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Abstract

The Greenland ice sheet (GrIS) has been the focus of climate studies due to its
considerable impact on sea level rise. Accurate estimates of surface mass fluxes would
contribute to understanding the cause of its recent unprecedented changes and would
help to better estimate the past, current and future contribution of the GrIS to sea5

level rise. Though the estimates of the GrIS surface mass balance have improved
significantly over the last decade, there is considerable disparity between the results
from different methodologies that need to be addressed. In this study, an Ensemble
Batch Smoother data assimilation approach was developed to assess the feasibility
of generating a reanalysis estimate of the GrIS surface mass fluxes via integrating10

remotely sensed ice surface temperature measurements with a regional climate model
(a priori) estimate. The performance of the proposed methodology for generating an
improved posterior estimate was investigated within an observing system simulation
experiment (OSSE) framework using synthetically generated ice surface temperature
measurements. The results showed that assimilation of ice surface temperature time15

series were able to overcome uncertainties in near-surface meteorological forcing
variables that drive the GrIS surface processes. Our findings show that the proposed
methodology is able to generate posterior reanalysis estimates of the surface mass
fluxes that are in good agreement with the synthetic true estimates. The results
also showed that the proposed data assimilation framework improves the root-mean-20

square-error (RMSE) of the posterior estimates of runoff, sublimation/evaporation,
surface condensation and surface mass loss fluxes by 61, 64, 76, and 62% respectively
over the nominal a priori climate model estimates.

1 Introduction and background

Due to a warmer climate, the Greenland ice sheet (GrIS) has recently experienced25

unprecedented changes including: (1) significant thinning of the marginal ice (e.g.
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Thomas et al., 2006; Pritchard et al., 2009; Straneo et al., 2013; Khan et al., 2014), (2)
thickening of the ice in the GrIS interior (Fettweis, 2007), (3) acceleration and increase
in ice discharge from many of Greenland’s outlet glaciers (e.g. Rignot et al., 2008,
2010; Rignot and Kanagaratnam, 2006; Wouters et al., 2013; Enderlin et al., 2014),
and (4) enhanced surface melt (e.g. Tedesco, 2007; Tedesco et al., 2008, 2011, 2013;5

Fettweis et al., 2007, 2011, 2013; Nghiem et al., 2012; Hall et al., 2013; Vernon et al.,
2013). The melting of the GrIS due to increased temperature associated with climate
change has the potential to affect deep ocean circulation, and sea level rise (Mote,
2000; Hanna et al., 2002, 2005; Abdalati and Steffen, 2001; Velicogna and Wahr, 2005;
Chen et al., 2006; Fettweis et al., 2005, 2007, 2013; Tedesco, 2007, 2008; Rignot et al.,10

2008; Franco et al., 2013; Hu et al., 2011). While recent estimates (e.g. van den Broeke
et al., 2009; Rignot et al., 2011) suggest that melt water runoff and ice discharge from
outlet glaciers contribute roughly equally to the GrIS net mass loss, other studies (e.g.
van Angelen et al., 2012 and Fettweis et al., 2013) suggest that melt-water runoff will
be the dominant mass loss process in the future due to the retreat of the tidewater15

glaciers above sea level.
Many studies (e.g. Steffen et al., 1996; Thomas, 2001; Andersen et al., 2004, van

de Wal et al., 2012) have taken advantage of in situ measurements to provide a direct
point-scale estimate of the surface mass balance (SMB, i.e. the difference between
accumulation and ablation terms). However, with these limited in situ measurements20

alone, large-scale mapping of the GrIS surface mass fluxes (i.e. precipitation,
evaporation, sublimation, condensation, and runoff) is difficult, if not impossible. The
availability of remote sensing data and/or products has taken GrIS from a remote “data
poor” region that is reliant mostly on sparse in situ measurements to a potentially “data
rich” environment. In this regard, a key research objective is to better understand how25

such data can be optimally leveraged for quantitatively estimating the surface mass
balance (SMB) and its associated fluxes.

Surface remote sensing data and products (i.e., surface or skin temperature, multi-
frequency brightness temperature, and albedo) have been used to characterize various
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aspects of SMB such as snow melt, melt extent, melt duration, new snow, extreme melt
events (e.g. Abdalati and Steffen, 1995, 1997; Mote et al., 1993; Chylek et al., 2007;
Tedesco et al., 2007, 2008, 2011; Shuman et al., 1995; Bindschadler et al., 2005;
Box et al., 2012; van Angelen et al., 2012; Hall et al., 2006, 2009, 2013). However,
the relationship between surface remote sensing data/products and surface mass5

fluxes are most often indirect and implicit. This makes the possibility of quantitatively
characterizing the surface mass fluxes from remote sensing retrieval algorithms difficult
if not impossible. For example, ice surface temperature can be indicative of melt, but it
fails to quantitatively estimate the amount of melt. More importantly, other surface mass
fluxes such as evaporation, condensation, sublimation, and runoff cannot be directly10

quantified via remote sensing. It can therefore be argued that the information content
of remotely sensed data remains underutilized due to indirect and implicit links between
the various data streams and surface mass fluxes.

Given the limitations of the observation-based methods, numerical models offer an
alternative mechanism to quantify the GrIS surface mass fluxes. Several model-based15

approaches have been used to characterize the spatio-temporal variability of the GrIS
surface mass fluxes in both historical and future contexts (e.g. Hanna et al., 2008,
2011, 2013; Box et al., 2006; Fettweis, 2007, 2011, 2013; Ettema et al., 2009; Lewis
and Smith, 2009; Burgess et al., 2010; Vernon et al., 2013; Franco et al., 2012).
Although the aforementioned methodologies have provided the ability to estimate the20

GrIS SMB and related fluxes, their estimates vary considerably, mainly due to simplified
assumptions in the models, the inherent uncertainty of each method, error in model
and input data, and the length of data records (e.g. Hanna et al., 2005; Ettema et al.,
2010; Rignot et al., 2011; Vernon et al., 2013; Smith et al., 2015). Therefore, it is
imperative to design techniques that bridge the gap between different methods by25

merging relevant data streams with a physical model with the aim of better spatial–
temporal characterization of the GrIS surface mass fluxes. In this study, we provide
an example of taking advantage of information in the relevant data streams to provide
a better spatial–temporal characterization of the model outputs (i.e., the GrIS surface
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mass fluxes). This can be done by constraining the probability density function of the
model solution using the available observations in the context of Bayes theorem, which
is also known as data assimilation (Evensen, 2009).

