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 6 

Editor Decision: Publish subject to minor revisions (Editor review) (27 Oct 2015) by Julienne 7 

Stroeve 8 

We wish to thank Editor Prof. Stroeve for her helpful response to our revised manuscript, the 9 

suggested additions and edits. I have separated Prof. Stroeve’s comments into individual 10 

points, which we address in turn: 11 

 12 

As the reviewer's noted, it's incorrect to equate reduction in model-spread with a reduction in 13 

uncertainty. Note when bias correcting with regards to SIT, this will be especially true as the 14 

models tend to have high spatial correlation between each other in terms of their SIT, and not 15 

with the observations (see Stroeve et. al. 2014, The Cryosphere). On line 22 of the 16 

introduction I do not think it's correct to then state you explore how the uncertainty in SIT 17 

projections is reduced through bias correction, it is the spread that is reduced.  18 

We make several mentions of “reducing uncertainty” in the abstract. These are amended as 19 

follows:  20 

“We present a new method to constrain such GCM simulations of SIT to narrow projection 21 

uncertainty via a statistical bias correction technique.” 22 

“The bias correction acts to reduce the uncertainty spread in projections of SIT and reveals 23 

the significant contributions of climate internal variability in the first half of the century and 24 

of scenario uncertainty from mid-century onwards.” 25 

“The bias correction methodology developed could be similarly applied to other variables to 26 

narrow uncertainty spread in climate projections more generally.” 27 

“The bias correction methodology developed could be similarly applied to other variables to 28 

narrow reduce uncertainty spread in climate projections more generally.” 29 

And also on line 24 in the Introduction: 30 

“Bias correction (BC) of GCM simulations has the potential to reduce the differences 31 

between models uncertainty and hence potentially increase confidence in near term climate 32 

projections” 33 
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 1 

The same on page 28, line 2 and elsewhere. I think it is important to make a very clear 2 

distinction between the two  3 

“The MAVRIC moves the first possible ice-free date about 30 years earlier and increases the 4 

ensemble uncertainty range from 32 to 63 years” 5 

and do not equate them on page 30 (line 1) or elsewhere. 6 

We now agree that equating reducing spread in projections of SIT to reduced uncertainty in 7 

projections of SIT is not valid. However we maintain that when partitioning the sources of 8 

uncertainty in Sect 4.4 in the same manner as Hawkins and Sutton (2009, 2011) we are 9 

justified in our use of the word “uncertainty” as here and detailed in in the appendix B we 10 

clearly state what this means and how its calculated. We do not however categorically state 11 

that MAVRIC leads to more certain climate projections in a general sense anymore. We 12 

realise that this was erroneous and what the Reviewers and Editor was concerned about.  13 

In the following sections, we equate reducing model spread with reduced uncertainty. 14 

While some of the outlier simulations of SIT are now more similar to the multi-model 15 

mean, this doesn’t necessarily equate to reduction in uncertainty. For example the initial 16 

selection of GCMs may not have been representative, or all of the GCMs from CMIP5 17 

may have some inherent systematic biases, reducing the spread of which wouldn’t help 18 

sample future observations.  19 

This section can be deleted as we no longer do this after the reviewers suggestions. We 20 

reword this paragraph and move to the end of the subsection as well feel describing the 21 

limitations reads best here.   22 

Although we have demonstrated here that the MAVRIC method reduces the model 23 

uncertainty as seen by the reduction in spread of projected SIT with our selection of 24 

GCMs, we acknowledge that this may not necessarily correspond to a reduction in 25 

uncertainty in the real world. 26 

The MAVRIC method outlined in this study acts to eliminate the model bias (and hence 27 

potentially reduce the uncertainty) in the MAVRIC calibration period (1979 – 2014). 28 

This means that the MAVRIC can reduce uncertainty the model spread (or bias) and may 29 

potentially increase confidence in climate projections of SIT throughout this period. 30 

4.5 Reduceding uncertainty spread in timing of ice-free conditions 31 

If uncertainty the range in this parameter has reduced, this will be shown by the gradient of 32 

the line increasing after MAVRIC, and this is clearly seen. 33 
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• The MAVRIC results in projected September ice-free conditions in the Arctic under 1 

RCP8.5 occurring up to 10 years earlier (2050s) than without the correction, and with 2 

a much narrower uncertainty range, e.g. excluding post 2085 dates.   3 

In future projections, the MAVRIC results in a substantial reduction in uncertainty the range 4 

of SIT, potentially leading to increased confidence in climate projections. 5 

Reviewers are also concerned about referring to PIOMAS as observations. So online 27, the 6 

statement observationally-based estimate of SIT from PIOMAS is incorrect. Yes observations 7 

of SIC go into forcing PIOMAS but it is still a model and it does have biases with respect to 8 

the observations (again see Stroeve et al. 2014), and interestingly PIOMAS agrees more 9 

closely with the CMIP5 models than with the observations in terms of spatial pattern 10 

correlation, which in turn will impact your bias correction. On line 27 (section 2.1), I would 11 

instead rewrite to state modelled SIT with the coupled ice-ocean PIOMAS model, driven by 12 

observations of SIC, reanalysis data. etc.  13 

“For an observationally based estimate of To represent observed SIT, we use the 14 

estimates from the PIOMAS reanalysis. PIOMAS is a coupled ice-ocean model that is forced 15 

with the National Centers for Environmental Prediction (NCEP) atmospheric reanalysis, and 16 

assimilates satellite observed sea ice concentration (Lindsay and Zhang, 2006) and sea surface 17 

temperature (Schweiger et al., 2011). It does not however assimilate sea ice thickness (SIT), 18 

although this has been attempted using the NASA Operation IceBridge and SIZONet 19 

campaigns of 2012 (Lindsay et al., 2012).” 20 

Similarly on line 14, page 21, you should say "estimates" instead of "observations".  21 

“We choose PIOMAS to represent observations estimates of SIT as satellite observations are 22 

limited in their spatial and temporal range.” 23 

“We have deliberately chosen not to try and correct the simulated ice loss trend to that which 24 

is currently observed PIOMAS depicts” 25 

“Before proceeding to investigate the impact of the MAVRIC on SIT projections it is prudent 26 

to test whether the MAVRIC can improve GCM performance by validating with real 27 

observations PIOMAS.” 28 

You may also want to address the issue of PIOMAS thickness patterns being better correlated 29 

with CMIP5 models than with the observations in section 4.4.  30 

Added to section 2.1 that discusses the limitations of PIOMAS: 31 

Stroeve et al. (2014) in a comprehensive study of SIT across CMIP5 and observations 32 

find that the spatial correlations in thickness between CMIP5 models and PIOMAS are 33 

generally higher than those between CMIP5 models and ICESat. It should be noted that 34 

the results will be sensitive to dataset chosen to represent observed SIT.   35 
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One thing that stands out for example in Figure 6 is that your ice is too thin for the thick ice 1 

regions (i.e. north of Greenland and the CAA), which is true also in PIOMAS. I am curious 2 

about how thin the SIT is in September. Most evaluations between observations and PIOMAS 3 

have been in spring. Having thickness only up to 1.5m in the CAA seems too thin as this is the 4 

old MYI region and winter ice thickness typically exceed 5m. That would suggest 4m of 5 

summer melt. Can you say anything about validation of these thickness in September? 6 

The SIT in Fig. 6 is essentially identical to the SIT in Fig. 1 and so that is discussed. I have 7 

extended the colorscale in Fig R1 below so the SIT in the thickest regions can be resolved. 8 

Note the last bin in the manuscript is >2m, this is to better resolve the thinner SIT regions 9 

which become more common in some of the SIT projection plots.  10 

“In the heart of the Canadian archipelago, ice thickness is up to 1.5 m this is reasonable 11 

when compared to Haas and Howell (2015) who measured ice along the Northwest 12 

Passage in May 2011 and April 2015 using airborne electromagnetic induction 13 

soundings and to Tilling et al. (2015) using Cryosat-2 for October and November 2010 – 14 

2014. in the central Arctic North of Greenland SIT exceeds 3.5 m, which is again 15 

comparable to Cryosat-2 for October and November 2010 – 2014 it is about two meters, 16 

and it is between zero and one meter along the north Russian coast.” 17 

 18 

Figure R1. September 1979-2014 SIT, alternative colour bar 19 
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 1 

