Revisions and Responses for:
Inconsistency in precipitation measurements across Alaska and Yukon border
L. Scaff, D. Yang, Y. Li, and E. Mekis

From: Anonymous Referee #1
Received and published: 14 August 2015

General Comments
This study compared precipitation observations along international borders to investigate the impact of gauge type biases on the distribution of precipitation. The use of observed and corrected precipitation, in my opinion, is an interesting topic worthy of exploring. This is particularly true for the documented gradient difference, which I found to be the most novel part of the manuscript. However, these results are limited by the very small sample size; a set of two groups. In addition, I found the manuscript lacking details in some locations, which may be helpful to prospective readers. For instance, the authors never comment on whether precipitation gradients across the U.S.-Canada border should resemble the corrected or uncorrected gauge data results. Also missing was a brief description of how the Yang et al. (2005) corrections were applied. This is of interest since U.S. National Weather Service (NWS) stations do monitor surface winds, which may be necessary to evaluate wind related biases. Moreover, I recommend the manuscript be considered for publication pending minor revisions; however, I’m concerned about the impact of the study considering the small sample size.

We greatly appreciate your time and comments, and we have improved the paper with the revision.

Specific Comments
1). The most interesting aspect of this study is the gradient differences between corrected and uncorrected gauge data. Unfortunately, this analysis is limited by the selection of a study area, which in my opinion is too narrowly focused on the Alaska and Yukon border. It is not clear in the manuscript why the southern region along the U.S. and Canada border was excluded. Do the authors expect differences along southern border to differ from the AK and Yukon comparison? Does the Yang et al. (2005) dataset not include stations along this border? Please explain.

Re: The main objective of this study is to examine and quantify the changes in precipitation gradient across the AK and YK border due to bias corrections of US and Canadian gauge observations. Many studies, including Yang et al., (2005)¹, clearly show that the biases in gauge precipitation measurements are very high (up to 80-100%) for the cold regions, particularly in areas with light snowfall and high winds. Relative to the AK-YK border, this region are cold with more snowfall compared with southern US-Canada, meaning higher biases due to wind induced gauge undercatch, and thus significant changes and difference between measured and corrected precipitation across AK-YK border. This is the reason why our study specifically selected such a region, i.e. to focus on an area with the biggest problem in precipitation measurements incompatibility. This study used data from 5 climate stations in 2 groups in the northern and central AK-YK regions. The selected stations very well represent climate gradient across the region, and the results from these sites are sufficient for the methodology development and demonstration of new knowledge in precipitation regime and distribution.

The data developed by Yang et al., (2005)\(^1\) include many climate stations along the southern US/Canada border. Since geography and climate conditions vary greatly along this long transect of several thousand kilometers, we expect to find different results from AK/YK transect.

Our effort is ongoing to investigate precipitation measurements and data quality over the US/Canada border regions.

2). If known, could the authors consider providing some context to the reader as to what direction the precipitation gradient should be along the border. In other words, should we expect more to less, less to more, or the same amount of precipitation as you move across the border from the U.S. to Canadian?

Re: Simpson et al. (2005)\(^2\) studied temperature and precipitation distributions (with ANUSPLIN and PRISM interpolation methods) over the State of Alaska, with 54 precipitation stations for ANUSPLIN interpolation and over 500 stations for PRISM. The records lengths are variables, but most of them are between 1930-1990 in ANUSPLIN and 1960-1990 in PRISM. They found that monthly precipitation show a clear seasonal variability with the maximum in summer season and precipitation consistently increase from north to south. The mean monthly (12 months average) precipitation distribution across the AK-YK border shows a difference in central Alaska (5-15 mm) and Yukon (15-40 mm) in both interpolations, including the headwater of the Yukon basin, which is consistent with higher values in Yukon (relative to AK) as we presented in Figure 9 in the manuscript. The Brooks Range (foothills and summits) also have higher mean monthly precipitation (approx. 40 mm) relative to its surroundings (approx. 25 mm). Mean monthly precipitation along the northern coast and the south region of the Beaufort Sea shows relatively homogeneous values, less than 10 mm as the 12-month average. These results are in general consistent with Serreze and Hurst (2000)\(^3\), who, based on monthly reanalysis and bias-corrected precipitation data over the large arctic regions, also identify a more dominant gradient north to south and a relatively homogeneous precipitation gradient along the coast of the Beaufort Sea compared with the increase in the Brooks Range.

Our results show a monthly mean precipitation amounts across the north regions from 150 mm to 300 mm for yearly total, (c.f. Fig. 7 in the manuscript), with higher (gauge measured) precipitation in Yukon than Alaska. After the bias corrections, the precipitation difference across the border is smaller, and even more the horizontal gradient changes the sign between Barter and Komakuk stations. These results are in agreement with the last above mentioned works. In the central region (c.f. Fig. 9 in the manuscript) the measured precipitation is slightly higher in Yukon, which is also consistent with Simpson et al., (2005)\(^2\).

The gradient also becomes smaller after the bias corrections.

We have included part of the information above in the revised manuscript.

3). I recommend the authors provide some additional details on how U.S. and Canadian gauge data were corrected at the daily scale. For instance, what surface wind speed data was used to correct National Weather Service (NWS) station gauge data if they are not equipped with sensors to monitor surface winds. Is it from nearby stations? If so, how far apart are the two sensors (anemometer and precipitation gauge)? Do the Canadian stations monitor surface winds? If not how far are those nearby measurements?

Re: We have provided additional details regarding bias corrections in the revision. The text below is a summary:

The bias corrections were done Yang et al. (2005) for more than 4000 northern stations above 45N, including the US and Canada, on a daily time scale. Gauge measured precipitation, temperature, and wind data were used for this task. For the US stations, wind data from the standard height was reduced to the gauge level of the NWS 8-in gauge. Wind speeds and directions were measured at the Canada climatic network; the same approach was applied to estimate the wind speed at the gauge height on precipitation days. The corrections were done only for those stations with wind data. There are many stations in the US without wind info and this is a challenge to gauge bias corrections. It has been recommended to measure wind speed and direction at the gauge height for the operational networks, so as to reduce the uncertainty in precipitation bias corrections.

Technical Comments

1). On page 3711 line 10, the acronym “P” has not been defined yet; please do so here.
Re: We replaced the acronym P for the word "precipitation".

2). On page 3712 line 23, replace “in” with “into”
Re: The change was made.

3). On page 3713, the sentence beginning on line 2 with “The observations have . . .” is confusing. Please describe exactly what the researchers’ have done to the gauge data that follows U.S. and Canadian national standards. I suspect this sentence may not be necessary?
Re: Agree, the sentence is not necessary. It was deleted.

4). On page 3713 line 7, the National Climatic Data Center (NCDC) has just recently changed its name to the National Centers for Environmental Information (NCEI). While urls are in the process of being updated, the old links will be preserved into the future. Recommend referring to the new name: National Centers for Environmental Information (formally National Climatic Data Center).
Re: Thank you for the information. The name of the center was changed and the link updated.

5). On page 3713 line 21, suggest revising sentence from “yearly precipitation data across the border station pairs” to “yearly precipitation data from the selected border station pairs”.
Re: The sentence was modified as suggested.

6). On page 3713 line 23, drop the “s” on periods.
Re: The "s" was deleted.

7). On page 3713 line 23, may want to consider briefly explaining what is meant by double mass curves. Such a description could be pulled from the summary and conclusion section where it is currently described in better detail.
Re: More detail of the DMC was included in this section.

8). The use of three acronyms for precipitation throughout the results section was slightly confusing: P, Pm and Pc. Perhaps P is not really necessary. To me, P was synonymous with Pm?

Re: It is true that we had many acronyms for different types of precipitation, so we decided to write out completely "precipitation" for total precipitation or for the general term, and keep Pm to indicate "Measured Precipitation" in comparison to Pc, which is "Corrected Precipitation".

