

The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics

Elchin Jafarov^{1*} and Kevin Schaefer¹

¹ National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, CO 80309

*Corresponding author, Email: elchin.jafarov@colorado.edu

Abstract

9 Permafrost-affected soils contain twice as much carbon as currently exists in the atmosphere.
10 Studies show that warming of the perennially frozen ground could initiate significant release of
11 the frozen soil carbon into the atmosphere. To reduce the uncertainty associated with the
12 modeling of the permafrost carbon feedback it is important to start with the observed soil carbon
13 distribution. We initialized frozen carbon using the recent Northern Circumpolar Soil Carbon
14 Dataset. To better address permafrost thermal and carbon dynamics we implemented a dynamic
15 surface organic layer with vertical carbon redistribution. In addition, we introduced dynamic
16 root growth controlled by active layer thickness, which improved soil carbon exchange between
17 frozen and thawed pools. Our results indicate that a dynamic surface organic layer improved
18 permafrost thermal dynamics and simulated thaw depth. These improvements allowed us
19 achieve better agreement with the estimated carbon stocks in permafrost-affected soils using
20 historical climate forcing.

22 1. Introduction

23 Warming of the global climate will lead to widespread permafrost thaw and degradation with
24 impacts on ecosystems, infrastructure, and emissions to amplify climate warming (Oberman,

25 2008; Callaghan et al., 2011, Shuur et al., 2015). Permafrost-affected soils in the high northern
26 latitudes contain 1300 ± 200 Gt of carbon, where about 800 Gt C is preserved frozen in permafrost
27 (Hugelius et al., 2014). As permafrost thaws, organic matter frozen within permafrost will thaw
28 and decay, which will initiate the permafrost carbon feedback (PCF), releasing an estimated
29 120 ± 85 Gt of carbon emissions by 2100 (Schaefer et al., 2014). The wide range of estimates of
30 carbon emissions from thawing permafrost depend in large part on the ability of models to
31 simulate present permafrost area extent (Brown et al., 1997). For example, the simulated
32 permafrost in some models is significantly more sensitive to thaw, with corresponding larger
33 estimates of carbon emissions (Koven et al., 2013). Narrowing the uncertainty in estimated
34 carbon emissions requires improvements in how Land Surface Models (LSMs) represent
35 permafrost thermal and carbon dynamics.

36 The active layer in permafrost regions is the surficial layer overlying the permafrost,
37 which undergoes seasonal freeze-thaw cycles. Active layer thickness (ALT) is the maximum
38 depth of thaw at the end of summer. LSMs used to estimate emissions from thawing permafrost
39 typically assume that the frozen carbon is located in the upper permafrost above 3 meters depth
40 and below the maximum ALT (Koven et al., 2011; Schaefer et al., 2011; MacDougall et al.,
41 2012). Thus, the simulated ALT determines the volume of permafrost in the top 3 meters of soil,
42 and thus the initial amount of frozen carbon. Consequently, any biases in the simulated ALT
43 could influence the initial amount of frozen carbon, even if different models initialize the frozen
44 carbon in the same way. Also, the same thermal biases that lead to deeper simulated active
45 layers also lead to warmer soil temperatures, making the simulated permafrost more vulnerable
46 to thaw and resulting in higher emissions estimates (Koven et al., 2013).

47 The surface organic layer (SOL) is the surface soil layer of nearly pure organic matter

48 that exerts a huge influence on the thermodynamics of the active layer. The organic layer
49 thickness (OLT) usually varies between 5-30 cm, depending on a balance between the litter
50 accumulation rate relative to the organic matter decomposition rate (Yi et al., 2009; Johnstone et
51 al., 2010). A recent model intercomparision study shows that LSMs need more realistic surface
52 processes such as upper organic layer and better representations of subsoil thermal dynamics
53 (Ekici et al., 2014a). The low thermal conductivity of the SOL makes it an effective insulator
54 decreasing the heat exchange between permafrost and the atmosphere (Rinke et al., 2008). The
55 effect of the SOL has been well presented in several modeling studies. For example, Lawrence
56 and Slater (2008) showed that soil organic matter affects the permafrost thermal state in the
57 Community Land Model (CLM), and Jafarov et al., (2012) discussed the effect of the SOL in the
58 regional modeling study for Alaska, United States. Recently, Chadburn et al., (2015a,b)
59 incorporated the SOL in the Joint UK Land Environment Simulator (JULES) model to illustrate
60 its influence on ALT and ground temperatures both at a site specific study in Siberia, Russia, and
61 globally. In essence, the soil temperatures and ALT decrease as the OLT increases.
62 Consequently, how (or if) LSMs represent the SOL in the simulated soil thermodynamics will
63 simultaneously determine the initial amount of frozen permafrost carbon and the vulnerability of
64 the simulated permafrost to thaw.

65 Here we describe a fully dynamic SOL to demonstrate the importance of coupling soil
66 biogeochemistry and thermodynamics to improve the simulated permafrost temperature and
67 ALT. We improved the Simple Biosphere/Carnegie-Ames-Stanford Approach (SiBCASA)
68 model (Schaefer et al., 2011) by adding a dynamic SOL and limiting plant growth in frozen soils
69 and demonstrated that these changes improve permafrost thermal and carbon dynamics in
70 comparison. Then we used the modified model to evaluate current permafrost carbon stock

71 (Hugelius et al., 2014) under the steady state climate in the early 20th century.

