
Dear Andreas, 

 

 

We have now worked on a new version of the paper. Even if the statement was 
'minor revision', the new version is slightly different than the previous one to account 
for the reviewer remarks. We have then produced new results on mesh sensitivity so 
that the main focus is not any more on the three possible numerical implementations 
for a discontinuous friction at the GL. Following your recommendation, we move back 
to a brief communication. The final objective stays similar and will allow making 
available to the community the new results for MISMIP3d experiment with increased 
mesh resolutions. The title states this objective and has therefore been also modified.  

The new version of the paper includes mesh sensitivity experiments on modified 
MISMIP experiments for which a smoothing of the friction upstream the GL is 
introduced. The accuracy of the model is then tested by comparing advance and 
retreat position as a function of the mesh size. Surprisingly, and contrary to what was 
commonly admitted (but also shown by Leguy et al., 2014), these results indicate no 
improvement of the model accuracy when a smooth friction upstream the GL is 
adopted. The referee S. Cornford was then contacted as we knew he has done 
similar experiments with his model BISICLES. As asked by S. Cornford, I would like 
that this email exchange we had the 13 November 2015 is added to the public 
discussion. I have reproduced this email exchange below. His results are in line with 
ours as it is found that smoothing the friction transition has no real impact on the 
model accuracy.  

The new version, with changes highlighted in red, is produced at the end of this 
document.  

  

      Best Regards 

      Olivier Gagliardini 

 

On 13 November 2015 at 09:36, GAGLIARDINI Olivier wrote: 

Hi Stephen, 

I am coming to you about my paper in TCD regarding friction at the GL. I have run 
new simulations using the MISMIP setup but with modified basal friction such that the 
friction decrease linearly over a distance L from the MISMIP one to 0 at the GL. In 
that case, all three methods give the same results, as expected. 

The point is that I cannot see any decrease of the mesh sensitivity in comparison to 
the initial setup. In other words, the 200 m resolution with zero friction at the GL is as 
bad as the 200 m resolution with friction at the GL. I have tested various distance L 
(1000, 500 and 60m) but only the position of the steady is modified, not the sensitivity 
to the mesh size. I was expecting (from Leguy paper and Tsai paper, even if there is 
no real demonstration there) that having a more realistic friction (i.e. zero at GL) will 



decrease the mesh sensitivity, but it seems that, at least for the Stokes problem, this 
is not the case. I am not sure, but I think you have done such test using Tsay 
approach in your model. If I am correct, you were finding a lower mesh sensitivity 
when the friction was null at the GL? Can you give me some insight on that. Is there 
something published on that? 

I am now thinking how to incorporate this new result in the paper... 

Thanks for your help, 

Olivier 

  

On 13 November 2015 at 11:46, S L Cornford wrote: 

Hi Olivier 

I have done a convergence study on MISMIP+ with the Tsai rule and I found that 
mesh sensitivity is only a little better (maybe I need 500m rather than 250 m, that sort 
of thing). I'm assuming this is because the length scale over which the friction drops 
to zero is small, and so the region you need to resolve is still only a few km long. 

I've attached four figures, which show the grounding line at t = 0 and t = 100 in one of 
the MISMIP+ experiments and the VAF over time for the usual rule and the Tsai rule. 
I think you can see that the mesh sensitivity is not much different. 

Presumably, as you lower the Coulomb limit in Tsai, the scale increases and lower 
resolutions are needed, but I only looked at the |Tb| = min(0.5 * |p|, beta^2 |u|^1/3) 
case so far. 

I have not published anything yet on this (I only put the Tsai  rule results in the GMD 
MISMIP+/ISOMIP+/MISOMIP1 paper) 

If you want my view on how to approach the paper I would say 

1. Show the mesh sensitivity of the steady GL for Weertman, Tsai and/or Leguy 
using DI 

2. Show the lateral sensitivity of the perturbed results again using DI (maybe just for 
Weertman depending on your computational needs) 

3. Note that switching to (say) LG is similarly mesh sensitive, but comparison 
between LG and DI between might be misleading in the Tsai/Leguy cases, i.e the 
fact that they are the same does not imply that the error is small 

4. Conclude that Stokes error estimates are however big they are, and discuss how 
that compares to the error caused by dropping to a lower order model 

5 (maybe) Discuss the idea that you only improve mesh sensitivity by changing the 
problem in a major way. 

