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Abstract19

Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice20

dynamics and heat transport. Multispectral remote sensing can be used to detect supraglacial21

lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric22

data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land23

Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their24

performance with similar methods. Digital elevation models derived from WorldView stereo25

imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths,26

combined with a lake edge determination from imagery. The optimal supraglacial lake depth27

retrieval is a physically based single-band model applied to two OLI bands independently (red28



2

and panchromatic) that are then averaged together. When OLI- and WorldView-derived1

depths are differenced, they yield a mean and standard deviation of 0.0 ± 1.6 m. This method2

is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbrae) region of Greenland3

to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014.4

We also give coefficients for estimating supraglacial lake depth using a similar method as5

OLI with other multispectral sensors.6

7

1 Introduction & Rationale8

Supraglacial lakes in Greenland play a crucial role in the ice sheet’s hydrological system.9

Together with supraglacial streams (Smith et al., 2015), lakes temporarily store large10

quantities of meltwater which can promote the opening of conduits to the bed through11

hydrofracture (Das et al., 2008; Phillips et al., 2013; Selmes et al., 2011; Tedesco et al., 2013)12

and thus influence ice dynamics (Joughin et al., 2013; Parizek and Alley, 2004; Sundal et al.,13

2011; Zwally et al., 2002). Supraglacial lakes are influence surface heat fluxes by storing14

latent heat near the surface of the ice sheet (Koenig et al., 2015). Finally, supraglacial lakes15

contribute to multiple positive feedback processes, including ice shelf disintegration in16

Antarctica (Banwell et al., 2013; Glasser and Scambos, 2008) and melt-albedo interactions17

(Leeson et al., 2015).18

Several multispectral remote sensing tools and methods exist for both classifying (Johansson19

and Brown, 2013; Leeson et al., 2013; Sundal et al., 2011) and estimating the depth of20

supraglacial lakes (Sneed and Hamilton, 2007) in Greenland. MODIS (the MODerate21

Resolution Imaging Spectroradiometer) is able to provide large spatial coverage (2,330 km22

swath width), moderate resolution (~250 m) images of Greenland twice per day (e.g., Box and23

Ski, 2007; Fitzpatrick et al., 2013). ASTER (the Advanced Spaceborne Thermal Emission and24

Reflection Radiometer, e.g. Sneed and Hamilton, 2007) and Landsat (e.g. Banwell et al.,25

2014; Morriss et al., 2013) have higher spatial resolution (10-30 m) but lower spatial coverage26

and fewer acquisitions (16 day repeat). Commercial sensors, such as WorldView-2 and27

Worldview-3, provide high resolution multispectral measurements (~2 m) that can be used to28

image small water features such as streams over smaller areas (17 km wide swath), at both29

high temporal and spatial resolution (Chu, 2014; Legleiter et al., 2014; Smith et al., 2015).30

However, commercial imagery is collected largely ‘on demand’ and cloud cover can still be a31
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confounding factor. Here we provide the first regional scale validation of supraglacial lake1

depth estimation methods with all of the above multispectral sensors.2

Lake depth retrieval is based upon the understanding that deep water absorbs more energy3

than shallow water and therefore will have lower reflectance of solar radiation. Some methods4

use one band for a reflectance-depth relationship, while others use a ratio of reflectances from5

two different spectral bands (see Sect. 2). Satellite retrieval of supraglacial lake depth is6

confounded by difficulty measuring the true reflectance of dark/deep lakes, assumptions7

inherent in the method about minimal quantities of suspended and dissolved matter in lake8

water, the requirement for a smooth (i.e., not wind-roughened) lake surface, and9

homogeneous and low-slope lake bottoms (Sneed and Hamilton, 2011). In this study we10

assume that it is possible to apply locally calibrated coefficients to broad areas (e.g., Legleiter11

et al., 2014), and can ignore minor variations in effects of atmospheric path radiance.12

With the successful launch of Landsat 8 in 2013 (Irons et al., 2012; Roy et al., 2014), a new13

and improved multispectral sensor is available for lake depth estimation. The Landsat 814

Operational Land Imager (OLI) has enhanced radiometric resolution (12-bit vs. 8-bit), a15

higher signal to noise ratio, and an expanded dynamic range compared to Landsat 7’s16

Enhanced Thematic Mapper Plus (ETM+). While published studies have largely used red and17

green wavelengths, OLI’s two additional bands (coastal, 0.433-0.453 μm; and cirrus, 1.360-18

1.390 μm) and narrower multispectral and panchromatic bands relative to ETM+ will provide19

more spectral information and more unique (i.e., less auto-correlated) reflectance values,20

respectively. These properties lead to improvements for lake depth retrieval methods based on21

band ratios. Furthermore, an increased scene collection rate by Landsat 8 will lead to more22

opportunities to observe ice sheets and their supraglacial lakes.23

In this paper we investigate refinements on retrieval methods for supraglacial lake depth from24

Landsat 8 imagery. We use in situ spectral measurements from a supraglacial lake in25

Greenland to emulate satellite reflectance and compare them with depth data from the same26

lake to test several techniques to extract lake depth. We then apply the best methods to27

Landsat 8 OLI imagery for case study areas in Northwest Greenland and the Sermeq Kujalleq28

