
Dear	Editor,	
	
We	have	addressed	each	of	the	reviewer’s	comments.	Major	changes	involve	adding	
a	grid	refinement	analysis	and	updating	temperature	time-series	plots	in	the	
supplement	(Figs.	S3,	S4,	and	S5)	to	include	the	2014	evaluation	period.	These	
additional	revisions	have	added	depth	to	the	analysis	and	allowed	us	to	clarify	many	
points.	We	thank	the	reviewer	for	her/his	time	and	attention	in	providing	us	with	
these	helpful	comments.	Please	find	our	detailed	responses	below	in	blue.	Line	
numbers	refer	to	the	marked	up	manuscript	below.				
	
The	Authors	
	
Suggestions	for	revision	or	reasons	for	rejection	(will	be	published	if	the	paper	is	
accepted	for	final	publication)	
	
The	paper	has	been	greatly	improved	in	the	revised	version.	The	structure	is	clearer,	
it	is	easier	to	understand	what	the	authors	are	doing,	and	the	number	of	figures	in	
the	paper	has	been	reduced	to	an	acceptable	amount.	The	authors	have	addressed	
many	of	the	concerns	of	the	reviewers	and	the	associated	editor.		
	
However,	there	are	some	remaining	concerns,	which	prevent	me	from	
recommending	the	paper	to	be	accepted	as	is.	Therefore	I	rather	recommend	the	
paper	to	be	reconsidered	after	another	round	of	major	revisions.	
	
The	most	serious	point	is,	that	it	is	obvious	from	figure	9,	that	the	authors	use	a	grid	
resolution	of	10	cm	below	a	depth	of	about	90	cm.	While	this	might	be	appropriate	
for	the	original	2006	climate,	where	the	active	layer	thickness	is	only	about	30	cm,	it	
might	cause	serious	discretisation	errors	at	the	end	of	the	simulated	period,	when	
the	active	layer	depth	is	around	100	cm.	The	gradients	especially	in	water	potential	
are	very	high	at	the	freezing	front	and	require	a	proper	resolution.	The	consequence	
of	a	too	coarse	resolution	would	be	smoothed	gradients,	which	might	partially	
explain	the	very	low	Stefan	numbers	at	the	end	of	the	simulation.	The	authors	
therefore	have	to	conduct	grid	refinement	studies	to	check	if	grid	convergence	has	
been	obtained.	If	this	has	been	done	already,	it	should	be	mentioned	in	the	text	and	
should	be	documented	in	the	supplement.	As	this	is	a	major	point,	I	have	to	propose	
to	reconsider	the	paper	after	major	revisions.	
	
The	reviewer	rightfully	expresses	concern	in	the	10	cm	mesh	discretization	below	
90	cm.	We	now	include	a	grid	convergence	analysis	in	the	supplemental	material	
(fig	S1).	The	grid	convergence	analysis	is	performed	on	the	ensemble	member	
resulting	in	the	largest	ALT	in	year	2100,	the	case	that	will	be	most	affected	by	mesh	
discretization.	The	analysis	presents	the	temperature	and	liquid	saturation	profiles	
at	the	time	of	ALT	in	year	2100.	The	profiles	indicate	that	in	this	worst-case	
scenario,	the	mesh	discretization	does	not	significantly	alter	the	results,	with	
temperature	within	a	tenth	of	a	degree	and	nearly	identical	liquid	saturations.	
Gradients	in	both	cases	are	also	nearly	identical.	Since	this	is	the	worst-case	



scenario,	and	effects	on	other	ensemble	members	will	be	even	smaller,	this	
demonstrates	that	the	current	mesh	discretization	is	adequate.	The	mesh	analysis	is	
mentioned	in	the	paper	on	lines	156-158.	The	mesh	analysis	strengthens	the	paper,	
and	we	thank	the	reviewer	for	prompting	its	inclusion.	
	
There	are	some	minor	points	as	well:	
-	Equation	(4):	phi	is	here	used	for	the	first	time,	but	not	explained.	
	
Phi	is	now	explained	here	(line	266).	We	thank	the	reviewer	for	identifying	this	
omission.	
	
-	Line	359-365:	For	me	this	paragraph	can	be	misunderstood.	For	me	a	"fit"	can	be	
the	adaptation	of	a	model	to	measured	data	(which	was	performed	for	2013),	
whereas	for	2014	one	can	see	the	agreement	between	the	model	and	the	data	(as	
there	was	no	calibration	for	2014,	as	far	as	I	understood).	You	should	make	this	
clearer.	
	
The	reviewer	is	correct	that	the	2014	simulated	temperatures	do	not	constitute	a	
‘fit’	to	the	data.	Based	on	the	reviewers	comment,	this	paragraph	has	been	rewritten	
to	distinguish	between	the	2013	‘fit’	and	the	2014	‘match’	(lines	361-366).	We	thank	
the	reviewer	for	prompting	this	clarifying	revision.	
	
-	You	should	also	add	the	time	series	at	different	depth	for	the	three	locations	for	
2014	to	the	supplement,	as	it	is	done	for	2013	in	figure	S2-S4.	
	
In	accordance	with	the	reviewer’s	request,	the	2014	evaluation	has	been	added	to	
figures	S3-S5.	
	
-	Line	427-432:	The	statement,	that	the	partitioning	between	methane	and	carbon	
dioxide	will	not	change	is	very	bold,	based	on	the	available	data.	The	active	layer	
depth	and	the	annual	thaw	depth	duration	as	well	as	the	annual	mean	liquid	
saturation	are	very	aggregated	parameters,	whereas	the	production	of	methane	or	
carbon	dioxide	depends	on	local	conditions	at	certain	times.	For	example	methane	is	
even	produced	in	soils	under	generally	aerobic	conditions	(which	is	explained	by	
anaerobic	microsites).	Especially	due	to	the	high	gas	saturations	down	to	1	metre	
(as	shown	in	figure	7)	I	would	rather	expect	a	change	in	the	biochemical	processes.	
	
This	assertion	has	been	softened	to	simply	state	that	the	soil	moisture	regime	does	
not	change	significantly	during	permafrost	thaw	in	the	simulations.	It	is	then	simply	
stated	that	soil	moisture	is	a	factor	that	controls	carbon	decomposition	partitioning,	
along	with	many	other	factors	(lines	434-436).		
	
-	Line	444-446:	The	changes	in	the	underlying	permafrost	excites	in	me	the	
question,	what	the	lower	boundary	condition	of	the	model	is.	If	I	understand	line	
155-156	correctly,	you	are	simulating	a	domain	down	to	50m?	Are	you	then	using	
no-flux	at	the	lower	boundary?	



	
A	sentence	has	been	added	to	the	model	description	(lines	160-161)	that	the	lower	
boundary	is	set	to	a	constant	temperature	of	9.7	C.	The	lower	boundary	is	set	as	a	no	
mass	flux	boundary,	but	this	is	a	mute	point	since	it	is	always	frozen.	
	
-	Figure	6,	Line	448-462:	To	me	it	is	not	evident,	what	is	shown	in	this	figure.	I	
reckon	that	it	is	temperature	profiles	at	a	certain	time	(the	time	of	maximal	thaw	
depth)	for	different	parameter	scenarios	for	2100	with	the	colour	specifying	the	
day,	when	this	maximum	is	reached.	However,	what	exactly	is	plotted	for	2006?	Is	
this	the	median	of	the	curves	for	different	scenarios	also	at	the	day	of	maximum	
thaw	depth	or	is	it	averaged	over	days	246-260?	Please	make	this	clearer.	
	
The	reviewer	indicates	that	Figure	6	and	its	associated	text	do	not	clearly	describe	
the	information	in	the	figure.	It	is	now	clearly	stated	in	the	caption	that	the	colors	
indicate	the	day	of	the	year	that	ALT	occurred	for	each	realization	in	the	ensemble	
for	2100.	The	figure	caption	has	also	been	modified	to	more	clearly	indicate	that	the	
ensemble	statistics	for	2006	are	summarizing	similar	information	as	the	colored	
lines	for	2100.	This	is	also	explained	in	greater	detail	on	lines	458-459.	The	
reviewer’s	comment	has	helped	clarify	the	paper	and	has	undoubtedly	improved	the	
interpretability	of	the	paper.	We	thank	the	reviewer	for	this	comment.	
	
-	Figure	7:	please	comment	in	the	text	especially	on	the	higher	gas	saturation,	which	
will	lead	to	a	continuous	gas	phase	and	thus	aerobic	conditions	down	to	at	least	80	
cm.	Also	it	might	be	mentioned	that	the	high	liquid	saturation	down	to	80	cm	might	
result	in	increased	subsurface	run-off	(depending	on	the	topography,	which	I	do	not	
know).	I	assume	that	this	is	not	included	in	the	model.	
	