72

73 **2. Methods**

74 We used the SiBCASA model (Schaefer et al., 2008) to evaluate current soil carbon stocks in
75 permafrost affected soils. SiBCASA has fully integrated water, energy, and carbon cycles and
76 computes surface energy and carbon fluxes at 10 minute time steps. SiBCASA predicts the
77 moisture content, temperature, and carbon content of the canopy, canopy air space, and soil
78 (Sellers et al., 1996a; Vidale and Stockli, 2005). To calculate plant photosynthesis, the model
79 uses a modified Ball-Berry stomatal conductance model (Ball, 1998; Collatz et al., 1991)
80 coupled to a C3 enzyme kinetic model (Farquhar et al., 1980) and a C4 photosynthesis model
81 (Collatz et al., 1992). It predicts soil organic matter, surface litter, and live biomass (leaves,
82 roots, and wood) in a system of 13 prognostic carbon pools as a function of soil depth (Schaefer
83 et al., 2008). The model biogeochemistry does not account for disturbances, such as fire, and
84 does not include a nitrogen cycle. SiBCASA separately calculates respiration losses due to
85 microbial decay (heterotrophic respiration) and plant growth (autotrophic respiration).

86 SiBCASA uses a fully coupled soil temperature and hydrology model with explicit
87 treatment of frozen soil water originally from the Community Climate System Model, Version
88 2.0 (Bonan, 1996; Oleson et al., 2004). To improve simulated soil temperatures and permafrost
89 dynamics, Schaefer et al. (2009) increased the total soil depth to 15 m and added the effects of
90 soil organic matter on soil physical properties. Simulated snow density and depth, and thus
91 thermal conductivity, significantly influence simulated permafrost dynamics, so Schaefer et al.
92 (2009) added the effects of depth hoar and wind compaction on simulated snow density and
93 depth. Recent model developments include improved numerical scheme for frozen soil

94 biogeochemistry (Schaefer and Jafarov, 2015).

95 We spun SiBCASA up to steady-state initial conditions using an input weather dataset
96 from the Climatic Research Unit National Center for Environmental Predictions (CRUNCEP)¹
97 (Wei et al, 2014) for the entire permafrost domain in the northern hemisphere (Brown et al.,
98 1997). CRUNCEP is modeled weather data at 0.5x0.5 degree latitude and longitude resolution
99 optimally consistent with a broad array of observations. The CRUNCEP dataset used in this
100 study spans 110 years, from 1901 to 2010. We selected the first 30 years from the CRUNCEP
101 dataset (1901 to 1931) and randomly distributed them over 900 years. To run our simulations we
102 used JANUS High Performance Computing (HPC) Center at University of Colorado at Boulder.
103 The 900-yr time span was chosen in order to make optimal use of the computational time, which
104 allowed us to finish one spinup simulation on JANUS HPC without interruptions.

105

106 ***2.1. Frozen carbon initialization***

107 The Permafrost Carbon Network published a revised Northern Circumpolar Soil Carbon Dataset
108 version 2 (NCSCDv2) (Hugelius et al., 2013). The NCSCDv2 includes soil carbon density maps
109 in permafrost-affected soils available at several spatial resolutions ranging from 0.012° to 1°. The
110 dataset consists of spatially extrapolated soil carbon data from more than 1700 soil core samples.
111 This dataset has three main layers, each 1 meter in depth, distributed between ground surface and
112 3 meter depth.

113 We placed the frozen carbon within the top three meters of simulated permafrost,
114 ignoring deltaic and loess deposits that are known to extend well beyond 3 meters of depth
115 (Hugelius et al., 2014). The bottom of the permafrost carbon layer is fixed at 3 meters, while the

¹ ftp://nacp.ornl.gov/synthesis/2009/frescati/temp/land_use_change/original/readme.htm

116 top varies spatially with changes in ALT during the spinup run. Defining the permafrost table as
117 the maximum ALT, we essentially assume that the soil above the permafrost table has thawed
118 frequently enough over thousands of years to decay away all the old carbon.

119 We initialized frozen carbon between the permafrost table and 3 meters depth using two
120 scenarios: 1) spatially uniform distribution of the frozen carbon throughout the permafrost
121 domain (Schaefer et al., 2011), and 2) observed distribution of the frozen carbon according to the
122 NCSCDv2. It is important to know the “stable” depth of the active layer before initializing
123 frozen carbon. We run the model for several years in order to calculate ALT, and then initialized
124 frozen carbon below the maximum calculated ALT. The frozen carbon was initialized only once
125 during the first equilibrium run cycle. For the next equilibrium run we used the previously
126 calculated permafrost carbon. We defined an equilibrium point when changes in overall
127 permafrost carbon were negligible or almost zero.

128 The total initial frozen carbon in each soil layer between the permafrost table and 3
129 meters is

$$130 \quad C_{fr}^i = \rho_c \Delta z_i, \quad (1)$$

131 where C_{fr}^i is the total permafrost carbon within the i^{th} soil layer, ρ_c is the permafrost carbon
132 density, and Δz_i is the thickness of the i^{th} soil layer in the model. For the uniform permafrost
133 carbon distribution, $\rho_c = 21 \text{ kg C m}^{-3}$ assumed to be spatially and vertically uniform (Schaefer et
134 al., 2011). For the observed distribution from the NCSCDv2, ρ_c varies both with location and
135 depth (Hugelius et al., 2013).

