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Abstract 19 

Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice 20 

dynamics and heat transport. Multispectral remote sensing can be used to detect supraglacial 21 

lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric 22 

data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land 23 

Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their 24 

performance with similar methods. Digital elevation models derived from WorldView stereo 25 

imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths, 26 

combined with a lake edge determination from imagery. The optimal supraglacial lake depth 27 

retrieval is a physically based single-band model applied to two OLI bands independently (red 28 
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and panchromatic) that are then averaged together. When OLI- and WorldView-derived 1 

depths are differenced, they yield a mean and standard deviation of 0.0 ± 1.6 m. This method 2 

is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbrae) region of Greenland 3 

to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014. 4 

We also give coefficients for estimating supraglacial lake depth using a similar method with 5 

other multispectral sensors.  6 

 7 

1 Introduction & Rationale 8 

Supraglacial lakes in Greenland play a crucial role in the ice sheet’s hydrological system. 9 

Together with supraglacial streams (Smith et al., 2015), supraglacial lakes temporarily store 10 

large quantities of meltwater which can promote the opening of conduits to the bed through 11 

hydrofracture (Das et al., 2008; Phillips et al., 2013; Selmes et al., 2011; Tedesco et al., 2013) 12 

and thus influence ice dynamics (Joughin et al., 2013; Parizek and Alley, 2004; Sundal et al., 13 

2011; Zwally et al., 2002). Supraglacial lakes also influence surface heat fluxes by storing 14 

latent heat near the surface of the ice sheet (Koenig et al., 2015). Finally, supraglacial lakes 15 

contribute to multiple positive feedback processes, including ice shelf disintegration in 16 

Antarctica (Banwell et al., 2013; Glasser and Scambos, 2008) and melt-albedo interactions 17 

(Leeson et al., 2015).  18 

Several multispectral remote sensing tools and methods exist both for classifying (Johansson 19 

and Brown, 2013; Leeson et al., 2013; Sundal et al., 2011) and estimating the depth of  20 

supraglacial lakes (Sneed and Hamilton, 2007) in Greenland. MODIS (the MODerate 21 

Resolution Imaging Spectroradiometer) is able to provide large spatial coverage (2,330 km 22 

swath width), moderate resolution (~250 m) images of Greenland twice per day (e.g., Box and 23 

Ski, 2007; Fitzpatrick et al., 2013). ASTER (the Advanced Spaceborne Thermal Emission and 24 

Reflection Radiometer, e.g. Sneed and Hamilton, 2007) and Landsat (e.g. Banwell et al., 25 

2014; Morriss et al., 2013) have higher spatial resolution (10-30 m) but lower spatial coverage 26 

and fewer acquisitions (16 day repeat). Commercial sensors, such as DigitalGlobe’s 27 

WorldView-2, and WorldView-3, provide high resolution multispectral measurements (~2 m) 28 

that can be used to image small water features, such as streams, over smaller areas (17 km 29 

wide swath), at both high temporal and spatial resolution (Chu, 2014; Legleiter et al., 2014; 30 

Smith et al., 2015). However, commercial imagery is collected largely ‘on demand’ and cloud 31 
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cover can still be a confounding factor. Here we provide the first regional scale validation of 1 

supraglacial lake depth estimation methods with all of the above multispectral sensors. 2 

Lake depth retrieval is based upon the understanding that deep water absorbs more energy 3 

than shallow water and therefore will have lower reflectance of solar radiation. Some methods 4 

use one band for a reflectance-depth relationship, while others use a ratio of reflectances from 5 

two different spectral bands (see Sect. 2). Satellite retrieval of supraglacial lake depth is 6 

confounded by difficulty measuring the true reflectance of dark/deep lakes, assumptions 7 

inherent in the method about minimal quantities of suspended and dissolved matter in lake 8 

water, the requirement for a smooth (i.e., not wind-roughened) lake surface, and 9 

homogeneous and low-slope lake bottoms (Sneed and Hamilton, 2011). In this study we 10 

assume that it is possible to apply locally calibrated coefficients to broad areas (e.g., Legleiter 11 

et al., 2014) and that minor variations in effects of atmospheric path radiance can be ignored..  12 

Landsat 8, launched in 2013, hosts a new multispectral sensor, named the Operation Land 13 

Imager (OLI), suitable for lake-depth estimation. The OLI has enhanced radiometric 14 

resolution (12-bit vs. 8-bit), a higher signal to noise ratio, and an expanded dynamic range 15 

compared to Landsat 7’s Enhanced Thematic Mapper Plus (ETM+). While published studies 16 

(see above) have largely used red and green wavelengths, OLI’s two additional bands 17 

(coastal, 0.433-0.453 µm; and cirrus, 1.360-1.390 µm), and narrower multispectral and 18 

panchromatic bands relative to ETM+, will provide more spectral information and more 19 

unique (i.e., less auto-correlated) reflectance values respectively. These properties lead to 20 

improvements for lake depth retrieval methods based on band ratios. Furthermore, an 21 

increased scene collection rate by Landsat 8 will lead to more opportunities to observe ice 22 

sheets and their supraglacial lakes. 23 

In this paper we investigate retrieval methods for supraglacial lake depth from OLI data. We 24 

use in situ spectral measurements from a supraglacial lake in Greenland to emulate satellite 25 

reflectance and compare them with depth data from the same lake to test several techniques to 26 

extract lake depth. We then apply the best methods to OLI imagery for case study areas in 27 

Northwest Greenland and the Sermeq Kujalleq (Jakobshavn Isbrae) area. We validate depth 28 

estimates using digital elevation models (DEMs) derived from stereo sub-meter imagery. We 29 

discuss best practices for deriving lake depths using OLI and the implications of these 30 

conclusions for other multispectral sensors. Analysis of 2014 imagery yields information 31 

about supraglacial lake size, distribution, and seasonal behavior. 32 
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2 Methods 1 

