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 1 

Abstract 2 

The Greenland ice sheet (GrIS) has been the focus of climate studies due to its considerable 3 

impact on sea level rise. Accurate estimates of surface mass fluxes would contribute to 4 

understanding the cause of its recent changes and would help to better estimate the past, 5 

current and future contribution of the GrIS to sea level rise. Though the estimates of the GrIS 6 

surface mass fluxes have improved significantly over the last decade, there is still 7 

considerable disparity between the results from different methodologies (e.g., Rae et al., 8 

2012; Vernon et al., 2013). Data assimilation approach can merge information from different 9 

methodologies in a consistent way to improve the GrIS surface mass fluxes. In this study, an 10 

Ensemble Batch Smoother data assimilation approach was developed to assess the feasibility 11 

of generating a reanalysis estimate of the GrIS surface mass fluxes via integrating remotely 12 

sensed ice surface temperature measurements with a regional climate model (a priori) 13 

estimate. The performance of the proposed methodology for generating an improved posterior 14 

estimate was investigated within an observing system simulation experiment (OSSE) 15 

framework using synthetically generated ice surface temperature measurements. The results 16 

showed that assimilation of ice surface temperature time series were able to overcome 17 

uncertainties in near-surface meteorological forcing variables that drive the GrIS surface 18 

processes. Our findings show that the proposed methodology is able to generate posterior 19 

reanalysis estimates of the surface mass fluxes that are in good agreement with the synthetic 20 

true estimates. The results also showed that the proposed data assimilation framework 21 

improves the root-mean-square-error (RMSE) of the posterior estimates of runoff, 22 

sublimation/evaporation, surface condensation and surface mass loss fluxes by 61%, 64%, 23 

76%, and 62% respectively over the nominal a priori climate model estimates.   24 

25 
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1 Introduction and Background 1 

The Greenland ice sheet (GrIS) has recently experienced thinning of the marginal ice (e.g. 2 

Straneo et al. 2013, Khan et al., 2014), thickening of its interior (e.g. Johannessen et al., 2005; 3 

Fettweis, 2007), acceleration and increase in ice discharge from many of Greenland’s outlet 4 

glaciers (e.g. Rignot et al., 2008; Wouters et al., 2013), and enhanced surface melt (e.g. 5 

Tedesco et al., 2013; Vernon et al., 2013). The melting of the GrIS due to increased 6 

temperature has the potential to affect deep ocean circulation, and sea level rise (Hanna et al., 7 

2005; Fettweis et al., 2007; Tedesco 2007, Rahmstorf et al., 2015). Van Angelen et al. (2012) 8 

and Fettweis et al. (2013) predict that meltwater runoff will be the dominant mass loss process 9 

in the future due to the retreat of the tidewater glaciers above sea level; a recent study 10 

showing that the dynamic mass loss was reduced from 58% before 2005 to 32% for the period 11 

between 2009 and 2012 (Enderlin et al., 2014).  12 

Many studies (e.g. van de Wal et al., 2012) have taken advantage of in situ measurements to 13 

provide a direct point-scale estimate of the surface mass balance (SMB, i.e. the difference 14 

between accumulation and ablation). However, with these limited in situ measurements alone, 15 

large-scale mapping of the GrIS surface mass fluxes (i.e. precipitation, evaporation, 16 

sublimation, condensation, and runoff) is impossible. The availability of remote sensing data 17 

and/or products has taken GrIS from a remote ‘‘data poor’’ region that is reliant mostly on 18 

sparse in situ measurements to a potentially ‘‘data rich’’ environment. In this regard, a key 19 

research objective is to better understand how such data can be optimally leveraged for 20 

quantitatively estimating the surface mass balance (SMB) and its associated fluxes.  21 

Surface remote sensing data and products (i.e., surface or skin temperature, multi-frequency 22 

brightness temperature, and albedo) have been used to characterize various aspects of SMB 23 

such as snow melt, melt extent, melt duration, new snow, extreme melt events (e.g. Abdalati 24 

and Steffen, 1995; Tedesco et al., 2011; Box et al., 2012; Hall et al., 2013). However, the 25 

relationship between surface remote sensing data/products and surface mass fluxes are most 26 

often indirect and implicit. For example, ice surface temperature can be indicative of melt, but 27 

it fails to quantitatively estimate the volume of meltwater produced. More importantly, other 28 

surface mass fluxes such as evaporation, condensation, sublimation, and runoff cannot be 29 

directly quantified via remote sensing. This makes the possibility of quantitatively 30 

characterizing the surface mass fluxes from remote sensing retrieval algorithms difficult if not 31 

impossible. It can therefore be argued that the information content of remotely sensed data 32 
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remains underutilized due to indirect and implicit links between the various data streams and 1 

surface mass fluxes.  2 

Given the limitations of the observation-based methods, numerical models offer an alternative 3 

mechanism to quantify the GrIS surface mass fluxes. Several model-based approaches have 4 

been used to characterize the spatio-temporal variability of the GrIS surface mass fluxes in 5 

both historical and future contexts (e.g. Hanna et al., 2011,2013; Box et al., 2006; Fettweis, 6 

2011; Ettema et. al., 2009; Lewis and Smith, 2009; Vernon et al. 2013; Franco et al. 2013). 7 

Although the aforementioned methodologies have provided the ability to estimate the GrIS 8 

SMB and related fluxes, their estimates vary considerably, mainly due to the different physics 9 

parameterizations in the models and simplifying assumptions, the inherent uncertainty of each 10 

method, error in model and input data, and the length of data records (e.g. Rignot et al., 2011; 11 

Vernon et al., 2013; Smith et al., 2015). Therefore, it is imperative to design techniques that 12 

bridge the gap between different methods by merging relevant data streams with a physical 13 

model with the aim of better spatial-temporal characterization of the GrIS surface mass 14 

fluxes. In this study, we provide an example of taking advantage of information in the 15 

relevant data streams to provide a better spatial-temporal characterization of the model 16 

outputs (i.e., the GrIS surface mass fluxes). This can be done using a data assimilation 17 

approach which attempts to merge model estimates with measurements in an optimal way 18 

(Evensen, 2009).” 19 

 20 

2 Motivation and science questions 21 

To date, to the best of the authors’ knowledge, there have been no attempts at merging surface 22 

remote sensing data with models using a data assimilation (DA) framework to fully resolve 23 

and quantify estimates of the GrIS surface mass fluxes. Data assimilation techniques have 24 

been heavily used in hydrology to estimate soil moisture (e.g. Reichle et al., 2002; Margulis et 25 

al., 2002; Al-Yaari et al., 2014), predict snow water equivalent (SWE) (e.g. Durand et al., 26 

2008; De Lannoy et al., 2012; Girotto et al., 2014a; Zhang et al., 2014), estimate runoff (e,g. 27 

Crow and Ryn 2009; Franz et al., 2014), improve estimates of radiative fluxes (e.g. Forman 28 

and Margulis 2010; Xu et al., 2011), and characterize snowpack properties and freeze-thaw 29 

state of the underlying soil (Bateni et al., 2013, 2015). DA so far has been underutilized in 30 

applications aimed at characterizing GrIS dynamics. Recently, Goldberg and Heimbach 31 