136 The carbon in each layer is divided into three pools as follows:

$$\begin{aligned}
 C_{slow}^i &= 0.8C_{fr}^i \\
 C_{met}^i &= 0.2f_{root2met}C_{fr}^i \\
 C_{str}^i &= 0.2f_{root2str}C_{fr}^i,
 \end{aligned} \tag{2}$$

137 where $f_{root2met}$ and $f_{root2str}$ are the simulated fractions of root pool losses to the soil metabolic
 138 and structural pools respectively (Schaefer et al., 2008). The nominal turnover time is 5 years
 139 for the slow pool, 76 days for the structural pool, and 20 days for the metabolic pool. Schaefer et
 140 al. (2011) has a 5% loss to the metabolic pool and a 15% loss to the structural pool based on
 141 observed values in Dutta et al. (2006). The simulated fractions are actually 5.6% to the
 142 metabolic pool and 14.4% to the structural pool. We found it encouraging that the numbers
 143 calculated with the SiBCASA metabolic fractions resulted in numbers that are close to the
 144 observed values in Dutta et al. (2006).

146

147 **2.2. Dynamic SOL**

148 We modified SiBCASA to include a dynamic SOL by incorporating the vertical redistribution of
 149 organic material associated with soil accumulation. SiBCASA calculates the soil physical
 150 properties as a weighted average of those of organic matter, mineral soil, ice and water (Schaefer
 151 et al., 2009). The physical properties include soil porosity, hydraulic conductivity, heat capacity,
 152 thermal conductivity, and matric potential. The model calculates the organic fraction used in the
 153 weighted mean as the ratio of simulated carbon density to the density of pure organic matter.
 154 SiBCASA does not account for the compression of organic matter. Since the prognostic soil
 155 carbon pools vary with depth and time, the organic fraction and the physical properties all vary
 156 with time and depth. We only summarized these calculations here since the calculations are
 157 covered in detail in Schaefer et al. (2009).

158 Each model layer has a complete set of prognostic soil carbon pools. The previous version of the
159 model distributed fine and coarse root growth vertically within the soil column based on
160 observed root distributions. As the roots die, carbon is transferred to the soil carbon pools for
161 that layer. Thus, the maximum rooting depth determined the maximum depth of ‘current’ or
162 ‘active’ carbon in the model. Of course, if the maximum rooting depth fell below the permafrost
163 table, the model would accumulate permafrost carbon. The current version of the model
164 initializes the permafrost carbon by assigning carbon to the soil carbon pools below the
165 maximum thaw depth. These frozen pools remained inactive until the layer thaws. As live,
166 above-ground biomass in the model dies, carbon is transferred into the first layer as litter.
167 Without the vertical redistribution we describe here to create a surface organic layer, the top
168 layer of the model tended to accumulate carbon in excess of that expected for pure organic
169 matter.

170 To allow vertical movement and build up a SOL, we placed a maximum limit on the amount of
171 organic material that each soil layer can hold. When the simulated carbon content exceeds this
172 threshold, the excess carbon is transferred to the layer below. This is a simplified version of the
173 Koven et al., (2009) carbon diffusion model, which accounts for all sedimentation and
174 cryoturbation processes, while we wanted to limit our model only to the buildup of a SOL.

175 We calculate the maximum allowed carbon content per soil layer, C_{max} , as

$$176 \quad C_{max} = \rho_{max} \Delta z \frac{1000}{MW_C}, \quad (3)$$

177 where ρ_{max} is the density of pure organic matter or peat, Δz is the soil layer thickness (m), MW_C
178 is the molecular weight of carbon (12 g mol⁻¹), and the factor of 10³ converts from grams to
179 kilograms. Based on observations of bulk densities of peat, we assume ρ_{max} is 140 kg m⁻³

180 (Price et al., 2005). The MW_C term converts the expression into mol C m⁻², the SiBCASA
181 internal units for carbon. The simulated organic soil fraction per soil layer, f_{org} , is defined as

182

$$f_{org} = \frac{C}{c_{max}}, \quad (4)$$

183 where C is the carbon content per soil layer (mol m⁻²). To convert to carbon we assume that the
184 fraction of organic matter is 0.5, which means that half of the organic matter by mass is carbon.
185 The original formulation allowed f_{org} to exceed 1.0 such that the excess organic material was
186 essentially ‘compressed’ into the top soil layer, resulting in a 2-cm simulated SOL. We place an
187 upper limit of 0.95 on f_{org} and transfer the excess carbon to the layer below. The OLT is
188 defined as the bottom of the lowest soil layer where f_{org} is 0.95.

189

190

191 **2.3. Root growth and soil thermal factor**

192 Fine roots supply nutrients and water for photosynthesis, so essentially the leaves and roots
193 together define the photosynthetic capacity of the plant. Plants have optimized carbon allocation
194 to grow only enough fine roots to properly supply the leaves with the correct amount of water
195 and nutrients to support photosynthesis. So, as plants grow new leaves, they also grow new fine
196 roots to supply them with nutrients and water. Linking root growth to leaf growth is a
197 convenient and simple way to represent this coupling in SiBCASA.

198 Here we take this coupling one step further and recognize that frozen soil reduces the plant
199 photosynthetic capacity and regulates root and leaf growth. Plants cannot photosynthesize in
200 frozen soil. Frozen soil in the root zone reduces the photosynthetic capacity of the plant by
201 limiting the water available for photosynthesis. Roots cannot grow while soil is frozen and if

202 roots can't grow, leaves can't grow. The changes we implement link soil thermodynamics to
203 root growth, leaf growth, and plant photosynthesis.