2 Motivation and science questions

To date, to the best of the authors’ knowledge, there have been no attempts at merging5

surface remote sensing data with models using a data assimilation (DA) framework to
fully resolve and quantify estimates of the GrIS surface mass fluxes. Data assimilation
techniques have been heavily used in hydrology to estimate soil moisture (e.g. Reichle
et al., 2002; Margulis et al., 2002; Huang et al., 2008a; Al-Yaari et al., 2014), predict
snow water equivalent (SWE) (e.g. Durand et al., 2006, 2008; De Lannoy et al., 2012;10

Girotto et al., 2014a; Zhang et al., 2014), estimate runoff (e, g. Crow and Ryn, 2009;
Pauwels et al., 2001; Franz et al., 2014), improve estimates of radiative fluxes (e.g.
Forman and Margulis, 2010; Xu et al., 2011), and characterize snowpack properties
and freeze–thaw state of the underlying soil (Bateni et al., 2013, 2015). DA so far has
been underutilized in applications aimed at characterizing GrIS dynamics. Recently,15

Heimbach (2009), Goldberg and Heimbach (2013), and Morlighem et al. (2013)
used variational DA methods to characterize the interior and basal properties of ice
sheets and ice shelves. Larour et al. (2014) assimilated surface altimetry data into
the reconstructions of transient ice flow dynamics to infer basal friction and surface
mass balance of the northeast Greenland ice stream. However, the use of DA for20

estimating GrIS SMB terms remains relatively unexplored. Assessing the feasibility
of such approaches in providing a mechanism for improving quantitative estimates of
SMB is the key motivation of this work.

This study utilizes an observing system simulation experiment (OSSE) framework
to assess the feasibility of the proposed DA system. The OSSE framework uses25

synthetically generated ice surface temperature (IST) measurements consistent
with a “true” realization of SMB evolution. This study addresses the following
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science questions: (1) Can assimilation of IST measurements overcome errors
and uncertainties in the near-surface meteorological forcing variables for snow/ice
modelling? (2) Can a DA framework be used to reduce the uncertainty and/or correct
biases in a priori estimates of surface mass fluxes from a regional climate model?

This paper is arranged as follows: Sect. 3 contains the description of the models and5

methods used in this work. The experimental design is given in Sect. 4. The results
and evaluation of the proposed methodology are discussed in Sect. 5. Finally, key
conclusions and future research directions are reported in Sect. 6.

3 Models and methods

3.1 Study domain10

The study domain covers the entire GrIS, which is discretized with a grid size of 25 by
25 km to match the domain used in the regional atmospheric model described below.
The focus is on fully snow/ice covered pixels. Figure 1 shows the different GrIS mass
balance zones based on a forward simulation for the year 2010. The ablation zone is
defined as the region of the GrIS where the annual surface mass balance is negative.15

The dry snow zone is defined as the region where the mean annual temperature is
less than −25 ◦C (Cuffey and Paterson, 2010) and melt generally does not occur. The
area between the ablation zone and the dry snow zone is considered the percolation
zone where surface melt-water percolates downward into the snow layers. It should
be noted that the digital elevation model (DEM) over the ice sheet originates from20

a high-resolution map generated by Bamber et al. (2001). The elevation of the ice
sheet increases from almost zero in the coastal regions up to about 3400 m at the
summit.
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3.2 Data

Surface temperature plays an important role in the coupled GrIS surface energy and
surface mass budget. It is the key factor that regulates partitioning of net radiation
into the subsurface snow/ice, sensible and latent heat fluxes. Surface temperature also
influences the generation of runoff, the temperature profile evolution, and even basal5

melt (Hall et al., 2013). Space-borne instruments can provide estimates of IST. The
retrieved IST is directly related to snow surface emissivity (Hook et al., 2007). The
emissivity of the snow surface is a function of grain size and liquid water content,
which both are under the influence of surface processes (Hall et al., 2009). These
facts support the idea that clear-sky IST may contain the most information about10

physical processes that drive the GrIS accumulation and mass loss. Therefore, this
work focuses on testing the feasibility of using products such as Moderate Resolution
Imaging Spectroradiometer (MODIS) IST as an extra source of information to enhance
the utility of modelling techniques. The possibility of using additional remotely-sensed
data streams (e.g. passive microwave brightness temperature and albedo) will be15

investigated in future studies.
The Greenland Ice Surface Temperature product (GrIS IST) is available from

the MODIS Terra satellite (http://modis-snow-ice.gsfc.nasa.gov/?c=greenland) and
provides up to one (clear-sky) measurement per day at a native resolution of 1.5 km
and an accuracy of ∼ 1–1.5 K (Hall et al., 2012). However, cloud contamination and20

occasional instrument outages play an important role in the availability of the MODIS
IST measurements. These two factors along with some other technical and quality
considerations can reduce the availability of the IST measurements to less than 10 high
quality clear-sky measurements in some months (Hall et al., 2012). In the context of the
OSSE used in this work, synthetic IST was generated based on the temporal resolution25

and acquisition time of the actual GrIS IST product by perturbing the modelled surface
temperature with assumed measurement error described below.
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3.3 Regional climate model

The a priori (or prior) estimate used in the DA framework in this study is based
on output from the regional climate model Modèle Atmosphérique Régional (MAR;
Gallée and Schayes, 1994 and Gallée and Duynkerke, 1997). The version of the
model used here (i.e. MARv2) has been applied extensively over the GrIS and is5

described in more detail in previous studies (Lefebre et al., 2003, 2005; Fettweis
et al., 2005, 2006, 2007, 2011; Franco et al., 2012, 2013; Vernon et al., 2013).
This version has also been used to generate future projections for the ICE2SEA
European project (Fettweis et al., 2013). For this study, MAR was used to generate
hourly near-surface meteorological outputs (i.e., temperature, pressure, wind speed10

and direction, longwave and shortwave radiation, precipitation, pressure, humidity, etc.)
at a horizontal spatial resolution of 25 km to force an offline snow/ice model. The ERA-
Interim reanalysis from the European Centre for Medium-Range Weather Forecasts
(ECMWF) was used to initialize the MAR meteorological fields at the beginning of
the simulation (1979) and to force the atmospheric lateral boundaries as well as the15

oceanic conditions (surface temperature and sea ice extent) every 6 h over 1979–
2010. MAR was not reinitialized every day by the ECMWF reanalysis and its results
were not recalibrated after the simulation to better compare with observations as in
other approaches (e.g. Box et al., 2004, 2006). The reader is referred to Fettweis
et al. (2005), Lefebre et al. (2005) and Fettweis et al. (2011) for detailed information on20

the MAR setup used here.