(Jakobshavn Isbrae) area. We validate depth estimates using digital elevation models (DEMs)29

derived from stereo sub-meter imagery. We discuss best practices for deriving lake depths30

using Landsat 8 and the implications of these conclusions for other multispectral sensors.31
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Analysis of 2014 imagery yields information about supraglacial lake size, distribution, and1

seasonal behavior.2

2 Methods3

2.1 Physically Based Lake Depth4

The depth of a supraglacial lake can be approximated as (after Philpot, 1989):5 = [ln( − ) − ln( − )] / (1)6

where z is lake depth in meters, Ad is the lake bottom albedo, R∞ is the reflectance of optically7

deep water, Rlake is the reflectance of a lake pixel, and g is related to the losses in upward and8

downward travel through the water column (units: m-1). This method has been used9

successfully in both Greenland and Antarctica (e.g., Banwell et al., 2014; Sneed and10

Hamilton, 2007). The method is based upon a description of the processes that take place as11

light enters, passes through, and exits a lake, it is physically based and therefore easy to adjust12

if measurements of lake water and lake bed properties are available. However, this method13

assumes that lake water has little to no dissolved or suspended matter and would be severely14

impacted by surface waves (wind-driven ripples, choppy waves, etc.). Additionally, it requires15

that the lake bottoms have low slopes and a homogeneous albedo (Sneed and Hamilton,16

2011). While most of these assumptions hold for supraglacial lakes in Greenland (Sneed and17

Hamilton, 2011), lake bottoms are known to be too inhomogeneous to support the approach18

generally. In addition, optically deep water (i.e., deep lakes or ocean where the upwelling19

radiance originates from the water column without any bottom signal contribution) is not20

always available in inland Landsat scenes. The effects of these shortcomings on supraglacial21

lake depth retrievals have not been quantified.22

In this study, for application to Landsat 8 imagery, R∞ was obtained from dark ocean or lake23

water in the scene, following Sneed and Hamilton (2007, 2011). If no coast was available in24

the scene containing the lake, R∞ was obtained from another scene further along the path25

(with an implicit assumption of similar atmospheric conditions). The parameter g was26

calculated following earlier studies (Smith and Baker, 1981; Sneed and Hamilton, 2007), but27

with an updated absorption coefficient from Pope and Fry (1997, Table 3); for more details,28

see the Supplementary Material.29
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Ad was obtained from the reflectance immediately outside identified lake areas. However, in1

order to test this approximation for Ad, we also solve for lake bottom albedo rather than2

assuming it to be the same as the surrounding ice. We use spectral mixture analysis (Lillesand3

et al., 2007) to define a fractional coverage of ice (ri) and cryoconite (rc = 1 – ri) in each lake4

bottom pixel. We then use these coefficients and end-members of ice and cryoconite5

reflectances to calculate the lake bottom albedo (Ad). To create a determinable equation after6

introducing this new unknown (ri), we use reflectances from two OLI spectral bands7

(indicated with subscripts 1 and 2, below), and derive end-member reflectances for ice (Ri1 or8

Ri2) and cryoconite (Rc1 or Rc2) using glacier reflectance spectra from Pope and Rees (2014b)9

in conjunction with OLI spectral response functions in both bands (Barsi et al., 2014). We10

input these parameters into Equation 1 and then combine the expressions by equating lake11

depth, thus obtaining:12 [ ( ) ] = [ ( ) ] (2)13

After Eq. 2 is solved for ri, the bottom albedo for one OLI spectral band can be calculated and14

subsequently used to compute lake depth:15 = + (1 − ) (3)16

17 = ( ) ( )
(4)18

where Rlake1 is water leaving reflectance (as in Eq. 1) for the first band in the pair used and z is19

lake depth.20

[[Table 1]]21

2.2 Empirically Derived Lake Depth22

The second method we consider uses spectral band ratios has been used to derive water depth23

in shallow marine settings (e.g., Dierssen et al., 2003) and alluvial rivers (e.g., Legleiter and24

Overstreet, 2012), and has been also adapted for use on the Greenland ice sheet (Legleiter et25

al., 2014). While the physically based method above is highly dependent on Ad and g, earlier26

studies show that the band ratio method is expected to be more robust to variations in these27

parameters (Legleiter et al., 2009; Stumpf et al., 2003). This is because the method relies on28

relative behavior in two different wavelengths, as opposed to absolute optical behavior.29
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This band ratio method employs an empirically derived quadratic formula to relate lake1

depths to the ratio of the reflectance of two spectral bands (R1 and R2):2 = + + (5)3 = ln( / ) (6)4

This empirical / band ratio method requires the derivation of calibrated coefficients (i.e. a, b,5

and c), and coefficients vary depending on which sensors and bands are used (Legleiter et al.,6

2014). We calculate these coefficients using a known set of reflectances and depths (from in7

situ measurements, see Sect. 3.1 & 4.1).8

3 Data9

We use three datasets in this study: in situ reflectance spectra and lake depth, Landsat 810

multispectral imagery, and DEMs derived from stereo WorldView imagery. We use in situ11

data to test different lake retrieval methods for a range of spectral bands. Then, we calculate12

lake depth with a range of the most promising methods using OLI imagery. We then use13

