We deeply thank the reviewer for writing an extended review to our manuscript. We
agree that changing the emphasis of the paper on carbon would make it more valuable
for the modeling community. We implemented suggested changes in the manuscript.

We consider all model improvements equally important and suggest the land surface
modeler to be aware of them while modeling permafrost carbon dynamics. As it was
mentioned in the discussion some of the LSMs include organic soil layer, which
significantly improves soil thermal dynamic as well as thaw depth. However, the effect
of the above ground vegetation on soil carbon buildup and its interaction with thaw depth
is not well discussed in the modeling papers. Our study emphasizes the importance of
these interactions in the models, which utilize the soil organic layer buildup schemes.

We agreed that conclusion sounded like and extension of the discussion. We rewrote the
conclusion according to your comments.

Introduction: We rewrote the last paragraph in this section.

Methods: We rewrote and reorganized the method sections. We included suggested text
in the section 2.1. We change the flow in section 2.3. The Method section now includes
the following subsections: 2.1. Frozen carbon initialization; 2.2. Dynamic SOL; 2.3
Coupling growth to thaw depth.

Yes, the GPP is also scaled with soil moisture. More details on that could be found in
Schaefer et al., (2008). The effect of the unfrozen water on soil carbon is discussed in
great detail in Schaefer and Jafarov (2015).

We agree with the lack of clarity in the writing, related to whether things happen in
real life or in the model. We made the corresponding rewrote and improved the clarity.

Thank you for pointing out the equation numbering and indexing we addressed them all.

Results, Discussion, Conclusion: We removed the Figure 4 and 9 and made the
corresponding changes in the text. We did not compare the soil carbon distribution with
depth with vertical distribution of the carbon from previous version of the model. As
mentioned in the text the previous distribution had soil carbon concentrated in the 2 cm
of the soil. That said the comparison plots from previous model run would look like high
carbon density with in 2 cm then small carbon density within the active layer, and similar
carbon density within the frozen part. Since for the previous run we assumed uniform
carbon density.

We reorganized the some parts of the results as suggested, moving corresponding parts to
the discussion. We rewrote completely discussion and conclusion sections in the
manuscript improve clarity and removing tautologies and making sure that conclusion
does not repeat the discussion.
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Abstract

Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere.
Studies show that warming of the perennially frozen ground could initiate significant release of
the frozen soil carbon into the atmosphere. To reduce the uncertainty associated with the
modeling of the permafrost carbon feedback it is important to start with the observed soil carbon
distribution. We initialized frozen carbon using the recent Northern Circumpolar Soil Carbon

Dataset. To better address permafrost thermal and carbon dynamics we implemented a dynamic

surface organic layer with vertical carbon redistribution, and jntroduced dynamic root growth

controlled by active layer thickness, which improved soil carbon exchange between frozen and
thawed pools. These changes increased the amount of simulated frozen carbon for present

conditions from 313 to 560 GtC, which is more consistent with the observed frozen carbon,stock,

1. Introduction

Warming of the global climate will lead to widespread permafrost thaw and degradation with
impacts on ecosystems, infrastructure, and emissions to amplify climate warming (Oberman,
2008; Callaghan et al., 2011, Shuur et al., 2015). Permafrost-affected soils in the high northern

latitudes contain 1300+200 Gt of carbon, where about 800 Gt C is preserved frozen in permafrost

1
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with ~550 GtC in the top three meters of soil (Hugeluis et al., 2014). As permafrost thaws,

organic matter frozen within permafrost will thaw and decay, which will initiate the permafrost
carbon feedback (PCF), releasing an estimated 120+85 Gt of carbon emissions by 2100
(Schaefer et al., 2014). The wide range of estimates of carbon emissions from thawing
permafrost depend in large part on the ability of models to simulate present permafrost area
extent (Brown et al, 1997). For example, the simulated permafrost in some models is
significantly more sensitive to thaw, with corresponding larger estimates of carbon emissions
(Koven et al., 2013). Narrowing the uncertainty in estimated carbon emissions requires

improvements in how Land Surface Models (LSMs) represent permafrost thermal and carbon

dynamics.