2.1 Physically Based Lake Depth 2 

The depth of a supraglacial lake can be approximated as (after Philpot, 1989): 3 

𝑧 =    [ln 𝐴! − 𝑅! − ln  (𝑅!"#$ − 𝑅!)]  /  𝑔      (1) 4 

where z is lake depth in meters, Ad is the lake bottom albedo, R∞ is the reflectance of optically 5 

deep water, Rlake is the reflectance of a lake pixel, and g is related to the losses in upward and 6 

downward travel through the water column (units: m-1). Based upon a description of the 7 

processes that take place as light enters, passes through, and exits a lake, this method has been 8 

used successfully both in Greenland and Antarctica (e.g., Banwell et al., 2014; Sneed and 9 

Hamilton, 2007).It is physically based and therefore easy to adjust if measurements of lake 10 

water and lake bed properties are available. However, this method assumes that lake water has 11 

little to no dissolved or suspended matter and would be severely impacted by surface waves 12 

(wind-driven ripples, choppy waves, etc.). Additionally, it requires that the lake bottoms have 13 

low slopes and a homogeneous albedo (Sneed and Hamilton, 2011). While most of these 14 

assumptions hold for supraglacial lakes in Greenland (Sneed and Hamilton, 2011), lake 15 

bottoms are known to be too inhomogeneous to support the approach generally. In addition, 16 

optically deep water (i.e., deep lakes or ocean where the upwelling radiance originates from 17 

the water column without any bottom signal contribution) is not always available in inland 18 

Landsat scenes. The effects of these shortcomings on supraglacial lake depth retrievals have 19 

not been quantified.  20 

In this study, for application to OLI imagery, R∞ was obtained from dark ocean or lake water 21 

in the scene, following Sneed and Hamilton (2007, 2011). If no coast was available in the 22 

scene containing the lake, R∞ was obtained from another scene further along the path (with an 23 

implicit assumption of similar atmospheric conditions). The parameter g was calculated 24 

following earlier studies (Smith and Baker, 1981; Sneed and Hamilton, 2007), but with an 25 

updated absorption coefficient from Pope and Fry (1997, Table 3); for more details, see the 26 

Supplementary Material. 27 

Ad was obtained from the reflectance immediately outside identified lake areas. However, in 28 

order to test this approximation for Ad, we also solve for lake bottom albedo rather than 29 

assuming it to be the same as the surrounding ice. We use spectral mixture analysis (Lillesand 30 

et al., 2007) to define a fractional coverage of ice (ri) and cryoconite (rc = 1 – ri) in each lake 31 
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bottom pixel. To create a determinable equation after introducing this new unknown (ri), we 1 

use reflectances from two OLI spectral bands (indicated with subscripts 1 and 2, below), and 2 

derive end-member reflectances for ice (Ri1 or Ri2) and cryoconite (Rc1 or Rc2) using glacier 3 

reflectance spectra from Pope and Rees (2014b) in conjunction with OLI spectral response 4 

functions in both bands (Barsi et al., 2014). We input these parameters into Equation 1 and 5 

then combine the expressions by equating lake depth, thus obtaining:  6 

[!! !!!!!!! !!!!!!!"
!!!!!!"

]!! = [!! !!!!!!! !!!!!!!"
!!!!!!"

]!!         (2) 7 

After Eq. 2 is solved for ri, the bottom albedo for one OLI spectral band can be calculated and 8 

subsequently used to compute lake depth: 9 

𝐴!! =   𝑟!𝑅!! + 1− 𝑟! 𝑅!!         (3) 10 

 11 

𝑧 = !"# !!"#$!!!!" !!"#  (!!!!!!")
!!!

       (4) 12 

where Rlake1 is water leaving reflectance (as in Eq. 1) for the first band in the pair used and z is 13 

lake depth. 14 

[[Table 1]] 15 

2.2 Empirically Derived Lake Depth 16 

The second method we consider uses spectral band ratios to derive water depth. It has been 17 

used in shallow marine settings (e.g., Dierssen et al., 2003) and alluvial rivers (e.g., Legleiter 18 

and Overstreet, 2012) and has been adapted for use on the Greenland Ice Sheet (Legleiter et 19 

al., 2014). While the physically based method above is highly dependent on Ad and g, earlier 20 

studies show that the spectral band ratio method is expected to be more robust to variations in 21 

these parameters (Legleiter et al., 2009; Stumpf et al., 2003). This is because the method 22 

relies on relative behavior in two different wavelengths, as opposed to absolute optical 23 

behavior. 24 

This spectral band ratio method employs an empirically derived quadratic formula to relate 25 

lake depths to the ratio of the reflectance of two spectral bands (R1 and R2): 26 

𝑧 = 𝑎 + 𝑏𝑋 + 𝑐𝑋!         (5) 27 

𝑋 = ln(𝑅!/𝑅!)         (6) 28 
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This empirical method requires the derivation of calibrated coefficients (i.e. a, b, and c), and 1 

coefficients vary depending on which sensors and bands are used (Legleiter et al., 2014). We 2 

calculate these coefficients using a known set of reflectances and depths (from in situ 3 

measurements, see Sect. 3.1 & 4.1).  4 

3 Data 5 

We use three datasets in this study: in situ reflectance spectra and lake depth, OLI imagery, 6 

and DEMs derived from stereo WorldView imagery. We use in situ data to test different lake 7 

retrieval methods for a range of spectral bands. Then, we calculate lake depth with a range of 8 

the most promising methods using OLI imagery. We then use WorldView DEMs to validate 9 

the OLI-derived lake depths. The detailed workflow of software (including MATLAB and 10 

shell scripts that call GDAL utilities) used for data analysis and presentation in this study will 11 

be fully described and documented in a subsequent paper (Pope, in review). 12 

3.1 In Situ Data 13 

In summer 2010, Tedesco and Steiner (2011) used a small remote-controlled boat equipped 14 

with a compact spectroradiometer and a small sonar to collect coincident lake-bottom 15 

reflectance and depth over one lake in West Greenland (Tedesco et al., 2015). We use 2226 16 

unique sample points from that study to evaluate the performance of the remote sensing 17 

methods described above. Field spectra are convolved to account for the spectral response of 18 

the spaceborne sensors as follows: 19 

𝑟!" =
! ! ! ! !"!