I agree that it is shame that Tsai/Leguy does not help so much but if that is the truth, 
that is what needs to be known. A paper along the lines of the above would still 
address the review I gave originally if the mesh sensitivity is unchanged. I think that if 



you do submit along those lines we should add these e-mail exchanges to the public 
discussion 

Cheers 

Steph 
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Abstract. The dynamical contribution of marine ice sheets to sea level rise is largely controlled

by grounding line (GL) dynamics. Two marine ice sheet model intercomparison exercices, namely

MISMIP and MISMIP3d, have been proposed to the community to test and compare the ability

of models to capture the GL dynamics. Both exercices are known to present a discontinuity of the

friction at the GL, which is believed to increase the model sensitivity to mesh resolution. Here, using5

Elmer/Ice, the only Stokes model which completed both intercomparisons, the sensitivity to the mesh

resolution is studied from an extended MISMIP experiment in which the friction is continuously

decreasing over a transition distance and equals to zero at the GL. Using this MISMIP-like setup, it

is shown that the sensitivity to the mesh resolution is not improved for a vanishing friction at the GL.

For the original MISMIP experiment, i.e. for a discontinuous friction at the GL, we further show that10

the results are moreover very sensitive to the way the friction is interpolated in the close vicinity of

the GL. On the light of these new insights, and thanks to increased computing resources, new results

for the MISMIP3d experiments obtained for higher resolutions than previously published are made

available for future comparisons as Supplement.
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1 Introduction15

Marine terminating glaciers in Antarctica and Greenland control the dynamical contribution of these

ice sheets to sea level rise. Among the processes at play, the retreat of the grounding line (GL) has

a major impact on this dynamical contribution. Accurate modelling of GL dynamics is therefore

a precondition for prognostic simulations of the future of ice sheets in a warming climate (Durand

and Pattyn, 2015). Previous works have emphasised the importance of the mesh resolution around20

the GL (Vieli and Payne, 2005; Durand et al., 2009a, b; Pattyn et al., 2012; Durand and Pattyn,

2015) and how the friction is interpolated in the vicinity of the GL (Gladstone et al., 2012; Seroussi

et al., 2014; Leguy et al., 2014). Two recent intercomparison exercises were designed to compare

and test the ability of ice-sheet models to resolve the advance and retreat of the GL based on different

perturbations. MISMIP was dedicated to two-dimensional flow line geometry (Pattyn et al., 2012)25

and used an analytical solution (Schoof, 2007), whereas MISMIP3d was a fully three-dimensional

setup (Pattyn et al., 2013).

Elmer/Ice was the only Stokes model to complete the MISMIP experiment 3a (Pattyn et al., 2012)

and it was one of only two Stokes models to perform the whole MISMIP3d experiments (Pattyn et al.,

2013). Moreover, in the latter intercomparison exercise, the diagnostic experiment P75D was directly30

build from the geometry obtained with Elmer/Ice after the 100 year perturbation experiment. As the

only Stokes model to perform the two intercomparison exercises, Elmer/Ice results are currently

used as references for comparison with other models based on lower order Stokes equations (e.g.

Feldmann et al., 2014). The results of the MISMIP and MISMIP3d intercomparisons obtained with

Elmer/Ice are also used as benchmarks to test Stokes models during their development.35

Both MISMIP and MISMIP3d intercomparisons have confirmed that, except the heuristic ap-

proach prescribing the boundary layer flux at the grounding line (Schoof, 2007), all other approaches

require a fine resolution close to the grounding line to accurately describe its dynamics. One com-

mon feature of both MISMIP and MISMIP3d is the use of a constant sliding parameter over all the

grounded part. Doing so, the friction at the GL presents a discontinuity, which is believed to increase40

the model sensitivity to the mesh size at the GL. Is the sensitivity of models to mesh resolution spe-

cific to the discontinuous friction imposed in both MISMIP and MISMIP3d? Are there alternative

numerical methods that would decrease the sensitivity to the mesh resolution for a given setup?

Two recent contributions started answering these questions, the first by adopting a smoothed fric-

tion upstream the GL (Leguy et al., 2014) and the second by introducing a sub-grid evaluation of45

the GL position (Seroussi et al., 2014). From a modified MISMIP setup and using the shallow shelf

approximation (SSA) implemented on a fixed grid, Leguy et al. (2014) have shown that introducing

a smooth transition between finite basal friction in the ice sheet and zero basal friction in the ice

shelf significantly improves the numerical accuracy of the model. In other words, the sensitivity of

the GL dynamics to the grid size is shown to be significantly reduced when the friction continuously50

decreases to zero upstream the GL. Importantly, by smoothing the friction, the physical problem is
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modified and will result in a more retreated steady state GL position than the original MISMIP one.