9). On page 3714 line 17, add an “s” to “word”; “In other words, . . .”

Re: We included the "s".

10). On page 3715 line 21, use the Pm acronym for “measured P” Pc for “the corrected values”.

Re: We replaced the words for the acronyms, to be consistent.

11). On page 3716 line 23, you may want to consider replacing the second use of the term “correction” with “bias”?

Re: We modified the word as suggested.

12). On the same sentence as earlier (comment 11), consider replacing “besides” with “apart from”.

Re: We modified the word as suggested.

13). On page 3716 line 29, the sentence may read better as “Eagle and Dawson regions with border station mean temperature and wind speed within a degree Celsius and meter per second respectively”.

Re: We modified this sentence to make it clearer.

14). On page 3717 line 27, please invert "respectively" and “for Pm and Pc” so the sentence reads “. . . 347 mm for Pm and Pc respectively.”

Re: The word “Respectively” was deleted and improved the text for a better understanding.

15). On page 3718 line 2, I believe the numbers 88 and 139 should also be inverted?

Re: Thank you for noting this typo, the numbers were corrected and verified in the calculations. We also extended this phrase a bit more for a better understanding.

16). On page 3720 line 21, please provide a bit more information on how the instrument has changed. For instance, was a new Nipher gauge installed?

Re: We found the evidence of anemometer issue, which was fixed by 1980/08/28. This may affected the corrected precipitation values. Maybe other changes have been done, but no other record of them was found.
17). On page 3720 line 22, the sentence beginning as “Both stations. . .” seems a bit odd. For instance, what is the cumulative precipitation increase of 3% in reference to; Pc compared to Pm? You may also want to identify on figure 11 where exactly 1204 and 1352 mm are on the x-axis (i.e. add a line to the graph)?

Re: The phrase was modified and the figure was corrected. The x axis was not long enough, so it couldn’t show the whole curve.

18). On page 3711 line 11, the reference for Leeper et al. 2014 should be 2015?

Re: Yes, the year is 2015. It was corrected in the new version of the manuscript.

19). On pages 3714 line 27, 3716 line 10, and 3723 line 29 there are references to Yang et al. 1998, which according to the cited references should be identified with either an “a” or “b”.

Re: The references were updated.

20). On page 3722 line 27, should the Searcy and Hardison Clayton, 1960 inline reference be Searcy and Clayton, 1960?

Re: Yes, the reference was modified. However, the last name of the second author is Hardison, so the reference is now: (Searcy and Hardison, 1960). This paragraph was moved to the “Study Area, Data and Methods” section.

21). On page 3722 line 20, replace “the” with “a”? “It is very clear from this study that a. . .”.

Re: The text was modified.

22). On page 3722 line 23, you could omit “and cold” since the sentence is already talking about snowfall; cold conditions are already implied.

Re: The sentence was improved.

Re: The inline reference was removed.

24). On page 3724 line 10, since “national networks” is not referring to a specific network so you may want to remove word “the”? So the sentence reads: "...precipitation measurements at national networks.

Re: The word was changed.

25). Figure caption 1 should read “Study area and locations of selected. . .”?

Re: The word was added.
From S. Stuefer (Referee)
sveta.stuefer@alaska.edu
Received and published: 22 September 2015

Originality: The scope of the manuscript is well suited for The Cryosphere. This paper compares precipitation data from 3 gauges located in the Yukon Territory, Canada, with precipitation data from 2 gauges located in northern Alaska, USA. Both solid and liquid precipitation are considered in this comparison. The main finding of the paper is that monthly and yearly precipitation amounts are inconsistent between U.S. and Canadian stations along the Beaufort Sea coast. This inconsistency is attributed to the differences in instrumentation (precipitation gauges) between two countries.

Scientific quality: The purpose of this paper - to identify and quantify inconsistency in precipitation measurements - is well articulated. The methodology involved correction of systematic biases and a comparison of measured and corrected monthly and annual precipitation data between different stations using regression analysis and double mass curves.

RE: We greatly appreciate your review and suggestions. We have improved the paper during the revision.

Inconsistency in monthly and yearly precipitation can be attributed to several major factors: (1) differences in gauge performance, (2) the amount of missing data, and (3) natural variability in precipitation. Though the authors have most certainly considered all these factors, only one factor (gauge performance) is discussed in the current version of the manuscript. To omit discussion of the two other factors is a shortcoming that needs to be addressed.

Re: we agree with this important comment. The main approach of this paper is to quantify the difference of the gauge performance in the northern regions between US and Canada.

As suggested, the amount of missing data will affect data analysis, including the calculations of monthly and annual total precipitation. We considered this issue and set up 30% threshold for the maximum missing data in each month. For the months with greater missing percentages, monthly was not calculated. In this revision, we have included the missing data values in the results and figures, although this factor should be minor for our analysis with long-term data at multiple stations.

The natural variability in precipitation is the key question for this study. We are aware that the selected stations are not close enough to assume to receive similar amounts of precipitation, since they are subject to different environments perhaps with some local terrain effects. That is why the calculation of precipitation difference, i.e. the gradient across the border, is the focal point of the analysis. Furthermore, we also quantify the changes in precipitation gradient between the measured and corrected data. We think the results from the corrected data are more reliable and useful for regional climate analyses.

Factor 2 is important because of the low quality of precipitation data in the Arctic. Many days of missing precipitation data would lower the monthly and annual sums of daily precipitation and, therefore, introduce inconsistency between the different stations. It might be helpful to add a table or a plot showing the percentage of missing precipitation data each year, for each station. The information in such a table or plot would either address my comment or raise a discussion on another aspect of inconsistency.

Re: Following this suggestion, we have calculated the missing data at the monthly and yearly scales for each station. The mean missing values in % are shown in Figures 2, 5, 6 and 8 (and the maximum values for the monthly plots; Figs. 2 and 5).
We understand that missing data may affect regional precipitation analyses. In this study, we calculated the missing data percentages for all stations during the corresponding study periods, and set up a threshold of 30% to exclude those months with higher missing values from monthly precipitation calculations. We compared the precipitation amounts with and without the application of the threshold. The results do not show any significant changes in the differences of gauge measured annual mean precipitation across the border, although this filter affected annual precipitation in certain years. For instance, the northern station pair (Barter and Komakuk stations) has missing value of 32% on July 1987. Calculations of yearly precipitation for 1987 with and without this month show 16% and 10% difference at Komakuk and Barter Island stations, respectively. Over the study period of 11 years, the annual mean bias correction percentages remain the same (65% in Barter and 13% in Komakuk, c.f. Figure 7 in the manuscript) with or without the missing months. The mean annual decrease in bias correction amounts after the consideration of missing data is about 1-3% in the northern region. This analysis suggests that the effect of missing data for our study is not significant, particularly with the application of 30% missing threshold.

For the central station pair, there are 3 months with 39%, 61% and 42% (Feb. 2006, Aug. 2008 and Jan. 2012) of missing data that were excluded from our analysis. These months represent 0.5%, 40% and 5% of the annual precipitation in the corresponding years at Eagle station, and 13%, 1% and 26% for Dawson. Because of the missing data at Dawson in August 2008, while Eagle recorded significant storms for this year, August contributed 40% to the annual Pm at Eagle. Over the study periods, the exclusion of these three months with higher missing records resulted in the mean Pm decrease by 3% at Eagle and 15% at Dawson. This impact is higher than the northern regions. Another important issue of missing data is related with remoteness of the sites and lower density for stations in the northern regions. Big storms can be missed during the non-recording days. It is hoped that remote sensing information may help to identify the missing storms over the surface weather network, although not much could be done for the historical missing records.

This information was summarized and included in the revised manuscript.