(2013), and Morlighem et al. (2013) used variational DA methods to characterize the interior 32 
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and basal properties of ice sheets and ice shelves. Larour et al. (2014) assimilated surface 1 

altimetry data into the reconstructions of transient ice flow dynamics to infer basal friction 2 

and surface mass balance of the northeast Greenland ice stream. However, the use of DA for 3 

estimating GrIS SMB terms remains relatively unexplored. Assessing the feasibility of such 4 

approaches in providing a mechanism for improving quantitative estimates of SMB is the key 5 

motivation of this work. 6 

This study utilizes an observing system simulation experiment (OSSE) framework to assess 7 

the feasibility of the proposed DA system. The OSSE framework uses synthetically generated 8 

ice surface temperature (IST) measurements consistent with a “true” realization of SMB 9 

evolution. This study addresses the following science questions: 1) Can assimilation of IST 10 

measurements overcome errors and uncertainties in the near-surface meteorological forcing 11 

variables for snow/ice modelling? 2) Can a DA framework be used to reduce the uncertainty 12 

and/or correct biases in a priori estimates of surface mass fluxes from a regional climate 13 

model?  14 

This paper is arranged as follows: Sect. 3 contains the description of the models and methods 15 

used in this work. The experimental design is given in Sect. 4. The results and evaluation of 16 

the proposed methodology are discussed in Sect. 5. Finally, key conclusions and future 17 

research directions are reported in Sect. 6.   18 

 19 

3 Models and Methods 20 

3.1 Study domain  21 

The study domain covers the entire GrIS, which is discretized with a grid size of 25 km by 25 22 

km to match the domain used in the regional atmospheric model described below. The focus 23 

is on fully snow/ice covered pixels. Figure 1 shows the different GrIS mass balance zones 24 

based on a forward simulation for the year 2010. The ablation zone is defined as the region of 25 

the GrIS where the annual surface mass balance is negative. The dry snow zone is defined as 26 

the region where the mean annual temperature is less than -25ºC (Cuffey and Paterson 2010) 27 

and melt generally does not occur. The area between the ablation zone and the dry snow zone 28 

is considered the percolation zone where surface meltwater percolates downward into the 29 

snow layers. It should be noted that the digital elevation model (DEM) over the ice sheet 30 
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originates from a high-resolution map generated by Bamber et al. (2001). The elevation of the 1 

ice sheet increases from almost zero in the coastal regions up to about 3400 m at the summit.  2 

3.2 Data  3 

Surface temperature plays an important role in the coupled GrIS surface energy and surface 4 

mass budget. It is the key factor that regulates partitioning of net radiation into the subsurface 5 

snow/ice, sensible and latent heat fluxes. Surface temperature also influences the generation 6 

of runoff, the temperature profile evolution, and even basal melt (Hall et al., 2013). Space-7 

borne instruments can provide estimates of IST. The retrieved IST is directly related to snow 8 

surface emissivity (Hook et al., 2007). The emissivity of the snow surface is a function of 9 

grain size and liquid water content, which both are under the influence of surface processes 10 

(Hall et al., 2009). These facts support the idea that clear-sky IST, of all remote sensing 11 

products available, may contain the most information about physical processes that drive the 12 

GrIS accumulation and mass loss. Therefore, this work focuses on testing the feasibility of 13 

using products such as Moderate Resolution Imaging Spectroradiometer (MODIS) IST as an 14 

extra source of information to enhance the utility of modelling techniques. The possibility of 15 

using additional remotely-sensed data streams (e.g. passive microwave brightness temperature 16 

and albedo) will be investigated in future studies.  17 

The Greenland Ice Surface Temperature product (GrIS IST) is available from the MODIS 18 

Terra satellite (http://modis-snow-ice.gsfc.nasa.gov/?c=greenland) and provides up to one 19 

(clear-sky) measurement per day at a native resolution of 1.5 km and an accuracy of ~1º - 20 

1.5ºK (Hall et al., 2012). However, cloud contamination and occasional instrument outages 21 

play an important role in the availability of the MODIS IST measurements. These two factors 22 

along with some other technical and quality considerations can reduce the availability of the 23 

IST measurements to less than 10 high quality clear-sky measurements in some months (Hall 24 

et al., 2012). In the context of the OSSE used in this work, synthetic IST was generated based 25 

on the temporal resolution and acquisition time of the actual GrIS IST product by perturbing 26 

the modelled surface temperature with assumed measurement error described below.      27 

3.3 Regional climate model  28 

The a priori (or prior) estimate used in the DA framework in this study is based on output 29 

from the regional climate model Modèle Atmosphérique Régional (MAR; Gallée and Schayes 30 

http://modis-snow-ice.gsfc.nasa.gov/?c=greenland


 7 

(1994) and Gallée and Duynkerke (1997)). The version of the model used here (i.e. MARv2) 1 

has been applied extensively over the GrIS and is described in more detail in previous studies 2 

(Lefebre et al., 2003; Fettweis et al., 2005). This version has also been used to generate future 3 

projections for the ICE2SEA European project (Fettweis et al., 2013). For this study, MAR 4 

was used to generate hourly near-surface meteorological outputs (i.e., temperature, pressure, 5 

wind speed and direction, longwave and shortwave radiation, precipitation, pressure, 6 

humidity, etc.) at a horizontal spatial resolution of 25 km to force an offline snow/ice model. 7 

The ERA-Interim reanalysis from the European Centre for Medium-Range Weather Forecasts 8 

(ECMWF) was used to initialize the MAR meteorological fields at the beginning of the 9 

simulation (1979) and to force the atmospheric lateral boundaries as well as the oceanic 10 

conditions (surface temperature and sea ice extent) every 6 hours over 1979-2010. MAR was 11 

not reinitialized every day by the ECMWF reanalysis and its results were not recalibrated 12 

after the simulation to better compare with observations as in other approaches (e.g. Box et 13 

al., 2004; Box et al., 2006). The reader is referred to Fettweis et al. (2005), Lefebre et al. 14 

(2003) and Fettweis et al. (2011) for detailed information on the MAR setup used here. 15 

3.4 Surface mass/energy balance and snow physical model  16 

The key equations related to SMB are the water and energy balance of the near-surface ice 17 

sheet. The bulk surface mass balance for each model pixel (i.e., integrated over the top ~10 18 

meters of the ice sheet) can be written as: 19 

  SMB P E C R            (1) 20 

where P is the surface precipitation, E is the surface evaporation/sublimation, C includes both 21 

liquid and solid condensation, and R is the meltwater runoff from the snow/icepack. Note that 22 

refreezing is implicitly included in the runoff term. Evaporation, sublimation, condensation 23 

and runoff are the key variables that drive the surface mass loss (SML), while precipitation is 24 

the key meteorological driver for GrIS surface accumulation.  25 

The temporal evolution of snow temperature in a vertical snow column is constrained by the 26 

conservation of energy equation, i.e. (Brun et al. 1989): 27 

2

2

( ) ( )pc T T
q

t z

  
 

 
       (2) 28 
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where   is the snow density, 
pc  is the snow heat capacity, T is the snow temperature at 1 

depth z and time t, and   is the snow heat conductivity, and q represents a sink (melt) and 2 

source (refreezing). It is worth noting that Eq. (2) is valid for T<273.15K; any energy inputs 3 

that would raise the temperature beyond freezing instead contribute directly to melt. Equation 4 

(2) is subject to the surface energy balance as a boundary condition, which is the key driver of 5 

the snowpack energy budget: 6 

(1 )s l l n SH LH GR R R R Q Q Q               (3) 7 

where 
sR  is the downward shortwave radiation,   is the (broadband) snow albedo, 

lR  and 8 

lR are the downward and upward longwave radiation all terms are positive values. nR is the 9 

net radiation that is partitioned among the surface sensible ( SHQ ), latent ( LHQ ), and surface 10 

( GQ ) heat fluxes (into the snow). SHQ  and LHQ  are positive when directed toward the 11 

atmosphere and GQ  is positive when directed toward the snow/ice surface. Based on Eq. 12 

(3),
sR ,

lR , , and air temperature, specific humidity, and wind speed (embedded in SHQ  and 13 