However, a smooth friction vanishing at the GL is certainly more realistic than a discontinuous one

since one expects that the effective pressure is null at the GL. Using the MISMIP3d experiments,

Seroussi et al. (2014) compared various parameterisations of the GL position for a finite element55

(FE) SSA model. Using the SSA, the GL position is directly evaluated from the floatation criterion

and can therefore be located at any point of the domain and not only at the element nodes. In this

way, the basal friction can be evaluated with a subgrid resolution. Their results, for a discontinuous

friction at the GL (MISMIP3d), showed that sub-element parametrisation of the GL significantly re-

duces the sensitivity of the results to the mesh size at the GL. The proposed methods, by estimating60

the GL position at a subgrid scale, acts similarly than an increased mesh resolution around the GL,

but without the numerical cost associated with remeshing when the GL is moving.

For a Stokes model, the solution proposed by Leguy et al. (2014) might be an alternative as, unfor-

tunately, the sub-element parametrisation implemented by Seroussi et al. (2014) in their SSA model

cannot be applied to solve the contact between the ice and its bed. Indeed, the contact condition can65

only be evaluated at the element nodes. In other words, for a Stokes model, the two alternatives are

to either solve a modified problem which would be less sensitive to mesh resolution or improve the

accuracy of the model by increasing the mesh resolution. Obviously, the former solution cannot be

applied if one wants to solve the original MISMIP and MISMIP3d experiments.

The aim of this brief communication is to study, for the Elmer/Ice Stokes model, the impacts on the70

accuracy of a smooth transition of the friction at the GL and of the way the friction is implemented

at the GL. It is first shown that for the Stokes solution, contrary to what is found by Leguy et al.

(2014) for SSA, introducing a smooth transition of the friction at the GL has no significant effect

on the sensitivity of the model to the grid size. In the case of a discontinuous friction at the GL,

we then present three possible FE implementations of the friction at the GL and show that these75

different implementations result in significant differences in terms of GL dynamics for the well-

defined MISMIP and MISMIP3d experiments. All the newly obtained MISMIP 3d results are made

available in the Supplement for future model comparisons.

2 Sensitivity to mesh resolution and friction implementation

This section presents results on the sensitivity to the mesh resolution using a flow line configura-80

tion. For that purpose, the GL dynamics is studied using a set up adapted from experiment 3a of the

MISMIP intercomparison exercise (Pattyn et al., 2012). Experiment 3a assumes an overdeepened

bedrock, a non-linear Weertman friction law and that the GL is evolved by step changes of the ice

fluidity parameter. Previous works have shown that steady-state position of GL could differ slightly

depending on whether it is obtained from advancing or retreating GL, but that this difference de-85

creased with an increase in mesh resolution (Durand et al., 2009a). For a given mesh discretization,
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the accuracy of the model is therefore assessed as the difference between the retreat and advance

steady positions.

Basal friction in the experiment 3a of MISMIP is imposed on the form of a non-linear Weertman

sliding law, linking the basal shear stress and the sliding velocity:90

σnt +Cumt = 0 (1)

The original MISMIP 3a setup assumes a constant friction parameter C where the ice is grounded,

i.e. for x≤ xG, and perfect sliding at the interface between the ice and the ocean, i.e. for x > xG,

xG being the GL position and assuming the horizontal velocity to be positive.

In order to smooth the friction upstream the GL, Leguy et al. (2014) have proposed a simple95

parametrization of the effective pressure, the overburden pressure minus the water pressure, coupled

with a Coulomb-type friction law. Here, following their idea, but assuming a simpler formalism, the

friction parameter C of the original MISMIP experiment is modified as follow:

C? = C if x≤ xG −L (2)

C? = C(xG −x)/L if xG −L≤ x≤ xG (3)100

C? = 0 if x≥ xG (4)

Doing so, the friction is linearly decreasing over a distance L from C to 0 at the GL. Note that the

physical problem is then modified and the steady solution for a given L > 0, as well as the transient

phases, are expected to be different than those of the original MISMIP. When L= 0, the problem is

equivalent to the original MISMIP and the friction presents a discontinuity at the GL. Because C?105

is estimated at the mesh nodes, and then interpolated on the element using the FE basis function, the

same solution is expected for any L lower or equal to the grid size.