Factor 3 is based on the observation that if two stations with different precipitation gauges are located very close to each other, the inconsistency in records is clearly attributed to gauge performance. This requirement of geographic proximity might hold for the Eagle and Dawson stations, but the northern stations are located on different sides of the Brooks Range, long distances apart (143 km and 138 km apart, shown in Figure 7). Please discuss the inconsistency in monthly and annual precipitation received by the northern stations in terms of the stations’ proximity to the Brooks Range and to each other.

Re: The three northern stations selected for this study are located north of the Brooks Range. The approximate distances to the mountain edge are 100 km for the Barter Island station, 90 km for Shingle Point station, and 150 km for the Komakuk station. The two Yukon stations are along the shore line and the station in Alaska is an island site, right next to the coast line. The altitudes of the stations are 11, 7, and 49 m a.s.l., respectively.

According to Manson and Solomon (2007), the summer storms coming from the open water in the Beaufort Sea are the greatest contribution to annual precipitation. The storm tracks are mainly from the

northwest, affecting the long coastal regions represented by the 3 stations. The storms are obstructed by the Brooks Range once moving inlands. The weather patterns in the surrounding of the stations might be affected by the mountains, but the stations are not separated by the Brooks Range. Given this setting, it is not expected to see a great impact of mountain range on precipitation process and distribution along the relatively flat coast line.

The three stations are far part (approx. 140 km). We used them to find/quantify the spatial variation in precipitation for different seasons. We calculate precipitation gradient between 2 stations and compare the results between the measured and corrected precipitation data. We do see changes in precipitation gradient after the bias corrections, thus, achieving our goal to bring the issue of precipitation inconsistency between national standard gauges to the broader climate and hydrology community.

This information was summarized and included in the revised manuscript.

Significance: This manuscript represents a significant interest in the regional analysis of precipitation and climate in northern regions. I recommend acceptance of the manuscript once the above-mentioned points are carefully addressed.

Presentation quality: The paper is well structured and clearly organized. The text reads well, and the authors’ logic is easy to follow. The quality of the tables and figures is generally good, but can be improved with the following suggestions:

Table 1: Add a column with the height of the precipitation gauge and the wind sensor above the ground, similar to Table 1 in Yang et al., 1998b. This information is not publically available, but is critical input for wind-induced corrections.

Re: Yes, this information is very useful for our analysis. We added information about the precipitation sensors in Table 1 and the standard rim of the Nipher and NWS-8inch. gauge height t in the text. However, the records are very sparse and poor of this kind of details.

Table 1, column heading “Measurement device snow”: Consider re-labeling this column “Snow gauge.” Also, include a column that describes the instrument used for the rainfall measurements.

Re: The column heading was modified.

Table 1 shows that analysis of precipitation data was performed for the two different data periods, 1978–1988 versus 2006–2013. Include a justification for the choice of this period in the text.

Re: The data availability is limited in the area, so after a revision of the common periods between pairs in the dataset, none of the north and central regions ranges were overlapped. With this, we chose the more extended periods in both regions even there was in different years.

Also there was major change of the observing program. For instance in the Canadian side Komakuk station was closed as of June 30, 1993 and Shingle Point became automated, READAC system (prototype of AWOS) was installed in November, 1993.
Figure 11 shows double mass curves without an explanation for the precipitation metric used. The addition of something like “monthly precipitation (mm) summed over the period specified in Table 1” would improve this figure.

Re: The units were included in the axis label.

Minor comments:

Page 4, line 7: At the end of the sentence, replace the comma with a period.

Re: The comma was replaced by a period.

Page 9, line 11: Correct the wording “is lowers.”

Re: The word was corrected.

Page 12, line 6–7: The verb is missing.

Re: A verb was added and the sentence was improved.

Page 15, lines 24–25: Consider moving this sentence to the Methods section.

Re: The sentence was removed from the conclusions, and included in the Method section.

Re: The reference suggested is certainly relevant in this work. It was cited in the Discussion section.

Table 1: For latitude and longitude, replace “N” and “W” with the units of “decimal degrees.”

Re: The table headers were improved.

Figure 10 and Figure 11: Consider labeling each axis with the plotted variable and corresponding units. For example, the axis label would appear as “Monthly Pc (mm)” or “Cumulative monthly Pc (mm).”

Re: Thank you, for noting this. The units were included in the figure caption of figure 10 and in the axis label for figure 11.
List of all relevant changes made in the manuscript

Following the comments from the reviewers, the main changes in the manuscript were:

- A better context about the precipitation distribution in the region, considering past studies in the central-northern part of the Alaska-Yukon border was included in the Introduction (comment #2, reviewer #1).

- More details about the instrumentation and the bias-correction methodology were included in the second section (Study Area, Data and Methods) (comment #3, reviewer #1).

- The missing data percentages on the monthly and yearly scale were added in the analysis. A threshold of 30% of missing data was applied in the observations to exclude the months with higher missing values (comment, reviewer #2).
 - Because of the missing data analysis, the total observed precipitation and the percentages of corrections in most of the stations were updated.

- A better context in the introduction about the topography and the possible influence of the Brooks Range was presented in the second section (Study Area, Data and Methods) (comment, reviewer #2).
Inconsistency in Precipitation Measurements across Alaska and Yukon Border

Lucia Scaff¹, Daqing Yang², Yanping Li*¹, Eva Mekis³

[1] Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada, S7N 3H5
[2] National Hydrology Research Center, Environment Canada, Saskatoon, SK, Canada, S7N 3H5

* Correspondence to:
Dr. Yanping Li
Email: yanping.li@usask.ca
Abstract

This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (NWS 8-in gauge and Nipher gauge), and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 136% in January, 20% for July at the Barter Island in Alaska, and about 31% for January and 4% for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall) than for cold month (mainly snowfall) between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the US and Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in the windy and cold conditions. This result will certainly impact regional, particularly cross borders, climate and hydrology investigations.

Key words: snowfall, national precipitation gauge, measurement errors, bias correction, precipitation gradient and distribution.
1. Introduction

It is known that discontinuities in precipitation measurements may exist across the national boundaries because of the different instruments and observation methods used (Nitu and Wong, 2010; Sanderson, 1975; Sevruk and Klemm, 1989; Yang et al., 2001). For instance, the National Weather Service (NWS) 8-inch gauge is used for precipitation measurements in the United States (U.S.), and the Nipher snow gauge has been used in Canada for decades. Different instruments have also been used in various observational networks within the same country. In the synoptic network, the Type-B rain gauge and Nipher gauge are the standard manual instruments for rain and snow observations in Canada (Mekis and Vincent, 2011; Metcalfe and Goodison, 1993), and recently the Geonor automatic gauges have been installed (Nitu and Wong, 2010; Sanderson, 1975; Sevruk and Klemm, 1989; Yang et al., 2001). For instance, the National Weather Service (NWS) 8-inch gauge is used for precipitation measurements in the United States, and the Nipher snow gauge is the standard instrument over Canada. Different instruments have also been used in various observational networks within the same country. The Type-B rain gauge and Nipher gauge are the standard instruments for rain and snow observations in Canada, respectively (Mekis and Vincent, 2011; Metcalfe and Goodison, 1993), and recently the Geonor gauges have been installed at the synoptic stations across Canada.

Instruments also change over time at most operational networks, resulting in significant breaks in data records. It has been realized that combination of regional precipitation records from different sources may result in inhomogeneous precipitation time series and can lead to incorrect spatial interpretations (Yang et al., 2005). Efforts have been reported to examine the precipitation discontinuity within a country (Groisman and Easterling, 1994; Sanderson, 1975). Leeper et al., (2015) found that the US COOP stations reported slightly more precipitation overall (1.5%) with network differences varying seasonally. The COOP gauges were sensitive to wind biases, particularly over winter when COOP observed (10%) less precipitation than the U.S. Climate Reference Network (USCRN). Conversely, wetting and evaporation losses, which dominate in summer, were sources of bias for USCRN. Mekis and
Brown, (2010) developed adjustment method to link the Nipher gauge and ruler snowfall measurements over Canada. Yang and Simonenko, (2013) compared the measurements among 6 Russian Tretyakov gauges at the Valdai experimental station, and reported the differences of less than 5-6% for the study period. These results are useful to determine the homogeneity of precipitation data collected by a standard gauge within the national and regional networks.