WorldView DEMs to validate the OLI-derived lake depths. The detailed workflow of14

software (including MATLAB and shell scripts that call GDAL utilities) used for data15

analysis and presentation in this study will be fully described and documented in a subsequent16

paper (Pope, in review).17

3.1 In Situ Data18

Tedesco and Steiner used a small remote-controlled boat with a payload including a compact19

spectroradiometer and a small sonar to collect in situ, coincident lake-bottom reflectance and20

depth over one lake west Greenland in the summer of 2010 (Tedesco et al., 2015; 2011). We21

use 2226 unique sample points from that study to evaluate the performance of the remote22

sensing methods described above. Field spectra are convolved to account for the spectral23

response of the spaceborne sensors as follows:24

= ∫ ( ) ( )∫ ( ) (7)25

where rnb is the narrowband reflectance, r(λ) is the spectral reflectance, R(λ) is the relative26

spectral response (Barsi et al., 2014), and λ is the wavelength. In order to emulate sensor27

dynamic range and radiometric resolution, we impose minimum and maximum reflectances28

and round reflectance values to the appropriate precision (i.e., 8-bit or 12-bit; see Pope and29
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Rees, 2014a). We then regress the convolved reflectances and in situ depth measurements to1

test the goodness of fit of the physically based relationship presented in Eq. 1 and the2

empirical method described in Eqs. 5 and 6.3

3.2 Landsat 8 Imagery4

Landsat 8 launched on 11 February 2013 and became operational on 30 May 2013 (Roy et al.,5

2014). OLI collects spectral data gridded at 30 m spatial resolution (15 m for panchromatic6

data). We calculate top-of-atmosphere (TOA) reflectance using calibration coefficients7

provided in the image metadata and a solar elevation cosine correction (USGS, 2013). Based8

on a sensitivity analysis of path radiance to water vapor and ozone using an atmospheric9

radiative transfer model (see Sect. 5), we did not atmospherically correct the images.10

We choose two study areas for applying OLI imagery (see Fig 1). One site located in11

northwest Greenland (including Sverdrup Gletsjer, Dietrichson Gletsjer, Sermersuaq, and12

Kjer Gletsjer, on Melville Bay; 56.2966-58.7186°W, 74.9685-75.7808°N) is an area with a13

high concentration of lakes and was imaged four times by Landsat 8 throughout summer14

2013. A larger region farther to the south is examined using all available Landsat 8 scenes15

collected over the Sermeq Kujalleq (Jakobshavn Isbrae) region in West Greenland in 2014.16

For a list of all OLI scenes used in this study, see Table S2.17

[[Fig. 1]]18

Using the calculated TOA reflectances, we define supraglacial lake extent using the ratio19

between the blue and red bands (Banwell et al., 2014; Box and Ski, 2007). However, since20

OLI bands are slightly different from those of past sensors, we could not use published21

thresholds for extent. We set the threshold for this ratio at 1.5 (vs. 1.05-1.25 for ETM+ in22

Banwell et al., 2014) based upon visual comparison with the imagery. We then visually23

inspected and manually adjusted the threshold mask to remove coastal water areas (i.e., not on24

the ice sheet) and clouds. Although Leeson et al. (2013) describe such thresholding as too25

coarse for low resolution imagery (i.e. MODIS), they do acknowledge its utility for higher26

resolution imagery (i.e. ASTER, Landsat, etc.). We remove regions four pixels or smaller (i.e.27

small lakes likely comprised solely of mixed pixels) or less than two pixels wide (i.e. linear28

features likely to be channels, not lakes) from the lake mask.29

We interpolate the lake mask using a nearest neighbor algorithm, in order to apply the30

physically based method to the higher resolution panchromatic band. Where both31
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panchromatic and spectral bands were used together, we bilinearly interpolate the1

panchromatic image to 30 m resolution.2

3.3 WorldView DEMs3

We use submeter (~0.5 m / pixel) stereo imagery from DigitalGlobe’s WorldView-1 and4

WorldView-2 to create DEMs of lake areas both before filling and after drainage. Similar5

validation for ASTER has been carried out with airborne LiDAR from before lake drainage6

(Georgiou et al., 2009), and for estimating lake drainage volumes (Stevens et al., 2015). We7

generate the high resolution WorldView DEMs using the open source NASA Ames Stereo8

Pipeline tool (Moratto et al., 2010; Shean et al., 2015). For both the Sermeq Kujalleq9

(Jakobshavn) and northwest sites, we use DEMs from six different days, for a total of 1210

DEMs (see Table S2).11

WorldView-1 image data have a geolocation accuracy of better than 4.0 m horizontal 90%12

circular error of probability and WorldView-2 better than 3.5 m (DigitalGlobe, 2014).  Thus,13

the imagery and DEMs are more precisely positioned than the 15-30 m Landsat 8 pixels.14

The vertical accuracy of the derived DEM products is less than 5.0 m 90% vertical error of15

probability with submeter relative vertical precision (Mitchell, 2010). Differencing a16

WorldView DEM with an Airborne Topographic Mapper LiDAR profile over a pronounced17

basin in northeast Greenland provided a standard deviation over the spread of elevations of18

0.25 m. Considered conservatively, differencing one WorldView DEM with a second DEM19

collected one year later provided a standard deviation of 0.58 m for the elevation differences20

(Willis et al., 2015). Stacks of 13 and 17 overlapping WorldView-1 and WorldView-2 DEMs21

over Summit Station and Tracy Glacier, Greenland provide absolute vertical accuracy22

estimates of ~2.0-3.0 m relative to airborne LiDAR measurements (~10 cm accuracy). After23

removing absolute horizontal and vertical offsets from all DEMs, the relative vertical24

accuracy (1-sigma) for the stack was ~15-30 cm (Shean et al., 2015).25

We resample the DEMs to the same grid as Landsat imagery using cubic interpolation. The26

Landsat and WorldView acquisitions are from different dates, and although lake basins do27

ablate during the summer, this should not have significant impact on the results presented28

here, because most supraglacial lakes in Greenland remain fixed over bedrock-controlled29

surface depressions (Lampkin and VanderBerg, 2011). Using the lake mask, we identify a30

shoreline for a given date (see Sect. 3.2), which is then used to derive lake depth. We remove31
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outliers of impossibly shallow (i.e. negative depth) or deep (>65 m) values as blunders in the1