The same type of mesh than the one used for producing the Elmer/Ice MISMIP results is used,

with an evolving resolution along the flow direction (see Durand et al. (2009a) for more details).

The discretization therefore refers to the minimum horizontal mesh size in the close vicinity of the110

GL. The model accuracy is studied for four mesh sizes, from 200 to 25 m, and L= 0, L= 60 and

L= 500 m. Starting from the ice-sheet geometry for step 1 and step 5 of experiment 3a (see Pattyn

et al. (2012) for more details), the ice fluidity for step 4 is then applied and the geometry is evolved

until a steady state is obtained, one in advance (from step 1 to step 4) and one in retreat (from step 5

to step 4).115

From Figs. 1 and 2a, one can clearly see that for L > 0 (red and black curves), the problem is

modified and so are the GL steady positions. The longer the length of the decreased friction, i.e. the

larger is L, the less advanced the GL steady position. Simulations for L= 1000 m were even found

to have their steady positions upstream the initial Step 1 position and cannot be used therefore to test

the model accuracy as both steady solutions are obtained in retreat mode. As show in Fig. 2b, and120

contrary to what was found by Leguy et al. (2014), no improvement of the model accuracy is found

4



when L is increased. For these simulations, the largest errors are even found for L= 500 m, but with

no significant differences from the other simulations. The reasons that might explained this different

behaviour are multiple, but most probably results in the two different models (SSA versus Stokes)

and/or the adopted linear formulation to smooth the friction upstream the GL. On the other hand,125

these results seems to be in line with the ones obtained by Cornford with BISICLES (Cornford,

personal communication, see the review material of this paper).

Moreover, in the case of a discontinuous friction at the GL (L= 0), three different numerical

implementations of the friction in the close vicinity of the GL have been tested. The three imple-

mentations are presented in details in the Supplement. The first is assuming that the GL defines the130

last grounded (LG) nodes and that friction is applied up to the nodes belonging to the GL. In the

second, the nodes belonging to the GL are assumed to be the first floating (FF) nodes and are already

freely slipping. The third one reproduces exactly the discontinuity (DI) of the friction at the nodes

belonging to the GL: friction at these nodes is only applied if integrating over an element where

all other nodes are also in contact with the bedrock but a free slip condition is applied if the node135

belongs to an element where at least one node is in contact with the ocean. The three implementa-

tions are illustrated in a two-dimensional flow line configuration in Fig. S1 of the Supplement. Note

that as far as L > 0, all three implementations are equivalent and give the same results. Despite the

DI implementation being certainly the most physical, up to now, all the published Elmer/Ice results

were obtained using the LG method (Durand et al., 2009a, b, 2011; Gagliardini et al., 2010, 2013;140

Favier et al., 2012, 2014; Drouet et al., 2013; Gudmundsson et al., 2012; Pattyn et al., 2012, 2013;

Krug et al., 2014). Note that other possible implementations, such as a constant friction value per

element, would certainly conduct to other results.

For L= 0, the three friction implementations (LG, DI and FF) converge to the same, most ad-

vanced, steady state position when the mesh size is decreased. Nevertheless, as shown in Figs. 1 and145

2a, for a given mesh size, differences on the steady GL positions from the three methods are of the

same order than differences from advance to retreat for a given method. The LG method leads to the

most advanced GL, the FF method to the least advanced GL and the DI method to an intermediate

GL position. For a 200 m discretization, the difference between the LG and FF methods is larger

than 15 km in both advance and retreat. The DI position is almost exactly half way between the LG150

and FF positions. With a 25 m resolution at the GL, these differences are reduced to less than 2 km

in both advance and retreat. For the purpose of comparison, with a given method, the difference

between advance and retreat is around ≈ 25 km at the resolution of 200 m and is decreased to less

than 3 km at a resolution of 25 m.

Finally, Fig. 2a also shows the published Elmer/Ice GL position obtained in advance from step 3155

to step 4 in Pattyn et al. (2012). This solution was produced using the same discretisation of 200 m

at the GL, but not exactly the same mesh. Despite the same discretisation at the GL, there is a 3 km

difference with the new LG solution for L= 0. In line with Durand et al. (2009b), these differences
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illustrate the sensitivity of the GL position not only to the mesh resolution at the GL, but also to

the other mesh characteristics, and more specifically how strongly the mesh resolution is reduced160

downstream and upstream the GL.