The	reviewer	makes	a	great	point	here.	Text	has	been	added	discussing	how	the	
ensemble	of	simulations	result	in	deep	continuous	gas	phases	in	the	column	models	
at	the	time	of	ALT,	and	that	this	indicates	that	aerobic	conditions	may	be	found	deep	
within	the	active	layer.	It	is	also	discussed	that	deeper	liquid	saturations	could	lead	
to	lateral	flow,	but	that	this	is	perhaps	less	important	for	the	micro-topography	of	
polygonal	tundra	than	for	hilly	terrain	(lines	482-487).	
	
-	Line	529-544:	"Some	strong	correlations	are	apparent..."	this	is	rather	sloppy	
language.	There	are	only	four	strong	correlations,	and	three	of	them	are	with	the	
same	variable,	the	porosity	of	the	peat	soil.	Then	there	is	a	moderate	correlation	
between	the	residual	water	content	of	both	peat	and	mineral	soil	with	the	annual	
mean	liquid	saturation,	which	is	to	be	expected.	I	am	not	sure,	if	this	justifies	four	
large	figures.	If	you	are	confident,	that	the	regression	in	table	2	has	some	
justification,	it	would	rather	be	interesting,	to	visually	assess	the	agreement	
between	ALT,	D	and	Stefan	number	predicted	only	based	on	the	porosity	of	the	
mineral	soil	and	your	simulation	results.	
	



We	agree	with	the	reviewer	that	the	language	was	not	as	precise	as	it	could	have	
been.	Therefore,	the	word	“Some”	had	been	changed	to	“Four”	based	on	the	
reviewer’s	comment	(line	541).		
	
We	agree	that	a	few	key	points	are	extracted	out	of	the	four	figures,	and	that	the	
remainder	of	the	information	does	not	contribute	to	the	key	points.	However,	we	
feel	that	the	figures	in	and	of	themselves	comprise	a	synthesis	a	much	larger	body	of	
information	in	an	easily	interpreted	and	visually	appealing	manner.	The	reader	can	
choose	to	simply	quickly	review	the	figures,	or	delve	into	the	wealth	of	information	
they	provide	at	their	own	discretion.	We	have	therefore	left	the	figures	in	place.		
	
The	reviewer	makes	an	insightful	point	about	using	the	regression	to	predict	the	
simulation	results.	However,	in	the	current	context,	this	would	be	a	circular	
demonstration.	If	we	use	the	simulation	results,	we	will	reproduce	the	values	of	
ALT,	D	and	Stefan	number.	If	we	generate	more	calibration-constrained	realizations	
and	run	those	simulations,	they	will	be	from	the	same	convergent	ensemble,	and	
will	also	reproduce	similar	values	of	ALT,	D,	and	Stefan	number	as	we	already	have.	
A	true	test	would	be	to	validate	the	regressions	to	actual	field	data,	of	which	we	do	
not	have	for	2100.	We	therefore	decline	to	perform	this	analysis,	as	we	do	not	see	a	
way	to	perform	the	analysis	that	would	not	be	optimistically	contrived.	
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Abstract. The effects of soil property uncertainties on permafrost thaw projections are studied using

a three-phase subsurface thermal hydrology model and calibration-constrained uncertainty analysis.

The Null-Space Monte Carlo method is used to identify soil hydrothermal parameter combinations

that are consistent with borehole temperature measurements at the study site, the Barrow Environ-5

mental Observatory. Each parameter combination is then used in a forward projection of permafrost

conditions for the 21st century (from calendar year 2006 to 2100) using atmospheric forcings from

the Community Earth System Model (CESM) in the Representative Concentration Pathway (RCP)

8.5 greenhouse gas concentration trajectory. A 100-year projection allows for the evaluation of pre-

dictive uncertainty (due to soil property (parametric) uncertainty) and the inter-annual climate vari-10

ability due to year to year differences in CESM climate forcings. After calibrating to measured

borehole temperature data at this well-characterized site, soil property uncertainties are still signif-

icant and result in significant predictive uncertainties in projected active layer thickness and annual

thaw depth-duration even with a specified future climate. Inter-annual climate variability in projected

soil moisture content and Stefan number are small. A volume and time integrated Stefan number de-15

creases significantly, indicating a shift in subsurface energy utilization in the future climate (latent

heat of phase change becomes more important than heat conduction). Out of 10 soil parameters,

ALT, annual thaw depth-duration, and Stefan number are highly dependent on mineral soil porosity,

while annual mean liquid saturation of the active layer is highly dependent on the mineral soil resid-

ual saturation and moderately dependent on peat residual saturation. By comparing the ensemble20

statistics to the spread of projected permafrost metrics using different climate models, we quantify

the relative magnitude of soil property uncertainty to another source of permafrost uncertainty, struc-

1



tural climate model uncertainty. We show that the effect of calibration-constrained uncertainty in soil

properties, although significant, is less than that produced by structural climate model uncertainty

for this location.25

1 Introduction

Increasing Arctic air and permafrost temperatures (Serreze et al., 2000; Jones and Moberg, 2003;

Hinzman et al., 2002; Romanovsky et al., 2007), the resulting increase in the thickness of soil that

thaws on an annual basis (Romanovsky and Osterkamp, 1995), and the potential for greenhouse

gas release due to the ensuing decomposition of previously frozen organic carbon (Koven et al.,30

2011; Schaefer et al., 2011) provide motivation for developing robust numerical projections of the

thermal hydrological trajectory of Arctic tundra in a warming climate. Projections of permafrost

thaw and the associated potential for greenhouse gas release from the accelerated decomposition

of previously frozen carbon are subject to several sources of uncertainty, including (but not limited

to) structural uncertainties in the climate models; uncertainty about the model forcings/inputs in35

the future (scenario uncertainty in the typology of Walker et al. (2003)); parametric uncertainties

in soil and surface properties that control the downward propagation of thaw fronts; and structural

uncertainties in the surface and subsurface thermal hydrological models.

Previous efforts to characterize uncertainty in permafrost thaw projections have mostly focused

on climate model structural uncertainties and climate model uncertainties, presumably because of40

an implicit assumption that those two sources of uncertainty overwhelm the other sources. However,

recent large-scale model comparisons suggest that a substantial portion of projected permafrost un-

certainties is a result of structural model differences in land surface/subsurface schemes (Slater and

Lawrence, 2013; Koven et al., 2013), particularly how subsurface thermal hydrologic processes are

represented (Koven et al., 2013) rather than simply climate variation. Although those studies focused45

on structural uncertainty in surface and subsurface models and not on soil property uncertainty, the

reported sensitivity to the subsurface model suggests that uncertainty in soil properties may also

contribute significantly to overall uncertainty in thaw projections.

The bulk hydrothermal properties of soil that control the active layer thickness (ALT, i.e. the depth

of soil that thaws on an annual basis) (Neumann, 1860; Stefan, 1891; Romanovsky and Osterkamp,50

1997; Peters-Lidard et al., 1998; Kurylyk et al., 2014) vary among sites and locally within a single

site, in particular being sensitive to the local organic matter content and bulk porosity (Letts et al.,

2000; Price et al., 2008; O’Donnell et al., 2009; Hinzman et al., 1991; Chadburn et al., 2015a).

Langer et al. (2013) identify the soil composition uncertainties, particularly the soil ice/water con-

tent, to have the largest effect on ALT. Intermediate to large-scale thermal simulations of ALT are55

known to be sensitive to soil properties (Hinzman et al., 1998; Rawlins et al., 2013). Because of this

sensitivity, large-scale Earth System Models (ESMs) were recently updated to include layers of moss
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and peat in order to better represent subsurface thermal conditions (Beringer et al., 2001; Lawrence

and Slater, 2008; Wania et al., 2009; Subin et al., 2012; Ekici et al., 2014; Chadburn et al., 2015b).

Despite the recognition of soil property uncertainty and heterogeneity as important contributors to60

uncertainties in permafrost conditions and extent, global and regional studies that address permafrost

future conditions and extent typically apply broad soil texture classifications, such as those defined

by Clapp and Hornberger (1978) and Cosby et al. (1984), to parameterize soil properties (Lawrence

and Slater, 2008), usually without consideration of soil property uncertainty (Lawrence and Slater,

2005; Hinzman et al., 1998; Shiklomanov et al., 2007; Koven et al., 2013; Rinke et al., 2008).65

Soil property uncertainty is different from many other sources of projection uncertainty (e.g. cli-

mate model uncertainty) in that uncertainties in soil properties may be reduced by a combination

of site characterization (Hinzman et al., 1998) and model calibration (Romanovsky and Osterkamp,

1997; Nicolsky et al., 2009; Jiang et al., 2012; Atchley et al., 2015). Initial steps in that direction

have been taken. For example, Romanovsky and Osterkamp (1997) calibrate thermal soil properties70

using a purely conductive thermal model using measured temperatures at several sites and Nicolsky

et al. (2009) perform a sensitivity analysis of a calibration (data assimilation) approach to identify

its ability to recover thermal soil properties using a 1D thermal model and apply the calibration ap-

proach to several sites. Atchley et al. (2015) recently demonstrated an iterative approach for using

site characterization data to simultaneously refine thermal hydrology model structure and estimate75

model parameters. Their approach was applied to the Barrow Environmental Observatory, but could

be used at other sites to improve model structure and parameter assignments in the regional or global

context.