DEM. In addition, we remove lakes having a standard deviation in lake elevation along the2

shoreline of larger than 1.5 m. These steps also mitigated any potential bias caused by3

temporal offset between DEM and spectral depth measurements.4

After filtering, over 250,000 pixels (30 m) in total remained for spectral lake depth validation5

over six days in 2013 and six days in 2014.6

4 Results7

4.1 In Situ Results8

The results (Table 1) of depth-reflectance regressions for all methods are shown in Fig. 2. We9

base the bands tested here using in situ data upon those identified in the literature (e.g., Box10

and Ski, 2007; Sneed and Hamilton, 2007; Tedesco and Steiner, 2011), as well as the OLI’s11

new coastal band and the significantly narrowed panchromatic band (0.500-0.680 μm, at 15m12

spatial resolution). ETM+ high and low gain results are virtually indistinguishable, and so13

only low gain results are shown here. For each regression, we use the correlation coefficient14

(r) and the root mean square error (RMSE, relative to sonar depths) to assess the performance15

of each method. The results of the physically based method show that the OLI blue and16

coastal bands do not perform well relative to other bands (RMSE of 3.10 m and 11.03 m,17

respectively; r of 0.29 and 0.05, respectively). The OLI Band 3 (green, 0.525-0.600 μm; 0.7818

m, r = 0.78) performs as well as legacy ETM+’s Band 2 (green, 0.525-0.605 μm; 0.77 m, r =19

0.79). Finally, both OLI Band 4 (red, 0.640-0.670 μm) and Band 8 (panchromatic, 0.500-20

0.680 μm) bands outperform their analogous ETM+ bands (RMSE of 0.28 m and 0.63 m,21

respectively; r of 0.96 and 0.84, respectively).22

[[Fig. 2]]23

Red light attenuates more strongly in water than green or blue light. So, for the same lake24

depth, there will be a larger (and easier to measure) change in net reflectance for red25

wavelengths than shorter wavelengths. However, the rapid attenuation of red light means that26

only shallower lakes may be measured in this band. The maximum in situ lake depth27

measurement is ~5 m, well within the red light limit, but deeper lakes may exist in the overall28

study area. We address this issue below by using many Landsat scenes and WorldView29

DEMs.30
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We investigate the two-band physically based method (where Ad was calculated) with a range1

of emulated OLI bands (see Table 1). We find similarly high correlation coefficients (r =2

0.94) to the regression method. Nevertheless, only the combination of blue and green bands3

had an RMSE below 1 m. This method appears to slightly overestimate lake depths. We4

investigate the reasons for this with the Landsat and WorldView data below.5

Applying the empirical method using field data (see Table 1, Fig. 2) indicates that the more6

continuous bands of the ETM+ outperform the narrower (less spectrally auto-correlated)7

bands of the OLI when estimating lake depths. However, the addition of the coastal band8

should allow the OLI to still perform quite well (r > 0.92, RMSE < 0.38), in particular when9

paired with the green or panchromatic bands.10

Our analysis shows that supraglacial lake depth retrievals using Landsat 8 are as good as or11

better than Landsat 7 retrievals. We identify the best methods for OLI (identified with12

asterisks in Table 1) based on the highest correlation coefficients and lowest RMSEs. We then13

apply these methods to Landsat 8 data and validate them with WorldView stereo DEMs.14

4.2 2013 Northwest Greenland Results15

In the northwest Greenland study area, we identified 694 lakes on 2 July 2013 (day of year16

183) with a total area of 27.2 km2, 1259 lakes totaling 43.7 km2 on 18 July 2013 (day 199),17

955 lakes totaling 38.8 km2 on 3 August 2013 (day 215), and 274 lakes totaling 8.6 km2 on 1918

August 2013 (day 231). We calculate lake depths with all previously discussed methods, as19

well as an average between the two best single-band depth estimates. Total lake volume in the20

study area increased in early July, stayed almost constant as lake growth areas moved higher21

in elevation over the following three weeks, and then decreased again toward the end of22

August as cooler conditions prevailed (see Fig. 3). While all methods show the same pattern23

of surface water storage, the total water volumes derived with the different methods differ by24

over a factor of 2.25

[[Fig. 3]]26

4.3 Comparison with DEMs27

We difference all overlapping areas of DEM and Landsat-derived lake depths in both case28

study regions. The statistics of this comparison are shown in Fig. 4. As seen in the northwest29

Greenland case study, the methods are divided into two groups. Landsat-derived depths using30
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band 3, bands 2 & 3, a ratio of bands 1 and 3, and a ratio of bands 1 and 8 all considerably1

overestimate lake depth relative to the DEMs. However, the physically based single band2

method for the red band (OLI Band 4) only slightly underestimates lake depth (-0.1 ± 1.7 m),3

while the panchromatic band (OLI Band 8) slightly overestimates lake depth (0.1 ± 1.4 m).4

Combining these two best-performing bands, the resulting spectral and DEM-derived lake5

depths are in close agreement, showing a difference of 0.0 ± 1.6 m. We infer that the optimal6

method for estimating supraglacial lake depth with Landsat 8 is to take an average of the7

physically based (see Eqn. 1) depths as derived from the red and panchromatic channels (bold8

in Table 1). It is likely that the spread in depths is the result of a combination of factors9

including temporal offset between DEM and spectral data collection, image coregistration,10

and atmospheric effects, as well as uncertainties inherent in the lake depth retrievals. Despite11

meter scale uncertainties (1.6m) at the pixel level, the mean lake depth derived from these12

methods agrees well.13

[[Fig. 4]]14

4.4 2014 Sermeq Kujalleq (Jakobshavn) Area Results15

We apply the lake depth algorithm (i.e., average of single band depths from OLI red &16

panchromatic bands) to 34 Landsat 8 scenes from the summer of 2014 over the Sermeq17