Many studies show that the national standard gauges, including the Canadian Nipher, and US 8-inch gauges, under measure precipitation especially for snowfall (Goodison, 1981; Goodison et al., 1998; Yang et al., 1995, 1998a, 1999). Compatibility analysis of precipitation measurements by various national gauges suggests little difference (less than 5%) for rainfall observations, but a significant discrepancy (up to 110%) for snowfall measurements (Yang et al., 2001). For instance, the experimental data from Valdai show that the U.S. 8-inch gauge at Valdai systematically measured 30-50% less snow and mixed precipitation than the Canadian Nipher gauge (Yang et al., 2001). This difference in national gauge catch has introduced a significant discontinuity in precipitation records between the U.S. and Canada borders, particularly in windy and cold regions. Differences in the snow measurements across the US and Canada border has also been noticed in other studies as a problem to produce gridded products and to develop precipitation input for basin hydrological investigations (Šeparović et al., 2013; Zhao et al., 2010).

Although Yang et al. (2001) compared the relative catch of many national standard gauges, little has been done to address the inconsistency of precipitation records across the national borders. This is an important issue, since most regional precipitation data and products have been compiled and derived from the combination of various data sources, assuming these data and observations were compatible across the borders and among the national observational networks. Simpson et al., (2005) studied temperature and precipitation distributions over the State of Alaska and west Yukon, and documented precipitation increase from north to south. They also report differences in mean monthly precipitation across the
Alaska-Yukon border, i.e. about 5-15 mm in central-east Alaska and 15-40 mm in central-west Yukon. (Jones and Fahl, 1994) found a weak gradient in annual precipitation across the AK-YK border, including the headwaters of the Yukon River. Other studies also discuss precipitation distribution and changes over the arctic regions (Legates and Willmott, 1990; Serreze and Hurst, 2000; Yang et al., 2005).

The objective of this work is to examine the inconsistency in precipitation measurements across the border between Alaska and Yukon. We analyze both gauge-measured and bias-corrected monthly precipitation data at several climate stations across the border, and quantify the changes in precipitation amounts and patterns due to the bias corrections. We also calculate the precipitation gradients across the border, and discuss precipitation distribution for the warm and cold seasons. The methods and results of this study are useful for cold region climate and hydrology investigations and applications.

2. Study Area, Data and Methods

The study areas include the northern and central regions of Alaska (AK) and Yukon (YK). We choose 5 climate stations across the Yukon and Alaska border, which use the national standard gauges (NWS 8 in gauge and the Canadian Nipher gauge) for precipitation observations (Figure 1). These stations can be classified into 2 groups. The first group, 3 stations about 150 km apart, is the northern region along the coast of the Beaufort Sea; with the Barter Island station in Alaska and Komakuk and Shingle Point stations in Yukon. The second group is in the central part of the region, i.e. the Eagle station in Alaska and Dawson station in Yukon, about 130 km apart.

The three northern stations selected for this study are located north of the Brooks Range. The approximate distances to the mountain edge are 100 km for the Barter Island station, 90 km for Shingle Point station, and 150 km for the Komakuk station. Both stations in Yukon are along the shore line and the station in Alaska is an island site, very close to the coast line. The altitudes of the stations range from 7 to 49 m a.s.l. According to Manson and Solomon, (2007), the summer storm tracks are usually from the northwest
coming from the open water in the Beaufort Sea and are the greatest contributor to annual precipitation. The storms are obstructed by the Brooks Range once moving inlands. The weather patterns in the surrounding of the stations might be affected by the mountains, but the stations are not separated by the Brooks Range. Given this setting, it is expected to see little impact of mountain range on the precipitation process and distribution along the relatively flat coast line.

These stations have been operated by the NWS and Environment Canada (EC) since the early 1970's. The observations have been done according to the national standards of US and Canada. The detail information for these stations are given in Table 1, such as the location, period of measurement used for this work, instrument types for precipitation observations, and a climate summary for yearly temperature, precipitation (P), and wind speed.

Yang et al. (2005) have developed a bias corrected daily precipitation dataset for the northern regions above 45°N. The source data are acquired from the National Centers for Environmental Information (NCEI), i.e. Climatic Data Center, i.e. a global daily surface data archive for over 8,000 stations around the world (https://www.ncdc.noaa.gov/data-access/quick-links#ghcn). To focus on the high latitude regions, a subset of the global daily data, about 45,000 stations located north of 45°N with data records longer-than 20 years during 1973-2003 has been created. Yang et al. (2005) applied a consistent procedure derived from the WMO Solid Precipitation Intercomparison (Goodison et al., 1998), using wind speed, temperature, and the precipitation as inputs (Yang et al., 1998b, 2005), at all the stations over the high latitude regions. They quantify the precipitation gauge measurement biases for the wind-induced undercatch, wetting losses, and trace amount of precipitation. For the US stations, wind data from the standard height was reduced to the gauge level of the NWS 8-in gauge (standard height is 1 m). Wind speeds and directions were measured at the Canadian climatic network; the same approach was applied to estimate the wind speed at the gauge height (standard height is 2 m) on precipitation days. The corrections were done only for those stations with wind observations. Unfortunately there are many stations in the US without wind information and this is a
This study uses the updated monthly precipitation, temperature and wind speed data from Yang et al. (2005) for the selected AK and YK stations. The data periods range from 7 to 10 years for the stations, but long enough to examine precipitation patterns in these regions.

This study uses the updated (until 2013) monthly precipitation, temperature and wind speed data from Yang et al. (2005) for the selected AK and YK stations (Table 1). The selected data periods range from 7 to 10 years for the stations that are considered long enough to examine precipitation patterns in these regions. Missing records affect regional climate data analyses. In this study, a threshold of 0°C of monthly temperature has been used to determine the cold and warm months for snow and rain. Mixed precipitation has not been classified separately. The frequency of missing values was calculated when the bias correction was made in Yang et al., (2005). For any month with less than 20 days (~30%) of measurements, it is excluded from data analysis. Statistical methods to compare the measured and corrected monthly and yearly precipitation data across the selected border station pairs is used to analyze these data. It also carries out regression analysis on monthly precipitation records, and calculates the cumulative precipitation amounts to derive the Double Mass Curves (DMC) over the study period. The double mass curve (DMC) is a useful tool to evaluate the consistency of observation records over space and time (Searcy and Hardison, 1960). Some typical issues of observations that DMC can identify, include changes in the station location, and instruments or sensors. A reference station is needed for DMC analyses. In this study, the DMC has been applied without a reference station to mainly detect any shifts between the observed and corrected precipitation. Through the data analyses and comparisons with other studies, we document the spatial and temporal variations of bias corrections across the border stations. We also determine the precipitation gradients across the border, and examine the changes, due to the bias-corrections of the US and Canadian gauge data, in precipitation distributions on both seasonal and yearly time scales.
This study applies statistical methods to compare the measured and corrected monthly and yearly precipitation data across the border station pairs. It also carries out regression analysis on monthly P records, and calculates the cumulative P amounts to derive the double mass curves over the study periods. Through the data analyses and comparisons with other studies, we document the spatial and temporal variations of bias corrections across the border stations. We also determine the precipitation gradients across the border, and examine the changes, due to the bias corrections of the US and Canadian gauge data, in precipitation distributions on both seasonal and yearly time scales.
3. Results

Based on the analyses of the measured precipitation (P_m) and corrected precipitation (P_c) data, this section presents the results on the bias corrections of monthly and yearly precipitation for each station, regression and correlation of monthly precipitation data between the stations, and cumulative precipitation via the double mass curves for the warm (monthly temperature > 0°C) and cold seasons (monthly temperature < 0°C).