!
! ! !"!

!
         (7) 20 

where rnb is the narrowband reflectance, r(λ) is the spectral reflectance, R(λ) is the relative 21 

spectral response (Barsi et al., 2014), and λ is the wavelength. In order to emulate sensor 22 

dynamic range and radiometric resolution, we impose minimum and maximum reflectances 23 

and round reflectance values to the appropriate precision (i.e., 8-bit or 12-bit; see Pope and 24 

Rees, 2014a). We then regress the convolved reflectances and in situ depth measurements to 25 

test the goodness of fit of the physically based relationship presented in Eq. 1 and the 26 

empirical method described in Eqs. 5 and 6.  27 
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3.2 OLI Imagery 1 

Landsat 8 launched on 11 February 2013 and became operational on 30 May 2013 (Roy et al., 2 

2014). OLI collects spectral data gridded at 30 m spatial resolution (15 m for panchromatic 3 

data). We calculate top-of-atmosphere (TOA) reflectance using calibration coefficients 4 

provided in the image metadata and a solar elevation cosine correction (USGS, 2013). Based 5 

on a sensitivity analysis of path radiance to water vapor and ozone using an atmospheric 6 

radiative transfer model (see Sect. 5), we do not atmospherically correct the images. 7 

We choose two study areas for applying OLI imagery (see Fig 1). One site located in 8 

northwest Greenland (including Sverdrup Gletsjer, Dietrichson Gletsjer, Sermersuaq, and 9 

Kjer Gletsjer, on Melville Bay; 56.2966-58.7186°W, 74.9685-75.7808°N) is an area with a 10 

high concentration of lakes and was imaged four times by OLI throughout summer 2013. A 11 

larger region farther to the south is examined using all available OLI scenes collected over the 12 

Sermeq Kujalleq region in West Greenland in 2014. For a list of all OLI scenes used in this 13 

study, see Table S2.  14 

[[Fig. 1]] 15 

Using the calculated TOA reflectances, we define supraglacial lake extent using the ratio 16 

between the blue and red bands (Banwell et al., 2014; Box and Ski, 2007). However, since 17 

OLI bands are slightly different from those of past sensors, we could not use published 18 

thresholds for extent. We set the threshold for this ratio at 1.5 (vs. 1.05-1.25 for ETM+ in 19 

Banwell et al., 2014) based upon visual comparison with the imagery. We then visually 20 

inspected and manually adjusted the threshold mask to remove coastal water areas (i.e., not on 21 

the ice sheet) and clouds. Although Leeson et al. (2013) describe such thresholding as too 22 

coarse for low resolution imagery (i.e. MODIS), they do acknowledge its utility for higher 23 

resolution imagery (i.e. ASTER, Landsat, etc.). We remove regions four pixels or smaller (i.e. 24 

small lakes likely comprised solely of mixed pixels) or less than two pixels wide (i.e. linear 25 

features likely to be channels, not lakes) from the lake mask.  26 

We interpolate the lake mask using a nearest neighbor algorithm, in order to apply the 27 

physically based method to the higher resolution panchromatic band. Where both 28 

panchromatic and spectral bands were used together, we bilinearly interpolate the 29 

panchromatic image to 30 m resolution. 30 
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3.3 WorldView DEMs 1 

We use submeter (~0.5 m pixel-1) stereo imagery from WorldView-1 and WorldView-2 to 2 

create DEMs of lake areas both before filling and after drainage. Similar validation for 3 

ASTER has been carried out with airborne LiDAR from before lake drainage (Georgiou et al., 4 

2009), and for estimating lake drainage volumes (Stevens et al., 2015). We generate the high 5 

resolution WorldView DEMs using the open source NASA Ames Stereo Pipeline tool 6 

(Moratto et al., 2010; Shean et al., 2015). For both the Sermeq Kujalleq and northwest sites, 7 

we use DEMs from six different days, for a total of 12 DEMs (see Table S2).  8 

WorldView-1 image data have a geolocation accuracy of better than 4.0 m horizontal 90% 9 

circular error of probability and WorldView-2 better than 3.5 m (DigitalGlobe, 2014).  Thus, 10 

the imagery and DEMs are more precisely positioned than the 15-30 m OLI.  11 

The vertical accuracy of the derived DEM products is less than 5.0 m 90% vertical error of 12 

probability with submeter relative vertical precision (Mitchell, 2010). Differencing a 13 

WorldView DEM with an Airborne Topographic Mapper LiDAR profile over a pronounced 14 

basin in northeast Greenland provided a standard deviation over the spread of elevations of 15 

0.25 m. Considered conservatively, differencing one WorldView DEM with a second DEM 16 

collected one year later provided a standard deviation of 0.58 m for the elevation differences 17 

