed SAR frames. As expected, in an area
where SAR data is readily available, such as the Kara Sea, altimeter products add little or
no value to operational ice charting. However, several requests were made to build a similar
product for the Antarctic ice covered oceans. Our plan is to continue providing the FMI CS-2
product and implement a similar product for the Sentinel-3A data in the future.

In April 2015, University College of London (UCL) published a near real time CS-2 sea ice
thickness product available online. The UCL product is based on the CS-2 processing chain
presented in Laxon et al. (2013). Atthe-momentofwriting;the UCLproductHacks-validation
wmwmm%%aﬂ&mmcmmsdwwmwmwwm
Wmt is hard to
assess its-usabitity the usability of the UCL product for navigation. This will surely change
as the UCL product becomes more well known and user cases begin to form. Furthermore,
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a comparison of fine resolution data (such as ship measurements) to CS-2 data such as
the UCL NRT product, would be a natural continuation of our study presented in this paper.

6 Conclusions

For the first time, we have demonstrated the use of a SAR altimeter, namely the SIRAL-
2 onboard CS-2, to support operational ice charting. We've presented a qualitative
comparison of a SAR composite and CS-2 data. Furthermore, we’ve compared the CS-
2 waveform characteristics to the stage of development of ice taken from ice charts. We've
also presented an automatic classification system capable of detecting open waterocean,
thin FY ice, thick FY ice and MY ice based on four CS-2 waveform characteristics. This is
the first time ice classification methodology using satellite SAR altimeter data is presented
and tested outside gray literature. The classification system requires recent operational
ice charts for the training, but after the training the only input are CS-2 data. The system
resolves MY ice and open water-ocean well. The two tested FY classes mix significantly,
but for the application of operational ice charting this is not a problem.

We have built a prototype system providing simple maps of NRT CS-2 waveform
characteristics. This product has been tested by the Finnish ice service during the winter of
2014-2015. The feedback was positive. Thus we conclude that satellite altimeters, in this
case the CS-2, provide an independent source of sea ice information to complement SAR
and passive microwave data. Albeit low resolution and sparse, altimeter measurements can
be used at times and locations where other data sources are unavailable.
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Table 1. Classification Matrix of CS-2 Based Classification (rows) and AARI Ice Chart (columns),
November 2013. Last column shows the best and the worst hit rates of the three 5-day periods.

FY <70cm MY Open¥Water-Ocean  Worst—Best
FY <70 51% 46% 3% 31-64%
MY 8% 92% 0% 88-97 %
Open Water-Ocean 5% 4% 92% 87-95%
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Table 2. Classification Matrix of CS-2 Based Classification (rows) and AARI Ice Chart (columns), ~—v
March 2014. Last column shows the best and the worst hit rates of the three 5-day periods. i
FY<70cm FY>70cm MY Open WaterOcean  Worst—Best —

FY <70 20% 60% 7% 13% 15-26 % -
FY> 70 1% 84% 14% 0% 75-91% 2
MY 0% 14% 86% 0% 77-92% 7
Open Water-Ocean 2% 1% 3% 93% 90-98 % S
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Figure 1. CS-2 Pulse Peakiness (1-5 March 2014) plotted on a RS-2 SAR composite (5 March

2014).
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Figure 2. CS-2 Stack Standard Deviation (1-5 March 2014) plotted on a RS-2 SAR composite

(5 March 2014).
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Figure 3. Normed distributions of waveform parameters: SSD (top left), PP (top right), LeW (low left)

and FPP-LTPP (low right) for the period 1—15 November

lines) 2013.
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Figure 4. Normed distributions of waveform parameters: SSD (top left), PP (top right), LeW (low left)

and FPP-LTPP (low right) for the period 1-15 March (solid lines) and 16-30 March (dashed lines
2014.
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AARI Ice Chart

CS-2 Classification

75N

170°N

Figure 5. Automatic classification test for Mareh—26+4—November 2013. AARI Ice Chart SA
sampled at CS-2 footprints (left) and the classification result from CS-2 measurements (right). 15—

30 November 2013. Blue = Open-wateropen ocean, green=FY < 70cm and Red =MY.
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Figure 6. Automatic classification test for March 2014. AARI Ice Chart SA sampled at CS-2 footprints
(left) and the classification result from CS-2 measurements (right). 15-30 March 2014. Blue =Open
wateropen ocean, green =FY < 70cm, yellow =FY > 70 cm and red = MY.
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