LHQ ) are the key meteorological variables controlling the downward energy into the 14 

snowpack ( GQ ), which ultimately contributes to runoff (R). 15 

The above coupled surface mass/energy balance represented by the CROCUS snow physical 16 

model was used in this study to provide a prior estimate of the GrIS surface mass fluxes that 17 

is consistent with the nominal forcings provided by MAR. CROCUS is a 1D energy balance 18 

model consisting of a thermodynamic module, a water balance module taking into account the 19 

refreezing of meltwater, a turbulent module, a snow metamorphism module, a snow/ice 20 

discretization module and an integrated surface albedo module. CROCUS derives the 21 

turbulent sensible and latent heat fluxes using a bulk method (Brun et al., 1989), which 22 

applies Monin-Obukhov similarity theory to estimate turbulent fluxes using the near-surface 23 

wind speed and the temperature and humidity differences between the surface and the 24 

temperature at ~3 m, prescribed by MAR. CROCUS uses the bulk Richardson number to 25 

adapt the fluxes for stable and unstable atmospheric conditions, respectively. Note that a 26 

similar approach has been used by Van den Broeke et al., (2009). CROCUS computes albedo 27 

and absorbed energy in each layer for three spectral bands (i.e. visible, and two near infrared 28 

bands). The capability of the model to partition the incident solar radiation between the layers 29 

allows melt occurs on multiple depths. In CROCUS each snow layer in the snow column is 30 
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treated as a reservoir with a maximum water holding capacity of 5% of the pore volume. 1 

When the liquid water content (LWC) exceeds the threshold, excess water moves toward the 2 

layer below and the process continues until the water reaches the bottom layer and generates 3 

runoff. In addition, CROCUS takes into account changes in LWC due to snow melt, 4 

refreezing, and evaporation during a model time step. The physics of CROCUS and its 5 

validation are detailed in Brun et al. (1989, 1992).  6 

Assimilation of data into an RCM is another option for attempting to improve RCM fields 7 

(such as precipitation, for example), but beyond the scope of this work. The focus of this 8 

work is improving of surface mass fluxes using RCM outputs and assimilation of a surface 9 

remote sensing data stream. Furthermore, the use of a fully coupled MAR-CROCUS system 10 

to generate an a priori ensemble estimate would be computationally prohibitive. To reduce the 11 

computational burden, an offline version of CROCUS was implemented (i.e., MAR was run 12 

over the whole modelling period, and then MAR outputs were used to force CROCUS over 13 

the same period). One can think of the DA framework outlined below as providing an update 14 

to an initial (prior) estimate of the surface mass fluxes from MAR (or any other regional 15 

climate model) using IST data as an additional constraint. 16 

Of particular relevance to this study is the connection between CROCUS states and the 17 

measured variables used in the DA (i.e. IST). Surface temperature (synthetic IST) is an output 18 

of the forward model (CROCUS), therefore, it can directly be used as a prediction of the 19 

measurement in the DA system. One key aspect is that the raw measurements are available at 20 

higher spatial resolution than the model state (i.e. 1.5 km vs. 25 km). This was handled via an 21 

assumed change in the measurement error due to aggregation as described in more detail 22 

below. 23 

3.5 Model adaptation  24 

The CROCUS snow/ice model was originally developed for operational avalanche 25 

forecasting. Therefore, the model must be modified for SMB ice sheet applications. 26 

Following Fettweis (2006), the bottom boundary condition was modified for simulating 27 

approximately the top 10 meters of the ice sheets. In this context, this represents the “surface” 28 

mass and energy balance via the vertically integrated states and fluxes within these top layers 29 

of the ice sheet. This method consists of the following rules: First, if during the model 30 

integration the sum of the snow and ice layer heights becomes less than 8 m, the bottom layer 31 
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is extended for two meters. Second, in the case that the sum of the snow and ice layer heights 1 

becomes larger than 15 m, the bottom layer is divided by two. This is consistent with the 2 

methodology used in nominal MAR simulations.              3 

3.6 Ensemble Batch Smoother (EnBS) Framework  4 

The EnBS is a technique that conditions a prior estimate of model states on measurements 5 

taken over an assimilation window to generate a posterior reanalysis estimate rather than a 6 

real-time (or sequential) estimate (Girotto et al., 2014a; Bateni et al., 2013, 2015). In the 7 

context of this paper, the assimilation window is a full annual cycle and measurements consist 8 

of IST data over this period. Using the generated forcing fields from MAR, the CROCUS 9 

model was run forward in time to provide an ensemble of a priori estimates of snow/ice state 10 

variables (e.g. surface temperature, snow/ice layer temperature, density, grain size, etc.) and 11 

different surface mass fluxes (e.g. evaporation, sublimation, runoff, etc.). The propagation of 12 

the CROCUS model forward in time can be shown in state-space form as: 13 

( ) ( ( ), ( ), )j j j jt f ty y u          (4) 14 

where ( )j ty  is the vector of states for the jth realization at time t, (.)f  represents the 15 

CROCUS model operator, ( )j y  is the vector of states at previous times ( ), ( )j tu  is the 16 

forcing fields for realization j, and 
j  is the model parameter vector for replicate j. 17 

Conventionally, the generated snow/ice states and surface mass fluxes by the forward 18 

propagation of CROCUS are called the open-loop (prior) estimates. Note that ( 0)j  y  19 

represents the initial snow profile (IC: initial condition).   20 

The main source of uncertainty in a priori snow/ice states and surface mass fluxes is 21 

hypothesized to be most likely due to errors in the meteorological forcings ( ( )j tu , see Eq. 4) 22 

generated by a parent model (in this case MAR): incoming shortwave and longwave radiation, 23 

air temperature (
aT , which is implicit in the latent and sensible heat fluxes), precipitation, 24 

wind speed, relative humidity, and cloudiness. Herein, our focus is on the sub-set of key 25 

forcings that are the postulated main drivers of SMB (i.e., P, 
lR , 

sR , and 
aT ). It is 26 

hypothesized that the a priori uncertainty in forcings can be modeled via:  27 

,( , ) ( ) ( , )j P j MARx t x x tP P         (5a)   28 
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, , ,( , ) ( ) ( , )s j S j s MARx t x x t R R       (5b) 1 

, , ,( , ) ( ) ( , )l j l j l MARx t x x t R R         (5c) 2 

, , ,( , ) ( ) ( , )a j T j a MARx t x x tT T        (5d) 3 

 where ( , )MAR x tP , , ( , )s MAR x t
R , , ( , )l MAR x t

R , and 
, ( , )a MAR x tT  are the nominal near-surface 4 

meteorological outputs from MAR, 
, ( )P j x , 

, ( )S j x , 
, ( )l j x , and 

, ( )T j x  are lognormally-5 

distributed multiplicative coefficients designed to capture uncertainty in the forcing inputs. 6 

The subscript j represents an individual ensemble member sampled from the postulated 7 

uncertainty distribution (j = 1,…, eN , where eN  represents the ensemble size) and x shows 8 

the spatial index (i.e., implicitly represents an individual computational pixel in the domain). 9 

It should be noted that, a multiplicative lognormal perturbation model (e.g. Margulis et al., 10 

2002; Andreadis and Lettenmaier, 2006; Forman and Margulis, 2010, etc.) was used since all 11 

forcing (i.e., P, 
lR , 

sR , and 
aT [ºK]) are positive quantities and it provides a simple 12 

mechanism for capturing the expected uncertainty in the inputs. This type of perturbation 13 

model characterizes the ensemble using the first two moments (i.e., mean and coefficient of 14 

variation (CV)) (Forman and Margulis 2010). In this study, the mean, CV, and cross 15 

correlation between the forcing variables was obtained using the reported values in De 16 

Lannoy et al. (2010, 2012). All of the parameters for each forcing are shown in Table 1.  17 