The active layer in permafrost regions is the surficial soil layer overlying the permafrost,
which undergoes seasonal freeze-thaw cycles. Active layer thickness (ALT) is the maximum
depth of thaw at the end of summer. LSMs used to estimate emissions from thawing permafrost
typically assume that the frozen carbon is located in the upper permafrost above 3 meters depth
and below the maximum ALT (Koven et al., 2011; Schaefer et al., 2011; MacDougall et al.,
2012). Thus, the simulated ALT determines the volume of permafrost in the top 3 meters of soil,
and thus the initial amount of frozen carbon. Consequently, any biases in the simulated ALT
will influence the initial amount of frozen carbon, even if different models initialize the frozen
carbon in the same way. Also, the same thermal biases that lead to deeper simulated active
layers also lead to warmer soil temperatures, making the simulated permafrost more vulnerable

to thaw and resulting in higher emissions estimates (Koven et al., 2013).

The surface organic layer (SOL) is the surface soil layer of nearly pure organic matter

that exerts a huge influence on the thermodynamics of the active layer. The organic layer
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thickness (OLT) usually varies between 5-30 cm, depending on a balance between the litter
accumulation rate relative to the organic matter decomposition rate (Yi et al., 2009; Johnstone et
al., 2010). A recent model intercomparision study shows that LSMs need more realistic surface
processes such as an SOL and better representations of subsoil thermal dynamics (Ekici et al.,
2014a). The low thermal conductivity of the SOL makes it an effective insulator decreasing the
heat exchange between permafrost and the atmosphere (Rinke et al., 2008). The effect of the
SOL has been well presented in several modeling studies. For example, Lawrence and Slater
(2008) showed that soil organic matter affects the permafrost thermal state in the Community
Land Model (CLM), and Jafarov et al., (2012) discussed the effect of the SOL in the regional
modeling study for Alaska, United States. Recently, Chadburn et al., (2015a,b) incorporated the
SOL in the Joint UK Land Environment Simulator (JULES) model to illustrate its influence on
ALT and ground temperatures both at a site specific study in Siberia, Russia, and globally. In
essence, the soil temperatures and ALT decrease as the OLT increases. Consequently, how (or
if) LSMs represent the SOL in the simulated soil thermodynamics will simultaneously determine
the initial amount of frozen permafrost carbon and the vulnerability of the simulated permafrost

to thaw.

In this study we Jmproved present day frozen carbon stocks in the Simple

Biosphere/Carnegie-Ames-Stanford Approach (SiIBCASA) model to reduce the bias of jnitial

permafrost carbon stocks in simulations of future permafrost carbon release. To achieve this we |

introduced three jmprovements into the SIBCASA model: 1) improve the soil thermal dynamics

and ALT, 2) improve soil carbon dynamics and build-up of carbon stocks in soil, and 3) initialize

the older carbon using observed circumpolar soil carbon (Hugeluis et al., 2014). |
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2. Methods

We used the SIBCASA model (Schaefer et al., 2008) to evaluate current soil carbon stocks in
permafrost affected soils. SIBCASA has fully integrated water, energy, and carbon cycles and
computes surface energy and carbon fluxes at 10 minute time steps. SiIBCASA predicts the
moisture content, temperature, and carbon content of the canopy, canopy air space, and soil
(Sellers et al., 1996a; Vidale and Stockli, 2005). To calculate plant photosynthesis, the model
uses a modified Ball-Berry stomatal conductance model (Ball, 1998; Collatz et al., 1991)
coupled to a C3 enzyme kinetic model (Farquhar et al., 1980) and a C4 photosynthesis model
(Collatz et al., 1992). It predicts soil organic matter, surface litter, and live biomass (leaves,
roots, and wood) in a system of 13 prognostic carbon pools as a function of soil depth (Schaefer
et al., 2008). The model biogeochemistry does not account for disturbances, such as fire, and
does not include a nitrogen cycle. SIBCASA separately calculates respiration losses due to

microbial decay (heterotrophic respiration) and plant growth (autotrophic respiration).