204 In the original formulation (without a dynamic SOL), plant photosynthesis, leaf growth, and fine
205 root growth were controlled primarily by near surface air temperature: when the near surface air
206 temperature exceeded 0°C, leaves and roots started to grow. SiBCASA assumes fine root growth
207 decreases exponentially with depth based on observed vertical root distributions (Schaefer et al.,
208 2008) with 90% of fine root growth occurring in the top 1 meter of soil. Consequently, the
209 vertical distribution of new root growth between the soil layers is prescribed using exponential
210 curve fits to observed vertical root distributions. Before the changes we describe here, the
211 maximum rooting depth sometimes exceeded the thaw depth in permafrost soils, resulting in root
212 growth directly in permafrost, which resulted in false permafrost carbon accumulation since
213 growing roots cannot penetrate frozen soil. The roots that grew into the permafrost never thawed
214 and soon died, but never decayed, resulting in an unrealistic buildup of carbon in the upper layers
215 of permafrost. This, in turn, set up a feedback where the unrealistic increase in organic matter in
216 the simulated permafrost changed the thermodynamic properties and decreased the ALT,
217 resulting in additional carbon buildup. To solve this problem, we kept the original exponential
218 vertical rooting profile, but set maximum rooting depth equal to the thaw depth. This allowed
219 the maximum rooting depth to vary with time and effectively restricted all root growth to within
220 the thawed portion of the active layer.

221 Soil thaw always lags behind warming of the canopy. Photosynthesis is limited by water
222 availability as well as canopy temperature and starts later in spring after the surface soil layers
223 thaw out. Before the changes described below, leafout and new root growth occurred as many as
224 60 days before the start of photosynthesis. In reality, leafout, root growth, and the start of

225 photosynthesis should occur at the same time.

226 We synchronized leafout, root growth, and photosynthesis by restricting root growth to occur
227 only in thawed soil layers. In SiBCASA, leaf growth is linked to fine root growth (Schaefer et
228 al., 2008), so this also delays spring leafout until the soil begins to thaw. We first calculated the
229 fraction of thawed roots:

230
$$R_{th} = \sum_{k=1}^{nroot} R_f (1 - F_{ice}), \quad (6)$$

231 where R_{th} is the fraction of total roots that are thawed, $nroot$ is the deepest soil layer with roots,
232 R_f is the reference root fraction per soil layer based on observed root distributions (Jackson et
233 al., 1996), and F_{ice} is the ice fraction per soil layer. F_{ice} is calculated from the liquid water and
234 ice content of each soil layer, both of which are prognostic variables, accounting for latent heat
235 effects. F_{ice} varies from zero for a completely thawed soil layer to one for a completely frozen
236 soil layer. This assumes that water in each layer is evenly distributed such that F_{ice} equals the
237 frozen fraction.

238 Restricting root growth within the thawed portion of the active layer results from the fact that
239 roots cannot penetrate frozen soil. Root growth still decreases exponentially with depth, but we
240 used an effective rooting depth equal to the thaw depth or the theoretical maximum rooting depth
241 from the observed vertical root distributions (whichever is less). We calculated an effective root
242 fraction R_{eff} , to control the vertical distribution of new growth carbon within the soil column:

243
$$R_{eff} = R_f (1 - F_{ice}) / R_{th}. \quad (8)$$

244 Dividing by R_{th} ensures that R_{eff} sums to one within the soil column, which essentially ensures
245 that all new root growth is distributed only within the thawed portion of the soil column. Here,
246 we replaced R_f with R_{eff} in the vertical distribution of coarse woody roots in the wood pool and

247 the fine roots in the root pool and associated calculations of autotrophic respiration.
 248 To synchronize growth primary productivity (GPP) with leafout, we treated the reference vertical
 249 root distribution, R_f , as the potential root growth defining the maximum potential GPP. Since
 250 the sum of R_f is always one, when $R_{th} < 1$, GPP must be less than its full potential. We defined
 251 a GPP scaling factor, $S_{soilfrz}$, as

$$252 \quad S_{soilfrz} = \begin{cases} R_{th} & \text{for } R_{th} \geq 0.01 \\ 0 & \text{for } R_{th} < 0.01 \end{cases} \quad (7)$$

253 This assumes that at least 1% of the roots must be thawed for GPP to occur, corresponding to
 254 about ~1 cm of thawed soil. $S_{soilfrz}$ is applied along with the soil moisture and canopy
 255 temperature scaling factors to constrain photosynthesis while soil is frozen (Schaefer et al.,
 256 2008). To constrain wood growth, we applied $S_{soilfrz}$ to the temperature scaling factors to the
 257 decay rate constant that controls wood growth

$$258 \quad k_{eff} = S_{nsc} S_T S_M S_{frost} S_{soilfrz} k_{wood}, \quad (9)$$

259 where k_{eff} is the effective growth rate, S_{nsc} is the non-structural carbohydrate scaling factor, S_T is
 260 the canopy temperature scaling factor, S_{frost} is the frost inhibition function, and k_{wood} is the
 261 reference wood growth rate. S_T , S_{frost} , and $S_{soilfrz}$ are the same scaling factors that control GPP
 262 under the assumption that the factors that control photosynthesis also control wood growth
 263 (Schaefer et al., 2008). This is also consistent with what we normally see in discontinuous
 264 permafrost zones: trees cannot grow in shallow permafrost. Indeed, one can often detect the
 265 presence of permafrost in the discontinuous zone simply by noting the lack of trees.
 266 To constrain leaf growth, we added $S_{soilfrz}$ to the frozen leaf scaling factor

$$267 \quad S_{leaffrz} = S_{soilfrz} / \left(1 + \exp(1.3(273 - T_{can})) \right), \quad (10)$$

268 where S_{leaffz} is the frozen leaf scaling factor and T_{can} is canopy temperature.

269

270 **3. Results**

271 The dynamic SOL decreased the simulated ALT on average 50% across the domain and allowed
272 the model to simulate permafrost in discontinuous zones where it could not before (Figure 1).

273 The area of near surface permafrost simulated with the current version of the model equals to
274 13.5 mil km² which is almost 38% greater than without the dynamic SOL (Schaefer et al., 2011).