Recognizing that permafrost projections are sensitive to subsurface model representations and that

soil property uncertainties may be reduced through characterization and parameter estimation, a nat-80

ural next step is to quantify how such activities will impact overall uncertainties in permafrost thaw

projections in comparison to other sources of uncertainty. Here we address that question. Specif-

ically, we consider how uncertainties in soil hydrothermal properties propagate to uncertainties in

numerical projections of permafrost thaw at a well-characterized site. We go beyond a traditional

unconstrained uncertainty quantification and focus on the residual uncertainties that remain after85

soil parameters have been carefully calibrated to borehole temperature data. The intent of the cur-

rent work is to develop initial insights into how effective site characterization activities might be at

reducing uncertainties associated with soil parameters. We show that with future climate specified

and with the advantage of calibration targets from a well-characterized site, significant uncertainties

remain in projected ALT and other metrics important for carbon decomposition in the future cli-90

mate. We evaluate both predictive uncertainty and inter-annual climate variability. We show that this

residual uncertainty is significant, albeit less than that associated with uncertainties in future climate.

We focus on temperature data as they are one of the easiest and most common types of soil data

to collect at field sites and are often used for early site characterization. While many sites may
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have other types of measurements available, such as water and ice content measurements, many of95

these are more difficult to obtain at regular temporal intervals for extended periods of time. The

incorporation of other types of data, such as water and ice content measurements, would be expected

to reduce soil property uncertainty, however this is not investigated here.

The arctic site in this investigation is the polygonal tundra within the Barrow Environmental Ob-

servatory (BEO) on the Seward Peninsula. In particular, we focus on NGEE-Arctic site "area C"100

which contains degraded permafrost characterized by ⇠50 cm deep troughs and shallow low cen-

ters. The polygonal tundra of the BEO is classified as a lowland, cold continuous permafrost system

with a range of polygonal types and states, which includes intact low center polygons to degraded

ice wedges and associated high center polygons. Much of the polygonal tundra contains an organic

rich surface layer of peat overlaying a silty loam soil. Due to a low evaporative demand soils re-105

main moist, despite relative low annual precipitation, of which the bulk falls in the summer months

(Liljedahl et al., 2011). The snowpack over the microtopography at the site is redistributed to a rel-

atively level surface by strong winds, resulting in the deepest snowpack over troughs. Snow depth

measurements collected around the site on May 2, 2013 were between 20-40 cm for centers, 10-

20 cm for rims, and 40-60 cm for troughs while the average snow density was 326 kg/m3 (Atchley110

et al., 2015). While our investigation focuses on the polygonal tundra within the BEO, other arctic

landscape types are also prevalent (hillslopes, lakes, pingos). The importance of soil properties and

the dominant influence of particular soil properties may change in landscapes other than polygonal

tundra.

The methodology is described in Sect. 2, including: the model description (Sect. 2.1); a review of115

the calibration performed in Atchley et al. (2015) (Sect. 2.2); soil property uncertainty quantification

approach (Sect. 2.3); permafrost projection approach (Sect. 2.4); description of permafrost thaw

projection metrics (Sect. 2.5); and method of comparison to climate uncertainty (Sect. 2.6). Results

are presented in Sect. 3, including: the ensemble of calibration-constrained parameter combinations

(Sect. 3.1); predictive uncertainty and trends in permafrost thaw projections (Sect. 3.2); comparison120

of soil property and climate model uncertainty (Sect. 3.3); and correlation analysis between soil

parameters and projection metrics (Sect. 3.4). Conclusions and discussion of the analysis are in

Sect. 4.

2 Methodology

2.1 Model125

We use the Arctic Terrestrial Simulator (ATS) to numerically solve the coupled groundwater flow,

thermal, and surface energy balance equations. ATS is an integrated thermal hydrological code devel-

oped specifically for Arctic permafrost applications. It implements the modeling strategy outlined by

Painter et al. (2013) using the multiphysics framework Arcos (Coon et al., 2015b) to manage model
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complexity in process rich simulations such as these. Various components of ATS have already been130

described elsewhere, therefore, only a brief summary is provided here.

In the subsurface, the ATS solves nonlinear conservation equations for water and energy, using

a three-phase (air-water-ice), single-component representation (Karra et al., 2014), which is a sim-

plification of a more general two-component (water and representative gas phase) model (Painter,

2011). A recently developed constitutive model (Painter and Karra, 2014) is used to partition water135

between ice and liquid phases in unsaturated or saturated conditions. The partitioning model relates

unfrozen water content below the nominal freezing point to the unfrozen soil moisture characteristic

curve, thus avoiding empirical freezing curves. The model has been successfully compared to a vari-

ety of laboratory experiments on freezing soils (Painter and Karra, 2014; Karra et al., 2014; Painter,

2011). The Material Component model defines thermal conductivities and is described in detail in140

Appendix A of Atchley et al. (2015). Surface boundary conditions use a “fill and spill approxima-

tion”, where we allow up to 4 cm of water to pond on the surface; all additional ponded water may

run off the domain. The surface and subsurface thermal hydrology systems are coupled using con-

tinuity of pressure, mass flux, temperature, and energy flux, in a thermal extension of the coupling

strategy presented in (Coon et al., 2015a). Additionally, we use a surface energy balance (Hinzman145

et al., 1998; Ling and Zhang, 2004; Atchley et al., 2015) in which surface latent and sensible heat,

incoming and outgoing radiation, and conducted heat terms, along with incoming precipitation and

outgoing evaporation are tracked. Finally, a dynamic, snow model is incorporated for tracking snow

aging and consolidation, with resulting effects on albedo and melt (Atchley et al., 2015). As de-

scribed in Sect. 4.4 of Atchley et al. (2015), the snow model accounts for snow redistribution over150

the microtopography of the site and depth hoar formation. Additional details about the snow model

are described in detail in Appendix B of Atchley et al. (2015). Not represented within this system are

carbon cycle and vegetation processes, including long-term changes of peat composition, variability

in peat thickness, and evolving microtopography due to degradation of ice wedges.

The subsurface domain is represented by a 2 cm layer of moss, followed by a 10 cm layer of155

peat, and approximately 50 m mineral soil layer. The
::::
mesh

::
is
::::::::::
discretized

::
in

::
an

:::::::::
increasing

:::::::
fashion

::::
from

:
1
:::
cm

::
at

:::
the

::::::
surface

::
to

::
2

::
m

:
at
:::
the

::::::
bottom

:::::
(⇠50

:::
m).

:::
We

:::::::::
performed

:
a
:::::
mesh

:::::::::::
discretization

::::::::
analysis,

::::::::
presented

::
in

:::
Fig.

:::
S1,

::
to

:::::::::
determine

:::
that

:::
the

:::::::::::
discretization

::::
was

::::::::
adequate.

:::
The

:
required climate forcings

for the ATS models are precipitation of snow and rain, air temperature, wind speed, relative humidity,

and incoming short and longwave radiation.
:::
The

:::::
lower

::::::::
boundary

::
is

:::
set

::
to

:
a
:::::::
constant

::::::::::
temperature

:::
of160

:::::
9.7�C.

:

2.2 Previous calibration from Atchley et al. (2015)

The uncertainty quantification is performed around a previous calibration by Atchley et al. (2015).

Atchley et al. (2015) used 1D column models representing the dominant microtopographical fea-

tures (center, rim, and trough of polygonal ground) to calibrate hydro-thermal soil parameters us-165
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ing soil temperatures at the BEO measured by the Next Generation Ecosystem Experiments Arctic

(NGEE-Arctic) team during calendar year 2013. Initial conditions for the models were generated by

completely freezing the fully saturated model from below and then allowing the initial conditions

to emerge over a 10-year spin-up simulation using daily air temperatures averaged from 10 years of

data as the top boundary condition. This process allowed a shallow vadose zone to develop consistent170

with field observations. The calibration considered temperatures measured at 9 depths from 10 to 150

cm. The calibration was performed in a coupled fashion where each ‘model run’ of the calibration

consisted of simulating center, rim, and trough column models with the same soil parameter values

for peat and mineral soil. This coupled calibration identifies soil parameters that provide a general-

ized fit, compromising in a least squares sense to match the data from all three models. An implicit175

assumption of the coupled calibration is that the soil properties may be adequately represented as

independent of the microtopography. Atchley et al. (2015) first calibrated subsurface properties us-

ing 2 cm deep temperatures measured in 2013 as Dirichlet boundary conditions and temperatures

measured at the considered depths as calibration targets. Then Atchley et al. (2015) performed an

additional surface/subsurface calibration to verify that the surface energy balance model is capable180

of producing surface temperatures consistent with measurements. The coupled surface/subsurface

model allows the use of future climate models as model forcings to drive hydro-thermal permafrost

projections.