Traditional DA applications are posed as state estimation problems where the vector of state 18 

variables (i.e., snow temperature, density, grain size, depth, etc.) is estimated via conditioning 19 

on measurements. In the current application, this can become prohibitive since the state vector 20 

dimension is extremely large (i.e., each snow state profile involves 50 layers with several 21 

states per pixel and several thousand pixels over the domain). More importantly, updated 22 

states do not provide quantitative information about surface mass fluxes. Hence, here we took 23 

a different approach. Rather than estimating the states directly, we treated the multiplicative 24 

coefficients 
,i j in Eq. (5) as the ‘states’ to be estimated. In other words, the multiplicative 25 

coefficients have been used to transfer the nominal MAR forcing into probabilistic space (i.e. 26 

prior and posterior forcings). The DA algorithm uses IST measurements to condition the 27 

probability density function (pdf) of the prior multiplicative coefficients to compute the 28 

posterior pdf of the multiplicative coefficients. This strategy, which was also used specifically 29 

for precipitation in Durand et al. (2008) and Girotto et al. (2014a), is in direct recognition of 30 
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the fact that the primary source of uncertainty in surface mass fluxes is due to error in the 1 

near-surface meteorological forcing inputs. The added benefit of this approach is that the size 2 

of the state vector is significantly reduced even in the case of time variant multiplicative 3 

states. Such a strategy derives a posterior estimate of the forcing variables directly (via the 4 

updated 
,i j ), and consequently allows for improved estimates of the surface mass fluxes via 5 

a posterior integration of CROCUS (with the posterior forcing inputs). The DA system 6 

theoretically allows the multiplicative states to vary on any arbitrary time scale. However, for 7 

simplicity, we implemented time-invariant perturbations (i.e., assumed 
,i j  were unchanged 8 

over the annual modelling period) herein. In this way the update to the states was designed to 9 

allow for biases and/or low-frequency errors in individual realizations in the prior 10 

multiplicative states.     11 

It would be ideal to characterize the uncertainties for all inputs from the information content 12 

in the assimilated data stream(s). However, in many cases available measurements are not 13 

relevant to some sources of uncertainty in the models. For instance, in this study, IST is less 14 

likely to have information about precipitation because there is no expected meaningful 15 

correlation between precipitation and IST. With regard to the fact that precipitation cannot be 16 

updated using the IST data the focus of this work has involved constraining the GrIS surface 17 

mass loss (SML) components (i.e., sublimation/evaporation, condensation, and runoff), while 18 

still including the expected uncertainty in the accumulation term (precipitation). In other 19 

words, all forcing inputs were perturbed to take into account their respective postulated 20 

uncertainties, but only longwave, shortwave and surface air temperature coefficients were 21 

updated as part of the assimilation system.     22 

In the update step, the EnBS merges IST measurements with prior multiplicative states in 23 

order to generate a posterior estimate of those multiplicative states. In this study, we used an 24 

EnBS, which was implemented in a batch mode over a pre-defined window (i.e., applied over 25 

one year) with a single update. This feature of the EnBS (i.e., the batch mode update) allows 26 

running MAR and CROCUS in an offline mode that could be applied to the historical record. 27 

The open-loop (prior) estimate of the variables of interest (i.e., S , l , and T ) were collected 28 

into the state matrix  . Similarly, the vector of synthetically generated IST measurements 29 

was assembled into a vector: 30 

measurement true T T v          (6) 31 
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where v  is the assumed additive white Gaussian error and trueT  is the synthetic truth (see 1 

Sect. 4.1). Finally, each ensemble member was updated individually via a Kalman-type 2 

update equation (Durand and Margulis, 2008; Bateni et al., 2013, 2015), 3 

,[ ]j j measurement j predicted j

    K T V T      (7)   4 

where 
j

  and 
j

  represent the jth ensemble member before and after the update, respectively, 5 

predictedT is the matrix of predicted measurements consisting of predicted IST. V is the 6 

measurement error that was synthetically produced and added to the measurements in order to 7 

avoid correlation among the replicates (Burgers et al. 1998), and  K is the Kalman gain matrix 8 

which  is given by  9 

1[ ]T TT V



 K C C C        (8) 10 

where VC  is the error covariance of the measurements, 
TC is the cross-covariance between 11 

the prior states and predicted measurements, and 
TTC  is the covariance of the predicted 12 

measurements. In this framework, the state variables are related to the measurements in the 13 

batch through the covariance matrices that are obtained from the ensemble.  14 

The update in Eq. (7) can be seen as a projection of measurement-prediction misfits onto the 15 

states. The updated (posterior) multiplicative states were used in Eq. (5) to retrieve updated 16 

(posterior) forcing. The posterior forcings and initial snow profile (I.C.) were used as inputs 17 

in CROCUS to estimate the posterior surface mass fluxes. The proposed methodology can 18 

simply be extended to multiple years by applying the DA sequentially and independently for 19 

each year (e.g. Girotto et al., 2014b) or via applying the DA to a moving window (e.g. Dunne 20 

et al., 2005). A schematic illustration of the methodology is presented in Figure 2. The 21 

proposed methodology can be thought of as a post-processing (reanalysis) of MAR estimates 22 

by constraining the model using independent IST observations.  23 

 24 

4 Experimental Design 25 

An OSSE or synthetic twin experiment offers a controlled setting in which the true forcing 26 

variables (i.e., S , l , and T ) are available. The goal of an OSSE is to evaluate the feasibility 27 

of the new methodology prior to assimilating real space-borne measurements. In an OSSE, a 28 

synthetic true state and corresponding noisy measurements of the system are generated and 29 
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used to evaluate the feasibility of the DA framework (e.g. Durand and Margulis, 2006; Crow 1 

and Ryu, 2009; De Lannoy et al., 2010).  2 

4.1 True selection  3 

The synthetic truth uses realistic input and measurement error characteristics in conjunction 4 

with the forward models to generate a realistic realization of the true system. In this study, the 5 

synthetic truth was selected as an outlier (defined below) from the generated ensemble due to 6 

the fact that errors in forcings can yield differences between a forward model (open-loop) 7 

estimate and the true surface mass fluxes.  8 

In the OSSE system, traditionally the synthetic true ensemble is chosen from state space 9 

trajectory of the forward model (e.g., Crow and Van Loon, 2006; Durand and Margulis, 2006; 10 

Bateni et al., 2013). While an alternative approach could involve choosing the synthetic truth 11 

from the trajectory space of another well developed RCM model, running multiple RCM 12 

models to generate a synthetic truth is prohibitive. 13 

The ensemble of forcing data was generated via Eq. (5) for the year 2010 and then the offline 14 

CROCUS implementation was run using the ensemble of forcing data to generate estimates of 15 

the GrIS surface mass fluxes in 2010. The year 2010 was chosen, at least in part, since it was 16 

characterized by an extreme melt rate (Tedesco et al., 2011). Considering the fact that runoff 17 

is the main component of the GrIS surface mass loss, the true ensemble (synthetic truth) was 18 

selected in a way that the integrated true runoff over the GrIS was an outlier relative to the 19 

median of the ensemble simulations. The forcing variables, states, and fluxes corresponding 20 

to the synthetic truth were also considered as the true forcings, the true states and the true 21 

fluxes respectively. It should be highlighted that in a synthetic DA experiment, any generated 22 

realization from the forward model (CROCUS) can be used as the synthetic truth, but one that 23 

is significantly different from the prior mean/median allows for a more robust assessment of 24 

the value of the assimilated measurements. In other words, in an OSSE the goal is to assess 25 

whether a DA framework can replicate the randomly selected true by merging the 26 

measurements with the prior (open-loop) estimates.    27 

4.2 Assimilated measurement characteristics  28 

Surface temperature from the forward model can be considered as a close approximation of 29 

the remotely-sensed IST. Here, the synthetic DA experiments were designed to mimic reality 30 
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as much as possible. Hence, the DA system was run with a realistic representation of the 1 

temporal frequency of real space-borne IST measurements; e.g. the GrIS IST measurements 2 

from MODIS have a daily temporal resolution. However, in many instances daily 3 

observations are not available due to cloud contamination, instrument outage, and quality 4 

related considerations. To take this issue into account, the number of available daily IST 5 

measurements (i.e., synthetic measurements) for assimilation in each month was derived from 6 

the spatial average seen in the actual Greenland IST product (e.g., Hall et al., 2012). The days 7 

with measurements were selected randomly so that the total number per month was consistent 8 

with the real number of available measurements.  9 

Since the raw MODIS IST measurements are available at a much finer spatial resolution (i.e. 10 