275 This area is closer to the observation from the International Permafrost Association which is
276 about 16.2 mil km² (Brown et al., 1997). Simulated ALT less than 2 m covers about 92% of the
277 area in the new simulations (Figure 1B) in comparison to 66% of the area in the Schaefer et al.
278 (2011) simulations (Figure 1A). The previous version of SiBCASA could not simulate
279 permafrost in many parts of the discontinuous zone with relatively warm climate. Adding the
280 dynamic SOL essentially decreased the thermal conductivity of the surface soil to allow
281 SiBCASA to simulate permafrost where the mean annual air temperatures (MAAT) are close to
282 0 °C.

283 To illustrate the improvement of the simulated ALT with respect to the observed data, we
284 compared simulated ALT with measured values from Circumpolar Active Layer Monitoring
285 (CALM) stations. The CALM network is a part of the Global Terrestrial Network for Permafrost
286 (GTN-P) (Burgess et al., 2000). The monitoring network measures ALT either using a
287 mechanical probe or a vertical array of temperature sensors (Brown et al., 2000; Shiklomanov et
288 al., 2010). After matching up the CALM coordinates with the coordinates of previously
289 simulated ALT (Schaefer et al., 2011), we excluded sites with no measurements or ALT greater
290 than 3m depth, ending up with 76 CALM stations. Figure 2 shows simulated vs. observed ALT

291 for the 76 CALM sites. The current simulations have a higher resolution than Schaefer et al.
292 (2011) simulations, which allowed us to reach a higher order of heterogeneity between measured
293 and simulated ALTs. The Pearson's correlation coefficient, R , is negative and not significant for
294 the Schaefer et al. (2011) simulations (Figure 2A), but is positive and statistically significant for
295 the current simulations assuming $p < 0.05$ (Figure 2B). The dynamic SOL greatly improves the
296 simulated ALT, but SiBCASA still tends to overestimate ALT.

297 Figure 3 illustrates the effect of the frozen soil restrictions on phenology and GPP at a
298 single point in central Siberia. Before applying a frozen soil restriction, SiBCASA maintained
299 fine roots even in winter, resulting in root growth all year with a peak in spring corresponding to
300 simulated leafout (Figure 3A). Simulated GPP was restricted by liquid water availability and
301 was closely tied to thawing of the active layer, resulting in a lag as high as 60 days between
302 leafout and start of GPP in spring. Restricting growth and GPP to when the soil is thawed
303 essentially synchronizes all phenological events to occur at the same time (Figure 3B).

304 In the previous version without a dynamic SOL the ALT was generally deep in forest
305 biomes, but in the new version there is a thick SOL (due to high GPP), which leads to a
306 shallower ALT. Without restricting root growth within only thawed part of the soil the shallower
307 ALT feedback leads to a significant amount of root growth in the permafrost itself, which puts
308 carbon directly into the permafrost stores. This is unrealistic since growing roots cannot
309 penetrate frozen soil, so the frozen soil restrictions on GPP and root growth together eliminate
310 this problem.

311 Restricting growth and GPP to when the soil is thawed delayed the onset of plant
312 photosynthesis in spring in permafrost-affected regions. Introduction of the thawed root fraction
313 in the model reduced GPP primarily in early spring. To illustrate the difference between

314 unconstrained and restricted root growth (Figure 3), we ran the model for ten years for both
315 cases. The difference between unconstrained and restricted root growth cases (Figure 4) indicates
316 an overall ~9% reduction in GPP for the entire permafrost domain, nearly all of which occurred
317 in spring.

318 To illustrate soil carbon distribution with depth we selected three representative areas: a
319 continuous permafrost area corresponding to tundra type biome above the Arctic circle, an area
320 in the boundary of continuous and discontinuous permafrost corresponding to the boreal forest
321 biome, and an area near the south border of the discontinuous permafrost corresponding to
322 poorly vegetated-rocky areas. We calculated mean and standard deviation of the carbon density
323 distribution with depth for 200 grid points around each of the three selected locations. Simulated
324 typical carbon densities from selected locations are shown on Figure 5. All profiles shown on
325 Figure 5 show a similar pattern: a 20-30 cm SOL with reduced carbon content at the bottom of
326 the active layer. In contrast, the observed vertical carbon profiles show fairly uniform carbon
327 density with depth throughout the active layer and into the permafrost Harden et al., (2012).
328 SiBCASA lacks the cryoturbation processes such as cryotic mixing that would redistribute carbon
329 within the active layer. As a result, the carbon at the bottom of the active layer decayed and
330 respired away during spinup.

331 The decrease in ALT resulting from a dynamic SOL increases the volume of permafrost
332 in the top 3 meters of soil, greatly increasing the initial amount of frozen permafrost carbon in
333 the simulations. Schaefer et al. (2011) without the dynamic SOL assumed a uniform permafrost
334 carbon density of $21 \text{ kg} \cdot \text{C} \cdot \text{m}^{-3}$, resulting in a total of 313 Gt of permafrost carbon at the start
335 of their transient run (Figure 6A). To compare with the Schaefer et al. [2011] results, we
336 initialized the permafrost carbon using the same assumed uniform carbon density and ran

337 SiBCASA to steady state initial conditions (Figure 6B). Assuming the same uniform carbon
338 density, the current version with the dynamic SOL results in a total of ~680Gt C compared to
339 313 GtC in Schaefer et al. (2011). The dynamic SOL effectively doubled the volume of
340 permafrost in the top three meters of soil and the amount of simulated frozen carbon.