The calibration data period is limited to calendar year 2013 since at the time of calibration, this

was the only full year of high-resolution borehole temperatures available at the site (Atchley et al.,185

2015). Subsequently, year 2014 data has become available. To verify that the calibration has ex-

tracted the hydrothermal properties of the system independent of the climatic conditions during the

calibration, we evaluated the ability of the calibrated parameters to produce forward simulations that

are consistent with 2014 data. This evaluation is presented in the results section.

2.3 Soil property uncertainty quantification190

We generated an ensemble of 1,153 calibration-constrained parameter combinations by the Null-

Space Monte Carlo (NSMC) method (Doherty, 2004). The NSMC approach samples from insensi-

tive regions of the parameter space (i.e. the null space) determined by an eigenanalysis of parameter

sensitivities calculated at the calibration point. Based on analysis of ensemble forward simulations of

the calibration year (2013) and a convergence analysis of the 95% confidence band of simulated tem-195

peratures, we consider all parameter combinations in the ensemble calibrated and equally consistent

with measured temperatures.

2.4 Permafrost projections through 2100

In order to make projections of hydro-thermal permafrost conditions, we use the surface/subsurface

model described in Sect. 2.1. We use the Community Earth System Model (CESM) (Gent et al.,200
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2011) driven by the Representative Concentration Pathway 8.5 (RCP8.5) greenhouse gas concentra-

tion trajectory (Moss et al., 2008) from year 2006 to 2100 as atmospheric forcings for the surface

energy balance of the model. The CESM output was adjusted to fit current climate at the BEO. In this

way, we hold the climate scenario constant to isolate the effect of soil property uncertainty. RCP8.5

corresponds to a business as usual warming scenario with 8.5 Wm�2 forcing by 2100.205

The projection simulations took on the order of several hours (⇠2-4 hours) on a Linux cluster with

3.2 GHz processors. We used the Model Analysis ToolKit (MATK) Python module (http://matk.lanl.gov)

to facilitate the concurrent execution of the ensemble of ATS models on Los Alamos National Lab-

oratory high performance computing clusters.

2.5 Permafrost metrics210

Predictive uncertainty of projections is determined by comparison of permafrost metrics at year

2006 and for the last decade of the projections (2091 through 2100). The metrics include (1) ALT,

(2) annual thaw depth-duration (D), (3) annual mean liquid saturation (Sl), and (4) a modified Stefan

number (ST ) and are described below.

2.5.1 Active layer thickness (ALT)215

In general, ALT is defined as “The layer of ground subject to annual thawing and freezing in ar-

eas underlain by permafrost” (http://www.uspermafrost.org/glossary.php). Permafrost has also been

defined as the region of the subsurface that remains at or below 0�C for two or more years. The

ALT defined that way would be the minimum of the maximum annual thaw depth over each two

year moving window. We use a less arbitrary definition for the ALT here as the annual maximum220

thaw depth in accord with the general definition and similar to Koven et al. (2011). Given the dis-

crete nature of our mesh, and the nonlinear nature of vertical soil temperature profiles near 0�C, we

determine ALT as the bottom of the deepest thawed mesh cell (temperature above 0�C) for the year.

2.5.2 Annual thaw depth-duration (D)

ALT controls the amount of organic carbon experiencing thaw and thus microbially induced decom-225

position during a year. Because ALT is defined as the maximum thaw depth, it does not include

information on duration of thaw. To quantify increasing duration of thaw in future climate (i.e., the

effects of earlier thaw and later freeze-up) as well as increasing depth, a new metric is introduced

here: the mean annual thaw depth D, defined as

D =
1

365

Z Z
H(T (z, t))dzdt (1)230

where H is the heavyside function (1 if T (z, t) is above 0�C, 0 otherwise), z is depth in meters,

and t is time in days. The fraction on the right side of Eq. (1) normalizes the metric by the 365
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days in a year. We express D with units of m3m�2 to indicate that this metric defines the volume of

thawed soil per unit area. D is a rough proxy for the potential for soil organic matter decomposition.

It merges the amount of unfrozen soil and duration that soil is above freezing temperature for a given235

year. Therefore, the metric does not account for biological activity that occurs below 0�C, which is

generally considered to be greatly reduced (Mikan et al., 2002; Davidson and Janssens, 2006), but

has been observed in permafrost soils (Sachs et al., 2008). It is noted that, while the annual amount

of decomposition is likely correlated with D, the two quantities are not directly proportional because

soil temperature and moisture will also change and affect the decomposition rates in future climates.240

Nevertheless, uncertainty in D is of interest as it is indicative of uncertainty in future decomposition

rates.

2.5.3 Annual mean liquid saturation (Sl)

The annual mean liquid saturation Sl is defined as

Sl =

R R
H(T (z, t))Sl(z, t)dzdtR R

H(T (z, t))dzdt
(2)245

where Sl(z, t) is the liquid saturation as a function of depth and time. Sl quantifies the spatially and

temporally averaged liquid saturation in the unfrozen soil for a given year. Note that the denominator

in Eq. (2) is the annual thaw depth-duration metric D from above, except without dividing by 365.

Liquid saturation within the active layer is of interest because of its control on decomposition rates,

coupling hydrology to biogeochemical fluxes.250

2.5.4 Stefan number (ST )

We propose an extension of the Stefan number from the form in Kurylyk et al. (2014) to one that

incorporates intra-annual temporal changes and stratified soil properties. The Stefan number is the

ratio of subsurface sensible to latent heat. In the current context, this refers to the amount of subsur-

face heat exchange that results in a change in temperature versus the amount that is consumed in the255

isothermal conversion of ice to liquid water. The Stefan number provides information about the form

of subsurface energy utilization in permafrost regions and is fundamental to a basic understanding

of permafrost thaw mechanisms.

In its most basic form, the Stefan number is defined as

ST =
cb�T

Lf
. (3)260

where cb is the bulk specific heat of the material and Lf is the latent heat of fusion of water (334,000

J kg�1). Kurylyk et al. (2014) define the Stefan number for the permafrost problem as

ST =
cb⇢b(Ts �Tf )

Swf⇢w�Lf
(4)
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where ⇢b is the density of the thawed zone, Ts is the surface temperature, Tf is the temperature of

freezing or thawing soil (taken as 0�C), Swf is the liquid saturation in the thawed zone that was265

frozen, and ⇢w is the density of liquid water,
::::
and

:
�
::

is
::::::::
porosity. Kurylyk et al. (2014) use this defi-

nition to evaluate the thermal regime of analytical solutions of soil thaw. We expand this definition

here to include the increased detail available in our numerical simulations as

ST =

R R
cb(z)⇢b(z) H

�
dT
dt

�
dT
dt dzdt

⇢iceLf

R R
H

�
�dSice

dt

��
�dSice

dt

�
�(z)dzdt

(5)

where Sice is ice saturation. The integrations are performed over the entire year (i.e. from Jan. 1270

through Dec. 31). Equation 5 expands on Eq. (4) to allow the consideration of details of transient

heating and cooling throughout the year and stratified hydrothermal soil properties within the soil

profile.

2.6 Comparison to climate uncertainty

To provide a reference point for the effect and magnitude of soil property uncertainty, we also per-275

form ATS projections forcing the energy balance model with atmospheric projections from CESM,

INM-CM4 (INM) (Volodin et al., 2010), BCC-CSM1-1 (BCC) (Ji, 1995), MIROC (Watanabe et al.,

2010), CanESM2 (CAN) (Verseghy, 1991), and HadGEM2-CC (HAD) (Jones et al., 2011; Bellouin

et al., 2011; Collins et al., 2011) climate models based on RCP8.5 using the calibrated (fixed) soil

parameters from Atchley et al. (2015). Using the calibrated soil parameters in these simulations280

isolates the effect of structural climate uncertainty. We compare permafrost projection uncertainty

due to the NSMC ensemble of soil parameters (hydrothermal soil property uncertainty) and to the

variability between climate models (structural climate uncertainty).

The soil property uncertainty in this analysis is parametric and can be considered more aleatoric/probabilistic

in nature. The climate model uncertainty is epistemic in nature due to a lack of knowledge regarding285

modeling of atmospheric phenomena. These distinctions do limit comparisons that can be drawn

between these two uncertainties. However, the comparison is relevant for our purposes to provide

a frame of reference for soil property uncertainty to one of the other current, primary sources of

permafrost thaw uncertainty.

3 Results290

3.1 Ensemble of calibration-constrained soil parameter combinations

In order to determine the effect that calibration-constrained soil property uncertainty can have on

long term projections of permafrost conditions, we performed an uncertainty quantification around

the calibrated soil parameters of Atchley et al. (2015). The strategy involved identifying a repre-

sentative set of parameter combinations that all produce simulated temperatures that are consistent295

with observed temperatures. We use Null-Space Monte Carlo (NSMC) (Tonkin and Doherty, 2009),
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a form of calibration-constrained Monte Carlo, to accomplish this goal. NSMC was selected based

on its sampling economy given the computational burden of the simulations involved.