3.4 Surface mass/energy balance and snow physical model

The key equations related to SMB are the water and energy balance of the near-surface
ice sheet. The bulk surface mass balance for each model pixel (i.e., integrated over the
surface layers) can be written as:25

SMB = P −E +C−R (1)
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where P is the surface precipitation, E is the surface evaporation/sublimation, C
includes both liquid and solid condensation, and R is the melt runoff from the snowpack.
Evaporation, sublimation, condensation and runoff are the key variables that drive the
surface mass loss (SML), while precipitation is the key meteorological driver for GrIS
surface accumulation.5

Surface and sub-surface melting (which ultimately contribute to runoff) are dictated
by the evolving snow temperature driven by energy inputs. The temporal evolution
of snow temperature in a vertical snow column is constrained by the conservation of
energy equation, i.e. (Brun et al., 1989):

∂(ρcpT )

∂t
=
∂2(κT )

∂z2
(2)10

where ρ is the snow density, cp is the snow heat capacity, T is the snow temperature
at depth z and time t, and κ is the snow heat conductivity. It is worth noting that Eq. (2)
is valid for T < 273.15 K; any energy inputs that would raise the temperature beyond
freezing instead contribute directly to melt. Equation (2) is subject to the surface energy
balance as a boundary condition, which is the key driver of the snowpack energy15

budget:

R
↓
s(1−α)+R↓l −R

↑
l = Rn =QSH +QLH +QG (3)

where R↓s is the downward shortwave radiation, α is the (broadband) snow albedo, R↓l
and R↑l are the downward and upward longwave radiation. Rn is the net radiation that
is partitioned among the surface sensible (QSH), latent (QLH), and surface (QG) heat20

fluxes. QG is the energy conducted into the snow surface and hence highly affects the
ice/snow melt and runoff. Based on Eq. (3), R↓s, R↓l , α, and air temperature, specific
humidity, and wind speed (embedded in QSH and QLH) are the key meteorological
variables controlling the downward energy into the snowpack (QG), which ultimately
contributes to runoff (R).25
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The above coupled surface mass/energy balance represented by the CROCUS snow
physical model was used in this study to provide a prior estimate of the GrIS surface
mass fluxes that is consistent with the nominal forcings provided by MAR. The physics
of CROCUS and its validation are detailed in Brun et al. (1989, 1992). The use of a fully
coupled MAR-CROCUS system to generate an a priori ensemble estimate would be5

computationally prohibitive. To reduce the computational burden, an offline version of
CROCUS was implemented (i.e., MAR was run over the whole modelling period, and
then MAR outputs were used to force CROCUS over the same period). One can think
of the DA framework outlined below as providing an update to an initial (prior) estimate
of the surface mass fluxes from MAR (or any other regional climate model) using IST10

data as an additional constraint.
Of particular relevance to this study is the connection between CROCUS states and

the measured variables used in the DA (i.e. IST). Surface temperature (synthetic IST)
is an output of the forward model (CROCUS), therefore, it can directly be used as
a prediction of the measurement in the DA system. One key aspect is that the raw15

measurements are available at higher spatial resolution than the model state (i.e. 1.5
vs. 25 km). This was handled via an assumed change in the measurement error due to
aggregation as described in more detail below.

3.5 Model adaptation

The CROCUS snow/ice model was originally developed for operational avalanche20

forecasting. Therefore, the model must be modified for SMB ice sheet applications.
Following Fettweis (2006), the bottom boundary condition was modified for simulating
only the first 10 m of snow/ice of the ice sheets. This method consists of the following
rules: first, if during the model integration the sum of the snow and ice layer heights
becomes less than 8 m, the bottom layer is extended for two meters. Second, in the25

case that the sum of the snow and ice layer heights becomes larger than 15 m, the
bottom layer is divided by two. This is consistent with the methodology used in nominal
MAR simulations.
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3.6 Ensemble Batch Smoother (EnBS) framework

The EnBS is a technique that conditions a prior estimate of model states on
measurements taken over an assimilation window to generate a posterior reanalysis
estimate rather than a real-time (or sequential) estimate (Girotto et al., 2014a; Bateni
et al., 2013, 2015). In the context of this paper, the assimilation window is a full annual5

cycle and measurements consist of IST data over this period. Using the generated
forcing fields from MAR, the CROCUS model was run forward in time to provide an
ensemble of a priori estimates of snow/ice state variables (e.g. surface temperature,
snow/ice layer temperature, density, grain size, etc.) and different surface mass fluxes
(e.g. evaporation, sublimation, runoff, etc.). The propagation of the CROCUS model10

forward in time can be shown in state-space form as:

yj (t) = f (yj (τ),uj (t),βj ) (4)

where yj (t) is the vector of states for the j th realization at time t, f (.) represents the
CROCUS model operator, yj (τ) is the vector of states at previous times (τ), uj (t) is
the forcing fields for realization j , and βj is the model parameter vector for replicate j .15

Conventionally, the generated snow/ice states and surface mass fluxes by the forward
propagation of CROCUS are called the open-loop (prior) estimates.

The main source of uncertainty in a priori snow/ice states and surface mass fluxes
is hypothesized to be most likely due to errors in the meteorological forcings (uj (t),
see Eq. 4) generated by a parent model (in this case MAR): incoming shortwave and20

longwave radiation, air temperature (Ta, which is implicit in the latent and sensible heat
fluxes), precipitation, wind speed, relative humidity, and cloudiness. Herein, our focus
is on the sub-set of key forcings that are the postulated main drivers of SMB (i.e., P , Rl,
Rs, and Ta). It is hypothesized that the a priori uncertainty in forcings can be modeled

3216

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 3205–3255, 2015

Data
assimilation-based

estimation of
Greenland surface

mass loss

M. Navari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

via:

P j (x,t) = γP ,j (x)PMAR(x,t) (5a)

R
↓
s,j (x,t) = γS,j (x)R↓s,MAR(x,t) (5b)

R
↓
l,j (x,t) = γl ,j (x)R↓l,MAR(x,t) (5c)

Ta,j (x,t) = γT ,j (x)Ta,MAR(x,t) (5d)5

where PMAR(x,t), R↓s,MAR(x,t), R↓l,MAR(x,t), and Ta,MAR(x,t) are the nominal near-
surface meteorological outputs from MAR, γP ,j (x), γS,j (x), γl ,j (x), and γT ,j (x) are
lognormally-distributed multiplicative coefficients designed to capture uncertainty in the
forcing inputs. The subscript j represents an individual ensemble member sampled
from the postulated uncertainty distribution (j = 1,. . . , Ne, where Ne represents the10

ensemble size) and x shows the spatial index (i.e., implicitly represents an individual
computational pixel in the domain). It should be noted that, a multiplicative lognormal
perturbation model (e.g. Margulis et al., 2002; Andreadis and Lettenmaier, 2006;
Forman and Margulis, 2010a, etc.) was used since all forcing (i.e., P , Rl, Rs, and Ta [K])
are positive quantities and it provides a simple mechanism for capturing the expected15

uncertainty in the inputs. This type of perturbation model characterizes the ensemble
using the first two moments (i.e., mean and coefficient of variation, CV) (Forman and
Margulis, 2010). In this study, the mean, CV, and cross correlation between the forcing
variables was obtained using the reported values in De Lannoy et al. (2010, 2012). All
of the parameters for each forcing are shown in Table 1.20