SiBCASA uses a fully coupled soil temperature and hydrology model with explicit
treatment of frozen soil water originally from the Community Climate System Model, Version
2.0 (Bonan, 1996; Oleson et al., 2004). To improve simulated soil temperatures and permafrost
dynamics, Schaefer et al. (2009) increased the total soil depth to 15 m and added the effects of
soil organic matter on soil physical properties. Simulated snow density and depth, and thus
thermal conductivity, significantly influence simulated permafrost dynamics, so Schaefer et al.
(2009) added the effects of depth hoar and wind compaction on simulated snow density and

depth. Recent model developments include accounting for substrate availability in frozen soil
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We spun SiBCASA up to steady-state initial conditions using an input weather dataset
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from the Climatic Research Unit National Center for Environmental Predictions (CRUNCEP)1
(Wei et al, 2014) for the entire permafrost domain in the northern hemisphere (Brown et al.,
1997). CRUNCEP is modeled weather data at 0.5x0.5 degree latitude and longitude resolution
optimally consistent with a broad array of observations. The CRUNCEP dataset used in this
study spans 110 years, from 1901 to 2010. We selected the first 30 years from the CRUNCEP
dataset (1901 to 1931) and randomly distributed them over 900 years. To run our simulations we
used JANUS High Performance Computing (HPC) Center at University of Colorado at Boulder.
The 900-yr time span was chosen in order to make optimal use of the computational time, which

allowed us to finish one spinup simulation on JANUS HPC without interruptions.

2.1.Frozen carbon initialization

We initialized the frozen carbon stocks using the Northern Circumpolar Soil Carbon Dataset

version 2 (NCSCDv2) (Hugeluis et al., 2013). The NCSCDv2 includes soil carbon density maps
in permafrost-affected soils available at several spatial resolutions ranging from 0.012° to 1°. The
dataset consists of spatially extrapolated soil carbon data from more than 1700 soil core samples.
This dataset has three main layers, each 1 meter in depth, distributed between ground surface and

3 meter depth.

We placed the frozen carbon within the top three meters of simulated permafrost, ignoring+
deltaic and loess deposits that are known to extend well beyond 3 meters of depth (Hugelius et

al., 2014). The bottom of the permafrost carbon layer is fixed at 3 meters, while the top varies

spatially depending on fhe simulated ALT during the spinup run. We initialized, the permafrost |

carbon by assigning carbon from the NCSCDv2to the frozen soil carbon pools below the
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maximum thaw depth. These frozen pools remained inactive until the layer thaws.

We initialized frozen carbon between the permafrost table and 3 meters depth using two
scenarios: 1) spatially uniform distribution of the frozen carbon throughout the permafrost
domain (Schaefer et al., 2011), and 2) observed distribution of the frozen carbon according to the
NCSCDv2. It is important to know the “stable” depth of the active layer before initializing
frozen carbon. We run the model for several years in order to calculate ALT, and then initialized
frozen carbon below the maximum calculated ALT. The frozen carbon was initialized only once
during the first equilibrium run cycle. For the next equilibrium run we used the previously
calculated permafrost carbon. We defined an equilibrium point when changes in overall

permafrost carbon were negligible or almost zero.

The total initial frozen carbon in each soil layer between the permafrost table and 3

meters is

Cr = pcbz, (1)
where Cfir is the total permafrost carbon within the i soil layer, p, is the permafrost carbon
density, and Az; is the thickness of the /™ soil layer in the model. For the uniform permafrost
carbon distribution, p. =21 kg C m™ and assumed to be spatially and vertically uniform
(Schaefer et al., 2011).  For the observed distribution from the NCSCDv2, p. varies both with

location and depth (Hugeluis et al., 2013).