Section 3, first paragraph, this isn't quite correct. There are publications that have made 2 

estimates of how much the loss of sea ice is a result of GHGs vs natural variability (see Notz 3 

et al., 2013, Notz, 2015). Stroeve et al., 2012 also provide an estimate as does Kay et al., 4 

2011. 5 

This has been reworded as we didn’t mean no studies have been done, more that studies have 6 

been done but the results are mixed: 7 

“It is also uncertain unclear how much of the recent ice loss seen in the observations can be 8 

attributed to changes in external forcing as opposed to internal variability though previous 9 

studies have attempted this including: Kay et al. (2011), Day et al. (2012), Notz and 10 

Marotzke (2012), Stroeve et al. (2012), Notz (2015), Swart et al. (2015) and Zhang (2015). 11 

We are also cautious of over fitting; applying a trend correction would potentially result in an 12 

over-confident projection.” 13 

Also I would be cautious about saying ice age correlates with thickness. While Maslanik et 14 

al., 2007 did show correspondence, adding on two more years of ICESat data shows this 15 

correlation breaks down. 16 

Thanks for updating us with this, the sentences are not appropriate for the paragraph anyway 17 

and so are deleted:  18 

Ice age (and hence strength) correlates well to ice thickness (Maslanik et al., 2007), and 19 

values below 0.15 m correspond to young and grey ice categories, and operations in this 20 

ice regime require no specific ice strengthening of vessels (Transport Canada, 1998). 21 

 22 

Kind Regards, 23 

N. Melia, K. Haines, and E. Hawkins 24 

  25 
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Abstract 12 

Projections of Arctic sea ice thickness (SIT) have the potential to inform stakeholders about 13 

accessibility to the region, but are currently rather uncertain. The latest suite of CMIP5 Global 14 

Climate Models (GCMs) produce a wide range of simulated SIT in the historical period (1979 15 

– 2014) and exhibit various biases when compared with the Pan-Arctic Ice Ocean Modelling 16 

and Assimilation System (PIOMAS) sea ice reanalysis. We present a new method to constrain 17 

such GCM simulations of SIT to narrow projection uncertainty via a statistical bias correction 18 

technique. The bias correction successfully constrains the spatial SIT distribution and 19 

temporal variability in the CMIP5 projections whilst retaining the climatic fluctuations from 20 

individual ensemble members. The bias correction acts to reduce the uncertaintyspread in 21 

projections of SIT and reveals the significant contributions of climate internal variability in 22 

the first half of the century and of scenario uncertainty from mid-century onwards. The 23 

projected date of ice-free conditions in the Arctic under the RCP8.5 high emission scenario 24 

occurs in the 2050s, which is a decade earlier than without the bias correction, with 25 

potentially significant implications for stakeholders in the Arctic such as the shipping 26 

industry. The bias correction methodology developed could be similarly applied to other 27 

variables to narrow reduce uncertaintyspread in climate projections more generally. 28 
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1 Introduction 1 

Global Climate Models (GCMs) are the primary tool for making climate predictions on 2 

seasonal to decadal time scales, and climate projections over the next century (Flato et al., 3 

2013). In a warming climate, changes to sea ice thickness (SIT) are expected to lead to 4 

significant implications for polar regions and beyond. A reduction in SIT will likely open up 5 

the Arctic Ocean to economic diversification including new marine shipping routes (Smith 6 

and Stephenson, 2013) and extraction of natural resources, as well as changes to the Arctic 7 

ecosystem and potential links to mid-latitude weather (Francis and Vavrus, 2012). Many of 8 

these economic opportunities may rely on SIT evolution, but current projections have 9 

considerable uncertainty. SIT is also much more informative than sea ice concentration (SIC), 10 

especially in the central Arctic, where future thinning can occur without major changes in the  11 

local SIC. 12 

The GCMs from the Coupled Model Intercomparison Project, phase 5 (CMIP5) (Taylor et al., 13 

2012) exhibit a large range in sea ice volume (SIV), spatial SIT distribution, and temporal SIT 14 

variability under present day forcing conditions (e.g. Blanchard-Wrigglesworth and Bitz 15 

(2014)). For September sea ice extent, Swart et al. (2015) showed the uncertainty in CMIP5 16 

projections over the next few decades is dominated by these differences between models, 17 

termed model uncertainty by Hawkins and Sutton (2009, 2011). Uncertainty in climate 18 

projections arises from three distinct sources: (1) model uncertainty,  (2) internal variability, 19 

and (3) scenario uncertainty, as discussed by Hawkins and Sutton (2009, 2011) for 20 

temperature and precipitation respectively. In contrast to projections of temperature where the 21 

anomalies are often used, the absolute value of SIT is important – for example, ships have 22 

critical SIT thresholds above which their use is not possible (Stephenson et al., 2013).  23 

Bias correction (BC) of GCM simulations has the potential to reduce the differences between 24 

models uncertainty and hence potentially increase confidence in near term climate 25 

projections. The importance of BC in impact based climate change studies was described in a 26 

special report of the IPCC (Seneviratne et al., 2012), but BC has not previously been applied 27 

to projections of SIT; this manuscript is novel in that it recalibrates SIT, and does it locally.  28 

There are many different types of proposed BC techniques, (e.g. Boe et al. (2009); 29 

Christensen et al. (2008); Ho et al. (2011); Mahlstein and Knutti (2012); Vrac and Friederichs 30 

(2014); Watanabe et al. (2012), and references therein), which have mainly been applied to 31 

temperature and precipitation. However, these existing methods need refining for sea ice as 32 
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SIT is a particularly challenging variable. This is due to its positive semi-definite nature, and 1 

the spatial and temporal occurrence of zeros, in observations and projections of SIT.  2 

This study addresses the development of a new BC technique that constrains both the mean 3 

and variance of SIT in GCMs to an estimate of the observed statistics. It is important to 4 

correct the mean as this corrects the spatial SIT distribution. Variability in SIT also has a 5 

significant impact on the simulated range of regional ice-free dates, something of great 6 

interest to stakeholders, and the CMIP5 GCMs exhibit a wide range in their SIT variability. 7 

The study also uses multiple ensemble members from the same model when performing the 8 

BC, something that is often not utilised in other studies. This is important as it enables an 9 

assessment of the role of internal variability in future projections to be made. The techniques 10 

described in this paper are not limited to SIT, and would work for many climate variables. 11 

The exact implementation used in this study should also be calibrated to the user’s needs 12 

based on factors such as the length of reliable observations and number of ensemble 13 

members.  14 

In this paper we use the Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) 15 

(Zhang and Rothrock, 2003) as a reanalysis based estimate of recent SIT, along with climate 16 

projections from a subset of six GCMs from the CMIP5 archive (Sect. 2). We first test the 17 

performance of increasingly complex BC approaches in a toy model environment (Sect. 3) 18 

and then apply our favoured method to the subset of CMIP5 GCMs in Sect. 4. We test the BC 19 

method by splitting the historical PIOMAS data, and then explore how the uncertainty range 20 

in SIT projections is reduced using these techniques (Sect. 4) and summarise and discuss the 21 

results in Sect. 5. 22 

 23 

2 Climate simulations and observations 24 

2.1 PIOMAS 25 

For an observationally based estimate of To represent observed SIT, we use theestimates from 26 

the PIOMAS reanalysis. PIOMAS is a coupled ice-ocean model that is forced with the 27 

National Centers for Environmental Prediction (NCEP) atmospheric reanalysis, and 28 

assimilates satellite observed sea ice concentration (Lindsay and Zhang, 2006) and sea surface 29 

temperature (Schweiger et al., 2011). It does not however assimilate sea ice thickness (SIT), 30 
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although this has been attempted using the NASA Operation IceBridge and SIZONet 1 

campaigns of 2012 (Lindsay et al., 2012).  2 

As a reanalysis, PIOMAS is constrained by the quality of the assimilated observations, 3 