Traditional DA applications are posed as state estimation problems where the
vector of state variables (i.e., snow temperature, density, grain size, depth, etc.) is
estimated via conditioning on measurements. In the current application, this can
become prohibitive since the state vector dimension is extremely large (i.e., each
snow state profile involves 50 layers with several states per pixel and several thousand25

pixels over the domain). More importantly, updated states do not provide quantitative
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information about surface mass fluxes. Hence, here we took a different approach.
Rather than estimating the states directly, we treated the multiplicative coefficients
γi ,j in Eq. (5) as the “states” to be estimated. This strategy, which was also used
specifically for precipitation in Durand et al. (2008) and Girotto et al. (2014a), is in direct
recognition of the fact that the primary source of uncertainty in surface mass fluxes is5

due to error in the near-surface meteorological forcing inputs. The added benefit of this
approach is that the size of the state vector is significantly reduced even in the case
of time variant multiplicative states. Such a strategy derives a posterior estimate of the
forcing variables directly (via the updated γi ,j ), and consequently allows for improved
estimates of the surface mass fluxes via a posterior integration of CROCUS (with the10

posterior forcing inputs). The DA system theoretically allows the multiplicative states to
vary on any arbitrary time scale. However, for simplicity, we implemented time-invariant
perturbations (i.e., assumed γi ,j were unchanged over the annual modelling period)
herein. In this way the update to the states was designed to allow for biases and/or
low-frequency errors in individual realizations in the prior multiplicative states.15

It would be ideal to characterize the uncertainties for all inputs from the information
content in the assimilated data stream(s). However, in many cases available
measurements are not relevant to some sources of uncertainty in the models. For
instance, in this study, IST is less likely to have information about precipitation
because there is no expected meaningful correlation between precipitation and IST.20

With regard to the fact that precipitation cannot be updated using the IST data,
and the fact that uncertainty of precipitation estimates from different modelling
frameworks are less than that of the other terms (Fettweis, 2007), the focus of this
work has involved constraining the GrIS surface mass loss (SML) components (i.e.,
sublimation/evaporation, condensation, and runoff), while still including the expected25

uncertainty in the accumulation term (precipitation). In other words, all forcing inputs
were perturbed to take into account their respective postulated uncertainties, but only
longwave, shortwave and surface air temperature coefficients were updated as part of
the assimilation system.

3218

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 3205–3255, 2015

Data
assimilation-based

estimation of
Greenland surface

mass loss

M. Navari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

In the update step, the EnBS merges IST measurements with prior multiplicative
states in order to generate a posterior estimate of those multiplicative states. In this
study, we used an EnBS, which was implemented in a batch mode over a pre-defined
window (i.e., applied over one year) with a single update. This feature of the EnBS (i.e.,
the batch mode update) allows running MAR and CROCUS in an offline mode that5

could be applied to the historical record. The open-loop (prior) estimate of the variables
of interest (i.e., γS , γl , and γT ) were collected into the state matrix Γ−. Similarly, the
vector of synthetically generated IST measurements was assembled into a vector:

Tmeasurement = T true + v (6)

where v is the assumed additive white Gaussian error and T true is the synthetic truth10

(see Sect. 4.1). Finally, each ensemble member was updated individually via a Kalman-
type update equation (Durand and Margulis, 2008; Bateni et al., 2013, 2015),

Γ+j = Γ−j +K
[
Tmeasurement +Vj −Tpredicted,j

]
(7)

where Γ−j and Γ+j represent the j th ensemble member before and after the update,
respectively, Tpredicted is the matrix of predicted measurements consisting of predicted15

IST. V is the measurement error that was synthetically produced and added to the
measurements in order to avoid correlation among the replicates (Burgers et al., 1998),
and K is the Kalman gain matrix which is given by

K = CΓT [CT T +CV ]−1 (8)

where CV is the error covariance of the measurements, CΓT is the cross-covariance20

between the prior states and predicted measurements, and CT T is the covariance of
the predicted measurements. In this framework, the state variables are related to the
measurements in the batch through the covariance matrices that are obtained from the
ensemble.
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The update in Eq. (7) can be seen as a projection of measurement-prediction
misfits onto the states. The updated (posterior) multiplicative states were used in
Eq. (5) to retrieve updated (posterior) forcing. The posterior forcings were used as
inputs in CROCUS to estimate the posterior surface mass fluxes. The proposed
methodology can simply be extended to multiple years by applying the DA sequentially5

and independently for each year (e.g. Girotto et al., 2014b) or via applying the DA to
a moving window (e.g. Dunne et al., 2005). A schematic illustration of the methodology
is presented in Fig. 2. The proposed methodology can be thought of as a post-
processing (reanalysis) of MAR estimates by constraining the model using independent
IST observations.10

4 Experimental design

An OSSE or synthetic twin experiment offers a controlled setting in which the true
forcing variables (i.e., γS , γl , and γT ) are available. The goal of an OSSE is to
evaluate the feasibility of the new methodology prior to assimilating real space-
borne measurements. In an OSSE, a synthetic true state and corresponding noisy15

measurements of the system are generated and used to evaluate the feasibility of the
DA framework (e.g. Durand and Margulis, 2006; Crow and Ryu, 2009; De Lannoy et al.,
2010).

4.1 True selection

The synthetic truth uses realistic input and measurement error characteristics in20

conjunction with the forward models to generate a realistic realization of the true
system. In this study, the synthetic truth was selected as an outlier (defined below)
from the generated ensemble due to the fact that errors in forcings can yield differences
between a forward model (open-loop) estimate and the true surface mass fluxes.
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The ensemble of forcing data was generated via Eq. (5) for the year 2010 and
then the offline CROCUS implementation was run using the ensemble of forcing data
to generate estimates of the GrIS surface mass fluxes in 2010. The year 2010 was
chosen, at least in part, since it was characterized by an extreme melt rate (Tedesco
et al., 2011). Considering the fact that runoff is the main component of the GrIS5

surface mass loss, the true ensemble (synthetic truth) was selected in a way that
the integrated true runoff over the GrIS was an outlier relative to the median of the
ensemble simulations. The forcing variables, states, and fluxes corresponding to the
synthetic truth were also considered as the true forcings, the true states and the true
fluxes respectively. It should be highlighted that in a synthetic DA experiment, any10

generated realization from the forward model (CROCUS) can be used as the synthetic
truth, but one that is significantly different from the prior mean/median allows for a more
robust assessment of the value of the assimilated measurements. In other words, in
an OSSE the goal is to assess whether a DA framework can replicate the randomly
selected true by merging the measurements with the prior (open-loop) estimates.15