Kujalleq (Jakobshavn) area (see Figs. 1 & 5). The total meltwater storage in supraglacial lakes18

peaked near three cubic kilometers across the entire study area in mid-July 2014. There are19

many shallow lakes (0.3 to 1.5 m depth) and many lakes with depths of 2.5 to 4 m. Few lakes20

exceed 5.5 m depth (see Fig. 6a). The preponderance of shallow lake pixels reflects the fact21

that the observed lakes have low surface slopes at their edges.22

[[Fig 5]]23

The Sermeq Kujalleq (Jakobshavn) dataset provides a timeseries that shows lake growth and24

drainage / freezing (see Fig. 5a). There are many factors that contribute to lake growth and25

drainage, including temperature, insolation, albedo, topography, and ice dynamics. These26

complex drivers are related to the more easily quantified mean elevation and latitude of each27

scene. For example, isolating the coastal scenes shows the delayed onset of melt and earlier28

shutdown in the north compared to the south (see Fig. 5b).29
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To further refine our investigation of geographic factors associated with lake depth over the1

summer season, we examine single swaths of Landsat imagery through time. Path 008 (in the2

WRS-2 reference scheme, Irons et al., 2012) which transects the lower Sermeq Kujalleq3

(Jakobshavn Isbrae) shows a strong influence of both elevation and latitude in rates of lake4

growth and water storage (Fig. 5c). Isolating Path 006, on the other hand, conflates the effects5

of elevation and altitude on surface meltwater storage, but because we have more temporal6

coverage (see Fig. 5d) we see the decline of total lake volume as summer progresses toward7

autumn. Again, higher latitude and elevation delay melt onset (i.e. Path 006, Row 012). For8

006/013 and 006/014, it is likely that the reduced ice sheet area within 006/014 is the9

explanation for the reduced meltwater volume. Rates of increase and decay of lake volume are10

similar for this pair.11

The distribution of lake depths (by pixel) with elevation is shown in Fig. 6b. Lakes are12

distributed from ~300 m to ~2100 m elevation. Maximum lake depths occur at about 1200 m13

a.s.l. At lower elevations, lake depths recorded by our method vary significantly, likely due to14

rapid lake growth and drainage across a range of dates at lower elevations, versus the higher15

elevation maximum depths mostly derived from a Landsat scene on July 30 2014. From 120016

m to 2100 m, measured lake depths decline steadily with less variation. This likely reflects a17

combination of factors, including the variations in induced surface topography of the ice sheet18

as it flows over undulating bedrock (Lampkin and VanderBerg, 2011). At higher elevations,19

slow flow leads to low-amplitude ice surface topography as well as less available meltwater.20

In addition, while lakes are less likely to variably fill and drain at higher elevations, there was21

also reduced imagery available from ~July 30 2014 onwards. Therefore, the more consistent22

maximum depths at higher elevations are a combination of incomplete temporal coverage and23

elevation. Further down, more melt and higher amplitude topography from faster ice flow24

facilitate lake formation. However, below 1200 m, increased ablation begins to reduce this25

topography. In addition, the volume of melt available will determine whether depressions are26

large enough to hold lakes or instead drain via connecting supraglacial channels. The melt27

volume and therefore the relationship between lakes and channels will thus vary both28

seasonally and with elevation as well (Lampkin and VanderBerg, 2014).29

[[Fig 6]]30
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5 Discussion1

5.1 Retrieval Performance Factors2

The depths returned by the empirical (band ratio) method considerably overestimate lake3

depths relative to the WorldView DEMs. The method is entirely dependent upon the4

calibration of the input parameters (i.e., a, b, and c). The parameters used in this study are in5

turn based solely upon extrapolation from in situ measurements at a single lake. Therefore, it6

is possible that the lake used for calibration is not representative of lakes in our study region.7

Legleiter et al. (2014) note that the coefficients for the empirical method may be scale-8

dependent, and values calculated from field data may not be appropriate for the 30 m pixels of9

Landsat 8. Indeed, other work (Moussavi et al., in review) both calibrates and validates10

spectrally derived depths with WorldView DEMs to show that the band-ratio/empirical11

method and single-band/physically based method perform similarly well. The use of a ratio of12

coastal and green reflectances performed well for lake depth retrieval using WorldView-213

imagery (Legleiter et al., 2014). Therefore the band ratio method may, with better parameters,14

produce results consistent with the physically-based single-band approaches.15

Nevertheless, the physically based depth retrievals show a large spread in total water volume16

returns. Physically based depth retrievals rely on accurate bottom albedos (Ad) and water17

absorption coefficient (g). While Ad is derived from the imagery, g is always calculated for18

each spectral band based on laboratory measurements and is therefore consistent across all19

OLI scenes. Comparison of laboratory-measured g values with g derived from in situ data20

(see Table 1) shows that when the laboratory-measured g is higher than the one obtained from21

regressing in situ data, lake depths are overestimated and vice versa. For example, OLI Band22

3 (green) shows a 70% difference in directly measured and regressed g, and it overestimates23

lake depths by a mean of 2.4 ± 2.1 m relative to WorldView DEMs. By contrast, Band 4 (red)24

and Band 8 (panchromatic) have very small differences between measured and regressed g (-25

0.06% and 0.06%, respectively) and yield accurate lake depth estimates (-0.1 ± 1.7 m and 0.126