Lindsay et al. (2014) forces PIOMAS with four different atmospheric reanalysis products 4 

producing differing results. Schweiger et al. (2011) found biases in PIOMAS of 0.26 m in 5 

autumn and 0.1 m in spring when compared with ICESat (Zwally et al., 2002) although the 6 

spring bias is within the range of uncertainties found by Zygmuntowska et al. (2014). Larger 7 

differences are found in the areas of thickest ice, north of Greenland and the Canadian 8 

Archipelago, with ICESat retrievals around 0.7 m larger than PIOMAS. However in this 9 

region PIOMAS agrees better with in situ data (Schweiger et al., 2011). Zygmuntowska et al. 10 

(2014) suggests that this discrepancy is due to the choice of sea ice density in ICESat, and 11 

they support this explanation by finding lower discrepancies between PIOMAS and CryoSat-12 

2 (Laxon et al., 2013) which utilises an alternative sea ice density value. Stroeve et al. (2014), 13 

in a comprehensive study of SIT across CMIP5 and observations, find that the spatial 14 

correlations in thickness between CMIP5 models and PIOMAS are generally higher than 15 

those between CMIP5 models and ICESat. It should be noted that these results will be 16 

sensitive to the dataset chosen to represent observed SIT.   17 

We choose PIOMAS to represent observations estimates of SIT as satellite observations are 18 

limited in their spatial and temporal range. For example, data from ICESat are only available 19 

between October and March 2003 – 2008 (Kwok et al., 2009). More recently Cryosat-2  has 20 

started producing real-time SIT datasets but only for the non-summer months (Tilling et al., 21 

2015). This is also not ideal as it is the summer and autumn months when the ice is thinnest 22 

that are most relevant for potential economic activity. The spatial consistency, temporal 23 

length and completeness of the data are important considerations when computing 24 

climatological means and variances as the longest time series possible is needed to validate 25 

the statistics. It is for this reason primarily that PIOMAS has been chosen to represent 26 

observations in this study. Several studies (e.g. Laxon et al. (2013), Schweiger et al. (2011), 27 

Lindsay and Zhang (2006), and Stroeve et al. (2014)) have compared PIOMAS to satellite and 28 

in situ observations and models and find it a suitable estimate of observed SIT. PIOMAS is 29 

also deemed realistic enough to initialise numerical models for seasonal forecasts e.g., the Sea 30 

Ice Outlook (Blanchard-Wrigglesworth and Bitz, 2014) where the accuracy of the initial 31 

conditions is vital.  32 
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Figure 2 shows the mean September SIT and temporal standard deviation (SD) after linear 1 

detrending for PIOMAS over the satellite era (1979 – 2014). In the heart of the Canadian 2 

archipelago, PIOMAS ice thickness is up to 1.5 m, which is reasonable when compared to 3 

Haas and Howell (2015) who measured ice along the Northwest Passage in May 2011 and 4 

April 2015 using airborne electromagnetic induction soundings, and to Tilling et al. (2015) 5 

using Cryosat-2 for October and November 2010 – 2014., in the central Arctic North of 6 

Greenland SIT exceeds 3.5 m, which is again comparable to Cryosat-2 for October and 7 

November 2010 – 2014 it is about two meters, and it is between zero and one meter along the 8 

north Russian coast. The SIT is most variable around the edge of the ice pack and especially 9 

near land. An effective BC should ensure that the simulations replicate these patterns of mean 10 

SIT and SD over this recent period.  11 

2.2 Global climate models 12 

This paper utilises a subset of six GCMs from CMIP5. Since a large part of this work assesses 13 

SIT variability, it is necessary for each GCM to have multiple ensemble simulations in the 14 

historical period and for each of the representative concentration pathways (RCPs) 2.6, 4.5 15 

and 8.5 for future scenarios (Van Vuuren et al., 2011). In addition, the GCM mean spring 16 

thickness must fall within the 10th and 90th percentile of PIOMAS (Stroeve et al., 2014), have 17 

a reasonable spatial resolution, and  a somewhat resolved Canadian archipelago. A consistent 18 

spatial distribution of land is needed for realistic and spatially complete multi-model means. 19 

The six GCMs that comprise this CMIP5 subset are listed in Table 1.   20 

For the CMIP5 subset the historical simulations are used for the period 1979 – 2005. In most 21 

of the analysis for the period post-2005 the RCP8.5 scenario is used, which ramps up the 22 

amount of greenhouse gases to have a cumulative effect of increasing the direct radiative 23 

forcing by 8.5 Wm-2 (approximately 1370 ppm CO2 equivalent) by 2100 (Van Vuuren et al., 24 

2011). The impact of other scenarios is assessed compared later in the analysis. Figure 3 25 

shows the 1979 – 2014 ensemble-mean September SIT for the CMIP5 subset, highlighting the 26 

considerable differences between the model simulations, and indicating that model bias is 27 

likely to be the dominant uncertainty in near-term projections.  28 

The aim of the SIT BC outlined in this paper is to correct the mean and variance in the 29 

CMIP5 subset shown in Fig. 2 to the PIOMAS statistics. Although this should improve short-30 

term predictions, a caveat to this approach is that PIOMAS only yields one realisation of the 31 
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past (see Lindsay et al. (2014) for discussion of PIOMAS forced with alternative atmospheric 1 

forcings). We have to assume that the relatively short period over which we have observations 2 

(36 years) captures a representative sample of the behaviour we expect from the climate 3 

system. In the short term, this is probably a reasonable assumption, as the GCMs will not 4 

have evolved far from their corrected state of the recent past; this assumption is explored 5 

further in Sect. 4.  6 

 7 

3 Bias correction methodology 8 

Bias correction methods effectively aim to reduce model uncertainty by constraining GCMs 9 

to observations. There are two components to model uncertainty: the overall mean difference 10 

(or bias), and differences in the amplitude of response to specified forcings. We have 11 

deliberately chosen not to try and correct the simulated ice loss trend to that which is currently 12 

observedPIOMAS depicts. Our reasoning is to keep this as prescribed by the different GCMs 13 

because the response of the SIT to future warming is unknown, and likely non-linear, and the 14 

GCMs are designed to give an estimate of this. It is also doubtful how well the forced current 15 

trend can be determined from 36 years of data given the high noise to signal ratio for trends, 16 

especially on grid point scales. It is also uncertainunclear how much of the recent ice loss 17 

seen in the observations can be attributed to changes in external forcing as opposed to internal 18 

variability, although previous studies have attempted this including: Kay et al. (2011), Day et 19 

al. (2012), Notz and Marotzke (2012), Stroeve et al. (2012), Notz (2015), Swart et al. (2015) 20 

and Zhang (2015) (). We are also cautious of over fitting; applying a trend correction would 21 

potentially result in an over-confident projection.  22 

To test the performance of different possible BC methods a ‘toy model’ was used as proxy 23 

ensemble timeseries (representing SIT at a single grid point for the same month each year for 24 

the period 1979 – 2100). The timeseries are shown in Fig. 3a for a high mean - high variance 25 

model (blue) and a low mean - low variance model (red), where the black line shows the 26 

“truth” observations with one realisation over the historical period only. The time series were 27 

all produced using a first order auto-regressive (with an AR(1) parameter of 0.3 chosen to be 28 

representative of CMIP5 SIT auto-correlation) model imposed on a declining linear trend with 29 

negative numbers reset to zero. Each model has five separate model ensemble members (thin 30 

coloured lines) and the thick lines representing the ensemble means. The statistics in all the 31 

legends are calculated over the observation window (1979 – 2014). ‘Ice-free’ in Fig. 3  is here 32 
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defined as the first occurrence of an ensemble member below 0.15 m. Shown is the ice-free 1 

ensemble range, i.e. the year of the first ensemble member to be ice-free to the last ensemble 2 

member to be ice-free. A successful BC method should transform the individual ensemble 3 

members (thin red and blue lines) to match the mean and variance of the observations (black 4 

line), producing matched statistics. We test various approaches for such a bias correction. The 5 

mathematical notation for the following equations is in Table 2. 6 

3.1 Additive correction 7 

A basic additive correction, which has previously been used for temperature projections, is 8 

shown in Fig. 3b. This approach simply corrects the time-mean by subtracting the difference 9 

between the historical model ensemble-mean time-mean, 〈𝑀ℎ
̅̅ ̅̅ 〉, and observation time mean, 10 