~1.5 km) than the model scale (25 km), the measurements themselves and their error 11 

characteristics would require a pre-processing spatial aggregation to match the resolution of 12 

computational pixels (~25 km). In the context of the OSSE in this study, the synthetic 13 

measurements and forward model both have the same spatial resolution therefore there is no 14 

need for spatial aggregation of the predicted measurement. However, specification of realistic 15 

measurement errors need to take into account the difference in spatial resolution between 16 

MODIS IST measurements and the model pixel scale. Measurement errors for MODIS IST at 17 

its raw resolution (i.e. 1.5 km) are expected to be ~1º -1.5ºK (e.g. Hall et al., 2012). Hence the 18 

measurement errors at the model scale (25 km) are expected to be less than or equal to this 19 

value depending on the level of correlation of the measurement errors at the sub-pixel scale. 20 

In the case of perfectly uncorrelated sub-pixel measurement errors, the aggregated 21 

measurement would be expected to have a measurement error equal to the fine-scale value 22 

divided by the number of sub-grid MODIS pixels. Assuming uncorrelated sub-grid errors are 23 

likely overly optimistic, we postulated that the measurement error standard deviation of IST at 24 

the 25 km scale is 1K. 25 

4.3 Implementation  26 

The feasibility of the new DA system was evaluated via assimilation of IST as follows: A 27 

synthetically generated data stream was assimilated within an EnBS framework to assess the 28 

information content of the IST and explore whether it can overcome errors in forcing inputs. 29 

This was examined by comparing the open-loop and EnBS estimates of multiplicative states 30 

with the synthetic truth. Thereafter, the posterior meteorological forcings were fed into 31 

CROCUS to estimate the surface mass fluxes. The performance of the EnBS algorithm was 32 
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further evaluated through the comparison of the posterior estimates with the prior estimates 1 

and the true estimate for all surface mass fluxes. It is worth noting that in the OSSE in this 2 

study the ensemble size was set to 100 replicates which has been shown to be adequate in 3 

previous relevant studies (e.g. Margulis et al., 2002; Huang et al., 2008; Evensen 2009).  4 

 5 

5 Results  6 

5.1 Performance of the EnBS via Assimilation of IST 7 

To provide an illustrative example of the methodology, Figure 3a-c shows the distribution of 8 

prior (open-loop) and posterior (obtained by assimilating IST) multiplicative state variables 9 

corresponding to the different forcings for a sample pixel (the red square in Figure 1) in the 10 

ablation zone (latitude 67ºN longitude 49.8ºW), which is the critical zone in terms of the GrIS 11 

surface mass loss. The prior distribution of multiplicative coefficients for each forcing 12 

variable is wide, representing the postulated uncertainty in the prior forcings. In contrast, 13 

Figure 3a shows that the histogram of the posterior estimates of T  is tightly distributed 14 

around the true estimate. A narrow distribution around the true estimate means that the DA 15 

system uses the information contained in the IST sequence and moves the ensemble members 16 

toward the true estimate while reducing the uncertainty of T . The reduction in uncertainty is 17 

evident by comparing the base of the posterior histogram with that from the prior estimates. 18 

The positive update by the DA system can be explained based on the fact that IST and air 19 

temperature are coupled and each one affects the other (Hall et al., 2008). Figure 3b illustrates 20 

that the median of the posterior estimate of l  agrees well with the corresponding synthetic 21 

truth. Incoming longwave radiation is correlated with the effective (near-surface) air 22 

temperature and as stated above, IST and surface air temperature are closely tied to each 23 

other. Prior to melt, solar radiation goes into heating the snow/ice surface and during the melt 24 

period, energy input drives sublimation or evaporation and melt (Box and Steffen 2001). 25 

Therefore, it can be stated that IST is positively correlated with the incoming shortwave 26 

radiation. The EnBS system takes advantage of this correlation and provides improved 27 

estimates of the multiplicative state related to shortwave radiation (Figure 3c). 28 

Figure 3d presents the time series of the IST for the prior, posterior, synthetic true, and 29 

assimilated measurements during a portion of the assimilation window. For the purpose of 30 
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illustration, IST data for 10 days during the dry period (January) and beginning of the melt 1 

period (April) were selected to show the ability of the algorithm to estimate the true IST 2 

(Figure 3d and Figure 3e). It is evident in Figure 3d-e that the EnBS captures the diurnal 3 

variability of IST and closely estimates the true IST both during the daytimes and nighttimes 4 

during the dry and melt periods. Moreover, Figure 3d shows that the EnBS successfully 5 

estimates the true IST even when the temporal resolution of the IST measurements 6 

significantly decreases. This is important since the IST record shows that there are fewer 7 

measurements available during the months of December and January (Hall et al., 2012) where 8 

in some years the available measurements during these two months drop to fewer than 10 9 

measurements per month. Comparing Figure 3d with Figure 3e also shows that during the 10 

month of January when there are fewer IST measurements the posterior estimates are in good 11 

agreement with the true IST, however, the uncertainty of the estimates is slightly larger. 12 

These results illustrate that information from IST measurements can be exploited to estimate 13 

the multiplicative states (i.e. S , l , and T ) and consequently the IST. 14 

Results for the whole domain are presented in terms of relevant bulk metrics that capture the 15 

integrated impact of the forcings. Specifically, the pixel-wise cumulative incoming shortwave 16 

and incoming longwave radiation (in MJ/m
2
/year) were used to represent the total energy 17 

input into the ice sheet and provide insight into the surface energy balance of the GrIS. For 18 

the air temperature, negative degree-day temperature (NDD) (i.e., cumulative mean daily air 19 

temperature for days in which the mean daily air temperature is below 0°C) and the positive 20 

degree-day temperature (PDD) (i.e., cumulative mean daily air temperature for days in which 21 

the mean daily air temperature is above 0°C) are two other metrics which are indicative of 22 

snow accumulation and melt periods, respectively. These bulk metrics were used to evaluate 23 

the performance of the DA algorithm over the entire ice sheet using RMSE and an 24 

improvement metric.  25 

The spatial mean bias and the spatial RMSE of the prior and posterior estimates of the 26 

integrated forcing variables over the GrIS were computed using the prior, posterior, and true 27 

cumulative longwave, shortwave, and air temperature (i.e., PDD and NDD). Table 2 28 

summarizes the spatial mean bias and the spatial RMSE of the different forcing variables. As 29 

can be seen for the entire simulation period, the mean bias (RMSE) of cumulative shortwave, 30 

longwave, PDD, and NDD are, respectively, 84% (70%), 82% (85%), 94% (71%), and 65% 31 