A subset of the 16 soil parameters from the calibration of Atchley et al. (2015) are included here

and presented in Table 1. The top pressures of the center and trough profiles from the calibration300

are not included here as these are internally calculated in the surface/subsurface ATS model. The

van Genuchten water retention parameters are not included either as they were found to significantly

exceed their physical boundaries during NSMC sampling. This is an indication that these are highly

insensitive parameters and do not significantly effect simulated temperatures. This may be explained

by the fact that these parameters control the shape of the water retention curve, but that this influences305

thermal properties of the soil only for a limited time near freeze-up or thaw.

This leaves the 10 soil parameters listed in Table 1. The parameters ⇥r,peat and ⇥r,min are van

Genuchten soil moisture characteristic residual saturations (Van Genuchten, 1980). Kpeat and Kmin

are material thermal conductivities for peat organic matter and mineral grains within the soil layers.

Bulk thermal conductivities are a function of material thermal conductivities and are sensitive to ice,310

liquid and gas saturation, which is calculated within ATS as described in Appendix A of Atchley

et al. (2015). Apeat,fr, Apeat,un, Apeat,fr, and Apeat,un are empirical exponents describing the de-

pendence of frozen (fr) and unfrozen (un) Kersten numbers (i.e. ratios of partially to fully saturated

thermal conductivities) to ice and liquid saturation states, respectively (Painter, 2011). Bulk thermal

conductivities for peat and mineral soil layers are calculated within ATS using the Material Compo-315

nent model defined by Atchley et al. (2015) with the parameters listed in Table 1. The minimum and

maximum parameter boundaries are modified from the calibration for the NSMC sampling (the pa-

rameter ranges are reduced in most cases) to physical limits identified through literature review and

field observations from the BEO (Imnavait Creek and Kuparuk River, Alaska (Hinzman et al., 1991,

1998); large-scale pan-arctic modeling efforts (Beringer et al., 2001; Lawrence and Slater, 2008);320

Capricorn Fen, Northern Quebec (Letts et al., 2000); Gailbraith Lake, Northern Alaska (Overduin

et al., 2006); Bonanza Creek, Delta Junction, and Washington Creek, Interior Alaska (O’Donnell

et al., 2009); Siksik Creek, Northwest Territories (Quinton et al., 2000); Franklin Bluffs, West Dock,

Imnavait Creek, Northern Alaska (Nicolsky et al., 2009); Fort Simpson, Scotty Creek, Northwest

Territories and Wolf Creek, Yukon Territory (Zhang et al., 2010); Samoytov Island, Lena River325

delta, Siberia (Chadburn et al., 2015b) ).

To a lesser degree, other parameters were also found to exceed their physical boundaries during

NSMC sampling. Therefore, we used the intersection of the null space and parameter boundaries as

our criterion to accept samples. The generation of 20,000 samples within the null space resulted in

1,153 samples within the parameter boundaries. Samples outside of the parameter boundaries were330

discarded.

Figure 1 presents histograms while Fig. 2 presents paired plots of the NSMC ensemble soil pa-

rameters. In the matrix of plots in Fig. 2, parameter histograms are plotted along the diagonal (also
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Table 1. NSMC parameter minimum and maximum bounds, units, and descriptions

Parameter Min Max Units Description

�peat 0.7 0.93 – Peat porosity

�min 0.19 0.76 – Mineral porosity

⇥r,peat 0.04 0.4 m3m�3 Peat residual liquid saturation

⇥r,min 0.05 0.25 m3m�3 Mineral residual liquid saturation

Kpeat 0.05 0.38 Wm�1K�1 Peat thermal conductivity

Kmin 0.2 4.0 Wm�1K�1 Mineral thermal conductivity

Apeat,fr 0.1 3.0 – Frozen peat thermal conductivity shape parameter

Apeat,un 0.1 1.5 – Unfrozen peat thermal conductivity shape parameter

Amin,fr 0.1 3.0 – Frozen mineral thermal conductivity shape parameter

Amin,un 0.1 1.5 – Unfrozen mineral thermal conductivity shape parameter

presented in greater detail in Fig. 1), paired scatterplots in the lower triangle, and Pearson correla-

tion coefficients are presented in the upper triangle. In Fig. 1, it is apparent that Kpeat followed by335

Apeat,un are the most constrained parameter by the NSMC analysis. The rest of the parameters span

significant portions of their range. This indicates that there are many combinations of parameters that

result in calibrated temperatures. Many of the histograms are seen to butt up against their boundaries,

indicating that these are parameters where the extent of the null space exceeds their range.

Applying NSMC to multiple calibration locations is often suggested (Tonkin and Doherty, 2009).340

In the calibration performed by Atchley et al. (2015), multiple local minima were identified. How-

ever, based on the broad range of parameter combinations with limited correlations and the fact that

most parameters span most of their range, we conclude that the NSMC analysis from this single

calibration point sufficiently captures the soil property uncertainty.

The correlations imposed by the NSMC sampling are evident by inspecting the Pearson corre-345

lation coefficients and scatterplots in Fig. 2. The strong correlations that are present are a result

of a balancing act between parameters to achieve a least squares fit to measured temperatures. For

example, the relatively strong negative correlation between Kpeat and Kmin (correlation of -0.81)

is due to the fact that deeper temperatures in the soil profiles are controlled by the effective ther-

mal conductivity. Therefore, there are numerous (negatively correlated) combinations of Kpeat and350

Kmin that produce similar effective thermal conductivities resulting in good matches to measured

temperatures. Many other correlated parameter pairs are also apparent, most with significantly lower

correlations. There are also many uncorrelated parameter pairs (e.g. �peat and Kpeat) indicating a

complete lack of interaction between the parameter pairs. The following analysis of permafrost pro-

11



jection uncertainty is conditional on the NSMC correlations presented here, and any conclusions take355

these correlations into account. References to Fig. 2 are made in the following sections explaining

some of the impacts of these correlations.

The range in RMSE values is from around 0.55 to 0.65�C. The accuracy of the temperature probes

are ±0.1�C. Therefore, the percentage of the RMSE that may be attributable to measurement impre-

cision is around 15-18%.360

Figure 3 presents the evaluation of the calibration against 2014 data and the 95% confidence band

of temperatures for the NSMC ensemble. The evaluation is presented as time series of temperatures

where the fit between 2013 measured and calibrated temperatures can be compared to the fit between

2014 measured and simulated temperatures.
::::
Since

:::
the

::::
2014

:::::::::
measured

::::::::::
temperatures

:::
are

:::
not

::::::::
included

::
in

:::
the

:::::::::
calibration,

::::
this

:::::::::
comparison

::::::
serves

::
as

:::
an

::::::::
evaluation

:::
of

:::
the

::::
2013

::::::::::
calibration. By inspection of365

the plots, it is apparent that the match
:
fit

:
during the evaluation period is similar to the match during

the calibration period (1st, 3rd, and 5th plots for the center, rim, and trough, respectively). This

provides an initial indication that the calibration has extracted the hydrothermal relationships from

the system and can be applied to years with different climate conditions than the calibration period.

The other plots in Figure 3 contain the corresponding 95% confidence bands for 2013 tempera-370

tures. We performed a convergence analysis of the ensemble by calculating the ratio of measurements

included in the 95% confidence band as the number of ensemble members increased. We found that

the ratio stabilized after the ensemble reached more than around 800 members. This indicates that

the ensemble has converged and that more samples are not necessary. A plot of the convergence

analysis is provided in the Supplement to this article, Fig. S1
::
S2.375

The measured temperatures are within the 95% confidence band 79% of the time for the center,

59% for the rim, 46% for the trough, and 61% overall. The primary causes of these discrepancies

are due to difficulties in capturing trends during the freeze-up and thaw of the active layer. The low

values are primarily due to the 95% confidence band missing measured values at deep measure-

ments apparent in Figs. S2, S3, and S4
:
,
:::
and

:::
S5

:
in the Supplement to this article. A lack of overlap380

is apparent during thawing (around day of year 150) and freeze-up (around day of year 320), and

is particularly evident in the rim profile in Fig. 3. These discrepancies are reduced in the decoupled

calibrations (calibrations on individual profiles) (Atchley et al., 2015). We choose to use the coupled

calibration parameters in order to obtain soil property values that provide a generalized characteriza-

tion of the soil properties across the microtopography at the site. The expense of such a generalized385

characterization is a compromised fit across profiles. The discrepancies are also less pronounced in

the center profile, which is the model used for the forward projections. Many physical processes

may be leading to this result that become more pronounced in the coupled calibrations as parameter

values are given less freedom to mask missing physical processes. For one, the exposed sides of the

rim and subsequent lateral heat flow are not explicitly modeled and may at least partially explain the390

discrepancy. During the thaw, a lack of advective transport of heat by liquid water through the pore
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Figure 1. Histograms of calibration-constrained hydrothermal soil parameter combinations obtained by NSMC

sampling
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Figure 2. Matrix of paired plots of calibration-constrained hydrothermal soil parameter combinations obtained

by NSMC sampling. Parameter histograms are plotted along the diagonal, paired scatterplots in the lower tri-

angle (2D projections of the null space), and Pearson (linear) correlation coefficients in the upper triangle. The

histogram counts for all histograms are indicated along the ordinate axis of the upper left plot.
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space created by sublimation during the winter (not included in the model) may result in warmer

measured temperatures (Kane et al., 2001).