𝑂ℎ
̅̅̅̅ , from each of the model ensemble members, 𝑀.  11 

Additive corrected thickness = 𝑀 − (〈𝑀ℎ
̅̅ ̅̅ 〉 − 𝑂ℎ

̅̅̅̅ )  (1) 

 However, as the low ice model is adjusted up by the addition of a constant, it equilibrates at a 12 

positive value in the future rather than zero. Likewise the high ice model equilibrates at 13 

negative values. Neither of these properties are sensible.  14 

This study makes use of multiple ensemble members from the same model, raising the 15 

question of how to treat ensemble member statistics when calculating a particular GCM’s 16 

bias. For calculating the mean SIT, each GCM’s ensemble mean is used because it is the 17 

GCM’s mean bias that we wish to correct. This is important because a particular ensemble 18 

member’s deviation from the ensemble mean is retained; it allows an individual ensemble 19 

member’s time mean to be different to the observations over the historical period, but not the 20 

ensemble mean. The treatment of ensemble members for the SD calculation is described in 21 

section 3.4.  22 

3.2 Multiplicative correction 23 

If a multiplicative correction is used (Fig. 3c), where the ratio of the observed time mean and 24 

model ensemble-mean time-mean, 𝑂ℎ
̅̅̅̅  〈𝑀ℎ

̅̅ ̅̅ 〉⁄ , is multiplied as a factor to the model ensemble 25 

members, 𝑀, then the corrected thickness is:  26 
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Multiplicative corrected thickness = 𝑀
𝑂ℎ
̅̅̅̅

〈𝑀ℎ
̅̅ ̅̅ 〉

  (2) 

 Multiplicative methods effectively preserve the future zero ice year, which is potentially an 1 

important value for a wide range of stakeholders. However, when applied as above this 2 

approach has the undesired effect of distorting the variances by the same factor as the mean 3 

correction, as visible in Fig. 3c.  4 

3.3 Mean multiplicative correction 5 

To avoid altering the variances, the mean multiplicative correction can be introduced (Fig. 6 

3d), where the multiplicative mean correction, 𝑂ℎ
̅̅̅̅  〈𝑀ℎ

̅̅ ̅̅ 〉⁄ , is applied only to the 11-year-7 

centred running-mean ensemble-mean, 〈𝑀̃〉. This corrects the model mean evolution without 8 

corrupting the sub-decadal variance as 〈𝑀̃〉 is smoothed. The model anomalies for each 9 

ensemble member, 𝑀 − 〈𝑀̃〉, are then added back to the corrected mean evolution: 10 

Mean multiplicative corrected thickness =  (𝑀 − 〈𝑀̃〉) + 〈𝑀̃〉
𝑂ℎ
̅̅̅̅

〈𝑀ℎ
̅̅ ̅̅ 〉

 (3) 

 This works to correct the mean SIT and does not suffer from any peculiarities of the previous 11 

two methods. The model variance now remains unchanged but the approach opens up the 12 

possibility of correcting the variance towards that observed in the historical period. Note that 13 

by using the ensemble mean, 〈𝑀ℎ
̅̅ ̅̅ 〉, for all these corrections we ensure that each ensemble 14 

member is corrected in the same way, thus preserving certain ensemble properties into the 15 

future.  16 

3.4 Mean and variance correction 17 

The GCMs from CMIP5 show a large range in SIT variance, and the magnitude of these 18 

variations is a significant factor determining when regions of the Arctic may first become 19 

accessible (when one ensemble member may first become ice-free). Therefore a variance 20 

correction is incorporated into Eq. (3) by taking the ratio of the temporal standard deviation of 21 

the detrended observations, 𝜎𝑂ℎ̂
, to the square root of the ensemble mean of the variance of 22 

the detrended model ensembles, 〈𝜎𝑀ℎ̂
〉 (detrended mean ensemble SD), over the historical 23 

period. The detrending in the models is calculated using each model’s ensemble mean linear 24 

trend. This has some similarities to the approach of Ho et al. (2011) in application to 25 
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temperature projections for Europe. Also see Appendix A for some further discussion of the 1 

choices made. 2 

To incorporate the variance correction, the mean multiplicative correction (Eq. (3)) is first de-3 

trended, the variance correction applied, and the trend re-applied. This creates the  4 

Mean And VaRIance Correction (MAVRIC), shown in Eq. (4):  5 

MAVRIC =  (𝑀 − 〈𝑀̃〉)
𝜎𝑂ℎ̂

〈𝜎𝑀ℎ̂
〉

+ 〈𝑀̃〉
𝑂ℎ
̅̅̅̅

〈𝑀ℎ
̅̅ ̅̅ 〉

 (4) 

 Fig. 3e shows the MAVRIC does a near perfect job of correcting both the mean and variance 6 

to the observed statistics while still retaining the individual ensemble members’ own climate 7 

fluctuations, but fractionally scaled by the variance ratio.  8 

Comparing the ensemble range in projected ice-free date between the correction methods it is 9 

apparent that although the shapes of time-series have qualitatively changed this does not 10 

always result in a different range in projected ice-free date. For example on comparing the 11 

high mean – high variance GCM (blue) between (a) to (c) and (b) to (d); this is partly 12 

coincidence and partly due to how the four correction methods shown manipulate the time 13 

series. The MAVRIC method (e) results in a unique set of ice-free dates. This is an important 14 

attribute that the MAVRIC method displays, as the ice-free date is of vital importance to 15 

stakeholders in the Arctic and more basic methods of bias correction fail to appropriately 16 

impact adjust on this parameter.   17 

4 Bias corrected sea ice thickness projections 18 

Figure 4e illustrates that the MAVRIC successfully corrects the mean and variance in a toy 19 

model environment. Before proceeding to investigate the impact of the MAVRIC on SIT 20 

projections it is prudent to test whether the MAVRIC can improve GCM performance by 21 

validating with real observationsPIOMAS. We use CSIRO-Mk3.6.0 (CSIRO) as the GCM to 22 

test. The ice in CSIRO generally has too much areal coverage and too little variability and is a 23 

CMIP5 outlier model with regards to SIT (Stroeve et al., 2014). However, CSIRO benefits 24 

from having 10 ensemble members, increasing the robustness of the statistics. For these two 25 

reasons, it is considered a thorough test of the MAVRIC’s performance within a real GCM. 26 

The test uses a data denial method where we train the MAVRIC on a subset of PIOMAS 27 

observations, 1979 – 1999, termed the calibration window. From this we examine how the 28 

MAVRIC predicts the observations for 2000 – 2014, termed the validation window. A 29 
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limitation with this method is the length of observations: the period over which the MAVRIC 1 

calibration takes place must be long enough to capture a robust measure of the observed 2 

statistics. The validation period must also be long enough to be able to draw robust 3 

conclusions. It is not clear whether either the 21 year calibration or the 15 year validation 4 

windows are long enough for robust method calibration and results verification, but we are 5 

limited by the data available. An additional limitation to this method is that the calibration and 6 

validation periods are very close to each other.  7 

Figure 5 shows the performance of the MAVRIC at three grid points for September. The raw 8 

CSIRO ensembles (grey) are bias corrected via the MAVRIC using the PIOMAS observations 9 

(black) over the calibration window, producing the MAVRIC corrected ensembles (green) for 10 

the validation window. If the MAVRIC can produce plausible predictions, the characteristics 11 

of PIOMAS should be indistinguishable from individual corrected ensemble members in the 12 

validation window. It is clear from the validation beanplots (right), that the distribution from 13 

the corrected ensembles resembles PIOMAS much more closely than the raw distribution, e.g. 14 

non-zero probability of zero ice. We do not expect the distribution from PIOMAS to match 15 

the corrected distribution perfectly as PIOMAS only has one realisation (15 data points) while 16 

CSIRO has 10 realisations. We can tentatively accept that this test demonstrates the validity 17 

of the MAVRIC approach.  18 

In the following sections the MAVRIC is applied to the CMIP5 subset of six GCMs used in 19 

this study (Table 1). PIOMAS estimates of Arctic SIT are available from 1979 – 2014. This 20 