4.2 Assimilated measurement characteristics

Surface temperature from the forward model can be considered as a close
approximation of the remotely-sensed IST. Here, the synthetic DA experiments were
designed to mimic reality as much as possible. Hence, the DA system was run
with a realistic representation of the temporal frequency of real space-borne IST20

measurements; e.g. the GrIS IST measurements from MODIS have a daily temporal
resolution. However, in many instances daily observations are not available due to
cloud contamination, instrument outage, and quality related considerations. To take
this issue into account, the number of available daily IST measurements (i.e., synthetic
measurements) for assimilation in each month was derived from the spatial average25

seen in the actual Greenland IST product (e.g., Hall et al., 2012). The days with
measurements were selected randomly so that the total number per month was
consistent with the real number of available measurements.
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Since the raw MODIS IST measurements are available at a much finer spatial
resolution (i.e. ∼ 1.5 km) than the model scale (25 km), the measurements themselves
and their error characteristics would require a pre-processing spatial aggregation to
match the resolution of computational pixels (∼ 25 km). In the context of the OSSE
in this study, the synthetic measurements and forward model both have the same5

spatial resolution therefore there is no need for spatial aggregation of the predicted
measurement. However, specification of realistic measurement errors need to take into
account the difference in spatial resolution between MODIS IST measurements and the
model pixel scale. Measurement errors for MODIS IST at its raw resolution (i.e. 1.5 km)
are expected to be ∼ 1–1.5 K (e.g. Hall et al., 2012). Hence the measurement errors at10

the model scale (25 km) are expected to be less than or equal to this value depending
on the level of correlation of the measurement errors at the sub-pixel scale. In the case
of perfectly uncorrelated sub-pixel measurement errors, the aggregated measurement
would be expected to have a measurement error equal to the fine-scale value divided
by the number of sub-grid MODIS pixels. Assuming uncorrelated sub-grid errors are15

likely overly optimistic, we postulated that the measurement error standard deviation of
IST at the 25 km scale is 1 K.

4.3 Implementation

The feasibility of the new DA system was evaluated via assimilation of IST as follows:
a synthetically generated data stream was assimilated within an EnBS framework to20

assess the information content of the IST and explore whether it can overcome errors
in forcing inputs. This was examined by comparing the open-loop and EnBS estimates
of multiplicative states with the synthetic truth. Thereafter, the posterior meteorological
forcings were fed into CROCUS to estimate the surface mass fluxes. The performance
of the EnBS algorithm was further evaluated through the comparison of the posterior25

estimates with the prior estimates and the true estimate for all surface mass fluxes. It is
worth noting that in the OSSE in this study the ensemble size was set to 100 replicates
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which has been shown to be adequate in previous relevant studies (e.g. Margulis et al.,
2002; Huang et al., 2008; Evensen, 2009).

5 Results

5.1 Performance of the EnBS via assimilation of IST

To provide an illustrative example of the methodology, Fig. 3a–c shows the distribution5

of prior (open-loop) and posterior (obtained by assimilating IST) multiplicative state
variables corresponding to the different forcings for a sample pixel in the ablation zone
(latitude 67◦N longitude 49.8◦W), which is the critical zone in terms of the GrIS surface
mass loss. The prior distribution of multiplicative coefficients for each forcing variable is
wide, representing the postulated uncertainty in the prior forcings. In contrast, Fig. 3a10

shows that the histogram of the posterior estimates of γT is tightly distributed around
the true estimate. A narrow distribution around the true estimate means that the DA
system uses the information contained in the IST sequence and moves the ensemble
members toward the true estimate while reducing the uncertainty of γT . The reduction
in uncertainty is evident by comparing the base of the posterior histogram with that from15

the prior estimates. The positive update by the DA system can be explained based
on the fact that IST and air temperature are coupled and each one affects the other
(Hall et al., 2008). Figure 3b illustrates that the median of the posterior estimate of
γl agrees well with the corresponding synthetic truth. Incoming longwave radiation
is correlated with the effective (near-surface) air temperature and as stated above,20

IST and surface air temperature are closely tied to each other. Prior to melt, solar
radiation goes into heating the snow/ice surface and during the melt period, energy
input drives sublimation or evaporation and melt (Box and Steffen, 2001). Therefore, it
can be stated that IST is positively correlated with the incoming shortwave radiation.
The EnBS system takes advantage of this correlation and provides improved estimates25

of the multiplicative state related to shortwave radiation (Fig. 3c).
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Figure 3d presents the time series of the IST for the prior, posterior, synthetic true,
and assimilated measurements during a portion of the assimilation window. For the
purpose of illustration, IST data for 10 days during the dry period (January) and
beginning of the melt period (April) were selected to show the ability of the algorithm
to estimate the true IST (Fig. 3d and e). It is evident in Fig. 3d and e that the EnBS5

captures the diurnal variability of IST and closely estimates the true IST both during
the daytimes and nighttimes during the dry and melt periods. Moreover, Fig. 3d shows
that the EnBS successfully estimates the true IST even when the temporal resolution of
the IST measurements significantly decreases. This is important since the IST record
shows that there are fewer measurements available during the months of December10

and January (Hall et al., 2012) where in some years the available measurements
during these two months drop to fewer than 10 measurements per month. Comparing
Fig. 3d with Fig. 3e also shows that during the month of January when there are fewer
IST measurements the posterior estimates are in good agreement with the true IST,
however, the uncertainty of the estimates is slightly larger. These results illustrate that15

information from IST measurements can be exploited to estimate the multiplicative
states (i.e. γS , γl , and γT ) and consequently the IST.

Results for the whole domain are presented in terms of relevant bulk metrics that
capture the integrated impact of the forcings. Specifically, the pixel-wise cumulative
incoming shortwave and incoming longwave radiation (in MJm−2 year−1) were used to20

represent the total energy input into the ice sheet and provide insight into the surface
energy balance of the GrIS. For the air temperature, negative degree-day temperature
(NDD) (i.e., cumulative mean daily air temperature for days in which the mean daily
air temperature is below 0 ◦C) and the positive degree-day temperature (PDD) (i.e.,
cumulative mean daily air temperature for days in which the mean daily air temperature25

is above 0 ◦C) are two other metrics which are indicative of snow accumulation and melt
periods, respectively. These bulk metrics were used to evaluate the performance of the
DA algorithm over the entire ice sheet using RMSE and an improvement factor.
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The spatial mean bias and the spatial RMSE of the prior and posterior estimates of
the integrated forcing variables over the GrIS were computed using the prior, posterior,
and true cumulative longwave, shortwave, and air temperature (i.e., PDD and NDD).
Table 2 summarizes the spatial mean bias and the spatial RMSE of the different
forcing variables. As can be seen for the entire simulation period, the mean bias5

(RMSE) of cumulative shortwave, longwave, PDD, and NDD are, respectively, −12.8
(241.3) MJm−2 year−1, 4.6 (97.9) MJm−2 year−1, −1 (9.7) ◦C-day, and −2.8 (55) ◦C-day,
which are 84 % (70 %), 82 % (85 %), 94 % (71 %), and 65 % (86 %) less than the mean
bias (RMSE) of the prior estimates.