An initial ensemble created using Latin Hypercube Sampling with 1,000 samples postprocessed

to include parameter combinations with RMSE’s below various thresholds indicated that to achieve395

a convergent ensemble using Latin Hypercube Sampling would be computationally prohibitive. An

additional NSMC analysis was performed with a more restrictive null space (only 2 eigenvectors out

of 10 included in the null space). This ensemble did not require postprocessing based on RMSE,

since all the RMSE values were deemed sufficiently small. This analysis resulted in over-correlated

parameters. We therefore chose a loosely constrained NSMC (5 out of 10 eigenvectors included400

in the null-space) excluding samples with RMSE greater than 0.65�C. We considered other RMSE

cutoffs, but selected 0.65�C based on achieving a confidence band inclusion ratio and ensuring that

simulated temperatures for 2013 were as consistent near the active layer base as possible across the

ensemble. ALT in 2013 was around 40 cm (refer to Figs. S2, S3, and S4
:
,
:::
and

:::
S5 in the Supplement).

NSMC conventionally involves a recalibration step, where a few Levenberg-Marquardt iterations405

are applied to each NSMC sample, often using existing sensitivities from the calibration point. Re-

calibration of the ensemble members was not performed to avoid reducing the simulated temperature

uncertainty (lowering the RMSE values) beyond what we deem warranted given the uncertainties in-

volved in measurements and model structure and to avoid the introduction of bias in the ensemble.

Based on the RMSE values of the ensemble (< 0.65�C) and the percentages of measured temper-410

atures within the 95% confidence band, we consider all the unmodified NSMC samples to be cal-

ibrated and do not apply this step. These observations also led to the assumption that all NSMC

samples are equally consistent with measured temperatures as opposed to using a weighting scheme.

3.2 Permafrost thaw projection uncertainty

Figure 4 present boxplots of permafrost metrics for the first year (2006) and the last decade (2091-415

2100) of the projections. Individual boxplots for each year present the predictive uncertainty (due to

parametric soil property uncertainty), while comparisons between boxplots for each metric indicate

the inter-annual climate variability of the projections for the specified climate model. We present the

year 2006 as an indication of the initial parametric uncertainty.

Boxplots of ALT are shown in Fig. 4a. The median ALT increased from approximately 30 cm in420

2006 to nearly 0.9 m by the end of the century. The predictive uncertainty in ALT also increases

significantly from the beginning to later years of the projections. The inter-annual variability of

ALT projections is dependent on climate, as warmer years (e.g. 2094) have greater ALT and larger

uncertainty than cooler years. This is apparent in Fig. 5 where the ensemble thaw depth statistics

(median and 95% confidence band), CESM8.5 air temperature, and ensemble snow depth statistics425

(95% confidence band) times series are plotted together for comparison.
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Figure 3. Time-series of temperature at 40 cm depths plotted as a function of the day of the year for the

polygonal center, rim and trough profiles. Alternating plots include measured values from the BEO for 2013

(red line) and 2014 (grey line) and simulated temperatures from the 2013 calibration (blue line) and 2014

evaluation (black line). Every other plot contains the 2013 95% confidence band for the NSMC ensemble as a

shaded light blue region.
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Boxplots of annual thaw depth-duration (D) are presented in Fig. 4b. The predictive uncertainty

in D during the last decade of the projections is significantly greater than for the first year (2006). As

expected, the inter-annual trends in D and ALT are similar. Also, the uncertainty of D is relatively

larger during warmer years than cooler years, similar to ALT.430

Boxplots of the annual mean liquid saturation (Sl) are presented in Fig. 4c. The predictive un-

certainty in Sl actually decreases slightly from the first year to the last decade. Also, in general, the

last decade is slightly wetter than 2006, but only marginally so. Therefore, this hydrothermal anal-

ysis does not indicate that the
:::
soil

::::::::
moisture

::::::
regime

:::
will

:::::::
change

::::::::::
significantly

:::
as

:::::::::
permafrost

::::::
thaws.

:::
Soil

::::::::
moisture

::
is

::::
one

::
of

:::
the

::::::
factors

::::::::::
controlling

:::
the

::::::::
complex

::::::
process

:::
of partitioning of carbon de-435

composition between CO2 and CH4will change significantly as permafrost thaws. However, other

factors affecting carbon decomposition not considered here could affect the partitioning of carbon

decomposition end products.

Boxplots of the Stefan number (ST ) are presented in Fig. 4d. In 2006 the soil profiles for the

majority of the ensemble are latent heat dominated. However, some Stefan numbers are greater than440

1, with values ranging from around 0.3 to 1.4 (from around 3 times the latent heat as sensible heat

to 1.4 times the sensible heat as latent heat). However, by the last decade, nearly all Stefan numbers

are 0.2 or less (at least 5 times as much, and up to 20 times as much latent heat as sensible heat).

This indicates a fundamental change in the way that the active layer processes energy between the

beginning and later years of the projections. The thermal regime of the active layer becomes signif-445

icantly more dominated by latent heat during the projections. The amount of energy that is utilized

in creating a temperature gradient in the soil profile becomes proportionately smaller compared to

the amount of energy consumed in the isothermal melting of ice. This is at least partially due to the

approximately 3 times increase in the quantity of ice that is melted during later years of the projec-

tions. Perhaps the most significant result of this change is the temperature regime of the underlying450

permafrost in decreased seasonal temperature variations and their depth of penetration. Predictive

uncertainty appears to decrease from 2006 compared to the last decade, but this is likely due to the

Stefan number approaching its lower limit.

To further illustrate predictive uncertainty of the ALT projections, temperature profiles at the

time of ALT for year 2100 are presented in Fig. 6. Summary statistics (median and 5th and 95th455

percentiles) for 2006 are presented for reference. The discrete surface temperatures categorized by

day of year (colors) reflect the fact that the surface temperature is highly dependent on the climate/air

temperature for a given year, which is the same for all projections.
::::::::
Similarly,

:::
the

:::
day

::
of

:::::
ALT

::
for

:::::
2006

::
do

:::
not

:::
all

::::
occur

:::
on

:::
the

:::::
same

:::
day

:::::
across

:::::::::::
realizations,

::::::::
occurring

::::
from

::::
day

::
of

:::
the

::::
year

:::
246

::
to

::::
260.

:
The

increase in median ALT from around 30 cm to around 0.9 m from 2006 to 2100 is also apparent in460

this figure. The difference in the temperature regime within the profile is apparent in these figures

as well by the curvature near the surface in most of the profiles in 2100 compared to 2006. This

indicates that as the climate warms and the day of year when ALT occurs becomes later in the year
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(a)

(b)

(c)

(d)

Figure 5: Boxplots of projected metrics including (a) ALT, (b) annual thaw depth-
duration, (c) annual mean liquid saturation, and (d) Stefan number for year 2006 and
from 2091 to 2100. The bottom and top of the boxes are the first and third quartiles,
the red lines are medians, the whisker lengths are 1.5 times the interquartile range
(50%), and the plus symbols are outliers.

19

Figure 4. Boxplots of projected metrics including (a) ALT, (b) annual thaw depth-duration, (c) annual mean

liquid saturation, and (d) Stefan number for year 2006 and from 2091 to 2100. The bottom and top of the boxes

are the first and third quartiles, the red lines are medians, the whisker lengths are 1.5 times the interquartile

range (50%), and the plus symbols are outliers.
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Figure 5. Thaw depth, air temperature, and snow depth time series for years 2006 and 2091 through 2100. The

black line in the top plot is the median thaw depth of the ensemble and the blue shaded region is the 95% thaw

depth confidence band for the ensemble. The black region in the bottom plot is the 95% snow depth confidence

band for the ensemble.

(day of year ALT occurs in 2006 projections is from 246 to 260), the surface temperature at that time

will be cooler. This increase in lag time from the surface temperature to the active layer base is a465

result of the thermal wave traveling a greater distance to reach the permafrost. This may also be due

to relative changes in the temperature gradient within the active layer and the permafrost as the ALT

increases leading to delayed freeze from below.