36 year window is the period over which statistics are calculated in the observations, and in 21 

the CMIP5 subset (using historical runs for 1979 – 2005 and RCP8.5 for 2006 – 2014). Each 22 

model, month, and grid point has its own specific correction which is applied to all years 23 

(1979 – 2100). However, separate ensemble members from the same GCM are treated with 24 

the same correction, as we wish to correct the model bias and retain the ensemble spread. 25 

Results are shown for September, initially only for CSIRO and later for all six models 26 

combined to form the ‘CMIP5 subset’ used for this study. 27 

4.1 Temporal perspective example 28 

Figure 6 shows the impact of the MAVRIC in September in CSIRO at the same three grid 29 

points as Fig. 4 but for the entire calibration window (1979 – 2014). The East Siberian Sea in 30 

CSIRO has about double the SIT and half the SD of PIOMAS (Fig. 5a). The correction 31 
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therefore reduces the mean SIT whilst increasing the variance. This brings forward the range 1 

of first year ice-free conditions (the first occurrence in each ensemble member of a SIT below 2 

0.15 m) from after 2100 to 1981 – 2032. Ice age (and hence strength) correlates well to ice 3 

thickness (Maslanik et al., 2007), and values below 0.15 m correspond to young and grey ice 4 

categories, and operations in this ice regime require no specific ice strengthening of vessels 5 

(Transport Canada, 1998). Similarly in the Beaufort Sea (Fig. 5b) the SD needs to be almost 6 

tripled, and the correction results in the first ice-free year coming over 100 years earlier. In 7 

the Fram Strait (Fig. 5c) CSIRO and PIOMAS have similar SIT requiring only a small mean 8 

adjustment, however CSIRO requires a big increase in variance. The MAVRIC moves the 9 

first possible ice-free date about 30 years earlier and increases the ensemble uncertainty range 10 

from 32 to 63 years. It is worth noting that the dominant cause of this shift to earlier ice-free 11 

date at this location is due to the variance correction term in the MAVRIC rather than the 12 

mean correction term. This highlights the importance of correcting the variance in addition to 13 

the mean. Figure 6 demonstrates that the MAVRIC can lead to simulations that look 14 

significantly more like reality in the historical period and have an impact on regional ice-free 15 

projections.  16 

4.2 Historical spatial perspective 17 

In addition to examining the MAVRIC in a temporal sense, it is important to evaluate the 18 

results spatially to see where the MAVRIC is having the most effect and if it works at all 19 

locations. Figures 3 and 7 show that the mean September SIT distribution is very different in 20 

HadGEM2-ES and CSIRO. After the MAVRIC has been applied, the mean SIT fields are 21 

almost identical for the historical period (Fig. 6). It is important to note there are still 22 

differences when considering individual years and ensemble members i.e. the year-to-year 23 

variability and ensemble spread is preserved (although adjusted by the MAVRIC).  24 

Figure 7 also shows the SD before and after the MAVRIC. The SD shown is the detrended 25 

mean ensemble SD as before. CSIRO has too low variability in the majority of locations 26 

although correctly places the maximum SD near the edges of the ice pack similarly to 27 

PIOMAS. HadGEM2-ES exhibits about the same magnitude of variability as the observations 28 

but the variability is too high in the centre of the ice pack and too low at the edges. After the 29 

correction the SD fields in both GCMs now look more similar to each other with the highest 30 

variability located at the edge of the ice pack and at coastal locations. They are now also both 31 

similar to the estimate from PIOMAS (Fig. 1). 32 



 17 

4.3 CMIP5 subset multi-model sea ice thickness projections 1 

The bias corrected SIT from each GCM can be brought together to form the multi-model 2 

mean CMIP5 subset, computed using three ensemble members (the maximum available 3 

across all models) from each of the six GCMs for the historical and future decadal periods 4 

(Fig. 7). It is remarkable how the raw multi-model mean product for the historical period is 5 

not too different from PIOMAS in Fig 1, showing that the location and magnitude of model 6 

biases cancel out to a considerable degree, at least with this subset of models. Given this 7 

result it is not so surprising that the raw and corrected fields are fairly similar for the future 8 

projections also. 9 

Nevertheless, even in this multi-model multi-ensemble framework the MAVRIC is still 10 

making some discernible differences. These differences are most apparent in the Canadian 11 

archipelago and the Russian Arctic seas, where the correction leads to a reduction in SIT of 12 

approximately 1 m in both regions. Both the raw and bias corrected fields predict a SIT loss 13 

of about 0.25 m per decade.  14 

The fact that the MAVRIC is still making a significant difference on the regional scale is 15 

critical, e.g. for ship route availability. Currently studies that assess the future opening of 16 

Arctic shipping routes, which critically depend on the absolute value of SIT, do not yet 17 

account for such factors and will need to be reassessed.   18 

4.4 Sources of uncertainty in projections of sea ice thickness 19 

The uncertainty in climate projections can be partitioned into three distinct sources: (1) model 20 

uncertainty: for the same radiative forcing different models simulate different mean 21 

distributions and temporal changes. (2) Internal variability: the natural fluctuations of the 22 

climate present with or without any anthropogenic induced changes to radiative forcing. (3) 23 

Scenario uncertainty: uncertainty in future radiative forcing resulting from unknown future 24 

emissions. Hawkins and Sutton (2009, 2011) assessed these sources of uncertainty in global 25 

and regional temperature and precipitation projections, and here we quantify the sources of 26 

uncertainty in SIT, utilising the CMIP5 subset multi-model ensemble. Crucially we use the 27 

absolute values of SIT rather than considering anomalies as is often done for other climate 28 

variables. The methodology for partitioning these sources of uncertainty is detailed in 29 

Appendix B. An additional source of uncertainty that we neglect here is the PIOMAS 30 

calibration uncertainty emerging from the choice of atmospheric reanalysis and model tuning. 31 
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This could be assessed by sampling the different versions of the PIOMAS reanalysis 1 

described in Lindsay et al. (2014). They find the different versions are broadly similar and can 2 

be accounted for by appropriate tuning of the ice model component. This bias in PIOMAS 3 

itself will introduce systematic biases to the MAVRIC projections. This bias is not a flaw in 4 

MAVRIC however but a limitation intrinsic to the observational dataset one is correcting to.  5 

In the following sections, we equate reducing model spread with reduced uncertainty. While 6 

some of the outlier simulations of SIT are now more similar to the multi-model mean, this 7 

doesn’t necessarily equate to reduction in uncertainty. For example the initial selection of 8 

GCMs may not have been representative, or all of the GCMs from CMIP5 may have some 9 

inherent systematic biases, reducing the spread of which wouldn’t help sample future 10 

observations. 11 

The MAVRIC method outlined in this study acts to eliminate the model bias (and hence 12 

potentially reduce the uncertainty) in the MAVRIC calibration period (1979 – 2014). After 13 

this period the model uncertainty grows due to the GCM’s differing responses to changes in 14 

external forcing. The sources of uncertainty for SIT for the decade 2015 – 2024, immediately 15 

following the MAVRIC calibration period, are shown in Fig. 8. The total uncertainty in the 16 

corrected CMIP5 subset is strikingly lower than in the raw CMIP5 subset. Closer analysis 17 

reveals that this is due to the substantial reduction in model uncertainty owing to the 18 

MAVRIC. The other sources of uncertainty do not change as much.  19 

The temporal evolution of these sources of uncertainty is shown in Fig. 9a by taking the 20 

median variance from each of the panels in Fig. 8 for this and other periods. There are three 21 

competing factors for how the uncertainty will change with time. First, the SIT is decreasing, 22 

and this will reduce the uncertainty as the range of values of which the SIT can occupy 23 

shrinks. Second, the separate GCM’s simulated SIT responses due to external forcing will 24 

differ from each other, causing GCMs to drift apart over time. Thirdly, sea ice at the grid 25 

point scale becomes more mobile and vulnerable to external factors as it thins. This will 26 

increase variability, initially at least (Sou and Flato, 2009). All of these factors are involved in 27 

the evolution of the uncertainties.  28 

The raw CMIP5 subset exhibits a decrease in total uncertainty with time (dashed black in Fig. 29 