As expected theoretically, the MISMIP flow line study confirms that, despite a high jump in fric-

tion at the GL, all three implementations of the friction converge to an identical solution as the mesh

resolution is improved, but can lead to significantly different solutions for a too coarse mesh. On the

light of these significant differences between the three friction implementations for the MISMIP 3a165

experiment, the following section aims to quantify these differences for the MISMIP3d experiments.

3 Sensitivity to the lateral discretisation of MISMIP3d experiments

In this section, the three numerical implementations of the friction are then compared using the prog-

nostic experiments of MISMIP3d. New results for the diagnostic experiment P75D of MISMIP3d

are also presented in Section 2 of the Supplement. The prognostic experiment in MISMIP3d is de-170

composed in three steps. First, assuming no lateral variation in y, a steady state geometry is obtained

for each model. In the second step, P75S, a Gaussian sliding perturbation is introduced precisely at

the grounding line and centred on the axis of symmetry at y = 0 km. This constant perturbation is

applied for the next 100 years. Finally, during the last step, P75R, the perturbation is removed and

the GL moves back to its initial steady position. Only the first 100 years of the removal are studied.175

Note that for the grounding line to get back to its initial steady state position might take much longer

than 100 years as the behaviour in advance and retreat is not symmetrical.

The three friction implementations are first compared using a mesh with similar discretisations

in both longitudinal and lateral directions as the one used to obtain the LFA results in Pattyn et al.

(2013). The element size of the mesh is varied horizontally along the main flow direction, such that180

the GL stays in the refined zone during the whole experiment. Because the steady state geometries

are different for the three methods, the refined zone lies at different places, and even if all meshes

present similar features (same number of nodes, same refinement at the GL), they cannot be identical.

As expected from the results presented in the previous section, the three methods conduct to three

different GL positions, the LG solution being more advanced by ≈ 7 km in comparison to the FF185

one (see Table S1 in the Supplement). It should be noticed that this distance is similar to the one

obtained between the LG solution and the LFA solution published in Pattyn et al. (2013), using the

same discretisation at the GL but not exactly the same mesh. This gives again an indication on how

the results are sensitive to the mesh, and not only in the vicinity of the GL. It should however be also

noticed that these differences stay much smaller than the differences obtained between the Stokes190

and SSA solutions (≈ 525 km for the Stokes against ≈ 605 km for the SAA (Pattyn et al., 2013;

Seroussi et al., 2014; Feldmann et al., 2014)). In what follows, the transient response is discussed

relative to the steady GL position xG0 of each model.
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Figure S4 in the Supplement shows the evolution of the GL during the 100 years of the perturba-

tion (from 0 to 100 years) and during the same time after the perturbation has been removed (from195

100 to 0 years), at y = 0 and y = 50 km. As shown in this figure, the transient responses of the three

methods relative to their initial position xG0 are similar during the first 5 years, but then differ sig-

nificantly. Interestingly, if the LG GL is continuously advancing at y = 0, this is not anymore the

case for the two other methods. The rapid advance of the FF GL position at y = 0 occurring dur-

ing the first years is then followed by a retreat of almost the same magnitude after 100 years, with200

a difference lower than 2 km with the initial GL position, when it is almost 19 km for the LG one

(see Table S1 in the Supplement). After the perturbation is removed, the GL starts to move back to-

wards its initial steady state position. Nevertheless, after 100 years (dashed lines from 100 to 0 a in

Fig. S4), the GLs are still far from having reached again the steady state position (∆xG
= 0). The

LG method is the fastest in coming back to its steady state position whereas the FF is the slowest.205

Such large differences for the transient response of the three methods can only be explained by

a too coarse mesh. The steady solution being reasonably close, and independent of the lateral dis-

cretisation of the mesh (no transverse variation of any field so that the steady GL is a straight line

perpendicular to the x direction), the source of discrepancy for the transient response certainly arises

from the lateral discretisation. The number of lateral elementsNy is only 20 for the previous simula-210

tions. The sensitivity of the transient response to the lateral discretisation is investigated by running

the same experiment with two finer lateral mesh resolution, everything else being the same. Re-

sults for Ny = 40 and Ny = 80 are presented in Figs. S5 and S6 in the Supplement, respectively.

As can be seen from Fig. 3, differences in the transient response of the three methods are signifi-

cantly decreased when the lateral mesh refinement is increased. Nevertheless, even with the finest215

mesh (Ny = 80), the difference between the methods stays relatively important (≈ 5 km between

LG and FF at the end of the perturbation experiment, but to be compared to 17 km for Ny = 20).