Figure 7 shows similar plots to Fig. 6, but in this case, statistical measures of the ensemble are plot-

ted. Statistical representation of the temperature profiles in Fig. 6 are plotted in Fig. 7a, along with470

bulk thermal conductivity (Fig. 7b) and ice (Fig. 7c), liquid (Fig. 7d), and gas (Fig. 7e) saturation

profiles when ALT occurs in 2006 and 2100. The variation in thermal conductivity and saturation

states further illustrates the predictive uncertainty due solely to soil properties. Substantial shifts in

predictive uncertainty are also apparent from 2006 to 2100. In Fig. 7a, it is apparent that the thermal

conductivity in the soil profile decreases from 2006 to 2100 due to the loss of the more thermally475
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Figure 6. Predictive uncertainty due to soil properties for depth profiles of temperature for the ensemble when

ALT occurs for calendar year 2100.
::::
Color

:::::::
indicates

::
the

:::
day

::
of

:::
the

:::
year

:::::
when

:::
ALT

:::::::
occurred

:::
for

:::
each

:::::::::
realization.

The 2006 median and 5th and 95th percentiles
::
for

:::
the

:::::::
ensemble

:
are plotted for reference. Day of year when

ALT occurs for
:::::::::
realizations

::
in 2006 is from 246 to 260 (not indicated in the plot).

conductive ice from the profile, thereby inhibiting the propagation of the thermal wave. The deepen-

ing of the permafrost table is apparent in Fig. 7c as a deepening of the ice saturated region. Note that

liquid saturations for mineral soil remain at its residual values below 0�C and that residual liquid sat-

urations (⇥r,peat and ⇥r,min) are variable parameters within the uncertainty quantification (refer to

Table 1). As a result, the ice saturation within the permafrost region is variable within the ensemble.480

In Figs. 7d and 7e, it is apparent that the liquid and gas saturations both increase as ice is converted

to liquid and void space becomes available with the deepening of the permafrost table.
::::
This

::::::
results

::
in

:
a
:::::::::
potentially

:::::::::
continuous

:::
gas

::::::
phase

::
to

::
at

::::
least

::
80

:::
cm

::::
deep

::::::
across

:::
the

::::::::
ensemble

::
at

:::
the

::::
time

::
of

:::::
ALT,

::::::::
indicating

:::
the

::::::::
potential

:::
for

::::::
aerobic

:::::::::
conditions

::
at

:::::
these

::::::
depths.

::::::
Higher

:::::
liquid

::::::::::
saturations

::::
may

:::::
result

::
in

:::::
lateral

::::
flow,

::
a
:::::::::::
phenomenon

:::
not

:::::::::
considered

::
in

:::
our

:::::::
models.

:::::
Given

:::
the

:::::::::
polygonal

:::::::::::::::
micro-topography485

::
of

:::
the

::::
site,

:::::
lateral

:::::
flow

::::
may

::
be

::::
less

:::::::::
important

::::
than

::
in

::::
hilly

:::::::
terrain.

::::::::
However,

::::::
lateral

::::
flow

::::
may

:::
be

::::::::
important

:::
for

:::
the

::::::::
polygonal

::::::
centers

::::
and

::::
rims.

:
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(a) (b)

(c) (d)

(e)

Figure 8: Intra-annual predictive uncertainty due to soil property uncertainty for depth
profiles of ensemble statistical quantities when ALT occurs for calendar years 2006 and
2100. The shaded regions are the 95% confidence intervals for 2006 (red) and 2100
(blue).

22

Figure 7. Predictive uncertainty due to soil property uncertainty for depth profiles of ensemble statistical quan-

tities when ALT occurs for calendar years 2006 and 2100. The shaded regions are the 95% confidence intervals

for 2006 (red) and 2100 (blue).
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3.3 Comparison to climate model structural uncertainty

In this section, we provide a frame of reference to the effect of soil property uncertainty on per-

mafrost thaw projections by comparison to the uncertainty currently present in climate models.490

Without such a comparison, the relative contribution of soil property uncertainty would be difficult

to gauge. Figure 8 presents histograms of projection metrics collected from each ensemble sample

for years 2091 through 2100 (a total of 11,530 values, i.e. 1,153 samples ⇥ 10 years). This combines

the predictive uncertainty for the last decade of the projections. The 95% confidence band of the

calibration-constrained ensemble for each metric is indicated by dashed vertical lines in each plot.495

Below the histograms are the values obtained using atmospheric forcing data from CESM, INM,

BCC, MIROC, CAN, and HAD climate models to drive the ATS models with the calibrated (fixed)

soil parameters for the same years, 10 values each. BCC has only 9 values as we could only obtain

its output through year 2099. These values provide a sampling of current climate model structural

uncertainty due to varying assumptions and numerical representations of atmospheric phenomena.500

Note that the CESM values lie within the support of the calibration-constrained ensemble his-

tograms in all cases. This is expected since the calibration-constrained ensemble is forced using the

CESM model. Similarly, the supports of calibration-constrained ensemble histograms for other cli-

mate models would be expected to encompass the calibrated soil parameter values (circles in Fig. 8)

as well. This indicates that different climate models will result in different magnitudes of projection505

uncertainty due to soil property uncertainty. For example, if the calibration-constrained ensemble

was simulated using MIROC, the magnitude of the projection uncertainty of D (Fig. 8b) could be

as much as 4-5 times larger than for CESM. This indicates the interactive effect that soil property

and structural climate model uncertainties have on projection uncertainty and that these forms of

uncertainty are not easily decoupled.510

These plots present both the magnitude of projection uncertainty due to soil property uncertainty

based on CESM atmospheric projections (histograms) and to structural climate model uncertainty

(circles). By comparing the ensemble 95% confidence bands for the metrics to the range of values

across the climate models, it is apparent that structural climate model uncertainty has a greater impact

on projection uncertainty than soil property uncertainty. The ratios of the ensemble 95% confidence515

band width and the range between the minimum and maximum values for climate models are 26%

for ALT, 9% for D, 45% for Sl, and 80% for ST . As explained above, if a different climate model

had been used for the ensemble calculations, these percentages would be different.

3.4 Dependence of permafrost projections on soil parameters

Based on a correlation analysis, all the permafrost metrics are positively correlated, with lower corre-520

lations between annual mean liquid saturation and the other metrics. A paired plot of the permafrost

metrics is provided in the Supplement to this article for additional detail (Fig. S5
::
S6). The correlation
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(a)

(b)

(c)

(d)

Figure 9: Comparison of (a) ALT, (b) annual thaw depth-duration, (c) annual mean
liquid saturation, and (d) Stefan number projection uncertainty due to soil property un-
certainty (histograms) and structural climate model uncertainty (circles). Histograms
include calibration-constrained ensemble values for years 2091 to 2100 (11,530 values)
based on the CESM8.5 climate scenario. Open circles below the histograms are values
for the various climate scenarios for the same years using the calibrated soil parameters
(10 values each, except for BCC which has 9). Ensemble 95% confidence band (CB)
limits are indicated as vertical dashed lines.24

Figure 8. Comparison of (a) ALT, (b) annual thaw depth-duration, (c) annual mean liquid saturation, and (d) Ste-

fan number projection uncertainty due to soil property uncertainty (histograms) and structural climate model un-

certainty (circles). Histograms include calibration-constrained ensemble values for years 2091 to 2100 (11,530

values) based on the CESM8.5 climate model. Open circles below the histograms are values for the various

climate models for the same years using the calibrated soil parameters (10 values each, except for BCC which

has 9). NSMC ensemble 95% confidence band (CB) limits are indicated as vertical dashed lines.
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between ALT and D is expected given the definition of D as a metric defining the quantity and du-

ration of unfrozen soil. The correlation of Sl to ALT is a result of the deeper portions of the thicker

ALT scenarios having slightly increased levels of saturation, which is apparent in the liquid satura-525

tion statistical profiles in Fig. 7d for year 2100. The correlation between D and Sl can be explained

by a similar argument. Increased levels of saturation lead to higher bulk thermal conductivity of the

mineral soil layer, resulting in thicker ALT and larger D due to increased energy flux. Correlations

between ST and the other projection metrics indicate that as ALT increases, resulting in increased

annual thaw depth-duration D and annual mean liquid saturation Sl, the system becomes increas-530

ingly latent heat dominated. This is due to the fact that more energy is required to thaw greater depths

of frozen soil in later years.