9a). This is primarily due to the reduction in model uncertainty (dashed blue), likely because 30 

the mean SIT is reducing. The corrected total uncertainty is lower than the raw uncertainty 31 

until at least the end of the century. This means that the MAVRIC can reduce uncertainty the 32 
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model spread (or bias) and so may potentially increase confidence in climate projections of 1 

SIT throughout this period. The corrected model uncertainty increases for the first three 2 

decades, as the models start from a similar state and subsequently diverge because of differing 3 

responses to the changes in external forcing. Later the corrected model uncertainty reduces as 4 

the mean SIT decreases towards zero.  5 

The total uncertainty is the sum of model uncertainty, internal variability, and scenario 6 

uncertainty (see Appendix B for more details). The other panels in Fig. 9 illustrate the relative 7 

importance of these sources of uncertainty in terms of the percentage total variance explained, 8 

for the raw data, and after the MAVRIC. 9 

Fig. 9b illustrates that in the raw projections, model uncertainty remains the dominant (> 50 10 

%) source of uncertainty until at least 2100, whereas it only becomes dominant for a few 11 

decades mid-century after the MAVRIC (Fig. 9c). The absolute magnitude of internal 12 

variability, and its contribution to the total uncertainty, decreases with time because SIT also 13 

decreases with time. In the corrected projections, the internal variability is the major 14 

contributor to the total uncertainty for the first 25 years, compared to a maximum contribution 15 

of only 26 % in the raw projections. This highlights the importance of correcting the variance 16 

to realistic magnitudes and also the key role of natural variations in predicting the near future 17 

evolution of sea ice. The scenario uncertainty accounts for less than 10 % of the total 18 

uncertainty for the first 50+ years. Additional analysis metrics on the improvement the 19 

MAVRIC method affords can be found in Appendix C. 20 

Although we have demonstrated here that the MAVRIC method reduces the model 21 

uncertainty as seen by the reduction in spread of projected SIT with our selection of GCMs, 22 

we acknowledge that this may not necessarily correspond to a reduction in uncertainty in the 23 

real world.  24 

4.5 Reduceding uncertainty spread in timing of ice-free conditions 25 

By reducing the model uncertainty spread the range of possible outcomes has been reduced, 26 

this potentially leads to greater confidence in SIT projections. Figure 11 shows the raw and 27 

corrected CMIP5 subset SIV* projections until 2100 using the 18 multi-model ensemble 28 

members in each scenario as before (* calculated here does not consider SIC as it is not bias 29 

corrected). To find a representative SIC for the SIV* calculation we use the September SIC in 30 
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CCSM4 RCP8.5 and find a mean (of the non-zero grid cells) SIC of approximately 50% for 1 

2006-2100.  2 

The thick coloured lines are the multi-model scenario mean and the coloured regions 3 

represent the 16 – 84 percentiles (equivalent to 1σ around the mean of a Gaussian 4 

distribution) of the ensemble members. To account for the large range in SIT at any particular 5 

time in the CMIP5 subset, we use a method similar to that of Massonnet et al. (2012) to 6 

calculate first ice-free conditions. We postulate that SIV for ice-free conditions is 7 

1 × 103 km3 , which is in agreement with previous studies calculating first ice-free dates (e.g. 8 

Massonnet et al. (2012) and Overland and Wang (2013)), and is equivalent to one meter thick 9 

ice for an ice extent of 106 km2.  10 

The MAVRIC reduces the total SIV, but the relative magnitude of this reduction decreases as 11 

SIV declines. The 16 – 84 % range has also been vastly reduced, particularly for the near 12 

future. For example, in 2025 the MAVRIC has reduced the 16 – 84 % range from 6 × 103 km3  13 

to 2.5 × 103 km3. It is this reduction in the plausible range of SIV that leads to potential 14 

increased confidence in projections of SIT and SIV. To assess when the Arctic will first 15 

display ice-free conditions, we focus on RCP8.5, the most realistic scenario from the last 10 16 

years (Fuss et al., 2014). The cumulative number of ensemble members having satisfied the 17 

ice-free criterion as a function of time is shown in Fig. 10c. If uncertainty the range in this 18 

parameter has reduced, this will be shown by the gradient of the line increasing after 19 

MAVRIC, and this is clearly seen. Figure 11d further illustrates the uncertaintyspread 20 

reduction with boxplots, where the line represents the median (9th) ensemble member to go 21 

ice-free. This occurs in 2052 with the MAVRIC, nine years earlier than before. The box 22 

represents 16 – 84 % of the ensemble members, this range has been reduced by about 20 23 

years; dates after 2085 can now be eliminated.   24 

Corrected results from the other emission scenarios show similar features but with later ice-25 

free dates, as expected for lower emissions, and some ensemble members fail to go ice-free by 26 

2100. For RCP4.5 the MAVRIC makes a profound difference with the median ice-free date 27 

occurring 35 years earlier in 2060. For RCP2.6 there is uncertaintyspread reduction mid-28 

century but the CMIP5 subset before and after the MAVRIC are in good agreement by the 29 

end of the century, with projected ice-free dates around 2090.  30 

 31 
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5 Summary and discussion 1 

5.1 Summary 2 

This study has developed a bias correction methodology for simulations of sea ice thickness 3 

(SIT). By constraining CMIP5 simulations with the PIOMAS reanalysis we have 4 

demonstrated that: 5 

 GCMs simulate a wide range of SIT in the historical period and exhibit various spatial and 6 

temporal biases when compared with the PIOMAS reanalysis. This model uncertainty is 7 

the dominant source of uncertainty in CMIP5 future climate projections of SIT. 8 

 The Mean And VaRIance Correction (MAVRIC) technique outlined in this paper 9 

significantly reduces the total uncertainty in future projections of SIT out to 2100 by 10 

reducing model uncertainty. Correcting both mean and variance of models is found to be 11 

critical for improving the robustness of the projections. 12 

 The MAVRIC results in internal variability being the dominant source of uncertainty until 13 

2022, and  model uncertainty is dominant thereafter. From mid-century onwards, scenario 14 

uncertainty becomes increasingly important and as influential as model uncertainty by 15 

2100.  16 

 The MAVRIC results in projected September ice-free conditions in the Arctic under 17 

RCP8.5 occurring up to 10 years earlier (2050s) than without the correction, and with a 18 

much narrower uncertainty range, e.g. excluding post 2085 dates.   19 

5.2 Discussion 20 

Without the MAVRIC, the true magnitude of the internal variability and scenario uncertainty 21 

in projections of SIT is concealed by the dominant model uncertainty. This demonstrates that 22 

time invested in running many ensemble members to sample internal variability in SIT may 23 

be more beneficial than running many future emission scenarios for near term projections. 24 

These findings implicate that there is room for improvement in GCMs at least for 50 year 25 

projections where the scenario differences are negligible. However, for projections at the end 26 

of the century, the scenarios become more important.  27 

The MAVRIC bias correction technique developed in this study results in a significant 28 

improvement in model simulations of SIT with respect to observations. In future projections, 29 

the MAVRIC results in a substantial reduction in uncertainty the range of SIT, potentially 30 
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leading to increased confidence in climate projections. As absolute values of SIT are utilised, 1 

this reduction in uncertaintyspread potentially has important implications for stakeholder 2 

sectors operating in Arctic waters such as shipping. The application of the bias correction 3 

results in a 60% reduction in the likely range (16 – 84 percentiles) of sea ice volume in 4 

September 2025. 5 

There are a number of caveats to these findings. No attempt is made to constrain the trend in 6 

the GCMs. This would be difficult because of the short time scale over which observations 7 

are available, raising serious questions about the robustness of calculated historical trends. 8 

However future studies could consider this further and assess the feasibility of a trend 9 

correction to GCMs. In addition, it is important to recognise that PIOMAS, used here as 10 

observations, will also have errors. It would be possible to reduce the multiplicative 11 

weightings in Eq. (4) to reflect some uncertainty in the historical data constraint. Other 12 

temporally and spatially complete sea ice reanalyses could also be used in future to address 13 

this issue. 14 

The simulations tend to show an increase in variance as the sea ice thins, before subsequently 15 

declining as the thickness approaches zero (Goosse et al., 2009). Blanchard-Wrigglesworth 16 

and Bitz (2014) assessed the relationship of this mean state dependant variance in 19 GCMs, 17 

including five of the six used in this study, in addition to PIOMAS. They find a relationship 18 

between mean thickness variability and mean thickness in models, i.e. models with thicker 19 