341 Prescribing permafrost carbon according to the NCSDC dataset allowed us to better
342 match with the observed pattern in the soil carbon. However, it is does not mean that after the
343 spinup simulated permafrost carbon stocks exactly matched the NCSDC data. During spinup,
344 ALT varies with time, introducing carbon movement from frozen to thawed pools. In
345 discontinuous zones, if the model simulated permafrost, it tended to produce a deeper ALT and
346 thus less permafrost carbon than the NCSDC. The major difference between uniform frozen
347 carbon initialization (Fig 7A) and initialization according to the NCSDC (Fig 7B) is that
348 SiBCASA simulated permafrost in more places. However, the NCSDC map (Fig 7B) shows that
349 not all frozen soil contains a uniform amount of frozen carbon. Therefore simulating ‘correct’
350 ALT is important and should improve the overall permafrost carbon storage.

351 Initializing SiBCASA with the observed spatial distribution of permafrost carbon from
352 the NCSDCv2 resulted in ~560 GtC of carbon stored in permafrost after spinup. SiBCASA
353 underestimated the SOC in the Eastern Canada and Western Siberia, and overestimated SOC in
354 Central Siberia (Figure 7A and B). Failure to simulate soil carbon in southeast Canada and
355 southwest Siberia (Figure 7C) could be attributed to deep active layer thickness. The
356 overestimation of SOC in Central Siberia is a result of coupling between GPP and ALT. The
357 overall amount of soil frozen carbon is less than that calculated assuming uniform frozen carbon
358 distribution. It is important to note that the SOL, ALT, and the permafrost thickness are the
359 same for both cases (Figure 7A and B). This is due to the fact that in both cases soil carbon is

360 added in the permafrost layer below the active layer. Consequently, the amount of soil carbon in
361 the active layer stays does not change between simulations and has the same thermal and carbon
362 dynamics, and thus ALT. The smaller permafrost carbon stock simulated for the non-uniform
363 case is mainly due to the fact that we did not initialize frozen carbon in regions where according
364 to the NCSCDv2 it is not present, such as the Brooks Range in Alaska.

365

366 **4. Discussion**

367 The dynamic SOL insulates ALT from air temperature, allowing SiBCASA to simulate
368 permafrost in many discontinuous permafrost regions where it could not before. This result
369 complements similar findings by Lawrence and Slater (2008), Yi et al., (2009), Ekici et al.,
370 (2014b), and Chadbourn et al., (2015a,b), when changes in thermal properties associated with the
371 presence of soil organic matter cooled the ground. In southeastern Canada and southwestern
372 Siberia, SiBCASA simulates ALT up to 3 meter, and therefore almost no frozen carbon. For
373 example, observed mean annual ground temperatures within southeast Canada region ranges
374 from below to above 0 °C (Smith, and Burgess, 2000), which suggests that the actual permafrost
375 distribution and associated ALT in these regions would be highly heterogeneous. Models like
376 SiBCASA cannot capture such sub-grid heterogeneity, resulting in a deeper, uniform ALT across
377 the grid cell.

378 To address the effect of different environmental factors we correlated ALT with near
379 surface air temperature (NSAT), down-welling long-wave radiation (DLWR), snow depth
380 (SND), and soil wetness fraction (SWF). The NSAT has a significant effect on the ALT (Camill
381 2005, Gallagher et al., 2011). To show this influence, we averaged NSAT in early fall, for two

382 months September and October over 10 years (Figure 8A). The areas with deep ALT (Figure
383 1B) fall into the regions where NSATs are greater than one degree centigrade and greater than 5
384 °C in the south-east Canada. Figure 9A shows the correlation between NSAT and ALT, which
385 indicates clear relation between NSAT and ALT.

386 The DLWR averaged over 10 years showed higher radiation along the south boundaries
387 of the domain, in particular southeast Canada and southwest Siberia (Figure 8B). The effect of
388 the DLWR on the ALT is more scattered as opposed to NSAT (Figure 9B). However, in general
389 it showed behaviour similar to NSAT.

390 SND is another important factor contributing to the permafrost thermal state. Zhang
391 (2005) indicates that SND less than 50cm have the greatest impact on soil temperatures. Figure
392 8C shows maximum simulated snow depth calculated over the last 10 years of the steady state
393 run. The snow effect on the soil thermal state is less obvious and highly dependent on different
394 physical processes, such as wind, snow metamorphism, and depth hoar formation (Sturm et al.,
395 1997). Ekici et al., (2014) confirm nonlinear behavior of snow after modeling soil temperatures
396 for four sites using six CLM model. Similarly, Jafarov et al., (2014) shows that snow thermal
397 properties not always regulated by the SND. Figure 9C also indicate no correlation with ALT.

398 Figure 8D shows an averaged soil wetness map, which indicates high SWF in both
399 regions where model simulates deep ALT. This suggests that SOL does not provide enough
400 protection for permafrost in regions with wet soils and mild air temperatures, which
401 complements similar funding by Lawrence and Slater (2008). The calculated partial correlation
402 between SWF and ALT indicate a clear relationship between them. Figure 9D confirms this
403 statement showing that wetter soils associated with higher ALT.

404 Before implementing the dynamic SOL, the maximum rooting depth only occasionally
405 fell below the permafrost table. However, after implementing the dynamic SOL, the simulated
406 ALT decreased and new root growth was placed directly into the permafrost with no chance to
407 decay. This phenomenon occurred primarily in the mixed deciduous evergreen forest in south-
408 central Siberia and resulted in a long-term carbon sink into the permafrost carbon pool. It
409 resulted from the fact that the maximum rooting depth determined by the fixed, exponential root
410 distribution incorrectly extended into the permafrost. In permafrost-affected soils, seasonal root
411 growth is largely regulated by the soil thermal conditions (Tryon and Chapin 1983, Van Cleve et
412 al., 1983). Therefore in the LSMs it is important to restrict root growth to thawed soil layers
413 only. Moreover, previous studies showed that the date of snowmelt usually determines the start
414 date of the growing season and the start of active layer thawing (Grøndahl et al. 2007; Wipf and
415 Rixen 2010). Restricting GPP and all growth using the scaling factors described above
416 synchronizes the simulated start of the growing season.