3.1. Monthly data and corrections

The monthly mean precipitation (P) and bias corrections are illustrated in Figure 2 for the northern group during the corresponding observation period (Table 1). In Figure 2, the missing data percentages are also presented for each month. Barter Island had the lowest percentages of missing data, about 2% as a maximum monthly mean in December. The mean missing percentages for the Komakuk station was about 5% (in May), with the maximum month in July 1984 (16%). For Shingle Point, the mean missing values were 11% for both April and May, with the maximum (26%) in April 1979. Given the small percentages of missing records, its impact is insignificant on monthly mean and yearly precipitation calculations.

Figure 2 shows that annual precipitation cycle was centered on August, with an approximate maximum P_m around 40 to 80 mm between August and September. This maximum was coincident with the monthly mean maximum temperature in the area (around 10°C).

For the Barter Island station in AK, the corrections were variable through the months. The monthly corrections increased the P_m amount by 3-31 mm for snow to 4-9 mm for rain. The relative increases were 59-136% for snow and 20-41% for rain, with a monthly mean of 9 mm (or 76%). The relative changes were usually large for months with low P_m and small for months with high precipitation. In other words, the monthly correction amounts do not always match with the percentage changes, i.e. a small correction in a dry month can have a large percentage change.
It is important to note that gauge measurements at Barter showed the maximum precipitation in August and October, but the peak shifted to October due to the corrections; i.e. the mean monthly P_c in October were 98% (about 32mm) more than the P_m (Figure 2). Closer examination of the monthly precipitation time series for Barter Island (Figure 3) indicates that, for most of the years, October was the most significant contributor to the total annual (232%) for P_m and 225% for P_c). However, there were some years in the study period with the maximum P_m in other months; for example, the highest P_m in 1982 was in September, as documented by Yang et al., 1998. Climate data and analyses showed the highest wind speed (4.5 m/s) and cold temperature (about -9°C) for October, indicating higher undercatch by the US standard gauge for snowfall. On the other hand, the wind speed showed the minimum values in July and August (3.3 m/s), coincident with the highest temperatures (4.6 and 4 °C) (Figure 2). Due to the combination of warm temperatures and low wind speeds, the corrections for summer months were the lowest at this station (20-27%).

For the Komakuk Beach station in Yukon, the corrections increased the precipitation by 0.7-5.5 mm (or 14%-34%) for snow and 1-2.6 mm (4%-10%) for rain, with a total monthly mean change of 2.64 mm (149%) (Figure 2). The monthly maximum precipitation was in August, i.e. 48mm and 50mm, respectively, for the P_m and P_c. The monthly minimum precipitation was in March, i.e. P_m = 4.2 mm and P_c = 5 mm. For this station, these extremes remained the same month after the bias corrections. The wind speed had the minimum value in Aug. (3.1 m/s) and Sept. (3.2 m/s), and max in Dec. (4.3m/s) and Jan (4.7m/s). The temperatures were highest in July (6.9°C) and Aug. (5.8°C), and lowest in Feb and Mar (-25 °C). Given this climate condition, the corrections were lower in the summer months (mean of 6%) and higher in winter (mean of 23%).

The monthly corrections for the Shingle Point station in Yukon ranged from 1-7.63 mm (3%-152%) for rain to 1-8.211 mm (14%-28%) for snow, with the monthly mean correction of 4.23.5 mm (1416%).
The month of maximum precipitation was in Aug., about 73-76 mm (or 20% of the annual total) (Figure 2). The minimum precipitation was in Feb., with 9.2 mm for the measured \(P_m \); and it shifted to March with 9.8 mm for \(P_m \) and 11 mm for \(P_c \), the corrected values. The monthly wind speeds were generally higher in winter and lower in summer, with the maximum in Feb. (4 m/s) and minimum in May (2.7 m/s). The temperatures had a common annual cycle with the maximum in July (11ºC) and the minimum in Feb. (-24.3ºC). Because of the higher wind speeds and cold temperatures in the cold months, the corrections were greater for the winter season.

It was necessary to compare the correction result across the border in order to quantify the effect of biases in gauge observations on precipitation analyses, such as precipitation distribution and seasonal patterns. The mean snowfall corrections were about 96% for Barter Island in Alaska and around 22% for both Shingle Point and Komakuk stations in Yukon; while the rainfall corrections were approximately 32% for Barter and 76% for the two Yukon stations. Bias corrections also demonstrated a clear shift in the maximum precipitation timing for the Barter Island, but no change for the Yukon stations. This remarkable contrast across the border was caused mainly by the difference in gauge types and their catch efficiency. Many experimental studies have shown that the Canadian Nipher snow gauge catches more snowfall relative to the US gauge (Goodison et al., 1998; Yang et al., 1998b). For instance, the mean catch ratios for snowfall were about 40% and 85% for 4 m/s wind speed, respectively, for the NWS 8-in unshielded and Nipher gauges (Figure 4) (Yang et al., 1998b). For the central group, the maximum and minimum \(P_m \) were in July and March for the Eagle station (Figure 5). The corrections did not modify the timings of maximum and minimum amounts; they remained for July for the maximum (\(P_m = 67 \) mm and \(P_c = 70 \) mm), and in March for the minimum (\(P_m = 3 \) mm and \(P_c = 4 \) mm) precipitation. The correction increased the precipitation by 0.6-1.8 mm (8%-22%) for snow and 1-3 mm (5%-10%) for rain, with a monthly mean correction of 1.7 mm (12%).
The annual temperature cycle for Eagle showed warmer temperatures relative to the northern station, with the maximum of around 16.2°C and temperatures above 0°C during from April to mid-October. Eagle had lower variable wind speeds around 1 m/s (Figure 5).

For Dawson station, precipitation was more homogeneous throughout months; varying from 10 mm to 50 mm in October and June, respectively. Another relative maximum occurs in January with $P_m = 38$ mm (Figure 5). The precipitation correction was small and fluctuated from 0.3 to 1 mm (or 2%-4%) for snow and 0.4-1.3 mm (3%-4%) for rain. This small correction was due to the lower undercatch correction for the Nipher gauge, besides the warmer temperatures and lighter winds. The temperature annual amplitude was between 16°C in July and -25°C in January, with April to September temperatures above 0°C from April to September. Wind speeds showed a clear annual cycle with the maximum in May (of 1.6 m/s) and lighter winds in winter months, with the minimum of 0.4 m/s in January.

The temperature and wind conditions were similar between the Eagle and Dawson stations, with the mean temperature around 1°C and wind speed of 1 m/s. The missing data percentages were also similar for Eagle and Dawson stations; less than 3% for most months, with the maximum of 10% in May 2006 for Eagle and 20% in September 2009 for Dawson. The bias corrections were quite different, with the mean corrections of 164% for snow and 76% for rain at Eagle, and about 2% and 3% for both rain and snow at Dawson. Overall, the Eagle correction was four times greater than that for Dawson. This discrepancy reflects again the catch difference between the US and Canadian standard gauges.

In order to understand the effect of precipitation bias corrections on regional climate around the AK-YK border, it was useful to examine and compare the temperature and precipitation features between the northern and central regions. The monthly mean temperature threshold of 0°C did not occur exactly at the same time among the 2 groups; the warm months (above 0°C) were between June and
September in the north group and between April and September in the central group. Although both regions **had** similar mean minimum temperatures, around -24°C and -27°C, the maximum temperature **was considerably lower** in the north part, **with the** average of 8°C in the north group vs. 16°C for the central region. Additionally, the monthly mean wind speed **was** higher for the northern region, 4 m/s vs. 1 m/s. Therefore, because of the colder temperatures and higher winds in the northern region, the bias corrections **were** higher in the north relative to the central region.