(Willis et al., 2015). Stacks of 13 and 17 overlapping WorldView-1 and WorldView-2 DEMs 18 

over Summit Station and Tracy Glacier, Greenland, provide absolute vertical accuracy 19 

estimates of ~2.0-3.0 m relative to airborne LiDAR measurements (~10 cm accuracy). After 20 

removing absolute horizontal and vertical offsets from all DEMs, the relative vertical 21 

accuracy (1-sigma) for the stack was ~15-30 cm (Shean et al., 2015). 22 

We resample the DEMs to the same grid as OLI imagery using cubic interpolation. The OLI 23 

and WorldView acquisitions are from different dates, and although lake basins do ablate 24 

during the summer, this should not have significant impact on the results presented here, 25 

because most supraglacial lakes in Greenland remain fixed over bedrock-controlled surface 26 

depressions (Lampkin and VanderBerg, 2011). Using the lake mask, we identify a shoreline 27 

for a given date (see Sect. 3.2), which is then used to derive lake depth. We remove outliers of 28 

impossibly shallow (i.e. negative depth) or deep (>65 m) values as errors in the DEM. In 29 

addition, we remove lakes having a standard deviation in lake elevation along the shoreline of 30 

larger than 1.5 m. These steps also mitigated any potential bias caused by temporal offset 31 

between DEM and spectral depth measurements.  32 
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After filtering, over 250,000 pixels (30 m) in total remained for spectral lake depth validation 1 

over six days in 2013 and six days in 2014.  2 

4 Results 3 

4.1 In Situ Results 4 

The results (Table 1) of depth-reflectance regressions for all methods are shown in Fig. 2. We 5 

base the bands tested here using in situ data upon those identified in the literature (e.g., Box 6 

and Ski, 2007; Sneed and Hamilton, 2007; Tedesco and Steiner, 2011), as well as the OLI’s 7 

new coastal band and the significantly narrowed panchromatic band (0.500-0.680 μm, at 15m 8 

spatial resolution). ETM+ high and low gain results are virtually indistinguishable, and so 9 

only low gain results are shown here. For each regression, we use the correlation coefficient 10 

(r) and the root mean square error (RMSE, relative to sonar depths) to assess the performance 11 

of each method. The results of the physically based method show that the OLI blue and 12 

coastal bands do not perform well relative to other bands (RMSE of 3.10 m and 11.03 m, 13 

respectively; r of 0.29 and 0.05, respectively). The OLI Band 3 (green, 0.525-0.600 μm; 0.78 14 

m, r = 0.78) performs as well as legacy ETM+’s Band 2 (green, 0.525-0.605 μm; 0.77 m, r = 15 

0.79). Finally, both OLI Band 4 (red, 0.640-0.670 μm) and Band 8 (panchromatic, 0.500-16 

0.680 μm) bands outperform their analogous ETM+ bands (RMSE of 0.28 m and 0.63 m, 17 

respectively; r of 0.96 and 0.84, respectively).  18 

[[Fig. 2]] 19 

Red light attenuates more strongly in water than green or blue light. So, for the same lake 20 

depth, there will be a larger (and easier to measure) change in net reflectance for red 21 

wavelengths than shorter wavelengths. However, the rapid attenuation of red light means that 22 

only shallower lakes may be measured in this band. The maximum in situ lake depth 23 

measurement is ~5 m, well within the red light limit, but deeper lakes may exist in the overall 24 

study area. We address this issue below by using many Landsat scenes and WorldView 25 

DEMs. 26 

We investigate the two-band physically based method (where Ad was calculated) with a range 27 

of emulated OLI bands (see Table 1). We find similarly high correlation coefficients (r = 28 

0.94) to the regression method. Nevertheless, only the combination of blue and green bands 29 

had an RMSE below 1 m. This method appears to slightly overestimate lake depths. We 30 

investigate the reasons for this with the OLI and WorldView data below. 31 
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Applying the empirical method using field data (see Table 1, Fig. 2) indicates that the more 1 

continuous bands of the ETM+ outperform the narrower (less spectrally auto-correlated) 2 

bands of the OLI when estimating lake depths. However, the addition of the coastal band 3 

should allow the OLI still to perform quite well (r > 0.92, RMSE < 0.38), in particular when 4 

paired with the green or panchromatic bands.  5 

Our analysis shows that supraglacial lake depth retrievals using OLI are as good as or better 6 

than ETM+ retrievals. We identify the best methods for OLI (identified with asterisks in 7 

Table 1) based on the highest correlation coefficients and lowest RMSEs. We then apply 8 

these methods to OLI data and validate them with WorldView stereo DEMs. 9 

4.2 2013 Northwest Greenland Results 10 

In the northwest Greenland study area, we identified 694 lakes on 2 July 2013 with a total 11 

area of 27.2 km2, 1259 lakes totaling 43.7 km2 on 18 July 2013, 955 lakes totaling 38.8 km2 12 

on 3 August 2013, and 274 lakes totaling 8.6 km2 on 19 August 2013. We calculate lake 13 

depths with all previously discussed methods, as well as an average between the two best 14 

single-band depth estimates. Total lake volume in the study area increased in early July, 15 

stayed almost constant as lake growth areas moved higher in elevation over the following 16 

three weeks, and then decreased again toward the end of August as cooler conditions 17 

prevailed (see Fig. 3). While all methods show the same pattern of surface water storage, the 18 

total water volumes derived with the different methods differ by over a factor of 2.  19 

 [[Fig. 3]] 20 

4.3 Comparison with DEMs 21 

For both of our case study regions, northwest and southwest Greenland, we difference all 22 

overlapping areas of OLI-derived lake depths and WorldView-derived DEMs. The statistics 23 

of this comparison are shown in Fig. 4. As seen in the northwest Greenland case study, the 24 

results are divided into two groups. OLI-derived depths using band 3, bands 2 & 3, a ratio of 25 

bands 1 and 3, and a ratio of bands 1 and 8 all considerably overestimate lake depth relative to 26 

the DEMs. However, the physically based single band method for the red band (OLI Band 4) 27 

only slightly underestimates lake depth (-0.1 ± 1.7 m), while the panchromatic band (OLI 28 