417 The ability of the ecosystem and climate models to reproduce the current observed frozen
418 soil carbon distribution is important and could reduce uncertainty associated with modeling of
419 the permafrost carbon feedback. Simulated permafrost vulnerability is tightly coupled with the
420 accurate modeling of the present permafrost distribution, which depends on soil thermal
421 properties. We calculate soil thermal properties based on prognostic soil carbon and soil texture
422 from the Harmonized World Soil Database (HWSD) (FAO et al., 2009). Observations indicate
423 that soils in the southeast Canada have high soil carbon as a result of a large number of peat
424 lands (Hugelius et al., 2014). Peat has low thermal conductivity and could preserve permafrost
425 even at NSATs about zero degrees centigrade (Jafarov et al., 2012) even if the surrounding areas
426 do not have permafrost. However, the HWSD input data does not have enough soil carbon in the

427 southeast Canada and southwest Russia, as a result, we could not simulate permafrost in those
428 regions.

429 Including dynamic SOL in the model allows us to study the interaction of plant dynamics
430 and soil thermodynamics. In addition it allows us to study other processes in the future, such as
431 fire impacts on soil thermodynamics and recovery from fire, both of which are strongly
432 influenced by the changes in the SOL (Jafarov et al., 2013). For example, Yuan et al., (2012)
433 evaluated the role of wildfire in soil thermal dynamics and ecosystem carbon in Yukon River
434 Basin of Alaska using Terrestrial Ecosystem Model (Yi et al., 2010), showing wildfires and
435 climate change could substantially alter soil carbon storage. The current version of the model
436 does not include the effects of fire, which means that topsoil carbon stays in the system and
437 provides resilience to permafrost. However, in reality, upper SOL could be removed by fire,
438 which would alter soil thermal properties and perturb permafrost carbon stability.

439

440 **5. Conclusion**

441 Presence of the SOL improves the permafrost thermal dynamics by reducing heat
442 exchange between near surface atmosphere and subsurface. Similarly, to Koven et al., (2009) we
443 show that inclusion of the surface carbon layer dynamics into the model leads to an improved
444 agreement with the estimated carbon stocks in permafrost-affected soils. However, to better
445 simulate known permafrost distribution in the discontinuous permafrost zone it is important to
446 know the exact thickness of the upper soil organic layer. Our setup does not include thick
447 organic layer along the southeastern boundaries of the permafrost domain in Canada as well as

448 southwestern part of Russia, which did not allow the model to simulate permafrost in those
449 regions.

450 The simplified scheme of the soil carbon dynamics improves permafrost resilience, but
451 does not fully reproduce observed carbon distribution with depth (Harden et al., 2012). The
452 dynamic SOL and rooting depth strengthens the feedback between GPP and ALT (Koven et al.,
453 2009). Higher GPP produces greater litter fall, which increases the input soil carbon at the
454 surface and results in a thicker SOL. The dynamic SOL changes the properties of the near
455 surface soil, resulting in a shallower ALT and cooler soil temperatures. The dynamic rooting
456 depth accounts for a shallower ALT and modulates GPP accordingly. The cooler soil
457 temperatures slow microbial decay and increase the carbon accumulation rate, which in turn
458 increases the SOL and reduces ALT further. Eventually, this feedback results in the
459 development of a peat bog. The changes we describe here indicate that SiBCASA can simulate
460 the dynamics of peat bog development, but the model does not yet include a dynamic vegetation
461 model to account for conversions between biome types, such as boreal forest to peat bog.

462 **6. Acknowledgements**

463 This research was funded by NOAA grant NA09OAR4310063 and NASA grant NNX10AR63G.
464 This work utilized the Janus supercomputer, which is supported by the National Science
465 Foundation (award number CNS-0821794) and the University of Colorado Boulder. We thank
466 K. Gregory at NSIDC for reviewing the manuscript. Software tools used in this study include
467 m_map MATLAB package and shadedErrorBar.m MATLAB script.

468

469 **7. References**

470 Ball, J. T.: An analysis of stomatal conductance, Ph.D. thesis, Stanford Univ., Stanford, Calif.,
471 1988

472 Bonan, G. B.: A Land Surface Model (LSM Version 1.0) for ecological, hydrological, and
473 atmospheric studies: Technical description and users guide, NCAR Tech. Note
474 NCAR/TN-417+STR, Natl. Cent. for Atmos. Res., Boulder, Colo., 1996.

475 Brown, J., K. Hinkel and F. Nelson.: The 1 Circumpolar Active Layer Monitoring (CALM)
476 program: Research designs and initial results. *Polar Geography*, 24, 165-258,
477 doi:10.1080/10889370009377698. 2000.

478 Brown, J., O. J. Ferrians Jr., J. A. Heginbottom, and E. S Melnikov, Eds.: Circum-Arctic Map of
479 Permafrost and Ground-Ice Conditions. U.S. Geological Survey in Cooperation with the
480 Circum-Pacific Council for Energy and Mineral Resources, Circum-Pacific Map Series
481 CP-45, scale 1:10,000,000, 1 sheet, 1997

482 Brown, J., Hinkel, K.M.; Nelson, F.E.: The circumpolar active layer monitoring (CALM)
483 program: Research designs and initial results. *Polar Geog.*, 24, 165–258, 2000.