(86%) less than the mean bias (RMSE) of the prior estimates.      32 
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An alternative method to evaluate the DA system is to determine the contribution of RS data 1 

to the estimate explicitly. Following Durand et al. (2006) and Bateni et al. (2013) an 2 

improvement metric based on the prior and posterior error relative to the true was defined as 3 

follows:  4 

 ( ) ( )True True

i i i i iY Y Y Y                                                (9) 5 

where the ( )iY   and ( )iY   represent the cumulative ensemble median of the prior and 6 

posterior estimates of the forcing i respectively and True

iY  is the cumulative synthetic true for 7 

the forcing i. The improvement metric i  can be used to interpret the contribution of the IST 8 

measurements to the posterior estimates of the forcing. This formulation suggests a value 9 

greater than 0 when the posterior error is less than the prior error (i.e., measurement improves 10 

the posterior estimates), a value equal to 0 when the prior and posterior errors are equal, and a 11 

value less than 0 when the error in the posterior estimates is greater than that in the prior 12 

estimates (the measurement degrades the posterior estimates). Table 2 shows that IST 13 

measurements make a large contribution to correct the forcing variables. IST contributed an 14 

integrated sum of 452 (MJ/m
2
/year), 375 (MJ/m

2
/year), 14 (ºC-day), and 257 (ºC-day) to 15 

correct the shortwave, longwave, PPD, and NDD. The improvement metric of the PDD is 16 

much smaller than that of the NDD due the fact that there are many fewer days in which the 17 

mean daily near-surface air temperature is above the freezing point.   18 

In order to further investigate the performance of the EnBS, the prior errors (i.e., prior - true) 19 

and the posterior errors (i.e., posterior - true) were computed for each forcing variable. Figure 20 

4a-d shows the histograms of the prior and posterior errors for cumulative
sR ,

lR , PDD, and 21 

NDD over the spatial domain. The EnBS reduces the uncertainty of the posterior estimates for 22 

all forcing variables and effectively removes any of the prior biases. Therefore, using the 23 

improved surface energy terms to force CROCUS improves vertically integrated melt energy 24 

and enhances the estimates of the states and fluxes over the vertical snow/ice column. 25 

5.2 Updating the SML terms 26 

While updating the forcing variables is the mechanism by which the EnBS transfers 27 

information from IST into the posterior estimates, the main objective of the DA framework in 28 

this study is to assess the feasibility of providing better estimates of the GrIS SML and related 29 

fluxes using the improved forcings. To generate a benchmark for our analysis, CROCUS was 30 
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run in open-loop mode using the prior forcings (explained above). The SML terms obtained 1 

from the prior (open-loop) simulation constitute a basis for evaluation of the methodology 2 

implemented in this study. Using the posterior forcing, CROCUS was executed for each grid 3 

cell to obtain posterior estimates of surface mass fluxes (i.e., runoff, sublimation /evaporation, 4 

and condensation) and consequently SML.   5 

Runoff plays an important role in the GrIS net mass loss and is the main component of the 6 

GrIS SML. The GrIS meltwater runoff is heavily concentrated in the ablation zone along the 7 

ice sheet margin where the width of the ablation zone in the GrIS in some regions is very 8 

narrow and does not exceed tens of kilometres. The map of synthetic true runoff (Figure 5a) 9 

shows that the west and southwest margins experience the highest rates of runoff that exceeds 10 

6 m water equivalent per year. It is worth remembering that the true runoff is an outlier in the 11 

context of ensemble modelling as explained previously. Figure 5b-c shows the runoff 12 

anomaly for the prior (i.e. prior-true) and the runoff anomaly for the posterior (i.e. posterior-13 

true) respectively. The gray areas represent the percolation and dry snow zones, which do not 14 

generally contribute to surface runoff during the simulation period. It should be noted that in 15 

this area the snowmelt is not necessarily zero but refreezing can inhibit runoff. The prior 16 

anomaly map (Figure 5b) shows that the open-loop simulation consistently underestimates the 17 

true runoff across the domain with a strong negative anomaly in the southwest margin (more 18 

than 1600 mm water equivalent below the true). Comparing the GrIS margin pixels in the 19 

prior and posterior maps (Figure 5b-c) shows that the anomaly of the posterior estimates is 20 

significantly lower than that of the prior estimates. Reduced anomalies indicate that the EnBS 21 

successfully recovers the true estimates of the runoff in most pixels. However, the posterior 22 

results are not perfect and the algorithm slightly underestimates and overestimates runoff in 23 

some pixels.  24 

Scatter plots of the runoff for the prior and posterior estimates versus the true estimates are 25 

illustrated in Figure 5d-e. Each data point in Figure 5d-e represents the ensemble median of 26 

the estimate (i.e., prior, posterior) versus the true estimate in a single pixel; and the error bar 27 

illustrates the corresponding ensemble interquartile range of the estimates in the same pixel. 28 

The scatter plot of the prior runoff shows that almost all data points lie below the 1:1 line, 29 

indicating that the prior estimates were significantly biased (by construct in this OSSE). The 30 

posterior scatter plot (Figure 5e) displays that the data points are narrowly distributed around 31 

the 1:1 line and the error bars are much smaller than that in the prior estimates, implying that 32 
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the proposed algorithm significantly removes the bias and decreases the uncertainty of the 1 

estimates.  2 

Sublimation and evaporation play an important role in the GrIS surface mass loss. However, it 3 

should be noted that MAR and CROCUS estimate surface sublimation which is considerably 4 

smaller than drifting snow sublimation. Lenaerts et al. (2012) reported for the period 1960-5 

2011 on average surface sublimation is responsible for 40% of total sublimation and drifting 6 

snow sublimation is responsible for another 60%. Here, the discussion focuses on sublimation 7 

rather than evaporation due to the fact that sublimation is one order of magnitude larger than 8 

evaporation. The map of synthetic true sublimation (Figure 6a) shows that the west and 9 

southwest of the GrIS in the ablation zone experience the largest sublimation rates. Box and 10 

Steffen (2001) explained that at the edge of the ice sheet, where slopes become steeper, the 11 

katabatic wind accelerates and tends to increase sublimation. Furthermore, the net radiation 12 

increases during the summertime, especially at lower latitudes, which in turn generates a 13 

vertical temperature gradient and increases the sublimation. Higher energy input also 14 

contributes to a positive albedo feedback (e.g. Tedesco et al. 2011) and further increases the 15 

sublimation rates. The prior anomaly map (Figure 6b) illustrates that the open-loop model 16 

underestimates the sublimation at the ice sheet margin and slightly overestimates it in the ice 17 

sheet interior. The results demonstrate that posterior sublimation estimates from the 18 

assimilation of IST are much closer to the truth than are the prior estimates (Figure 6c). 19 

Comparing the scatter plots of the posterior versus the true estimates with that of the prior 20 

versus the true estimates, reveals that the methodology successfully overcomes the bias and 21 

significantly reduces the uncertainty of the sublimation estimates and increases the confidence 22 

of the results (see Figure 6d-e).   23 

Surface solid condensation (deposition) also influences surface mass fluxes of the GrIS by 24 

adding mass to the ice sheet. Similar to sublimation, wind and the vertical specific humidity 25 

gradient are two key factors that control the deposition. To be more precise, colder 26 

temperatures and lower winds enhance the deposition rates. In contrast with sublimation, 27 

deposition occurs at night and during winter, mainly due to radiative cooling (Box and Steffen 28 

2001). Figure 7a shows that the surface solid condensation (SSC) is greater in the ice sheet 29 

interior where winds are weak and there is sufficient moisture in the air column. The high 30 

elevation central regions, however, show less condensation due to distance from moisture 31 

sources. High speed winds in the ice sheet margins prevent condensation despite the 32 
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availability of moisture. Figure 7b shows that the prior estimates for SSC is not in good 1 

agreement with the truth and that the prior simulation both underestimates and overestimates 2 

surface solid condensation across the domain. A comparison between the prior and posterior 3 

anomaly maps (Figure 7b-c) suggests that the posterior estimates closely recover the true 4 

estimates. Figure 7e shows that the data points are clustered around the 1:1 line; indicating 5 

that the EnBS corrects the bias in the prior estimates (Figure 7d). In addition, posterior error 6 

bars are significantly smaller than that of the prior error bars, indicating that the EnBS 7 

effectively uses the information content of the IST measurements to eliminate the bias and 8 

reduce the uncertainties of the posterior estimates. 9 

Herein, the SML is defined as the sum of the mass loss terms (i.e. runoff and 10 

sublimation/evaporation) and mass gain term (i.e. surface solid condensation) discussed 11 

above. Figure 8a shows that SML is greater in the west and southwest of the ice sheet where 12 

runoff is the dominant mass loss mechanism and is smaller in the ice sheet interior where 13 

mass loss mainly occurs through sublimation. Similar to runoff, the prior anomaly is largely 14 

concentrated in the ablation zone and since runoff is roughly two orders of magnitude larger 15 

than sublimation and condensation, the anomaly due to these two fluxes is almost 16 

undetectable in the anomaly map (see Figure 8b). Comparing the posterior anomaly map 17 