3.2. Yearly data and corrections

The Figure 6 shows the annual Pm and Pc time series for 11 years **during 1978-1988** in the northern group **is presented in Figure 6. There was almost no missing data for the whole period, except 3% for 1978.** At the Barter Island station in Alaska, the yearly Pm **ranged** from 114 mm to 211 mm, with the long-term mean of 155 ± 57 mm. The mean annual corrections **ranged from** about 67 to -138 mm, with a long-term mean of 101 mm **(or 65%)**. The Pc **corrected** records **varied** from 181 mm to 343 mm. The maximum precipitation was in 1985 for both Pm and Pc (211 mm and 343 mm, respectively). The minimum precipitation was in 1983 for the Pm and Pc (114 mm and 181 mm, respectively).

For Komakuk Beach station in Yukon, the Pm **ranged** from 103 mm to 306 mm, **with the** missing data between 0 and to 7% among the years. The bias corrections **increased** the precipitation by 13 mm to 45 mm **(or 8-19%).** The long-term mean **was** about 194 ± 97 mm for Pm and 220 ± 22 mm with the corrections. The maximum precipitation **occurred P was** in 1981, 306 mm and 347 mm, respectively, for Pm and Pc, respectively. The minimum precipitation **P was** in 1988 for both the Pm and Pc, 103 mm and 123 mm, respectively.

For Shingle Point station in Yukon, yearly Pm **varied** from 126 mm to 551 ± 66 mm and, the Pc **ranges from** 138 to 638 mm **corrections are** 139 ± 88 mm. The mean annual total precipitation **was** about 302 ± 306 mm for Pm **the gauge data and 341 ± 345 mm after the corrections (change of 134%).** The high and
low extreme years were 1981 (P_m = 551-566 mm, P_c = 638654 mm), and 1988 (P_m = 126 mm, P_c = 138 mm). Shingle station had missing data from 2% in 1983 to 10% in 1979.

Figure 7 displays the mean annual precipitation in cold and warm seasons for the northern group. The According to the gauge measurements showed, the mean annual values in this region fluctuates from 155114 mm at Barter Island, 194 mm, 103 mm at Komakuk to 302566 mm at Shingle Point, i.e. The gauge data suggest a strong precipitation increase from the west to the east, particularly between Komakuk Beach and Shingle Point. However, the corrected data (P_c) showed a different pattern (Figure 7), i.e. higher precipitation at Barter than Komakuk, so the gradient across the border changed the sign and magnitude. This change was caused mainly by the high corrections at the Barter station, particularly for snowfall data during the cold months (Fig. 2).

For the central group, the annual results are shown for 8 years (2006-2013) in Figure 8. The P_m ranged from 66 to 391 mm at the Eagle, and the bias corrections were 5-27 mm, correspondingly, which on average increase the total precipitation by 7%. While at Dawson, the P_m ranged from 158 to 333 mm, and the adjustments were from 4 mm to 10 mm, with an average increase in yearly precipitation by 3%. The gauge data showed a slight increase (12 mm) of mean precipitation from west to the east, i.e. slightly higher P in Yukon relative to Alaska. This result is consistent with other studies (Simpson et al., 2002, 2005). The corrected data, on the other hand, suggest a smaller gradient (1 mm) across the border (Figure 9). This change was mainly due to the higher corrections for the US 8-inch gauge at Eagle.

For the central group, the results are shown for 8 years (2006-2013) in (Figure 8). The annual P_m ranges from 100 to 400 mm at the Eagle, and the corrections are 7-27 mm, or 6-9%, which on average increase the total precipitation by 7%. While at Dawson, the measured P ranges from 158 to 353 mm, and adjustments are 4 mm to 11 mm, with an average increase in yearly precipitation by 3%. The gauge data show a slight increase (22 mm) of mean P from west to the east, but the corrected data suggest a smaller
gradient (11mm) across the border. This change is mainly due to the higher corrections for the US 8-inch
gauge at Eagle (Figure 9).

Similar to the monthly results, the northern stations exhibited higher yearly corrections for
snowfall and rainfall measurements relative to the central group. This was because of higher winds in
the northern stations, i.e. yearly mean wind speeds of 3.8 m/s in the north group and 1 m/s in the central
group. This windy and snowy environment in the north produced higher wind-loss for the
snowfall measurements by the gauges, which was the largest errors in precipitation records in the high
latitudes (Benning and Yang, 2005; Yang and Ohata, 2001; Yang et al., 1998b). It is important to note that gauge measured and bias
corrected data showed different pattern in seasonal and yearly precipitation in the northern region.
In other words, bias corrections of gauge measurements alter the precipitation gradient in the northern
areas; this change was mainly due to the difference in the catch efficiency between the US and Canadian
standard gauges. The corrections for the US gauge snow measurements were much higher than the
Canadian gauge, particularly in the cold and windy coastal regions.

3.3. Regression analysis of monthly data

The scatter plots of corresponding monthly precipitation for the two stations across the border and
between the two Yukon stations in Canada are illustrated in Figure 10. For the cold season (Figure
10.A), the gauge data showed more snowfall at Barter for most years. Regression analysis
suggested a weak relationship, with $R^2=0.34$. The corrected data showed a similar
relationship, but a shift in the regression line, indicating a greater difference over the cold
season across the border. For the warm season (Figure 10.B), the gauge data showed higher
precipitation at the Komakuk station, and the regression suggested a much stronger relationship.
The corrected data revealed a closer relationship between these two stations,
proposing a smaller gradient for the warm months.
The scatter plot between the two stations in the Yukon Territory showed higher precipitation at Shingle point for both cold and warm seasons. It also gives another point of view about the effect of the correction in this area. Relative to the cold months (Figure 10.C), the corrections were smaller for the warm months (Figure 10.D), and there was a better-correlation improved ($R^2=0.72-0.76$). However, the relationship didn’t change much in both cases between the measured and corrected data. This was because very small amount of corrections for due to the lower wind conditions and higher catch efficiency of the Canadian Nipher gauge.

For the central group, the scatter plot between Eagle and Dawson stations illustrated a clear difference in precipitation amount for the cold and warm months (Figure 10.E-F). The cold months showed more precipitation at Dawson, particularly for the wettest events, while Eagle did not show any comparable amount. The correlation was weak, and insignificant ($R^2 =0.13$). The shift in the fit line between measured and corrected data was also very small. The warm months showed low precipitation at Dawson; a different pattern from the cold months. The regression was better, $R^2 =0.5958$, with a smaller shift due to the corrections.

Overall, we obtained consistent results among the Alaska and Yukon stations. The correlations were higher in warm months ($R^2 = 0.58$ to 0.76) and lower for the cold season (R^2 between 0.13 and 0.52). This result may suggest that the rainfall was more homogeneous over the regions in summer, and greater difficulty and errors in snowfall measurements during the cold months.

3.4. Cumulative precipitation via double mass curves (DMC)

The DMC plot for Barter Island and Komakuk Beach showed more P_m at Komakuk than Barter (Figure 11.A). The bias corrections led to a shift of the relationship with a significant increase in the total precipitation amount at Barter. Relatively, the total cumulative precipitation for Barter Island increased by 65% after the correction and by 1413% at Komakuk. The difference between the two stations at the last cumulative point (December 1988) is 426440 mm for P_m, and 393380 mm for...
Pc. This shift represents a modification in the precipitation difference between these stations, i.e. a change in the gradient’s direction (Figure 7).

The comparison of cumulative precipitation values between Shingle Point and Komakuk, both in Yukon, is illustrated in Figure 11.B. Shingle Point shows more cumulative precipitation at the end of the period ($P_{m}=33223348$ mm vs. $P_{m}=21152144$ mm for Komakuk). Although the relationship was more homogeneous between these stations, there was a break in the records around 13004000 mm for Komakuk, maybe associated with changes in instruments or sensors. Examination of the station history and information revealed an anemometer issue around the critical time that was fixed by August 1980. This may affect wind data and thus the corrected precipitation values. Both stations have increases in total cumulative precipitation by 13%, P by 3%, i.e. a change in precipitation difference from 1204 mm to 1352 mm between Shingle and Komakuk over the study period (2006-2013).