Figure 3 indicates that the difference for the three methods between the higher resolution (Ny = 80)

and the two other mesh refinements (Ny = 40 and Ny = 20) is smaller for the DI method than the

two others. In other words, the DI method seems to be less sensitive to the mesh refinement than the220

two other methods, certainly because it gives an intermediate solution whatever the mesh resolution.

This is one more reason that justify that the DI method should be preferentially adopted for future

works. Note however that the decrease in mesh sensitivity is not as high as for the subgrid methods

proposed for the SSA (Seroussi et al., 2014).

Higher lateral discretisation were not further explored for computing resource purpose, but this225

study clearly indicates that, as expected theoretically and shown in the previous section using the

flow line setup MISMIP, the difference between the three implementations is decreased as the mesh

resolution is increased. Published LFA results (Pattyn et al., 2013) were obtained with a lateral

discretisation of Ny = 20 elements, which was certainly insufficient as shown by these new results
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using 40 and 80 lateral elements. For further comparisons, we recommend to use the more accurate230

results presented in Fig. S6 and provided as Supplement.

4 Conclusions

In this paper, the sensitivity to the mesh resolution of the dynamical response of the GL is studied

for different friction evolution upstream the GL. Contrary to Leguy et al. (2014), a smoother friction

vanishing at the GL is not found to improve model sensitivity to mesh resolution. Explaining the235

reasons of such different behaviour is beyond the scope of this paper, but we encourage further

works in that direction with various models. Having the friction smoothly decreasing to zero at the

GL is certainly more realistic, as one expect the effective pressure to vanish at the GL. Therefore,

despite presenting no advantage in term of mesh sensitivity, such more realistic friction distribution

should be preferred for future model intercomparisons.240

In the case of a discontinuous friction, as in the MISMIP and MISMIP3d experiments, we have

presented three possible implementations of the friction at the GL for a finite element formulation of

the Stokes equations. So far, in all the applications using Elmer/Ice, it was assumed that the friction

is applied up to the GL using the LG method. In so doing, the first elements immediately downstream

from the GL undergo a little friction even if being in contact with the ocean.245

We have shown that the treatment of the friction at the GL has a strong influence on both the

velocity field and on the resulting GL dynamics for the mesh resolutions that were used to produce

the MISMIP and MISMIP3d results. As expected theoretically, differences between the three imple-

mentations are shown to decrease as the mesh resolution is increased, but these differences remains

substantial when using mesh resolutions numerically affordable for usual 3D applications. Even for250

the smallest refinements accessed for the three-dimensional test case, differences are still observed.

However, these differences are much smaller than those between Stokes and lower-order models.

This give an indication on the model error to be expected when performing GL dynamics simula-

tions with a Stokes model. Moreover, using MISMIP3d experiment, the lateral refinement is shown

to have also a significant influence on the transient behaviour.255

In the case of a discontinuous friction at the GL, we finally recommend to use the discontinuous

DI implementation which is certainly the most realistic and the less sensitive to the mesh refinement

of the three. We also recommend to use these newly published results with finer mesh resolutions

for future model comparison.

The Supplement related to this article is available online at260

doi:10.5194/tc-0-1-2015-supplement.
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Figure 1. Experiment MISMIP 3a, steps 1 to 4 (advance, solid line) and 5 to 4 (retreat, dashed line): evolution

with time of the GL position for L= 0m and the three GL implementations LG (brown), DI (purple) and FF

(blue), L= 60m (red) and L= 500m (black), for the four resolutions (a) 200m, (b) 100m, (c) 50m and (d)

25m.
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Figure 2. Experiment MISMIP 3a step 3: (a) grounding line positions as a function of resolution in advance

(stars) and retreat (dots) for L= 0m and the three GL implementations LG (brown), DI (purple) and FF (blue),

L= 60m (red) and L= 500m (black), (b) model accuracy estimated from the difference between the retreat

and advance GL steady positions (same colour legend). In (a), the large white star corresponds to the published

GL position for step 4 of experience 3a in Pattyn et al. (2012) and the dot-dashed line is the Schoof (2007)

solution.
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Figure 3. Experiment MISMIP3d P75S and P75R: evolution of the absolute differences in km between the

highest resolution (Ny = 80) and the two others (Ny = 40 continuous line and Ny = 20 dashed line) for the

three different methods: LG (brown), DI (purple) and FF (blue), on the symmetry axis (y = 0; thick curves) and

on the free-slip boundary (y = 50km; thin curves).
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