An alternative method to evaluate the DA system is to determine the contribution10

of RS data to the estimate explicitly. Following Durand et al. (2006) and Bateni
et al. (2013) an improvement factor based on the prior and posterior error relative
to the true was defined as follows:

κi =
∣∣∣Y i (−)− Y True

i

∣∣∣− ∣∣∣Y i (+)− Y True
i

∣∣∣ (9)

where the Y i (−) and Y i (+) represent the cumulative ensemble median of the prior and15

posterior estimates of the forcing i respectively and Y True
i is the cumulative synthetic

true for the forcing i . The improvement factor κi can be used to interpret the contribution
of the IST measurements to the posterior estimates of the forcing. This formulation
suggests a value greater than 0 when the posterior error is less than the prior error
(i.e., measurement improves the posterior estimates), a value equal to 0 when the20

prior and posterior errors are equal, and a value less than 0 when the error in
the posterior estimates is greater than that in the prior estimates (the measurement
degrades the posterior estimates). Table 2 shows that IST measurements make a large
contribution to correct the forcing variables. IST contributed an integrated sum of 452
(MJm−2 year−1), 375 (MJm−2 year−1), 14 (◦C-day), and 257 (◦C-day) to correct the25

shortwave, longwave, PPD, and NDD. The improvement factor of the PDD is much
smaller than that of the NDD due the fact that there are many fewer days in which the
mean daily near-surface air temperature is above the freezing point.
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In order to further investigate the performance of the EnBS, the prior errors (i.e.,
prior – true) and the posterior errors (i.e., posterior – true) were computed for each
forcing variable. Figure 4a–d show the histograms of the prior and posterior errors
for cumulative Rs,Rl, PDD, and NDD over the spatial domain. The EnBS reduces the
uncertainty of the posterior estimates for all forcing variables and effectively removes5

any of the prior biases.

5.2 Updating the SML terms

While updating the forcing variables is the mechanism by which the EnBS transfers
information from IST into the posterior estimates, the main objective of the DA
framework in this study is to assess the feasibility of providing better estimates of the10

GrIS SML and related fluxes using the improved forcings. To generate a benchmark for
our analysis, CROCUS was run in open-loop mode using the prior forcings (explained
above). The SML terms obtained from the prior (open-loop) simulation constitute
a basis for evaluation of the methodology implemented in this study. Using the posterior
forcing, CROCUS was executed for each grid cell to obtain posterior estimates15

of surface mass fluxes (i.e., runoff, sublimation/evaporation, and condensation) and
consequently SML.

Runoff plays an important role in the GrIS net mass loss and is the main component
of the GrIS SML. The GrIS melt-water runoff is heavily concentrated in the ablation
zone along the ice sheet margin where the width of the ablation zone in the GrIS in20

some regions is very narrow and does not exceed tens of kilometres. The map of
synthetic true runoff (Fig. 5a) shows that the west and southwest margins experience
the highest rates of runoff that exceeds 6 m water equivalent per year. It is worth
remembering that the true runoff is an outlier in the context of ensemble modelling
as explained previously. Figure 5b–c show the runoff anomaly for the prior (i.e. prior-25

true) and the runoff anomaly for the posterior (i.e. posterior-true) respectively. The gray
areas represent the percolation and dry snow zones, which do not generally contribute
to surface runoff during the simulation period. The prior anomaly map (Fig. 5b) shows
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that the open-loop simulation consistently underestimates the true runoff across the
domain with a strong negative anomaly in the southwest margin (more than 1600 mm
water equivalent below the true). Comparing the GrIS margin pixels in the prior and
posterior maps (Fig. 5b and c) shows that the anomaly of the posterior estimates is
significantly lower than that of the prior estimates. Reduced anomalies indicate that the5

EnBS successfully recovers the true estimates of the runoff in most pixels. However,
the posterior results are not perfect and the algorithm slightly underestimates and
overestimates runoff in some pixels.

Scatter plots of the runoff for the prior and posterior estimates vs. the true estimates
are illustrated in Fig. 5d and e. Each data point in Fig. 5d and e represents the10

ensemble median of the estimate (i.e., prior, posterior) vs. the true estimate in a single
pixel; and the error bar illustrates the corresponding ensemble interquartile range of the
estimates in the same pixel. The scatter plot of the prior runoff shows that almost all
data points lie below the 1 : 1 line, indicating that the prior estimates were significantly
biased (by construct in this OSSE). The posterior scatter plot (Fig. 5e) displays that15

the data points are narrowly distributed around the 1 : 1 line and the error bars are
much smaller than that in the prior estimates, implying that the proposed algorithm
significantly removes the bias and decreases the uncertainty of the estimates.

Sublimation and evaporation play an important role in the GrIS surface mass loss
(Lenaerts et al., 2012) and after runoff are the main components of the GrIS SML.20

Here, the discussion focuses on sublimation rather than evaporation due to the
fact that sublimation is one order of magnitude larger than evaporation. The map
of synthetic true sublimation (Fig. 6a) shows that the west and southwest of the
GrIS in the ablation zone experience the largest sublimation rates. Box and Steffen
(2001) explained that at the edge of the ice sheet, where slopes become steeper,25

the katabatic wind accelerates and tends to increase sublimation. Furthermore, the
net radiation increases during the summertime, especially at lower latitudes, which in
turn generates a vertical temperature gradient and increases the sublimation. Higher
energy input also contributes to a positive albedo feedback (e.g. Tedesco et al., 2011)
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and further increases the sublimation rates. The prior anomaly map (Fig. 6b) illustrates
that the open-loop model underestimates the sublimation at the ice sheet margin
and slightly overestimates it in the ice sheet interior. The results demonstrate that
posterior sublimation estimates from the assimilation of IST are much closer to the
truth than are the prior estimates (Fig. 6c). Comparing the scatter plots of the posterior5

vs. the true estimates with that of the prior vs. the true estimates, reveals that the
methodology successfully overcomes the bias and significantly reduces the uncertainty
of the sublimation estimates and increases the confidence of the results (see Fig. 6d
and e).