The permafrost carbon in each layer is divided into three soil carbon pools as follows:

silow =0'8C]£r
Crlnet =0'2f;oot2met(:;r (2)

i i
str— 0. ZfrootZStrthr/

where frpor2mer aNd frpo25+ are the simulated fractions of root pool losses to the soil metabolic
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and structural pools respectively (Schaefer et al., 2008). The nominal turnover time is 5 years
for the slow pool, 76 days for the structural pool, and 20 days for the metabolic pool. Schaefer et
al. (2011) has a 5% loss to the metabolic pool and a 15% loss to the structural pool based on
observed values in Dutta et al. (2006). The simulated fractions are actually 5.6% to the
metabolic pool and 14.4% to the structural pool. We found it encouraging that the numbers
calculated with the SiBCASA metabolic fractions resulted in numbers that are close to the

observed values in Dutta et al. (2006).

2.2. Dynamic SOL

We modified SIBCASA to include a dynamic SOL by incorporating the vertical redistribution of
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below the permafrost table, the model would accumulate permafrost carbon, which remains
Jinactive until the layer thaws. As live, above-ground biomass in the model dies, carbon is
transferred into the first layer as litter. Without the vertical redistribution we describe here to
create a surface organic layer, the top layer of the model tended to accumulate carbon in excess

of that expected for pure organic matter.

To allow vertical movement and build up a SOL, we placed a maximum limit on the amount of
organic material that each soil layer can hold. When the simulated carbon content exceeds this
threshold, the excess carbon is transferred to the layer below. This is a simplified version of the
Koven et al., (2009) carbon diffusion model, which accounts for all sedimentation and

cryoturbation processes, because we wanted to limit our model only to the buildup of a SOL.

We calculate the maximum allowed carbon content per soil layer, C,,,, as

1000

C = Az—
max Pmax Mwe

3)
where p,,., 1s the density of pure organic matter or peat, Az is the soil layer thickness (m), MW¢
is the molecular weight of carbon (12 g mol™), and the factor of 10° converts from grams to
kilograms. Based on observations of bulk densities of peat, we assume P4, is 140 kg m?
(Price et al., 2005). The MW¢ term converts the expression into mol C m?, the SiBCASA

internal units for carbon. The simulated organic soil fraction per soil layer, f,, is defined as

9

ﬁ)rg = 4

Cmax7
where C is the carbon content per soil layer (mol m™). To convert to carbon we assume that the
fraction of organic matter is 0.5, which means that half of the organic matter by mass is carbon.

The original formulation allowed f,., to exceed 1.0 such that the excess organic material was
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essentially ‘compressed’ into the top soil layer, resulting in a 2-cm simulated SOL. We place an

upper limit of 0.95 on f,,, and transfer the excess carbon to the layer below. The OLT is

defined as the bottom of the lowest soil layer where fo,. is 0.95.

2.3. Coupling growth to thaw depth

We coupled simulated gross primary productivity (GPP), plant phenology, and root growth to simulated

thaw depth as a function of time. The model assumes root growth decreases exponentially with depth

based on observed vertical root distributions (Jackson et al., 1996; Schaefer et al., 2008). The maximum

rooting depth for completely thawed soil js defined as the soil depth corresponding to 99% of the

observed vertical root distribution or 1.1 m for the tundra and boreal forest biomes. In real life, growing
roots cannot penetrate frozen soil (Tryon and Chapin 1983, Van Cleve et al., 1983), so we restricted
simulated root growth to occur only within the thawed portion of the active layer. The date of snowmelt

determines the start date of the growing season and the start of active layer thawing (Grendahl et al. 2007;

Wipf and Rixen 2010). Since fine root and leaf growth are coupled (Schaefer et al., 2008), constraining

root growth to thawed soil also constrains spring leafout to occur after the active layer starts thawing. In

real life plants cannot photosynthesize without liquid water in the soil, so we scaled simulated GPP based

on the fraction of thawed roots in the root zone.