± 1.4 m, respectively) relative to WorldView DEMs.27

Water absorption properties also vary with wavelength. For example, poor performance in28

blue and coastal bands is related to very low absorption. Red wavelengths attenuate relatively29

quickly in water, and this is described by a relatively high g (0.7507 m-1) compared to green30

(0.1413 m-1). This high g value for red light makes it less sensitive to errors in g than green31
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wavelengths. Lake depth estimates using a red channel are also less sensitive to Ad than with a1

green channel (Tedesco and Steiner, 2011), again due to the high absorption for longer2

wavelengths. Ultimately, as long as the sensor radiometry is able to measure the return from3

deep-water pixels, longer wavelengths (i.e., red) can return generally more accurate lake4

depths because they are less sensitive to the input parameters.5

5.2 Revisiting Lake Depths Retrievals6

To evaluate other studies in the literature and compare them to our results, we applied the7

same methods we use (i.e., lab-measured absorption/scattering parameters and appropriate8

spectral response functions) to calculate g values for Landsat 7 ETM+ bands (see Table 1).9

Tedesco and Steiner (2011) studied the accuracy of ETM+’s green band for lake depth10

estimation. They tested different multipliers of the diffuse attenuation coefficient for11

downwelling light to get the water absorption coefficient g. They showed that for Landsat 712

ETM+’s green band, sonar and spectral depths correlated better when a larger multiplier was13

used. This is broadly consistent with the 70% offset between observed and theoretical values14

that we observe (Table 1). They also find that this offset “cannot be easily explained, aside15

from a possible chlorophyll concentration in the water, currently considered to be unlikely.”16

Morriss et al. (2013) used ETM+’s red band and extracted a higher value of g (0.86 m-1); this17

is very close to the regressed value we observe of 0.83 m-1 (see Table 1), and so we expect18

their depth estimates to be slightly overestimated.19

Banwell et al. (2014) and Arnold et al. (2014) also used Landsat 7’s green band with a g of20

0.1954 m-1, ~40% percent higher than our regressed value of 0.14 m-1, leading to depths21

overestimated by ~30%. Because the comparisons of Greenland and Antarctic lakes (Banwell22

et al., 2014) are based on relative depths, their conclusions are likely still valid. Arnold et al.23

(2014) concluded that their model under-predicted water depths, which could in reality mean24

that their model is behaving correctly but their validation data (i.e. Landsat lake depths) were25

biased.26

Using the same process as for Landsat sensors, we calculated g values for ASTER, MODIS,27

and WorldView-2 bands (see Table S1). Sneed and Hamilton (2007, 2011) used ASTER’s28

green band for lake depth estimation (g = 0.1180 m-1). This is ~20% smaller than the29

regressed value of 0.15 m-1 (see Table S1). They will therefore have likely underestimated30

lake depth (Sneed and Hamilton, 2007).31
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In all three studies, the regressed g values are much closer to the updated lab-based g values1

(see Sect. 2.1 & Supplementary Material) than those used previously used in the literature.2

Adoption of the new g values presented here in Tables 1 and S1 would therefore likely lead to3

improved lake depth estimates.4

5.3 Sensitivity Analysis5

For all sensors, wavelengths, and input parameters, an important consideration for6

reflectance-derived lake depth is the atmospheric correction used to prepare the multispectral7

imagery. All imagery is processed to TOA reflectance, which means that there is some8

extraneous path radiance remnant in the data. Therefore, TOA values will slightly9

overestimate the true reflectance. This offset will not be the same between bands, and will10

influence the retrieved lake depths as discussed below.11

The single band physically based model requires that the reflectance of optically deep water12

be derived for each scene separately. Effectively, this shifts the exponential decay curve of13

light in lake water but does not change its shape. Therefore, as long as path radiance is14

assumed to be homogeneous across the 185-km wide Landsat scene, TOA reflectance is15

sufficient for lake depth estimation. To test this assumption, the MODTRAN radiative16

transfer model (Berk et al., 2005) was used to simulate path radiance on a day for which17

Landsat data were used in northwest Greenland (18 July 2013) to investigate variations18

associated with variable water vapor and ozone across a Landsat scene. According to MODIS19

retrievals (accurate to 30 DU; Borbas et al., 2011), ozone variability within a Landsat scene is20

on the order of approximately ±50 DU, which translates to a path radiance of ±1.6% in the red21

channel. For lake depth, this can propagate to a ~20% error in lake depth. Much of this error22

appears largely random for a given point in time and space. Thus, while it decreases23

confidence in individual lake depth retrievals, averaged water volume retrieval should not be24

biased. For water vapor there was a 0.3% change in path radiance between the minimum and25

maximum Landsat scene values, making it a small contributor to overall error. Between days,26

however, path radiance effects due to water vapor may vary by an order of magnitude more.27

For the multiple band methods, the differential change in path radiance has larger effects.28

Sensitivity tests showed that a 3% change in path radiance for one or both bands changed29

water volumes on the order of 10-30%. Therefore, a more rigorous atmospheric correction is30

necessary in order to apply multi-band lake depth algorithms. Still, for the study here, because31
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validation is conducted across 12 non-consecutive days in both spring and autumn, we do not1

expect atmospheric conditions to bias our conclusions.2

There are additional limitations to our method. As discussed above, OLI lake depth estimates3

(average single-band estimates from red and panchromatic bands) are robust for regional4

averages but not single pixels. In addition, the threshold used to identify lake extent may need5

to be adjusted for different regions and scenes (e.g. Banwell et al., 2014; Box and Ski, 2007).6