Figures 9, 10, 11, and 12 explore correlations between the calibration-constrained parameters

and projected metrics. These figures contain scatterplots between hydro-thermal soil parameters and

projection metrics for year 2100. The discrete nature of the samples with respect to ALT mentioned535

above due to the mesh discretization is also apparent in Fig. 9. Pearson correlation coefficients for

each soil parameter/projection metric pair are presented on each scatterplot. The points are colored

by D in Fig. 9 and by ALT in Figs. 10, 11, and 12 to illustrate the correlations between metrics (see

also Fig. S5
::
S6 in the Supplement). Peat parameters are presented along the left column and mineral

soil parameters along the right column of each figure.540

Some
::::
Four strong correlations are apparent in Figs. 9, 10, 11, and 12 with coefficients greater than

0.9. Many of these correlations confirm our qualitative understanding of the model. It is apparent that

in many cases projection metrics have stronger dependencies on the mineral soil porosity (�min) and

residual saturation (⇥r,min) parameters compared to the corresponding peat parameters (�peat and

⇥r,peat). Dependence on the other parameters is less predictable. For example, decreasing mineral545

soil porosity (�min) increases the bulk thermal conductivity of the mineral soil due to the relatively

large thermal conductivity of the mineral soil grains, leading to larger ALT (top right plot in Fig. 9).

We determine linear dependency coefficients of projection metrics to calibration-constrained pa-

rameters using ordinary least squares. We limit the analysis to soil parameter/projection metrics

exhibiting moderate to strong correlation (|⇢|> 0.7). Table 2 presents the intercept and slope co-550

efficients from the analysis, along with their 95% confidence intervals. All coefficients in Table 2

are significant at the 1% level. The coefficient of determination (R2) is presented indicating the por-

tion of the variance explained by the regression for each case. Note that since we use ordinary least

squares including an intercept, the R2 is simply the square of the correlation coefficients (⇢) pre-

sented in Figs. 9, 10, 11, and 12. Calibration-constrained parameters not included in Table 2 resulted555

in regressions with R2 less than 0.5.

The slope coefficients are emphasized in bold in the table since these describe the first-order

dependence of projection metrics on the calibration-constrained parameters. The slope coefficients

describe the change in ALT given a unit change in the calibration-constrained parameter. For exam-

24



Figure 9. Scatterplots between calibration-constrained parameters and projected ALT for year 2100. Soil pa-

rameters associated with peat are on the left and with mineral soil on the right (refer to column headings).

Colors represent annual thaw depth-duration. The associated Pearson correlation coefficient ⇢ is indicated in

each plot. The discrete nature of the ALT is due to the computational mesh discretization.
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Figure 10. Scatterplots between calibration-constrained parameters and projected annual thaw depth-duration.

Soil parameters associated with peat are on the left and with mineral soil on the right (refer to column headings).

Colors represent ALT. The associated Pearson correlation coefficient ⇢ is indicated in each plot.
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Figure 11. Scatterplots between calibration-constrained parameters and projected annual mean saturation. Soil

parameters associated with peat are on the left and with mineral soil on the right (refer to column headings).

Colors represent ALT. The associated Pearson correlation coefficient ⇢ is indicated in each plot.
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Figure 12. Scatterplots between calibration-constrained parameters and projected Stefan number. Soil param-

eters associated with peat are on the left and with mineral soil on the right (refer to column headings). Colors

represent ALT. The associated Pearson correlation coefficient ⇢ is indicated in each plot.
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Table 2. Linear regression intercept and slope coefficients for permafrost metrics as a function of calibration-

constrained parameters

Metric Parameter Intercept 95% Conf. Int. Slope 95% Conf. Int. R2

ALT �min 1.66 1.65 – 1.67 -1.39 -1.41 – -1.37 0.95

D �min 0.465 0.462 – 0.468 -0.402 -0.408 – -0.397 0.95

Sl

⇥r,peat 0.510 0.506 – 0.513 0.227 0.215 – 0.240 0.52

⇥r,min 0.452 0.450 – 0.455 0.702 0.687 – 0.717 0.87

ST �min 0.327 0.323 – 0.331 -0.381 -0.387 – -0.374 0.92

ple, if �min increases by 0.1, we would estimate that ALT will decrease by around 0.14 m. These560

coefficients can be useful in gaging the impact of soil parameter changes on projection metrics.

4 Discussion and Conclusions

In summary, we extended previous calibration and model refinement work (Atchley et al., 2015) to

quantify post-calibration uncertainty in soil properties and the impact of uncertainty on projections

of permafrost thaw. Using a model with parameters calibrated against data from the BEO, driving the565

NSMC ensemble of models using the CESM climate model in the RCP8.5 scenario, and comparing

against a set of other climate models in the RCP8.5 scenario, the following conclusions can be made:

– The median ALT and annual thaw depth-duration (D) of the calibration-constrained ensemble

increase by around a factor of 3 by the end of the century.

– The effect of soil property uncertainty based on CESM atmospheric forcings is approximately570

26% of the uncertainty caused by climate model structural uncertainty for ALT, 9% for D,

45% for Sl, and 80% for Stefan number.

– Predictive uncertainty of ALT and D due to soil property uncertainty increase significantly

from the first year to the last decade of the projections

– Predictive uncertainty of soil moisture content due to soil property uncertainty is not signifi-575

cantly changed by the end of the century.

– Predictive uncertainty of the Stefan number due to soil property uncertainty decreases, but this

is at least partially due to this metric approaching its lower boundary in the last decade.

– The manner in which the active layer processes incoming energy changes significantly. The

active layer moves to an increasingly latent heat dominated system due to larger quantities of580

frozen ground thawed each year.
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– ALT, D, and ST are highly dependent on �min, while Sl is highly dependent on ⇥r,min and

moderately dependent on ⇥r,peat.

Efforts to quantify the relative roles of soil property versus climate model uncertainty have only

recently begun. We found that the effect of soil property uncertainties can be reduced to levels585

lower than the uncertainty generated by uncertainties in climate model structure through a process of

calibration to field observations, model structural refinement (Atchley et al., 2015), and calibration-

constrained uncertainty analysis. However, we had the advantage of high-resolution data from an

unusually well-characterized site, which suggests that the residual uncertainty identified here using

temperature data only is close to a practical limit.590

The quantitative results shown here are specific to the site, available data, RCP trajectory as-

sumption, and climate model. Nevertheless, the approach presented here is anticipated to be useful

for understanding the impact that additional data collection might have on reducing uncertainty as-

sociated with other high-latitude permafrost sites. Potential directions for future work include the

investigation on the impact that longer data streams and other types of observation might have on595

reducing uncertainties. In particular, the calibration against borehole temperature data was unin-

formative of certain water retention properties of the soils (van Genuchten ↵ and m parameters).

Therefore, co-located measurements of soil moisture would be useful to help constrain those param-

eters, and may reduce the uncertainty associated with the other soil properties as well. Moreover,

given the known spatial variability in soil properties across the pan-Arctic (Hinzman et al., 1998;600

Rawlins et al., 2013), calibration-constrained soil property uncertainty across larger spatial scales

warrants further investigations.
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Figure S1: Evaluation of mesh discretization showing (a) temperature and (b)
liquid saturation profiles. The profiles are from the ensemble member with the
deepest simulated active layer in year 2100 (⇠1.3 m deep), i.e., the ensemble
member that will be most e↵ected by mesh discretization. The ensemble mem-
ber is run with a 10 cm (green boxes) and 5 cm cell (blue circles) spacing from
0.92 m to 5.92 m. The insets allow visual inspection of the mesh spacings de-
noted by the symbols (boxs and circles). The small di↵erences between the two
cases for this worst case scenario indicate that the 10 cm spacing used in this
research is adequate.
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Figure S2: Calibration-constrained ensemble convergence analysis based on the
ratio of measured temperatures from the BEO within the 95% confidence band
for ensemble simulated temperatures. The relatively flat lines after around 800
ensemble members indicate convergence of the ensemble.
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Figure S3: Time-series of temperature at specific depths for the polygonal cen-
ter. Calendar year 2013 measured values from the BEO used as calibration
targets are shown as a red line, the mean of the NSMC sample as a blue line,
and the 95% confidence band is the shaded light blue region. Calendar year
2014 measured values from the BEO used as evaluation data for the 2013 cali-
bration are shown as a black line. The gray line represents the 2014 simulated
temperatures.
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Figure S4: Time-series of temperature at specific depths for the polygonal rim.
Calendar year 2013 measured values from the BEO used as calibration targets
are shown as a red line, the mean of the NSMC sample as a blue line, and the 95%
confidence band is the shaded light blue region. Calendar year 2014 measured
values from the BEO used as evaluation data for the 2013 calibration are shown
as a black line. The gray line represents the 2014 simulated temperatures.
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Figure S5: Time-series of temperature at specific depths for the polygonal
trough. Calendar year 2013 measured values from the BEO used as calibra-
tion targets are shown as a red line, the mean of the NSMC sample as a blue
line, and the 95% confidence band is the shaded light blue region. Calendar year
2014 measured values from the BEO used as evaluation data for the 2013 cali-
bration are shown as a black line. The gray line represents the 2014 simulated
temperatures.
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Figure S6: Matrix of paired plots of calibration-constrained ensemble projec-
tions for year 2100. Parameter histograms are plotted along the diagonal, paired
scatterplots in the lower triangle, and Pearson correlation coe�cients in the up-
per triangle. The range of counts for all histograms are as indicated along the
ordinate axis of the upper left plot.

6