Band 8) slightly overestimates lake depth (0.1 ± 1.4 m).  29 
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Combining these two best-performing bands, the resulting spectral and DEM-derived lake 1 

depths are in close agreement, showing a difference of 0.0 ± 1.6 m. We infer that the optimal 2 

method for estimating supraglacial lake depth with OLI is to take an average of the physically 3 

based (see Eqn. 1) depths as derived from the red and panchromatic channels (bold in Table 4 

1). It is likely that the spread in depths is the result of a combination of factors including 5 

temporal offset between DEM and spectral data collection, image coregistration, and 6 

atmospheric effects, as well as uncertainties inherent in the lake depth retrievals. Despite 7 

meter scale uncertainties (1.6 m) at the pixel level, the mean lake depth derived from these 8 

methods agrees well. 9 

 [[Fig. 4]] 10 

4.4 2014 Sermeq Kujalleq Area Results 11 

We apply the lake depth algorithm (i.e., average of single band depths from OLI red & 12 

panchromatic bands) to 34 OLI images from the summer of 2014 over the Sermeq Kujalleq 13 

area (see Figs. 1 & 5). The total meltwater storage in supraglacial lakes peaked near three 14 

cubic kilometers across the entire study area in mid-July 2014. There are many shallow lakes 15 

(0.3 to 1.5 m depth) and many lakes with depths of 2.5 to 4 m. Few lakes exceed 5.5 m depth 16 

(see Fig. 6a). The preponderance of shallow lake pixels reflects the fact that the observed 17 

lakes have low surface slopes at their edges. 18 

[[Fig 5]] 19 

If the water stored in supraglacial lakes in row 12 of path 008 in mid-July were spread across 20 

the whole 25,246 km2 of ice in the scene, it would have an average depth of almost three 21 

centimeters. In other scenes, calculations provide average depths of 0.5 to 1.5 cm. Our 22 

maximum observed value is almost as high as the volume in supraglacial streams measured 23 

by Smith et al. (2015), reinforcing the potentially daily turnover of a well-connected surface 24 

system they observed. Indeed, Tedesco et al. (2012) observe bare ice melt rates next to 25 

supraglacial lakes in west Greenland of ~2.5-3 cm per day, similar to those observed by van 26 

den Broeke et al. (2011). This implies that lakes are storing on the order of one day’s worth of 27 

melt (or less), indicating daily or subdaily residence times, depending on connectivity. 28 

The Sermeq Kujalleq dataset also provides a time series that shows lake growth and drainage 29 

/ freezing (see Fig. 5a). There are many factors that contribute to lake growth and drainage, 30 

including temperature, insolation, albedo, topography, and ice dynamics. These complex 31 
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drivers are related to the more easily quantified mean elevation and latitude of each scene. For 1 

example, isolating the coastal scenes shows the delayed onset of melt and earlier shutdown in 2 

the north compared to the south (see Fig. 5b).  3 

To further refine our investigation of geographic factors associated with lake depth over the 4 

summer season, we examine single swaths of OLI imagery through time. Path 008 (in the 5 

WRS-2 reference scheme, Irons et al., 2012), which transects the lower Sermeq Kujalleq, 6 

shows a strong influence both of elevation and latitude in rates of lake growth and water 7 

storage (Fig. 5c). Isolating Path 006, on the other hand, conflates the effects of elevation and 8 

latitude on surface meltwater storage, but because we have more temporal coverage (see Fig. 9 

5d) we see the decline of total lake volume as summer progresses toward autumn. Again, 10 

higher latitude and elevation delay melt onset (i.e. Path 006, Row 012). For 006/013 and 11 

006/014, it is likely that the reduced ice sheet area within 006/014 is the explanation for the 12 

reduced meltwater volume. Rates of increase and decay of lake volume are similar for this 13 

pair. 14 

The distribution of lake depths (by pixel) with elevation is shown in Fig. 6b. Lakes are 15 

distributed from ~300 m to ~2100 m elevation. Maximum lake depths occur at about 1200 m 16 

a.s.l. At lower elevations, lake depths recorded by our method vary significantly, likely due to 17 

rapid lake growth and drainage across a range of dates at lower elevations, versus the higher 18 

elevation maximum depths mostly derived from an OLI image on July 30 2014. From 1200 m 19 

to 2100 m, measured lake depths decline steadily with less variation. This likely reflects a 20 

combination of factors, including the variations in induced surface topography of the ice sheet 21 

as it flows over undulating bedrock (Lampkin and VanderBerg, 2011). At higher elevations, 22 

slow flow leads to low-amplitude ice surface topography thus shallower depressions, and 23 

there is also less available meltwater to fill ice-surface depressions. In addition, while lakes 24 

are less likely to variably fill and drain at higher elevations, there was also reduced imagery 25 

available from ~July 30 2014 onwards. Therefore, the more consistent maximum depths at 26 

higher elevations are a combination of incomplete temporal coverage and elevation. Further 27 

down, more melt and higher amplitude topography from faster ice flow facilitate lake 28 

formation. However, below 1200 m, increased ablation begins to reduce this topography. In 29 

addition, the volume of melt available will determine whether depressions are large enough to 30 

hold lakes or instead drain via connecting supraglacial channels. The melt volume and 31 
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therefore the relationship between lakes and channels will thus vary both seasonally and with 1 

elevation as well (Lampkin and VanderBerg, 2014). 2 

[[Fig 6]] 3 

5 Discussion 4 

5.1 Retrieval Performance Factors 5 

The depths returned by the empirical (band ratio) method considerably overestimate lake 6 

depths relative to the WorldView DEMs. The method is entirely dependent upon the 7 

calibration of the input parameters (i.e., a, b, and c). The parameters used in this study are in 8 

turn based solely upon extrapolation from in situ measurements at a single lake. Therefore, it 9 

is possible that the lake used for calibration is not representative of lakes in our study region. 10 