Lake depth retrievals are also sensitive to variations in ice albedo, as well as to the presence7

of ice lids on the surface of supraglacial lakes, which can be common in both early and late8

summer. Cloud cover and Landsat’s 16-day revisit time also limit the conclusions that can be9

drawn from OLI lake depths. Many studies have used daily MODIS data to identify and track10

supraglacial lakes (e.g. Liang et al., 2012; Selmes et al., 2011; Sundal et al., 2011). Fusing the11

higher temporal resolution of MODIS (or additional sensors such as ESA’s upcoming12

Sentinel-2) and higher spatial resolution of Landsat, along with more in situ calibration and13

validation data, should lead to unique insights to supraglacial water storage.14

5.4 Supraglacial Lakes in the Hydrological System15

Both supraglacial lakes and channels can contribute significantly to regional water storage16

and transport (Smith et al., 2015). If the water stored in supraglacial lakes in row 12 of path17

008 in mid-July were spread across the whole 25,246 km2 of ice in the scene, it would have an18

average depth of almost three centimeters. In other scenes, calculations provide average19

depths of 0.5 to 1.5 cm. Our maximum observed value is almost as high as the volume in20

supraglacial streams measured by Smith et al. (2015), reinforcing the potentially daily21

turnover of a well-connected surface system they observed. Indeed, Tedesco et al. (2012)22

observe bare ice melt rates next to supraglacial lakes in west Greenland of ~2.5-3 cm per day,23

similar to those observed by van den Broeke et al. (2011). This implies that lakes are storing24

on the order of one day’s worth of melt (or less), indicating daily or subdaily residence times,25

depending on connectivity.26

Lakes, therefore, provide only a transient role in water storage. So, what is their importance to27

the ice sheet? Lakes have already (Howat et al., 2013) and are projected to continue to28

advance inland under a warming climate, with a minimal effect on overall ice sheet albedo but29

the potential to increase water transfer to the bed in areas without efficient drainage networks,30

therefore speeding up ice flow (Leeson et al., 2015). Indeed, episodic transport of water to the31
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bed is expected to have a larger effect than continuously increased fluxes which set up an1

efficient drainage system (Flowers, 2015). In addition to episodically increased velocities, the2

enhanced hydrofracture propagated by the water stored in supraglacial lakes may play a key3

role in heat transport to the glacier bed, contributing another mechanism to increased flow.4

While the limit for fracture propagation on the Greenland ice sheet is at ~1600 m elevation5

(Poinar et al., 2015), with current maximum lake depths ~1200 m, this still leaves6

considerable room for lakes to exert their influence on the ice sheet. Thus, although only7

transiently storing water, supraglacial lakes still have an important role to play in the evolving8

Greenland supraglacial hydrological system.9

6 Conclusion10

Examination of the evolution of water storage on the surface of ice sheets and glaciers is11

important for understanding mass balance, dynamics, and heat transport throughout the ice12

mass. In this study, in situ data were used to test the capability of Landsat 8’s OLI to estimate13

supraglacial lake depth. Promising methods were applied to two sets of Landsat observations.14

Patterns of water storage were similar from the two methods, but a factor of two difference15

was calculated for the total water volume. WorldView DEMs were used to assess which of16

the methods was most accurate. The best method identified for Landsat 8 OLI was an average17

of the depth derived from single-band physically-based retrievals of Band 4 (red) and Band 818

(panchromatic); the mean difference between spectrally-derived and DEM-derived lake19

depths is only 0.0 ± 1.6 m, showing no bias but some spread. Therefore, this method is20

recommended for future lake depth retrievals with OLI, especially for regional studies. This is21

the first time supraglacial lake depths have been validated across multiple dates and regions.22

Discrepancies between spectrally- and DEM-derived depths appear to be explained by23

differences between lab-measured and in situ-derived water absorption coefficients (g). The24

success of other sensors and bands in deriving supraglacial lake depth can thus be inferred25

from these g values. With this insight, multispectral lake depth estimates in the literature were26

revisited. Lake extent studies can now be expanded to include lake volume with higher27

confidence. Updated g values are provided (see Tables 1 and S1), but further in situ data28

collection and satellite-based studies are needed to build more robust methods.29

The recommended depth retrieval method was applied to all available Landsat 8 imagery for30

summer 2014 for the Sermeq Kujalleq (Jakobshavn) region of west Greenland. Seasonal and31

regional trends in lake depth (deepening and then shallowing), evolution (proceeding32
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inland/up-glacier and northwards through the summer), and distribution (~300 m to ~2100 m1

a.s.l.) were observed. At most, lakes contain a similar magnitude of water to supraglacial2

streams, but this may not be true for other parts of Greenland. Both elevation (and relatedly,3

accumulation / melt forcing) and surface topography play a role in lake formation and extent,4

behavior that we expect to be modified but observable in other regions. Further work moving5

forward will need to contextualize Landsat data with other remote sensing imagery,6

fieldwork, and model outputs.7
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Table 1. Laboratory-based and in situ-derived water absorption coefficients for lake depth1

estimation using the physically based method (g, see Eqn. 1) and empirical method (a, b, and2

c, see Eqns. 5-6). Regression statistics (correlation coefficient and root mean squared error)3

for lake depth estimates using field spectra convolved to emulate multispectral bands are also4

included. Asterisks indicate the methods applied to OLI data in this paper. Bold text indicates5

recommended bands for lake depth estimation with OLI. See Table S1 for results from other6

multispectral sensors.7

8

Satellite & Band Lab-based g (m-1) Regressed g (m-1) r RMSE (m)