The central stations show a greater amount of P_{m} in Dawson (20652202 mm) than in Eagle (19732027 mm) over the study period. Bias corrections change the total precipitation P by 37% and 73% for Eagle and Dawson, respectively, resulting in a shift in the DMC (Figure 11.C), particularly for the last period of time, to 21232265 mm in Dawson and to 21162173 mm in Eagle. This shift also represents a slightly smaller precipitation difference between the two stations. During Eagle and Dawson, in the 8 years, the cumulative difference decreases from 175 mm to 92 mm to 7.3 mm over the study period.

In summary, the DMC for measured and corrected precipitation shows that the main change was due to the difference in their corrections (Figure 11); the north stations show a greater change compared with the central group. The P_{c} shows in all the cases a smaller precipitation difference between the two countries. This smaller difference leads to a decrease in the precipitation P gradient across the border. This result implies that existing precipitation climate maps and information derived
from gauge measurement without bias corrections may over-estimate the precipitation gradient in these regions. This overestimation will affect regional climate and hydrology analyses.

4. Summary and Discussion

This study documents and quantifies the inconsistency in precipitation measurements in the northern and central regions of Alaska/Yukon, with a focus on the station pairs across US-Canada border. The monthly bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. The corrections for gauge undercatch increase the snowfall by 136-35% in January for the Barter Island station in Alaska. For the Yukon stations, the increase is about 31-34% in January and 4% in July. These represent an annual mean loss of 819 mm (101-400%) in snowfall and 2025 mm (30%) mm (29%) of rain at Barter, while at Shingle Point and Komakuk Beach in Yukon the corrections are, on average, about 2534 mm (21%) for snow and 87.5 mm (6%) for rain. For Eagle (AK) and Dawson (YK) stations in the central region, the bias corrections are small. The monthly corrections range from 2% to 16% for snow, to 22% in winter and from 3% to 10% on summer months for rain, much smaller than those for the northern region.

On the annual scale, the Barter Island station in AK shows a yearly mean correction around 65%, five times greater than the correction at Shingle Point and Komakuk Beach (134-2% and 14%) in Canada. In the central region, Eagle station shows an increase by 7%, meanwhile for Dawson the increase is only 3%. Thus, the bias correction is twice for Alaska compared to the Yukon stations. Relative to the northern region, these corrections are small mainly due to warmer temperatures and lower winds in the central region. These results clearly demonstrate that bias corrections may affect the spatial distribution of precipitation across the border.

Regression analyses of the monthly P-data show small changes in the relationship due to the bias corrections. The most evident change in the regression is between Barter Island and Komakuk Beach for
both warm and cold seasons. The rest of the scatter plots, for the Komakuk Beach-Shingle Point and Eagle-Dawson, do not show any appreciable change as the result of the bias corrections. There is a stronger precipitationP correlation for the warm months (mainly rainfall) than for the cold month (mainly snowfall) for all the station pairs. The cold months seem to have a greater precipitationP variability across the regions.

The double mass curve analyses demonstrate a significant change in the precipitationP accumulation and difference between the two stations across the AK-YK border for the northern region, little changes for the two stations in Yukon, and a smaller change in the central group. These changes, caused by gauge catch efficiency, alters the precipitationP difference, resulting in a smaller and inverted precipitation gradient across the border in the northern region. The double mass curve (DMC) is a useful tool to evaluate the consistency of observation records over space and time (Searcy and Hardison, 1960). It is very clear from this study that the significant inconsistency exists in the precipitation measurements across the border. This inconsistency is much greater for snowfall than for rain, as gauge snowfall observation has large errors in the windy and cold conditions. This discrepancy should be taken into account when using the P data across the national borders for regional climate and hydrology investigations.

The double mass curve (DMC) is a useful tool to evaluate the consistency of observation records over space and time (Searcy and Hardison Clayton, 1960). Some typical issues of observations that DMC can identify include changes in the station locations, and instruments or sensors. Although in this work the DMC has not been constructed against a reference station, the results clearly show some breaks on the slope and gaps in the curves, indicating changes in precipitationP relationship across the border that could be caused by any of the two stations. This information provides the timing when significant changes occurred in the precipitationP regime. Detail metadata and information for the stations/networks are necessary to understand the changes in precipitationP observations and to improve the homogenization of the precipitation records over the high latitudes.
This study shows similar monthly Pm across the north border region and higher Pm in Yukon than Alaska over the central region. This result is similar to other studies (Serreze and Hurst, 2000; Simpson et al., 2005). After the bias corrections, precipitation patterns across the border changed, i.e. higher precipitation in Barter than Komakuk, in other words, an inverted gradient across the borderline. Over the central region, the measured mean annual precipitation is slightly higher in Yukon than Alaska, which is also consistent with Simpson et al., (2002) and (2005). Our results suggest that the gradient between the central pair of stations becomes smaller after the bias correction. This discrepancy should be taken into account when using the precipitation data across the national borders for regional climate and hydrology investigations.

Missing data may affect regional precipitation analyses. In this study, we calculated the missing data percentages for all stations during the corresponding study periods, and set up a threshold of 30% to exclude those months with higher missing values from monthly precipitation calculations. We compared the precipitation amounts with and without the application of the threshold. The results do not show any significant changes in the differences of gauge measured annual mean precipitation across the border, although this filter affected annual precipitation in certain years. For instance, the northern station pair (Barter and Komakuk stations) has missing value of 32% on July 1987. Calculations of yearly precipitation for 1987 with and without this month show 16% and 10% difference at Komakuk and Barter Island stations, respectively. Over the study period of 11 years, the annual mean bias correction percentages remain the same (65% in Barter and 13% in Komakuk) with or without the missing months. The mean annual decrease in bias correction amounts after the consideration of missing data is about 1-3% in the northern region. This analysis suggests that the effect of missing data for our study is not significant, particularly with the application of 30% missing threshold. More efforts are needed to further examine the issues of missing records in climate analyses.

Classification of precipitation types is the first step for the bias corrections of gauge records. It is also important for climate change analyses over the cold regions. Leeper et al., (2015), in
comparison of US CRN with the CO-OP station network precipitation measurements, averaged the USCRN hourly temperatures data during precipitation periods into an event mean and used it to group precipitation events into warm (mean temperature > 5°C), near-freezing (mean temperature between 0°C and 5°C), and freezing (mean temperature < 0°C) conditions. Yang et al. (2005) used the daily mean air temperature to estimate precipitation types (snow, mixed, and rain) when this information is not available for the northern regions. In this study, monthly mean temperatures have been used to determine the warm months (mainly for rain) and cold months (mainly for snow). Mixed precipitation has not been classified separately. This approach is reasonable for our analysis to focus on the inconsistency in the monthly and yearly precipitation records across the border. Data collections and analyses on shorter timescales, such as daily or hourly steps, are expected to produce better results, since temperatures vary throughout the days in a month, particularly in the spring and fall seasons. Automatic sensors will also be important to decide precipitation types at the operational and research networks.