Surface solid condensation (deposition) also influences surface mass fluxes of the10

GrIS by adding mass to the ice sheet. Similar to sublimation, wind and the vertical
specific humidity gradient are two key factors that control the deposition. To be more
precise, colder temperatures and lower winds enhance the deposition rates. In contrast
with sublimation, deposition occurs at night and during winter, mainly due to radiative
cooling (Box and Steffen, 2001). Figure 7a shows that the surface solid condensation15

(SSC) is greater in the ice sheet interior where winds are weak and there is sufficient
moisture in the air column. The high elevation central regions, however, show less
condensation due to distance from moisture sources. High speed winds in the ice sheet
margins prevent condensation despite the availability of moisture. Figure 7b shows that
the prior estimates for SSC is not in good agreement with the truth and that the prior20

simulation both underestimates and overestimates surface solid condensation across
the domain. A comparison between the prior and posterior anomaly maps (Fig. 7b and
c) suggests that the posterior estimates closely recover the true estimates. Figure 7e
shows that the data points are clustered around the 1 : 1 line; indicating that the EnBS
corrects the bias in the prior estimates (Fig. 7d). In addition, posterior error bars are25

significantly smaller than that of the prior error bars, indicating that the EnBS effectively
uses the information content of the IST measurements to eliminate the bias and reduce
the uncertainties of the posterior estimates.
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Herein, the SML is defined as the sum of the mass loss terms (i.e. runoff
and sublimation/evaporation) and mass gain term (i.e. surface solid condensation)
discussed above. Figure 8a shows that SML is greater in the west and southwest
of the ice sheet where runoff is the dominant mass loss mechanism and is smaller
in the ice sheet interior where mass loss mainly occurs through sublimation. Similar5

to runoff, the prior anomaly is largely concentrated in the ablation zone and since
runoff is roughly two orders of magnitude larger than sublimation and condensation,
the anomaly due to these two fluxes is almost undetectable in the anomaly map (see
Fig. 8b). Comparing the posterior anomaly map (Fig. 8c) with that of the prior, clearly
shows that the posterior SML is closely matched with the true estimates across the10

domain. Scatter plots (Fig. 8d and e) also confirm that the EnBS effectively removes
the bias and increases the confidence level of SML estimates.

To provide an integrated picture over the full domain, Fig. 9a–d show the time series
of the cumulative runoff, sublimation, surface solid condensation, and SML over the
GrIS respectively in 2010. As illustrated in Fig. 9a, the true runoff starts in late April15

and increases rapidly during the melt season (to a cumulative value of 408 mm) until
late August. The central tendency of the prior simulation (as indicated by the ensemble
median) underestimates the runoff by about 35 % owing to errors in the forcing inputs.
The posterior estimates show a cumulative runoff of 394 mm over the GrIS, which is in
good agreement with the truth. Table 3 shows that the EnBS reduces the spatial mean20

bias (RMSE) of the prior estimates of runoff by 90 % (61 %) from −552 mm (646 mm) to
−54 mm (250 mm). As evident in Fig. 9b, sublimation accelerates during the summer
season owing to increased energy input to the snow/ice surface. The true estimate
suggests that in total net sublimation (i.e. sublimation and evaporation) accounts for
about 66 mm (∼ 15 %) mass loss over the GrIS. The median of the prior simulation25

shows a total sublimation loss of ∼ 56 mm which is 10 mm less than the truth. The EnBS
significantly improves the results where the posterior median estimate shows a total
sublimation of 65 mm. From Table 3 the spatial mean bias (RMSE) of the posterior
estimate shows a 90 % (64 %) reduction relative to the prior. In general surface solid
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condensation accelerates during the winter and decelerates in the summer season
(Fig. 9c). The true simulation suggests a cumulative SCC of 27 mm, and the median of
the prior and posterior estimates are 25 and 27 mm, respectively. The 76 % reduction
of the spatial RMSE of the posterior estimates and 80 % reduction of the spatial mean
bias (Table 3) also supports the accuracy of the posterior estimates. Finally, the true5

SML estimate is 450 mm, the prior and posterior median of SML are 295, 435 mm,
respectively. Clearly the posterior SML estimate is in better agreement with the truth.
The IST measurements contribute an integrated sum of 140 mm to correct the posterior
estimates of the GrIS SML and also reduce the spatial mean bias and the spatial RMSE
of the estimates by 90 and 62 % respectively (Table 3).10

A probabilistic approach also provides information about the uncertainty of the
estimates. Figure 9a–d show that the prior estimates of all surface mass fluxes have
a large ensemble spread, reflecting the propagation of a priori forcing uncertainties to
SML terms. During the update process the EnBS significantly reduces the uncertainties
of the posterior estimates of forcing variables and consequently the posterior estimates15

of the surface mass fluxes. Comparing the narrow blue shaded area with the wide red
shaded area illustrates that the EnBS increases the confidence of the model predictions
by decreasing the error and uncertainties of the posterior estimates relative to the prior
estimates.

5.3 Sensitivity to the synthetic truth values20

As in any OSSE, the synthetic measurements are, by construct, a function of the
chosen true and therefore the posterior results could be impacted by the particular
selection of the true realization. To address this concern, and show the robustness of
the proposed algorithm, the simulation was repeated for two different true values; one
smaller than the baseline simulation and the other larger. In the first case the synthetic25

true runoff was set to 330 mm, which is the average of the runoff estimates from the
open-loop simulation (i.e. ∼ 260 mm) and the true runoff from the baseline simulation
(i.e., ∼ 400 mm). In the second case the true runoff was set to 470 mm, which is 70 mm
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larger than the baseline simulation. Table 4 shows the RMSE of the surface mass
fluxes for all simulation cases. The posterior RMSE of each mass flux for all simulation
cases are very similar even when the prior RMSE of the estimates are significantly
different. For example, the prior RMSE of the runoff (SML) for the second simulation
case (true runoff equal to 470 mm) is 2.5 (2.6) times larger than the prior RMSE of5

the first simulation case (true runoff equal to 330 mm), but the posterior RMSE differs
by only 4 % (10 %). Therefore, it can be stated that the DA algorithm robustly retrieve
the true estimates of the surface mass fluxes and the performance of the algorithm is
relatively insensitive to the selected truth.