OLI 1 (coastal) 0.0178 0.0093 0.0494 11.03

OLI 2 (blue) 0.0341 0.025 0.2886 3.10

*OLI 3 (green)

*OLI 4 (red)

*OLI 8 (panchromatic)

ETM+ 1 (blue) Gain H

ETM+ 1 (blue) Gain L

ETM+ 2 (green) Gain H

ETM+ 2 (green) Gain L

ETM+ 3 (red) Gain H

ETM+ 3 (red) Gain L

OLI 1 & 2 (coastal & blue)

OLI 1 & 3 (coastal & green)

OLI 1 & 4 (coastal & red)

*OLI 2 & 3 (blue & green)

0.1413

0.7507

0.3817

0.0334

0.0334

0.1665

0.1665

0.8049

0.8049

-

-

-

-

0.01

0.80

0.36

0.03

0.03

0.15

0.14

0.83

0.83

-

-

-

-

0.7842

0.9624

0.8422

0.2626

0.2625

0.7892

0.7890

0.9548

0.9412

0.7871

0.9208

0.8987

0.9401

0.78

0.28

0.63

3.34

3.34

0.77

0.77

0.31

0.37

2.57

1.10

1.34

0.88
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OLI 2 & 3 (blue & red)

OLI 3 & 4 (green & red)

-

-

-

-

0.8885

0.6063

1.41

1.74

1

Satellite & Bands a b c r RMSE (m)

OLI 3 & 4 (green & red) -13.8398 40.0344 -23.4057 0.4537 0.89

OLI 2 & 4 (blue & red) 3.4414 -9.0500 7.8243 0.8610 0.51

OLI 1 & 2 (coastal & blue)

*OLI 1 & 3 (coastal & green)

OLI 1 & 4 (coastal & red)

*OLI 1 & 8 (coastal & pan)

ETM+ 2 & 3 (green & red) L

ETM+ 2 & 3 (green & red) H

ETM+ 1 & 3 (blue & red) L

ETM+ 1 & 3 (blue & red) H

0.9750

0.1488

4.8374

1.6240

1.4794

2.3102

4.0925

4.2825

18.1837

5.0370

-11.2317

-5.9696

-3.2173

-4.4616

-5.3290

-5.4754

145.7811

5.0473

8.2001

12.4983

2.8860

3.2802

2.4296

2.4225

0.8031

0.9228

0.8964

0.9473

0.8855

0.8970

0.9655

0.9694

0.59

0.38

0.44

0.32

0.46

0.44

0.26

0.24

2
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1

2

Figure 1. Regional map showing the two study regions for lake depth estimation using3

Landsat 8 OLI imagery. The northwest Greenland study region is identified with a single box4

indicating a subscene area. The Sermeq Kujalleq (Jakobshavn) study region shows WRS-25

path/row outlines for Landsat scenes color-coded and dashed to indicate the mean latitude and6

average elevation of ice within the scenes (see Sect. 4.4 and Table S2). The background is7

elevation from the Greenland Ice Mapping Project (GIMP) DEM, courtesy BPRC Glacier8

Dynamics Research Group, Ohio State University (Howat et al., 2014).9

10
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1

2

Figure 2. Regression plots for in situ measured reflectance spectra used to emulate Landsat3

OLI and ETM+ reflectance and sonar-measured depths, including OLI single band (a), ETM+4

low gain single band (b), OLI coastal and panchromatic (c), and OLI coastal and green (d).5

Statistics for all regressions are reported in Table 1.6

7
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1

2

3

Figure 3. Total water volume stored in supraglacial lakes in the northwest Greenland study4

region for the summer of 2014. Based on analysis, “Band Average 4 & 8” is likely to be the5

most accurate (see Fig. 4).6

7
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2

Figure 4. Statistics for the difference in supraglacial lake depth from physically-based and3

empirical methods derived from OLI imagery and WorldView DEMs, including4

mean/standard deviation (solid lines) and median/quartiles (dotted lines). An average of the5

Band 4 and Band 8 methods is used for our mapping (Figures 5 and 6). The method showing6

the least bias and lowest errors is an average of Band 4 (red) and Band 8 (panchromatic)7

single band physically based retrievals, with a mean offset of 0.0 ± 1.6 m (as indicated by the8

bar at the bottom of the diagram). Discrepancies in lake depth estimation for physically based9

retrievals can be traced to differences between lab-measured and in situ-regressed water10

absorption coefficients (see Table 1).11

12
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1

2

Figure 5. Total water stored in supraglacial lakes over the 2014 summer using single Landsat3

8 scenes covering the Sermeq Kujalleq (Jakobshavn) region (see Fig. 1, Table S1). All scenes4

are shown together in (a). (b) shows only the low elevation, coastal scenes, demonstrating5

delayed lake formation at higher latitudes. (c) shows both elevation and latitude effects in6

driving supraglacial water storage for scenes in WRS-2 path 8. (d) shows latitude and7

elevation effects for scenes in WRS-2 path 6. All sub-figures are on the same grid as part (a).8

9
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2

Figure 6. Statistics of lake depth and elevation distribution for all Sermeq Kujalleq3

(Jakobshavn) region 2014 Landsat OLI imagery (see Table S2). A histogram of lake depths4

(a) shows many shallow lakes, many lakes reaching depths of ~3 m, and a maximum lake5

depth of ~6 m. Lakes depth by pixel distribution with elevation is shown in (b), the6

hypsometry of maximum supraglacial lake depths on this region of the Greenland Ice Sheet as7

determined from one m bins of the GIMP DEM (Howat et al., 2014).8