The bias-corrected precipitation dataset developed by Yang et al. (2005) has been used for this analysis. The corrections have been done systematically on a daily time scale that affects the daily precipitation time series. This analysis focuses on the results of monthly and yearly precipitation data and quantifies the changes in precipitation pattern across the AK-YK border. Careful analyses of available daily measured precipitation and corrected data are necessary, since in the northern regions with low precipitation in winter, the bias corrections can easily increase the daily precipitation by a factor of up to 4-5 (Benning and Yang, 2005; Kane and Stuefer, 2015; Yang et al., 1998b, 2005). This means that extreme precipitation events have been very likely and seriously underestimated by using the gauge records without any bias corrections. The consequence is certainly significant for climate regime and change investigations. To fill this knowledge gap, our efforts are underway to examine the daily corrections, particularly on the windy and heavy precipitation days, and to document the possible underestimation of precipitation extremes over the large northern regions.
The bias-corrected P dataset developed by Yang et al. (2005) has been used for this analysis. The corrections have been done systematically on a daily time scale that affects the daily P time series. This analysis focuses on the results of monthly and yearly P data and quantifies the changes in P pattern across the AK-YK border. Careful analyses of available daily measured and corrected P data are necessary, since in the northern regions with low P in winter, the bias corrections can easily increase the daily P by a factor of up to 4-5 (Yang et al., 1998; Benning and Yang, 2005; Yang et al., 2005). This means that extreme P events have been very likely and seriously underestimated by using the gauge records without any bias corrections. The consequence is certainly significant for climate regime and change investigations. To fill this important knowledge gap, our efforts are underway to examine the daily corrections, particularly on the heavy and windy P days, and to document the possible underestimation of P extremes over the large northern regions.

Finally, automation of the meteorological observation networks and instruments has been a trend over the past few decades around the world, including both the developed and developing nations. There is a large variety of automatic gauges currently used for precipitation measurements at the national networks (Nitu and Wong, 2010). These gauges differ in the measuring system, orifice area, capacity, sensitivity, and configuration. The variation in automatic gauges is much greater relative to the manual standard gauges (Goodison et al., 1998; Sevruk and Klemm, 1989). As demonstrated by Yang et al. (2001) and this study, the use of different instruments and configurations significantly affect the accuracy and consistency of regional precipitation data. Fortunately, the Geonor gauge has recently been chosen and used at both the US Climate Reference Network (USCRN) and the Surface Weather and Climate Network (SWCN) in Canada. This may reduce the inconsistency in precipitation measurements across US and Canada borders, although the double and single Alter wind shields have been installed with the Geonor gauges in US and Canada, respectively.

Finally, it is important to emphasize that automatic gauges also significantly undercatch snowfall (Wolff et al., 2015) and bias corrections are necessary in order to obtain reliable precipitation data for the cold
regions and seasons. The WMO SPICE project aims to examine the performance of automatic gauges and
instruments for snowfall observations in various climate conditions. It has tested many different automatic
gauges, including the Geonor gauge, at more than 20 field sites around the globe (Nitu et al., 2012;
Rasmussen et al., 2012; Wolff et al., 2015). The results of this project will be very useful to improve
precipitation data quality and regional climate analyses, including the border regions between US and
Canada.

It is however important to emphasize that automatic gauges also significantly undercatch snowfall (Wolff
et al., 2015) and the bias corrections are necessary in order to obtain reliable P-data for the cold regions
and seasons. The WMO SPICE project aims to examine the performance of automatic gauges and
instruments for snowfall observations in various climate conditions. It has tested many different automatic
gauges, including the Geonor gauge, at more than 20 field sites around the globe (Nitu et al., 2012;
Rasmussen et al., 2012; Wolff et al., 2015). The results of this project will be very useful to improve P
data quality and regional climate analyses, including the border regions between US and Canada.
Acknowledgments

The authors gratefully acknowledge the support from the Global Institute of Water Security at University of Saskatchewan and Environment Canada.

References

Yang, D., Goodison, B., Metcalf, J., Louie, P., Elomaa, E., Hanson, C., Golubev, V., Gunther, T.,
Milkovic, J. and Lapin, M.: Compatibility evaluation of national precipitation gage measurements, J.

daily precipitation data over the northern regions, Geophys. Res. Lett., 32(19), L19501,

Zhao, K., Stadnyk, T., Koenig, K. and Crawford, J.: Better Precipitation Product over the Red River
Table 1: Station information and climate summary

<table>
<thead>
<tr>
<th>ID</th>
<th>Country</th>
<th>Station Name</th>
<th>Location</th>
<th>Data Period</th>
<th>Measurement Device</th>
<th>Annual Means</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Latitude (°)</td>
<td>Longitude (°)</td>
<td>Altitude (m)</td>
<td>Start</td>
</tr>
<tr>
<td>700860</td>
<td>US</td>
<td>BARTER IS WSO AP</td>
<td>70.13</td>
<td>-143.63</td>
<td>11</td>
<td>1978</td>
</tr>
<tr>
<td>719690</td>
<td>CA</td>
<td>KOMAKUK BEACH ARPT</td>
<td>69.58</td>
<td>-140.18</td>
<td>7</td>
<td>1978</td>
</tr>
<tr>
<td>719680</td>
<td>CA</td>
<td>SHINGLE POINT ARPT</td>
<td>68.95</td>
<td>-137.21</td>
<td>49</td>
<td>1978</td>
</tr>
<tr>
<td>701975</td>
<td>US</td>
<td>EAGLE</td>
<td>64.78</td>
<td>-141.16</td>
<td>268</td>
<td>2006</td>
</tr>
<tr>
<td>719660</td>
<td>CA</td>
<td>DAWSON AIRPORT</td>
<td>64.05</td>
<td>-139.13</td>
<td>369</td>
<td>2006</td>
</tr>
</tbody>
</table>
Figure 1: Study areas and locations of selected climate stations, and photos of the national standard gauges, NWS 8 in gauge (left) and the Nipher snow gauge (right), respectively, for USA and Canada.
Figure 2: Monthly mean precipitation at 3 stations during 1977 - 1988 (upper panels) and corresponding monthly mean wind speed and air temperature (bottom panels). Shadows represent the 95% confidence interval for the temperature and wind speed. The percentages above the bars represent the missing data for the corresponding time step. The bold percentage is the monthly mean and the one in the parenthesis is the maximum missing value in the study period.
Figure 3: Monthly precipitation records at the Barter station during 1978-1988. The months with more than 50 mm (black line) are labeled.
Figure 4: Comparison of the catch ratio of snowfall as a function of wind speed at gauge height for the Alter-shielded or unshielded NWS 8-inc standard gauge and the Canadian Nipher snow gauge. DFIR is the Double Fence Intercomparison Reference (Yang et al. 1998).
Figure 5: Monthly mean precipitation at 2 stations during 2006 - 2013 (upper panels) and corresponding monthly mean wind speed and air temperature (bottom panels). Shadows represent the 95% confidence interval for the temperature and wind speed. The percentages above the bars represent the missing data for the corresponding time step. The bold percentage is the monthly mean and the one in the parenthesis is the maximum missing value in the study period.
Figure 6: Annual precipitations during 1978-1988 for the 3 stations in the northern group across the border. The percentages above the bars represent the missing data for the corresponding year.
Figure 7: Mean Annual (1978-1988) measured and corrected precipitation for cold (T<0°C) and warm (T>0°C) months. The percentages are the changes from measured to corrected precipitation. The approximate horizontal distance between the stations is displayed at the bottom.
Figure 8: Annual precipitations during 2006-2013 for two stations in the central part of the AK/YK border. The percentages above the bars represent the missing data for the corresponding year.
Figure 9: Mean Annual (2006-2013) measured and corrected precipitation for cold (T<0°C) and warm (T>0°C) months. The percentages are the change from measured to corrected precipitation. The approximate horizontal distance between the stations is displayed at the bottom.
Figure 10: Scatter plots between station pairs for the measured and corrected precipitation (mm). The red color shows warm months and the blue represents the cold months. A and B - Barter and Komakuk comparison across the border, the highest corrected values for Barter (AK) are labeled with the date to compare with Figure 4. C and D - Komakuk and Shingle Point comparison within Canada. E and F - Eagle vs. Dawson across the border for the central group.
Figure 11: Double mass curves between station pairs. The red color shows the warm months and blue represents the cold months. The top and the central plots compare the stations for the northern group and the bottom one is the central station comparison across the border.