SIT depict more variable SIT. In the 19 GCMs assessed, PIOMAS sits on the trend line for 20 

the correlation between mean thickness variability and mean thickness. However, in the 21 

developed MAVRIC, the change in variance is decoupled from the applied change to the 22 

mean state. This aspect could be further developed, but only by making additional 23 

assumptions about future changes in SIT variability. 24 

Studies should make use of the MAVRIC in assessing the impact on potential stakeholders 25 

sensitive to SIT and a paper utilising the MAVRIC to investigate the opening of the Arctic sea 26 

routes is in preparation. We also make the bias corrected SIT fields (Melia, 2015), freely 27 

available online for further investigations at http://dx.doi.org/10.17864/1947.9. DOI: xxxx 28 

http://  29 

  30 
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Appendix A Supplementary MAVRIC methodology details 1 

For model biases to be calculated a common grid needed to be used, hence all MAVRIC 2 

calculations took place on the CMIP5 model’s native grid. This means that PIOMAS was 3 

converted to the CMIP5 model grid for each GCM’s bias calculations. This choice was made 4 

as it only involves interpolating one of the two fields each time and generally it is PIOMAS 5 

that has the higher resolution. The BC shown in Eq. (4) contains two terms for the 6 

representation of the variance in both observations 𝜎𝑂ℎ̂
 and models 〈𝜎𝑀ℎ̂

〉. Over the 36 year 7 

period of observations the magnitude of the ice loss trend can be significant. To accurately 8 

calculate variances this externally forced trend should first be removed to leave the variance 9 

due to internal variability. Here a choice needs to be made about how best to remove the 10 

externally forced trend. For the PIOMAS observations we choose to linearly detrend the 11 

monthly data. A smoothed detrending was considered, however this might remove longer 12 

time scale variability which is undesirable. Using similar reasoning it is possible that the 13 

linear detrending is removing some variability on the multi-decadal timescale. This is 14 

assumed to be significantly less than variability on smaller timescales, and much of the trend 15 

is attributed to be externally forced over the 36 years, hence should not be included as internal 16 

variability. The performance of a smoothed detrend was tested in a theoretical framework and 17 

resulted in a 10 % loss of accuracy in the standard deviation correction due to describing 18 

variance as trend.  19 

The calculation of variance in the models is more complicated due to the fact that there is 20 

more than one realisation. It is obvious that the required variance should be calculated from 21 

the individual ensemble members rather than the ensemble mean. The variance should be 22 

calculated in each ensemble member and then the mean taken. There is another choice to 23 

make, i.e. whether each ensemble member should be detrended with its own trend, or should 24 

the ensemble mean trend be used? We propose that the ensemble mean trend should be used 25 

as this is the models response to the changes in forcings. The model detrended ensemble mean 26 

standard deviation, 〈𝜎𝑀ℎ̂
〉, was calculated by calculating the detrended ensemble variances, 27 

then taking the square root of their mean. 28 

The running mean for the future model correction term 〈𝑀̃〉 is calculated over an 11 year 29 

period of the ensemble mean, this window hence starts at 1975 for the historical calculations. 30 

The chosen period must be long enough to adequately smooth the time series, whilst still 31 
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being able to capture variations in the sea ice decline trend. This was also tested and found to 1 

outperform a 21 year period.  2 

  3 



 25 

Appendix B Partitioning sources of uncertainty 1 

The sources of uncertainty in Sect. 4.4, Figs. 8 and 10 are calculated for each decadal period 2 

(2005 – 2014, 2015 – 2024, etc.) separately as follows.  Three ensemble members from each 3 

of the six GCMs are utilised for three different emission scenarios (RCP2.6, 4.5, and 8.5). 4 

This results in each decade having 6(GCMs) × 3(ensemble members) × 3(scenarios)  5 

× 10(years) = 540(fields).  6 

 The total uncertainty is the variance calculated across all 540 fields.  7 

 The internal variability is calculated similarly to the total variability except instead of the 8 

absolute values the anomalies from the models’ decadal-mean ensemble-mean for each 9 

scenario are used. 10 

 To calculate the model uncertainty, each of the six models’ decadal-mean ensemble-mean 11 

is calculated, resulting in six fields. The variance is then calculated across these six fields, 12 

and repeated for all three scenarios separately (to eliminate differential model dependent 13 

responses to the different emission scenarios). The model uncertainty is the square root of 14 

the mean of these three fields.  15 

 The scenario uncertainty is calculated in a similar way. For each model, each of the three 16 

scenarios decadal-mean ensemble-means are calculated resulting in three (scenario-17 

dependant) decadal-mean ensemble-means for each of the six models. The variance is 18 

then calculated through these three scenario mean fields for each of the six models, 19 

resulting in six fields of the variance in each model. The square root of the mean of the six 20 

models scenario uncertainty is the scenario uncertainty.21 

To create Fig. 8b and c it is assumed that the total variance (total uncertainty, 𝑇2) is the sum 22 

of the variance due to model uncertainty (𝑀2), internal variability (𝐼2), and scenario 23 

uncertainty (𝑆2), formally: 24 

𝑇2 = 𝑀2 + 𝐼2 + 𝑆2 (B1) 

We note that the variances calculated above do not always sum exactly in this way due to 25 

small interaction terms (approximately 10%) which we ignore.  26 

  27 
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Appendix C Additional MAVRIC performance analysis 1 

To highlight whether the estimated uncertainties are reliable, we examine the errors in the 2 

projections when considering one member as ‘truth’. As all ensemble members are 3 

constrained by PIOMAS one individual ensemble member out of sample should fall with in 4 

the distribution of the remaining ensemble members. This principle should hold true for all 5 

ensemble members out of sample in turn.   6 

The root mean square error (RMSE) is calculated using the Eq. (C1): 7 

 𝑅𝑀𝑆𝐸 = √
1

18
∑(𝐸𝑛 −  𝐸15

̅̅ ̅̅ )2

18

𝑛=1

 

 

(C1) 

where 𝐸𝑛 is the ensemble member between 1 to 18, 𝐸15
̅̅ ̅̅  is the mean of the 15 ensemble 8 

members from the models of which 𝐸𝑛 is not a member.  9 

Figure C1 shows the advantage of the MAVRIC method in this out of sample RMSE test. A 10 

decreasing RMSE means that the models are initially biased though are converging to a 11 

common value (as we expect in this case as the models trend towards being ice-free). An 12 

increasing RMSE means that the models are diverging as they have different ice loss trends.  13 

Figure C1 shows the advantage of the MAVRIC method in this out of sample RMSE test. A 14 

decreasing RMSE means that the models are initially biased though are converging to a 15 

common value (as we expect in this case as the models trend towards being ice-free). An 16 

increasing RMSE means that the models are diverging as they have different ice loss trends. 17 

The MAVRIC ensemble trained on every individual ensemble member within MAVRIC 18 

results in a RMSE of 0.1 m initially and up to a maximum RMSE of 0.5 m. The fact that the 19 

Raw RMSE decreases (as opposed to increases) highlights that the models have biases. The 20 

0.1 m in the MAVRIC RMSE indicates that initially the MAVRIC ensemble members differ 21 

only in internal variability. The RMSE then grows due to differing ice loss trends which is 22 

expected as no attempt to correct the trends in this study.   23 

To find the dispersion of the MAVRIC multi-model ensemble we repeat this style of 24 

experiment with the standard error (SE) metric, using Eq (C2): 25 

𝑆𝐸 =
𝐸𝑛 −  𝐸15

̅̅ ̅̅

𝜎15
 

 

(C1) 
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where 𝐸𝑛 is the ensemble member between 1 to 18, 𝐸15
̅̅ ̅̅  is the mean of the 15 ensemble 1 

members from the models of which 𝐸𝑛 is not a member. 𝜎15 is the standard deviation of the 2 