Legleiter et al. (2014) note that the coefficients for the empirical method may be scale-11 

dependent, and values calculated from field data may not be appropriate for the 30 m OLI 12 

pixels. Indeed, other work (Moussavi et al., in review) both calibrates and validates spectrally 13 

derived depths with WorldView DEMs to show that the band-ratio/empirical method and 14 

single-band/physically based method perform similarly well. The use of a ratio of coastal and 15 

green reflectances performed well for lake depth retrieval using WorldView-2 imagery 16 

(Legleiter et al., 2014). Therefore the band ratio method may, with better parameters, produce 17 

results consistent with the physically based single-band approaches. 18 

The physically based depth retrievals show a large spread in total water volume returns. 19 

Physically based depth retrievals rely on accurate bottom albedos (Ad) and water absorption 20 

coefficient (g). While Ad is derived from the imagery, g is always calculated for each spectral 21 

band based on laboratory measurements and is therefore consistent across all OLI scenes. 22 

Comparison of laboratory-measured g with those derived from in situ data (see Table 1) 23 

shows that when the laboratory-measured g is higher than the that obtained from regressing in 24 

situ data, lake depths are overestimated and vice versa. For example, OLI Band 3 (green) 25 

shows a 70% difference in directly measured and regressed g, and it overestimates lake depths 26 

by a mean of 2.4 ± 2.1 m relative to WorldView DEMs. By contrast, Band 4 (red) and Band 8 27 

(panchromatic) have very small differences between measured and regressed g (-0.06% and 28 

0.06%, respectively) and yield accurate lake depth estimates (-0.1 ± 1.7 m and 0.1 ± 1.4 m, 29 

respectively) relative to WorldView DEMs.  30 
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Water absorption properties also vary with wavelength. For example, poor performance in 1 

blue and coastal bands is related to very low absorption. Red wavelengths attenuate relatively 2 

quickly in water, and this is described by a relatively high g (0.7507 m-1) compared to green 3 

(0.1413 m-1). This high g for red light makes it less sensitive to errors in g than green 4 

wavelengths. Lake depth estimates using a red channel are also less sensitive to Ad than with a 5 

green channel (Tedesco and Steiner, 2011), again due to the high absorption for longer 6 

wavelengths. Ultimately, as long as the sensor radiometry is able to measure the return from 7 

deep-water pixels, longer wavelengths (i.e., red) can return generally more accurate lake 8 

depths because they are less sensitive to the input parameters.  9 

5.2 Revisiting Lake Depth Retrievals 10 

To evaluate other studies in the literature and compare them with our results, we apply the 11 

same methods we use (i.e., lab-measured absorption/scattering parameters and appropriate 12 

spectral response functions) to calculate g’s for ETM+ bands (see Table 1). Tedesco and 13 

Steiner (2011) studied the accuracy of ETM+’s green band for lake depth estimation. They 14 

tested different multipliers of the diffuse attenuation coefficient for downwelling light to get 15 

the water absorption coefficient g. They showed that for ETM+’s green band, sonar and 16 

spectral depths correlated better when a larger multiplier was used. This is broadly consistent 17 

with the 70% offset between observed and theoretical values that we observe (Table 1). They 18 

also find that this offset “cannot be easily explained, aside from a possible chlorophyll 19 

concentration in the water, currently considered to be unlikely.” Morriss et al. (2013) used 20 

ETM+’s red band and extracted a higher value of g (0.86 m-1); this is very close to the 21 

regressed value we observe of 0.83 m-1 (see Table 1), and so we expect their depth estimates 22 

to be slightly overestimated.  23 

Banwell et al. (2014) and Arnold et al. (2014) also used ETM+’s green band with a g of 24 

0.1954 m-1, ~40% percent higher than our regressed value of 0.14 m-1, leading to depths 25 

overestimated by ~30%. Because the comparisons of Greenland and Antarctic lakes (Banwell 26 

et al., 2014) are based on relative depths, their conclusions are likely still valid. Arnold et al. 27 

(2014) concluded that their model under-predicted water depths, which could in reality mean 28 

that their model is behaving correctly but their validation data (i.e., ETM+ lake depths) were 29 

biased.  30 
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Using the same process as for Landsat sensors, we calculated g’s for ASTER, MODIS, and 1 

WorldView-2 bands (see Table S1). Sneed and Hamilton (2007, 2011) used ASTER’s green 2 

band for lake depth estimation (g = 0.1180 m-1). This is ~20% smaller than the regressed 3 

value of 0.15 m-1 (see Table S1). They will therefore have likely underestimated lake depth 4 

(Sneed and Hamilton, 2007).  5 

For all three studies, the regressed g’s are much closer to the updated lab-based g’s (see Sect. 6 

2.1 & Supplementary Material) than those used in the studies. Adoption of the new g’s 7 

presented here in Tables 1 and S1 would therefore likely lead to improved lake depth 8 

estimates. 9 

5.3 Sensitivity Analysis 10 

For all sensors, wavelengths, and input parameters, an important consideration for 11 

reflectance-derived lake depth is the atmospheric correction used to prepare the multispectral 12 

imagery. All imagery is processed to TOA reflectance, which means that there is some 13 

extraneous path radiance remnant in the data. Therefore, TOA values will slightly 14 

overestimate the true reflectance. This offset will not be the same between bands, and will 15 

influence the retrieved lake depths as discussed below. 16 

The single band physically based model requires that the reflectance of optically deep water 17 

be derived for each scene separately. Effectively, this shifts the exponential decay curve of 18 

light in lake water but does not change its shape. Therefore, as long as path radiance is 19 

assumed to be homogeneous across the 185-km wide OLI scene, TOA reflectance is sufficient 20 

for lake depth estimation. To test this assumption, the MODTRAN radiative transfer model 21 