(Figure 8c) with that of the prior, clearly shows that the posterior SML is closely matched 18 

with the true estimates across the domain. Scatter plots (Figure 8d-e) also confirm that the 19 

EnBS effectively removes the bias and increases the confidence level of SML estimates.  20 

To provide an integrated picture over the full domain, Figure 9a-d shows the time series of the 21 

cumulative runoff, sublimation, surface solid condensation, and SML over the GrIS 22 

respectively in 2010. As illustrated in Figure 9a, the true runoff starts in late April and 23 

increases rapidly during the melt season (to a cumulative value of 408 mm) until late August. 24 

The central tendency of the prior simulation (as indicated by the ensemble median) 25 

underestimates the runoff by about 35% owing to errors in the forcing inputs. The posterior 26 

estimates show a cumulative runoff of 394 mm over the GrIS, which is in good agreement 27 

with the truth. Table 3 shows that the EnBS reduces the spatial mean bias (RMSE) of the prior 28 

estimates of runoff by 90% (61%) from -552 mm (646 mm) to -54 mm (250 mm). Note that 29 

runoff occurs in the ablation zone therefore the spatial mean bias and spatial RMSE for runoff 30 

were computed over the ablation zone. The spatial mean bias and spatial RMSE for 31 

sublimation, condensation, and SML were computed over the entire ice sheet. As evident in 32 
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Figure 9b, sublimation accelerates during the summer season owing to increased energy input 1 

to the snow/ice surface. The true estimate suggests that in total net sublimation (i.e. 2 

sublimation and evaporation) accounts for about 66 mm (~15%) mass loss over the GrIS. The 3 

median of the prior simulation shows a total sublimation loss of ~56 mm which is 10 mm less 4 

than the truth. The EnBS significantly improves the results where the posterior median 5 

estimate shows a total sublimation of 65 mm. From Table 3 the spatial mean bias (RMSE) of 6 

the posterior estimate shows a 90% (64%) reduction relative to the prior. In general surface 7 

solid condensation accelerates during the winter and decelerates in the summer season (Figure 8 

9c). The true simulation suggests a cumulative SCC of 27 mm, and the median of the prior 9 

and posterior estimates are 25 and 27 mm, respectively. The 76% reduction of the spatial 10 

RMSE of the posterior estimates and 80% reduction of the spatial mean bias (Table 3) also 11 

supports the accuracy of the posterior estimates. Finally, the true SML estimate is 450 mm, 12 

the prior and posterior median of SML are 295, 435 mm, respectively. Clearly the posterior 13 

SML estimate is in better agreement with the truth. The IST measurements contribute an 14 

integrated sum of 140 mm to correct the posterior estimates of the GrIS SML and also reduce 15 

the spatial mean bias and the spatial RMSE of the estimates by 90% and 62% respectively 16 

(Table 3).  17 

A probabilistic approach also provides information about the uncertainty of the estimates.  18 

Figure 9a-d show that the prior estimates of all surface mass fluxes have a large ensemble 19 

spread, reflecting the propagation of a priori forcing uncertainties to SML terms. During the 20 

update process the EnBS significantly reduces the uncertainties of the posterior estimates of 21 

forcing variables and consequently the posterior estimates of the surface mass fluxes. 22 

Comparing the narrow blue shaded area with the wide red shaded area illustrates that the 23 

EnBS increases the confidence of the model predictions by decreasing the error and 24 

uncertainties of the posterior estimates relative to the prior estimates. 25 

5.3 Sensitivity to the synthetic truth values  26 

As in any OSSE, the synthetic measurements are, by construct, a function of the chosen true 27 

and therefore the posterior results could be impacted by the particular selection of the true 28 

realization. To address this concern, and show the robustness of the proposed algorithm, the 29 

simulation was repeated for two different true values; one smaller than the baseline simulation 30 

and the other larger. In the first case the synthetic true runoff was set to 330 mm, which is the 31 

average of the runoff estimates from the open-loop simulation (i.e. ~260 mm) and the true 32 
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runoff from the baseline simulation (i.e., ~400 mm). In the second case the true runoff was set 1 

to 470 mm, which is 70 mm larger than the baseline simulation. Table 4 shows the RMSE of 2 

the surface mass fluxes for all simulation cases. The posterior RMSE of each mass flux for all 3 

simulation cases are very similar even when the prior RMSE of the estimates are significantly 4 

different. For example, the prior RMSE of the runoff (SML) for the second simulation case 5 

(true runoff equal to 470 mm) is 2.5 (2.6) times larger than the prior RMSE of the first 6 

simulation case (true runoff equal to 330 mm), but the posterior RMSE differs by only 4% 7 

(10%). Therefore, it can be stated that the DA algorithm robustly retrieve the true estimates of 8 

the surface mass fluxes and the performance of the algorithm is relatively insensitive to the 9 

selected truth.               10 

 11 

6 Discussion and conclusions 12 

A new data assimilation methodology for improving estimates of the GrIS surface mass loss 13 

fluxes has been tested and presented using an observing system simulation experiment 14 

framework. The prior estimates were derived from an offline surface module (CROCUS) 15 

forced by an ensemble of meteorological forcing fields that were based on a nominal regional 16 

climate model simulation (in this case MAR). A posterior estimate was generated by 17 

conditioning the forcings on the synthetically generated IST measurements using an ensemble 18 

batch smoother (EnBS) approach. Specifically, it was shown that using the EnBS with IST 19 

measurements was able to improve nominal estimates derived from MAR that result from 20 

erroneous forcing fields that drive surface mass and energy balance processes. The results 21 

illustrated that IST measurements have potential information on shortwave, longwave, and 22 

surface air temperature that allows for correction of errors in these terms. However, due to the 23 

lack of meaningful correlation between precipitation and IST measurements, the precipitation 24 

flux was not updated in this context (i.e. the prior and posterior precipitation is the same). 25 

Hence the assimilation of IST is primarily beneficial for estimating the surface mass loss 26 

terms and not the accumulation term. However, it should be noted that, using MAR-CROCUS 27 

to generate the synthetic truth might lead to optimistic results since the truth is taken from the 28 

same model. Mitigation of this was attempted by using an outlier for the truth. An expensive 29 

alternative, but worth pursuing in future work, would be to use other RCM models to generate 30 

the synthetic truth. That said, it can be argued that using another model such as RACMO2 31 

(Ettema et al., 2009) to generate the true realization will not significantly affect the results 32 
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because the synthetic truth from RACMO2 is likely to fall within the ensemble spread of 1 

MAR-CROCUS trajectory. The main reasons for that are (1) the SMB fluxes from MAR and 2 