15 ensemble members of which 𝐸𝑛 is not a member. This is repeated for all 18 ensemble 3 

members giving 18 SEs of how different each ensemble member is to the rest of the multi-4 

model ensemble set. The SD across these 18 SEs is the dispersion of the multi-model 5 

ensemble. A perfectly dispersed ensemble set will have a dispersion of one. Numbers less 6 

than one mean the ensemble set is under-dispersed and hence predictions/projections from 7 

that set will be under-confident as the SD is too large. Values greater than one indicate that 8 

the system is over-dispersive and hence over-confident.  9 

The results of the dispersion calculation are shown in Fig. C2. The MAVRIC ensemble is 10 

approximately 15 % - 30 % over-dispersed for lead times of up to 60 years. This means that 11 

the ensemble is slightly over-confident and thus has slightly too little overall variance. The 12 

rapid increase in dispersion from 60 years is solely due to the CSIRO GCM, specifically it’s 13 

comparatively slow ice loss trend. This was tested by repeating the dispersion experiment 14 

omitting CSIRO (not shown). At this lead time many models are starting to be ice-free in 15 

September while CSIRO retains ice. It is to the merit of MAVRIC that it is less over-16 

dispersed than the Raw output, hence more reliance can be placed on MAVRIC than the Raw 17 

output as it’s ensemble distribution is more representative.   18 
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Table 1. List of models used: the CMIP5 subset and observations. 1 

Institution Model name Ensemble 

members* 

Commonwealth Scientific and 

Industrial Research 

Organisation (CSIRO) 

CSIRO Mark version 3.6.0: CSIRO-Mk3.6.0  

(Rotstayn et al., 2012) 

10 

Met Office Hadley Centre Hadley Centre Global Environment Model 

version 2-Earth System: HadGEM2-ES  

(The HadGEM2 Development Team et al., 

2011) 

4 

National Center for 

Atmospheric Research 

Community Climate System Model, version 

4: CCSM4  (Gent et al., 2011) 

6 

National Center for 

Atmospheric Research 

Community Earth System Model, 

Community Atmosphere Model, version 5: 

CESM1-CAM5 (Meehl et al., 2013) 

3 

Model for Interdisciplinary 

Research on Climate (MIROC) 

MIROC version 5: MIROC5 (Watanabe et 

al., 2010) 

3 

Max Plank Institute for 

Meteorology (MPI) 

MPI Earth System Model, low resolution: 

MPI-ESM-LR (Jungclaus et al., 2006) 

3 

Applied Physics Laboratory 

(University of Washington) 

Pan-Arctic Ice Ocean Modelling and 

Assimilation System: PIOMAS** (Zhang 

and Rothrock, 2003) 

1 

*multi-model statistics are calculated (Sect. 4.3 onwards) using the first 3 ensemble members. 2 

**used as observations. 3 
  4 
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Table 2. Notation key 1 

Notation Description 

𝑀 Model  

𝑂ℎ Observations  

𝑥ℎ 𝑥 over the historical period (1979 – 2014) 

𝑥̅ Time mean of 𝑥 over historical period 

〈𝑥〉 Ensemble mean of 𝑥 

𝑥̃ Running time mean (11 years) of 𝑥 

𝑥̂ Temporally detrended 𝑥 over the historical period 

𝜎 Standard deviation 

  2 
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 1 

Figure 2. September 1979 – 2014 mean SIT and standard deviation (SD) from the PIOMAS 2 

reanalysis. SD is calculated after removing the linear trend.  3 

  4 
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 1 

Figure 3. Mean September SIT for each of the six GCMs considered, averaged over the 2 

period 1979 – 2014.  3 

  4 
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 1 

Figure 4. Performance of different SIT BCs for one particular month at a hypothetical grid 2 

point in a toy model. Mean, SD (detrended) and trend legend statistics are calculated over the 3 

observation period (1979 - 2014). ‘Ice-free’ is defined as the first occurrence of any ensemble 4 

member below 0.15 m. Shown is the ice-free ensemble range, i.e. the year of the first 5 

ensemble member to be ice-free to the last ensemble member to be ice-free. The black line 6 

represents ‘observations’, the blue and red lines represent high and low ice models 7 

respectively. The thin coloured lines represent ensemble members, and the thick lines are the 8 

ensemble mean.  9 
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 1 
Figure 5. September SIT at three grid point locations in the Arctic, from PIOMAS (black) and 2 

CSIRO-Mk3.6.0 historical (1979 – 2005) and RCP8.5 (2006 – 2014) raw output (grey) and 3 

post MAVRIC (green). The raw CSIRO ensembles (grey) are bias corrected via the MAVRIC 4 

using the PIOMAS observations (black) over the calibration window, producing the 5 

MAVRIC ensembles (green) for the validation window. Beanplots (right) show the 6 

distribution of the SIT for the validation period. Small horizontal lines show every SIT value, 7 

the frequency of which is illustrated by the width of the shaded region. Thick horizontal line 8 

is the mean.  9 

  10 
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 1 

Figure 6. September SIT at three grid point locations in the Arctic, from PIOMAS (black) and 2 

CSIRO-Mk3.6.0 historical (1979 – 2005) and RCP8.5 (2006 – 2100) raw output (grey) and 3 

post MAVRIC (green). Thin lines are individual ensemble members, thick lines are the 4 

ensemble means. Mean, SD and trend legend statistics calculated over the period of 5 

observations (1979 – 2014). The SD is the detrended mean ensemble SD. Ice-free is the range 6 

of the first occurrence of the first and last ensemble member below 0.15 m.  7 

  8 



 40 

 1 

Figure 7. CSIRO-Mk3.6.0 and HadGEM2-ES, September 1979 – 2014 ensemble mean SIT 2 

and SD (detrended). The raw columns are the model solutions as found in the CMIP5 archive. 3 

The corrected columns show the distribution after the MAVRIC has been applied. PIOMAS 4 

SIT fields shown in Fig 1. 5 

  6 
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 1 

Figure 8. September multi-model ensemble mean (three members from each model) mean 2 

SIT from the CMIP5 subset, using the raw data (top row) and after MAVRIC (middle row).  3 

The bottom row shows (MAVRIC – Raw) and hence green areas are where MAVRIC has 4 

reduced SIT and purple areas are where MAVRIC has increased SIT. 5 

 6 
  7 
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 1 

Figure 9. September 2015-2024 sources of SIT uncertainty from the CMIP5 subset (SD of the 2 

detrended SIT). The multi-model ensemble mean (three members from each) is shown when 3 

comparing raw (top row) and after MAVRIC (bottom row).  4 
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 1 

Figure 10. The evolution of the sources of September SIT uncertainty in the CMIP5 sub-set 2 

with lead time. Year zero is the MAVRIC window mid-point (1997) and the emission 3 

scenarios (RCPs) start in 2006. Panel a shows the change in magnitude of the different 4 

sources of uncertainty. The uncertainty shown is the median SIT variance and hence the lines 5 

scale additively. The dashed lines are for the raw model output and solid lines are for post 6 

MAVRIC.  Contributions of model uncertainty, internal variability and scenario uncertainty 7 

as a fraction of total uncertainty are shown for the raw output (b) and post MAVRIC (c).  8 

 9 

  10 
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 1 
Figure 11. CMIP5 subset sea ice volume (SIV*) projections and first ice-free conditions. 2 

Panels a and b show the projected SIV* from all six models (18 ensemble members total) in 3 

both the raw and corrected GCMs (11 year running mean), and shaded regions are the 16th – 4 

84th percentiles. Panel c shows the number of ensemble members having passed the ice-free 5 

threshold. Panel d shows the statistics of c, with the whiskers representing the range (1st and 6 

18th ensemble member ice-free), the box capturing the 16th – 84th percentiles, and the bold line 7 

showing the median (9th ensemble member). Ice-free is defined as the first year the pan-Arctic 8 

SIV* dips below 1 × 103 km3 for a particular ensemble member. *Volume (SIV*) is 9 

calculated using a constant50 % SIC throughout. 10 
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1 
Figure C1. Multi-model ensemble out of sample September median SIT RMSE 2 
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1 
Figure C2. Multi-model ensemble out of sample September median SIT dispersion  2 
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