(Berk et al., 2005) was used to simulate path radiance on a day for which OLI data were used 22 

in northwest Greenland (18 July 2013) to investigate variations associated with variable water 23 

vapor and ozone across a Landsat scene. According to MODIS retrievals (accurate to 30 DU; 24 

Borbas et al., 2011), ozone variability within a Landsat scene is on the order of approximately 25 

±50 DU, which translates to a path radiance of ±1.6% in the red channel. For lake depth, this 26 

can propagate to a ~20% error in lake depth. Much of this error appears largely random for a 27 

given point in time and space. Thus, while it decreases confidence in individual lake depth 28 

retrievals, averaged water volume retrieval should not be biased. For water vapor there was a 29 

0.3% change in path radiance between the minimum and maximum Landsat scene values, 30 
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making it a small contributor to overall error. Between days, however, path radiance effects 1 

due to water vapor may vary by an order of magnitude more.  2 

For the multiple band methods, the differential change in path radiance has larger effects. 3 

Sensitivity tests showed that a 3% change in path radiance for one or both bands changed 4 

water volumes on the order of 10-30%. Therefore, a more rigorous atmospheric correction is 5 

necessary in order to apply multi-band lake depth algorithms. Still, for the study here, because 6 

validation is conducted across 12 non-consecutive days in both spring and autumn, we do not 7 

expect atmospheric conditions to bias our conclusions.  8 

There are additional limitations to our method. As discussed above, OLI lake depth estimates 9 

(average single-band estimates from red and panchromatic bands) are robust for regional 10 

averages but not single pixels. In addition, the threshold used to identify lake extent may need 11 

to be adjusted for different regions and scenes (e.g. Banwell et al., 2014; Box and Ski, 2007). 12 

Lake depth retrievals are also sensitive to variations in ice albedo, as well as to the presence 13 

of ice lids on the surface of supraglacial lakes, which can be common both in early and late 14 

summer. Cloud cover and Landsat’s 16-day revisit time also limit the conclusions that can be 15 

drawn from OLI lake depths. Many studies have used daily MODIS data to identify and track 16 

supraglacial lakes (e.g. Liang et al., 2012; Selmes et al., 2011; Sundal et al., 2011). Fusing the 17 

higher temporal resolution of MODIS (or additional sensors such as ESA’s upcoming 18 

Sentinel-2) and higher spatial resolution of OLI, along with more in situ calibration and 19 

validation data, should lead to unique insights to supraglacial water storage. 20 

6 Conclusion 21 

Examination of the evolution of water storage on the surface of ice sheets and glaciers is 22 

important for understanding mass balance, dynamics, and heat transport throughout the ice 23 

mass. In this study, in situ data were used to test the capability of Landsat 8’s Operational 24 

Land Imager to estimate supraglacial lake depth. Promising methods were applied to two sets 25 

of OLI observations. Patterns of water storage were similar from the two methods, but a 26 

factor of two difference was calculated for the total water volume. WorldView DEMs were 27 

used to assess which of the methods was most accurate. The best method identified for OLI 28 

was an average of the depth derived from single-band physically-based retrievals of Band 4 29 

(red) and Band 8 (panchromatic); the mean difference between spectrally-derived and DEM-30 

derived lake depths is only 0.0 ± 1.6 m, showing no bias but some spread. Therefore, this 31 

method is recommended for future lake depth retrievals with OLI, especially for regional 32 
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studies. This is the first time supraglacial lake depths have been validated across multiple 1 

dates and regions. 2 

Discrepancies between spectrally- and DEM-derived depths appear to be explained by 3 

differences between lab-measured and in situ-derived water absorption coefficients (g). The 4 

success of other sensors and bands in deriving supraglacial lake depth can thus be inferred 5 

from these g’s. With this insight, multispectral lake depth estimates in the literature were 6 

revisited. Lake extent studies can now be expanded to include lake volume with higher 7 

confidence. Updated g’s are provided (see Tables 1 and S1), but further in situ data collection 8 

and satellite-based studies are needed to build more robust methods.  9 

The recommended depth retrieval method was applied to all available OLI imagery for 10 

summer 2014 for the Sermeq Kujalleq (Jakobshavn) region of west Greenland. Seasonal and 11 

regional trends in lake depth (deepening and then shallowing), evolution (proceeding 12 

inland/up-glacier and northwards through the summer), and distribution (~300 m to ~2100 m 13 

a.s.l.) were observed. At most, lakes contain a similar magnitude of water to supraglacial 14 

streams, but this may not be true for other parts of Greenland. Both elevation (and relatedly, 15 

accumulation / melt forcing) and surface topography play a role in lake formation and extent, 16 

behavior that we expect to be modified but observable in other regions. Further work moving 17 

forward will need to contextualize Landsat data with other remote sensing imagery, 18 

fieldwork, and model outputs.  19 
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Table 1. Laboratory-based and in situ-derived water absorption coefficients for lake depth 1 

estimation using the physically based method (g, see Eqn. 1) and empirical method (a, b, and 2 

c, see Eqns. 5-6). Regression statistics (correlation coefficient and root mean squared error) 3 

for lake depth estimates using field spectra convolved to emulate multispectral bands are also 4 

included. Asterisks indicate the methods applied to OLI data in this paper. Bold text indicates 5 

recommended bands for lake depth estimation with OLI. See Table S1 for results from other 6 

multispectral sensors.  7 

 8 

Satellite & Band Lab-based g (m-1) Regressed g (m-1) r RMSE (m) 