We restricted simulated root growth to occur only in thawed soil layers. In SiBCASA, leaf
growth is linked to fine root growth (Schaefer et al., 2008), so this also delays spring leafout until
the soil begins to thaw. We first calculated the fraction of thawed roots within the root zone

defined by;
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Ry = Z*l Rfi(l - Ficei)a (6)

where Ry is the fraction of total roots that are thawed, 1,4, Js the soil layer corresponding to

root depthg th.'is the reference root fraction for the i soil layer based on observed root

distributions, and Fic,, is the ice fraction calculated from the simulated ice content for the i" soil
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layer. When Ry, equals one, the entire root zone is thawed and when R, is zero, the entire root

zone is frozen. We assume evenly distributed liquid water in each layer such that Fj.. equals the

frozen soil fraction. We then calculated R, ¢ . the effective root fraction for the i™ soil layer,

Reffs.: Rf.z.(l -

%ceJ/Rthv (7) -

We then use Regy, 10 distribute new fine and coarse root growth within the soil column. When

Refr, equals zero, the soil layer is frozen with no root growth. Dividing by Ry, ensures Regr,
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sums to one within the soil column to conserve mass. This formulation makes the effective

maximum rooting depth, gqual to the thaw depth.

To couple GPP to thaw depth, we treated the reference root zone distribution for completely
thawed soil as the maximum root growth capacity defining the maximum potential GPP. When
Ry, <1, the root zone is partially frozen and GPP is less than its full potential. We defined a GPP

scaling factor, S as

Ry, for R, =0.01

Ssoitfrz = { 0 forR,, < 0.01° ®)

This assumes that at least 1% of the roots must be thawed for GPP to occur, corresponding to

about ~1 cm of thawed soil. Ssi- is applied along with the drought stress and temperature
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scaling factors to constrain photosynthesis (Schaefer et al., 2008). SIBCASA assumes that the
factors that control GPP also control wood and leaf growth, so we also included Sq,is- as a new
scaling factor in addition to the drought stress and temperature scaling factors that control wood

and leaf growth.

3. Results

The dynamic SOL decreased the simulated ALT on average 50% across the domain and allowed
the model to simulate permafrost in discontinuous zones where it could not before (Figure 1).
The area of near surface permafrost simulated with the current version of the model equals to
13.5 mil km® which is almost 38% greater than without the dynamic SOL (Schaefer et al., 2011).
This area is closer to the observed area from the International Permafrost Association: [16.2 mil
km® (Brown et al.,1997). Simulated ALT less than 2 m covers about 92% of the area in the new
simulations (Figure 1B) in comparison to 66% of the area in the Schaefer et al. (2011)
simulations (Figure 1A). The previous version of SIBCASA could not simulate permafrost in
many parts of the discontinuous zone with relatively warm climate. Adding the dynamic SOL
essentially decreased the thermal conductivity of the surface soil allowing SIBCASA to simulate

permafrost where the mean annual air temperatures (MAAT) are close to 0 °C.

To illustrate the improvement of the simulated ALT with respect to the observed data, we
compared simulated ALT with measured values from Circumpolar Active Layer Monitoring
(CALM) stations. The CALM network is a part of the Global Terrestrial Network for Permafrost
(GTN-P) (Burgess et al., 2000). The monitoring network measures ALT either using a
mechanical probe or a vertical array of temperature sensors (Brown et al., 2000; Shiklomanov et

al., 2010). After matching up the CALM coordinates with the coordinates of previously
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simulated ALT (Schaefer et al., 2011), we excluded sites with no measurements or ALT greater
than 3m depth, ending up with 76 CALM stations. Figure 2 shows simulated vs. observed ALT
for the 76 CALM sites. The current simulations have a higher resolution than Schaefer et al.
(2011) simulations, which allowed us to reach a higher order of heterogeneity between measured
and simulated ALTs. The Pearson’s correlation coefficient, R, is negative and not significant for
the Schaefer et al. (2011) simulations (Figure 2A), but is positive and statistically significant for
the current simulations assuming p< 0.05 (Figure 2B). The dynamic SOL greatly improves the

simulated ALT, but SiBCASA still tends to overestimate ALT.