RACMO2 are highly correlated (Fettweis et al., 2013), (2) the trends of SMB fluxes from two 3 

models are very similar Vernon et al., (2013).  Furthermore, sensitivity analysis shows that 4 

the proposed algorithm is able to retrieve the synthetic truth for the extreme cases where the 5 

real true stats fall beyond the chosen values. 6 

The new methodology has several advantages over the traditional state-space data 7 

assimilation approaches. First, in this new application the multiplicative perturbation variables 8 

are considered as states to be updated. Reduction of the size of the state vector and 9 

consequently computational costs is the direct outcome of this approach. Second, mass loss 10 

terms cannot directly be sensed by the means of satellite sensors; using this methodology, the 11 

mass loss fluxes were estimated indirectly by reducing the error in forcing variables. Finally, 12 

the modularity of the proposed methodology would allow for incorporation of any regional 13 

climate model and additional remotely-sensed observations in future applications. All of these 14 

advantages should make such data assimilation approaches an attractive and complementary 15 

approach to better resolve and diagnose the ice sheet surface mass fluxes. The improved mass 16 

loss estimates could also be used as input to net mass balance estimates and ultimately a sea 17 

level rise projection when applied to real data over the remote sensing record.   18 

As a final note, it should be emphasized that the application presented in this study does not 19 

attempt to optimize or include uncertainty in any model parameters. Rather, the focus is on 20 

the uncertainty of time-varying model forcing inputs, which is expected to be the primary 21 

source of uncertainty in estimates of surface melt. We acknowledge that the model parameters 22 

are treated as certain and therefore, any uncertainty/error in model parameters (e.g., water 23 

holding capacity that impacts the transformation of meltwater into runoff) would increase the 24 

expected error in posterior SML in an application with real data. A more general case where 25 

estimation of parameters is included in the data assimilation framework could be the basis of 26 

future work. 27 

The next logical step is to apply the methodology with real IST measurements to further 28 

validate the robustness of the proposed approach. This future work will include the use of the 29 

MODIS IST product for estimating GrIS SML. The data assimilation framework is general 30 

and could also include the potential application of assimilation of passive microwave, albedo, 31 
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and even Gravity Recovery and Climate Experiment (GRACE) data to further constrain GrIS 1 

SMB estimates. 2 
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Table 1: Postulated parameters (Coefficient of variation (CV) and cross-correlation) for 1 

multiplicative perturbations to hourly meteorological forcing inputs (the units for each forcing 2 

are: P  in mm/hour, 
sR and 

lR  in W/m
2
 and 

aT  in K). 3 

Perturbation  CV Cross correlation 

  P 
sR  

lR  Ta 

Precipitation (P) 0.5 1.0 -0.1 0.5 -0.1 

Shortwave (
sR ) 0.2 -0.1 1.0 -0.3 0.3 

Longwave (
lR ) 0.1 0.5 -0.3 1.0 0.6 

Air temperature (
aT )  0.005 -0.1 0.3 0.6 1.0 

 4 

 5 

 6 

7 
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Table 2 : The spatial mean bias, the spatial RMSE, and improvement metric  for the prior 1 

and posterior estimates of the forcing variables via assimilation of IST over the entire GrIS.  2 

 
sR  [MJ/m

2
/yr] 

lR  [MJ/m
2
/yr] PDD [ºC-day]  NDD [ºC-day]  

Prior Bias -82.0 -25.6 -16.7 -8.0 

Posterior Bias -12.8 +4.6 -1.0 -2.8 

Prior RMSE 791.6 549.1 33.3 394.6 

Posterior RMSE 241.3 97.9 9.7 55.4 

  452.2 375.0 13.8 257.0 

 3 

 4 

 5 

 6 

 7 

8 
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Table 3: The spatial mean bias and the spatial RMSE of runoff, sublimation/evaporation, 1 

surface solid condensation, and net mass loss estimates via assimilation of IST measurements. 2 

The spatial mean bias and the spatial RMSE for runoff were computed over the ablation zone 3 

and for the other surface mass fluxes were computed over the entire ice sheet.     4 

 Runoff  

[mmWE] 

Sublimation  

[mmWE] 

SSC 

 [mmWE] 

Surface mass loss 

 [mmWE] 

Prior Bias -551.6 -3.1 -0.5 -38.9 

Posterior Bias -54.0 -0.3 -0.1 -3.8 

Prior RMSE  646.1 14.7 4.6 174.1 

Posterior RMSE 249.8 5.3 1.1 66.9 

 5 

 6 

 7 

8 
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Table 4: The spatial RMSE of runoff, sublimation/evaporation, surface solid condensation, 1 

and net mass loss estimates via assimilation of IST measurements for three different true 2 

values.   3 

True Runoff 

[mm] 

 Runoff  

[mm] 

Sublimation  

[mm] 

SSC 

 [mm] 

Surface mass loss 

 [mm] 

330  Prior  348.9 13.4 4.7 92.8 

 Posterior  249.2 4.8 1.1 63.6 

400 (baseline) Prior  646.1 14.7 4.6 174.1 

 Posterior  249.8 5.3 1.1 66.9 

470  Prior  894.4 16.0 4.6 245.1 

 Posterior  259.4 5.2 1.1 70.7 

 4 

 5 

 6 
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 1 

 2 

Figure 1: The Greenland ice sheet mask (filled area), including the ablation zone (blue), the 3 

percolation zone (dark green), and the dry snow zone (bright green) based on an offline 4 

CROCUS simulation for the year 2010. The contour lines show the topography of the ice 5 

sheet with an interval of 500 m. The red square show the location of pixel in the ablation zone 6 

where used to Figure 3    7 

 8 

 9 

 10 
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Figure 2: Schematic illustration of the proposed methodology. The posterior SMB/SML is 3 

effectively a post-processing (reanalysis) of regional climate model (in this case MAR) 4 

estimates conditioned on IST measurements.       5 

 6 
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 1 

Figure 3: Ensemble histogram of the prior (red bars) and the posterior (after assimilation of 2 

IST) multiplicative states (blue bars) for (a) surface air temperature, (b) longwave radiation, 3 

(c) shortwave radiation for a sample pixel in the ablation zone. The prior (red line) and 4 

posterior (blue line) median values and truth (black line) are also shown for reference. The 5 

time series of: (d) the IST for the 10-day period during the dry season and (e) the IST for the 6 

10-day period during the melt season. The red and blue shaded areas represent the prior and 7 

posterior uncertainty band (interquartile range) and the red, blue, and black lines represent the 8 

median of the prior, the median of the posterior and the truth, respectively. The green circles 9 

represent the synthetically generated (noisy) IST measurements that are assimilated to 10 

generate the posterior estimates.    11 
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Figure 4: The histogram of the prior errors (red) and posterior (after assimilation of IST) 3 

errors (blue) for cumulative (a) shortwave radiation, (b) longwave radiation, (c) PDD, and (d) 4 

NDD over the full GrIS. 5 
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Figure 5: The (a) synthetic true runoff (mmWE/yr) for the year 2010, (b) runoff anomaly 2 

(mmWE/yr) for the prior (i.e., difference between the prior and true runoff), (c) runoff 3 

anomaly (mmWE/yr) for the posterior, (d) scatter plot of the prior runoff estimates, e) scatter 4 

plot of the posterior runoff estimates. Black dots are the ensemble median of the estimates and 5 

the error bars represent the corresponding ensemble interquartile range of the estimates.      6 
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Figure 6: The same as Figure 5 but for sublimation and evaporation. 2 
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Figure 7: The same as Figure 5 but for surface solid condensation (SSC).  2 
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Figure 8: The same as Figure 5 but for the GrIS surface mass loss (SML). 2 
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Figure 9: The time series of: (a) cumulative runoff, (b) cumulative sublimation and 3 

evaporation, (c) cumulative surface solid condensation, and (d) cumulative mass loss over the 4 

GrIS (in millimetres of water equivalent). The truth is the black dashed line, the prior 5 

ensemble median is the red line and the posterior ensemble median is the blue line. The red 6 

shaded area corresponds to the ensemble interquartile range (IQR) for the prior simulation 7 

and the blue shaded area corresponds to the ensemble IQR for the posterior estimates.  8 
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