OLI 1 (coastal) 0.0178 0.0093 0.0494 11.03 

OLI 2 (blue) 0.0341 0.025 0.2886 3.10 

*OLI 3 (green) 

*OLI 4 (red) 

*OLI 8 (panchromatic) 

 

ETM+ 1 (blue) Gain H 

ETM+ 1 (blue) Gain L 

ETM+ 2 (green) Gain H 

ETM+ 2 (green) Gain L 

ETM+ 3 (red) Gain H 

ETM+ 3 (red) Gain L 

 

OLI 1 & 2 (coastal & blue) 

OLI 1 & 3 (coastal & green) 

OLI 1 & 4 (coastal & red) 

*OLI 2 & 3 (blue & green) 

0.1413 

0.7507 

0.3817 

 

0.0334 

0.0334 

0.1665 

0.1665 

0.8049 

0.8049 

 

- 

- 

- 

- 

0.01 

0.80 

0.36 

 

0.03 

0.03 

0.15 

0.14 

0.83 

0.83 

 

- 

- 

- 

- 

0.7842 

0.9624 

0.8422 

 

0.2626 

0.2625 

0.7892 

0.7890 

0.9548 

0.9412 

 

0.7871 

0.9208 

0.8987 

0.9401 

0.78 

0.28 

0.63 

 

3.34 

3.34 

0.77 

0.77 

0.31 

0.37 

 

2.57 

1.10 

1.34 

0.88 



 24 

OLI 2 & 3 (blue & red) 

OLI 3 & 4 (green & red) 

- 

- 

- 

- 

0.8885 

0.6063 

1.41 

1.74 

 1 

Satellite & Bands a b c r RMSE (m) 

OLI 3 & 4 (green & red) -13.8398 40.0344 -23.4057 0.4537 0.89 

OLI 2 & 4 (blue & red) 3.4414 -9.0500 7.8243 0.8610 0.51 

OLI 1 & 2 (coastal & blue) 

*OLI 1 & 3 (coastal & green) 

OLI 1 & 4 (coastal & red) 

*OLI 1 & 8 (coastal & pan) 

 

ETM+ 2 & 3 (green & red) L 

ETM+ 2 & 3 (green & red) H 

ETM+ 1 & 3 (blue & red) L 

ETM+ 1 & 3 (blue & red) H 

0.9750 

0.1488 

4.8374 

1.6240 

 

1.4794 

2.3102 

4.0925 

4.2825 

18.1837 

5.0370 

-11.2317 

-5.9696 

 

-3.2173 

-4.4616 

-5.3290 

-5.4754 

145.7811 

5.0473 

8.2001 

12.4983 

 

2.8860 

3.2802 

2.4296 

2.4225 

0.8031 

0.9228 

0.8964 

0.9473 

 

0.8855 

0.8970 

0.9655 

0.9694 

0.59 

0.38 

0.44 

0.32 

 

0.46 

0.44 

0.26 

0.24 

  2 
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Figure 1. Regional map showing the two study regions for lake depth estimation using OLI 3 

imagery. The northwest Greenland study region is identified with a single box indicating a 4 

subscene area. The Sermeq Kujalleq study region shows WRS-2 path/row outlines for 5 

Landsat scenes color-coded and dashed to indicate the mean latitude and average elevation of 6 

ice within the scenes (see Sect. 4.4 and Table S2). The background is elevation from the 7 

Greenland Ice Mapping Project (GIMP) DEM (Howat et al., 2014, 2015).  8 

9 
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Figure 2. Regression plots for in situ measured reflectance spectra used to emulate OLI and 3 

ETM+ reflectance and sonar-measured depths, including OLI single band (a); ETM+ low gain 4 

single band (b); OLI coastal and panchromatic (c); and OLI coastal and green (d). Statistics 5 

for all regressions are reported in Table 1.  6 

  7 
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 3 

Figure 3. Total water volume stored in supraglacial lakes in the northwest Greenland study 4 

region for the summer of 2014 derived using OLI. Based on analysis, “Band Average 4 & 8” 5 

is likely to be the most accurate (see Fig. 4). 6 

  7 
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Figure 4. Statistics for the difference in supraglacial lake depth from physically based and 3 

empirical methods derived from OLI imagery and WorldView DEMs, including 4 

mean/standard deviation (solid lines) and median/quartiles (dotted lines). An average of the 5 

Band 4 and Band 8 methods is used for our mapping (Figures 5 and 6). The method showing 6 

the least bias and lowest errors is an average of Band 4 (red) and Band 8 (panchromatic) 7 

single band physically based retrievals, with a mean offset of 0.0 ± 1.6 m (as indicated by the 8 

bar at the bottom of the diagram). Discrepancies in lake depth estimation for physically based 9 

retrievals can be traced to differences between lab-measured and in-situ-regressed water 10 

absorption coefficients (see Table 1).  11 

  12 
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Figure 5. Total water stored in supraglacial lakes over the 2014 summer using single Landsat 3 

8 scenes (as indicated by WRS-2 path/row annotations) covering the Sermeq Kujalleq region 4 

(see Fig. 1, Table S1). All scenes are shown together in (a). (b) shows only the low elevation, 5 

coastal scenes, demonstrating delayed lake formation at higher latitudes. (c) shows both 6 

elevation and latitude effects in driving supraglacial water storage for scenes in WRS-2 path 7 

8. (d) shows latitude and elevation effects for scenes in WRS-2 path 6. All sub-figures are on 8 

the same grid as part (a). 9 
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Figure 6. Statistics of lake depth and elevation distribution for all Sermeq Kujalleq region 3 

2014 OLI imagery (see Table S2). (a) Histogram of lake depths. (b) Maximum lake depth in 4 

1-m elevation bins as derived from the GIMP DEM (Howat et al., 2014, 2015). 5 