Figure 3 illustrates the effect of the frozen soil restrictions on phenology and GPP at a
single point in central Siberia. Before applying a frozen soil restriction, SIBCASA maintained
fine roots even in winter, resulting in root growth all year with a peak in spring corresponding to
simulated leafout (Figure 3A). Simulated GPP was restricted by liquid water availability and
was closely tied to thawing of the active layer, resulting in a lag as high as 60 days between
leafout and start of GPP in spring. Restricting growth and GPP to when the soil is thawed

essentially synchronizes all phenological events to occur at the same time (Figure 3B).

Restricting growth and GPP to when the soil is thawed delayed the onset of plant

photosynthesis in spring in permafrost-affected regions. Introduction of the thawed root fraction
in the model reduced GPP primarily in early spring. To illustrate the difference between
unconstrained and restricted root growth (Figure 3), we ran the model for ten years for both

cases. The difference between unconstrained and restricted root growth yesulted in an overall

~9% reduction in GPP for the entire permafrost domain, nearly all of which occurred in spring.

[The simplified scheme of the soil carbon dynamics improves permafrost resilience, but

does not fully reproduce observed carbon distribution with depth (Harden et al., 2012). [To
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illustrate soil carbon distribution with depth we selected three representative areas: a continuous
permafrost area corresponding to tundra type biome above the Arctic circle, an area in the
boundary of continuous and discontinuous permafrost corresponding to the boreal forest biome,
and an area near the south border of the discontinuous permafrost corresponding to poorly
vegetated-rocky areas. We calculated mean and standard deviation of the carbon density
distribution with depth for 200 grid points around each of the three selected locations. Simulated

typical carbon densities from the selected locations are shown on Figure 4, All profiles shown on

Figure 4 show a similar pattern: a 20-30 cm SOL with reduced carbon content at the bottom of

the active layer.

[The decrease in ALT resulting from a dynamic SOL increases the volume of permafrost

in the top 3 meters of soil, greatly increasing the initial amount of frozen permafrost carbon in

the simulations. Schaefer et al. (2011) without the dynamic SOL assumed a uniform permafrost

3

carbon density of 21 kg - C - m™>, resulting in a total of 313 Gt of permafrost carbon at the start

of their transient run (Figure 5A). To compare with the Schaefer et al. [2011] results, we

initialized the permafrost carbon using the same assumed uniform carbon density and ran

SiBCASA to steady state initial conditions (Figure 5B). Assuming the same uniform carbon

density, the current version with the dynamic SOL results in a total of ~680Gt C compared to
313 GtC in Schaefer et al. (2011). The dynamic SOL effectively doubled the volume of

permafrost in the top three meters of soil and the amount of simulated frozen carbon.

Jnitializing SiBCASA with the observed spatial distribution of permafrost carbon from +/

the NCSCDv2 resulted in ~560 GtC of carbon stored in permafrost after spinup. This does not

mean that after the spinup simulated permafrost carbon stocks exactly matched the NCSDC data.

During spinup, ALT varies with time, introducing carbon movement from frozen to thawed
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overestimated SOC in Central Siberia (Figure 6A and B). Failure to simulate soil carbon in

southeast Canada and southwest Siberia (Figure 6C) js attributed to deep active layer thickness.

The overestimation of SOC in Central Siberia is a result of coupling between GPP and ALT.
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Figure 4, An averaged soil carbon distribution from 200 grid cells A) for the tundra region in continuous

permafrost zone, B) for the boreal forest on the boundary between continuous and discontinuous zones,
and C) for the low carbon soil at the south border of the discontinuous permafrost zone. The solid blue
curve indicates the mean the white blue shading indicate the spread in the soil carbon density.
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