6 Discussion and conclusions10

A new data assimilation methodology for improving estimates of the GrIS surface
mass loss fluxes has been tested and presented using an observing system simulation
experiment framework. The prior estimates were derived from an offline surface module
(CROCUS) forced by an ensemble of meteorological forcing fields that were based
on a nominal regional climate model simulation (in this case MAR). A posterior15

estimate was generated by conditioning the forcings on the synthetically generated
IST measurements using an ensemble batch smoother (EnBS) approach. Specifically,
it was shown that using the EnBS with IST measurements was able to improve nominal
estimates derived from MAR that result from erroneous forcing fields that drive surface
mass and energy balance processes. The results illustrated that IST measurements20

have potential information on shortwave, longwave, and surface air temperature that
allows for correction of errors in these terms. However, due to the lack of meaningful
correlation between precipitation and IST measurements, the precipitation flux was
not updated in this context. Hence the assimilation of IST is primarily beneficial for
estimating the surface mass loss terms and not the accumulation term.25

The new methodology has several advantages over the traditional state-space data
assimilation approaches. First, in this new application the multiplicative perturbation
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variables are considered as states to be updated. Reduction of the size of the state
vector and consequently computational costs is the direct outcome of this approach.
Second, mass loss terms cannot directly be sensed by the means of satellite sensors;
using this methodology, the mass loss fluxes were estimated indirectly by reducing the
error in forcing variables. Finally, the modularity of the proposed methodology would5

allow for incorporation of any regional climate model and additional remotely-sensed
observations in future applications. All of these advantages should make such data
assimilation approaches an attractive and complementary approach to better resolve
and diagnose the ice sheet surface mass fluxes. The improved mass loss estimates
could also be used as input to net mass balance estimates and ultimately a sea level10

rise projection when applied to real data over the remote sensing record.
The next logical step is to apply the methodology with real IST measurements to

further validate the robustness of the proposed approach. This future work will include
the use of the MODIS IST product for estimating GrIS SML. The data assimilation
framework is general and could also include the potential application of assimilation of15

passive microwave and albedo to further constrain GrIS SMB estimates.
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Table 1. Postulated parameters (coefficient of variation, CV, and cross-correlation) for
multiplicative perturbations to hourly meteorological forcing inputs (the units for each forcing
are: P in mm, Rs and Rl in Wm−2 and Ta in K).

Perturbation CV Cross correlation

P Rs Rl Ta
Precipitation (P ) 0.5 1.0 −0.1 0.5 −0.1
Shortwave (Rs) 0.2 −0.1 1.0 −0.3 0.3
Longwave (Rl) 0.1 0.5 −0.3 1.0 0.6
Air temperature (Ta) 0.005 −0.1 0.3 0.6 1.0
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Table 2. The spatial mean bias, the spatial RMSE, and improvement factor κ for the prior and
posterior estimates of the forcing variables via assimilation of IST over the entire GrIS.

Rs (MJm−2 yr−1) Rl (MJm−2 yr−1) PDD (◦C-day) NDD (◦C-day)

Prior Bias −82.0 −25.6 −16.7 −8.0
Posterior Bias −12.8 +4.6 −1.0 −2.8
Prior RMSE 791.6 549.1 33.3 394.6
Posterior RMSE 241.3 97.9 9.7 55.4
κ 452.2 375.0 13.8 257.0
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Table 3. The spatial mean bias and the spatial RMSE of runoff, sublimation/evaporation, surface
solid condensation, and net mass loss estimates via assimilation of IST measurements.

Runoff Sublimation SSC Surface mass loss
(mm WE) (mm WE) (mm WE) (mm WE)

Prior Bias −551.6 −3.1 −0.5 −38.9
Posterior Bias −54.0 −0.3 −0.1 −3.8
Prior RMSE 646.1 14.7 4.6 174.1
Posterior RMSE 249.8 5.3 1.1 66.9

3245

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 3205–3255, 2015

Data
assimilation-based

estimation of
Greenland surface

mass loss

M. Navari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. The spatial RMSE of runoff, sublimation/evaporation, surface solid condensation, and
net mass loss estimates via assimilation of IST measurements for three different true values.

True Runoff Runoff Sublimation SSC Surface mass loss
(mm) (mm) (mm) (mm) (mm)

330 Prior 348.9 13.4 4.7 92.8
Posterior 249.2 4.8 1.1 63.6

400 (baseline) Prior 646.1 14.7 4.6 174.1
Posterior 249.8 5.3 1.1 66.9

470 Prior 894.4 16.0 4.6 245.1
Posterior 259.4 5.2 1.1 70.7
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Figure 1. The Greenland ice sheet mask (filled area), including the ablation zone (blue), the
percolation zone (dark green), and the dry snow zone (bright green) based on an offline
CROCUS simulation for the year 2010. The contour lines show the topography of the ice sheet
with an interval of 500 m.
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Figure 2. Schematic illustration of the proposed methodology. The posterior SMB/SML
is effectively a post-processing (reanalysis) of regional climate model (in this case MAR)
estimates conditioned on IST measurements.
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Figure 3. Ensemble histogram of the prior (red bars) and the posterior (after assimilation of
IST) multiplicative states (blue bars) for (a) surface air temperature, (b) longwave radiation,
(c) shortwave radiation for a sample pixel in the ablation zone. The prior (red line) and posterior
(blue line) median values and truth (black line) are also shown for reference. The time series
of: (d) the IST for the 10 day period during the dry season and (e) the IST for the 10 day
period during the melt season. The red and blue shaded areas represent the prior and posterior
uncertainty band (interquartile range) and the red, blue, and black lines represent the median
of the prior, the median of the posterior and the truth, respectively. The green circles represent
the synthetically generated (noisy) IST measurements that are assimilated to generate the
posterior estimates.
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Figure 4. The histogram of the prior errors (red) and posterior (after assimilation of IST) errors
(blue) for cumulative (a) shortwave radiation, (b) longwave radiation, (c) PDD, and (d) NDD
over the full GrIS.
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Figure 5. The (a) synthetic true runoff (mm WE yr−1) for the year 2010, (b) runoff anomaly
(mm WE yr−1) for the prior (i.e., difference between the prior and true runoff), (c) runoff anomaly
(mm WE yr−1) for the posterior, (d) scatter plot of the prior runoff estimates, (e) scatter plot of
the posterior runoff estimates. Black dots are the ensemble median of the estimates and the
error bars represent the corresponding ensemble interquartile range of the estimates.

3251

http://www.the-cryosphere-discuss.net
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-print.pdf
http://www.the-cryosphere-discuss.net/9/3205/2015/tcd-9-3205-2015-discussion.html
http://creativecommons.org/licenses/by/3.0/


TCD
9, 3205–3255, 2015

Data
assimilation-based

estimation of
Greenland surface

mass loss

M. Navari et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Figure 6. The same as Fig. 5 but for sublimation and evaporation.
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Figure 7. The same as Fig. 5 but for surface solid condensation (SSC).
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Figure 8. The same as Fig. 5 but for the GrIS surface mass loss (SML).
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Figure 9. The time series of: (a) cumulative runoff, (b) cumulative sublimation and evaporation,
(c) cumulative surface solid condensation, and (d) cumulative mass loss over the GrIS (in
millimetres of water equivalent). The truth is the black dashed line, the prior ensemble median
is the red line and the posterior ensemble median is the blue line. The red shaded area
corresponds to the ensemble interquartile range (IQR) for the prior simulation and the blue
shaded area corresponds to the ensemble IQR for the posterior estimates.
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