484 Bonan, G. B.: A Land Surface Model (LSM Version 1.0) for ecological, hydrological, and
485 atmospheric studies: technical description and users guide. NCAR Technical Note
486 NCAR/TN-417+STR, Boulder, Colorado. 1996.

487 Burgess, M.M.; Smith, S.L.; Brown, J.; Romanovsky, V.; Hinkel, K. The Global Terrestrial
488 Network for Permafrost (GTNet-P): Permafrost Monitoring Contributing to Global
489 Climate Observations. Available online:
490 http://ftp2.cits.rncan.gc.ca/pub/geott/ess_pubs/211/211621/cr_2000_e14.pdf.

491 Burke, EJ, IP Hartley, and CD Jones.: Uncertainties in the global temperature change caused by

492 carbon release from permafrost thawing, *Cryosphere*, 6, 1063–1076, doi:10.5194/tc-6-
493 1063-2012, 2012

494 Camill, P: Permafrost thaw accelerates in boreal peatlands during late-20th century climate
495 warming Clim. Change 68 135–52. 2005

496 Callaghan, T.V., Johansson, M., Anisimov, O., Christiansen, H.H., Instanes, A., Romanovsky,
497 V., and Smith, S.: Chapter 5: Changing permafrost and its impacts. In: Snow, Water, Ice
498 and Permafrost in the Arctic (SWIPA) 2011. Arctic Monitoring and Assessment
499 Programme (AMAP), Oslo, pp 62. 2011.

500 Chadburn, S., Burke, E., Essery, R., Boike, J., Langer, M., Heikenfeld, M., Cox, P., and
501 Friedlingstein, P.: An improved representation of physical permafrost dynamics in the
502 JULES land surface model, *Geosci. Model Dev. Discuss.*, 8, 715–759,
503 doi:10.5194/gmdd-8-715-2015, 2015a.

504 Chadburn, S. E., Burke, E. J., Essery, R. L. H., Boike, J., Langer, M., Heikenfeld, M.,
505 Cox, P. M., and Friedlingstein, P.: Impact of model developments on present and future
506 simulations of permafrost in a global land-surface model, *The Cryosphere Discuss.*, 9,
507 1965-2012, doi:10.5194/tcd-9-1965-2015, 2015b.

508 Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry.: Physiological and environmental regulation
509 of stomatal conductance, photosynthesis, and transpiration: A model that includes a
510 laminar boundary layer, *Agric. For. Meteorol.*, 54, 107– 136, doi:10.1016/0168-
511 1923(91)90002-8, 1991.

512 Collatz, G. J., M. Ribascarbo, and J. A. Berry.: Coupled photosynthesis-stomatal conductance
513 model for leaves of C4 plants, *Aust. J. Plant Physiol.*, 19(5), 519–538, 1992.

514 Dutta, K., Schuur, E. A. G., Neff, J. C. and Zimov, S. A.: Potential carbon release from
515 permafrost soils of Northeastern Siberia. *Global Change Biol.* 12, 2336–2351, 2006.

516 FAO, IIASA, ISRIC, ISS-CAS, and JRC: Harmonized World Soil Database (version 1.1) FAO,
517 Rome, Italy and IIASA, Laxenburg, Austria, 2009.

518 Ekici, A., Chadburn, S., Chaudhary, N., Hajdu, L. H., Marmy, A., Peng, S., Boike, J., Burke, E.,
519 Friend, A. D., Hauck, C., Krinner, G., Langer, M., Miller, P. A., and Beer, C.: Site-level
520 model intercomparison of high latitude and high altitude soil thermal dynamics in tundra
521 and barren landscapes, *The Cryosphere Discuss.*, 8, 4959-5013, doi:10.5194/tcd-8-4959-
522 2014, 2014a.

523 Ekici, A., Beer, C., Hagemann, S., Boike, J., Langer, M., and Hauck, C.: Simulating high-
524 latitude permafrost regions by the JSBACH terrestrial ecosystem model, *Geosci. Model
525 Dev.*, 7, 631-647, doi:10.5194/gmd-7-631-2014, 2014b.

526 Farquhar, G. D., S. von Caemmerer, and J. A. Berry.: A biochemical model of photosynthetic
527 CO₂ assimilation in leaves of C3 species, *Planta*, 149, 78–90, doi:10.1007/BF00386231,
528 1980.

529 Grøndahl L, Friberg T, Soegaard H.: Temperature and snow-melt controls on interannual
530 variability in carbon exchange in the high Arctic. *Theor Appl Climatol* 88(1):111–125,
531 2007.

532 Harden, J. W., Koven, C., Ping, C., Hugelius, G., McGuire D. A., Camill, P., Jorgenson, T.,
533 Kuhry, P., Michaelson, G. J., O'Donnell, J.A., Schuur, E. A. G., Tarnocai C., Johnson,
534 K., Grosse, G.: et al. (2012), Field information links permafrost carbon to physical
535 vulnerabilities of thawing, *Geophys. Res. Lett.*, 39, L15704, doi:10.1029/2012GL051958.

536 Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E. A. G., Ping, C.-L.,
537 Schirrmeister, L., Grosse, G., Michaelson, G. J., Koven, C. D., O'Donnell, J. A.,
538 Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks
539 of circumpolar permafrost carbon with quantified uncertainty ranges and identified data
540 gaps, *Biogeosciences*, 11, 6573–6593, doi:10.5194/bg-11-6573-2014, 2014.

541 Hugelius, G., Tarnocai, C., Broll, G., Canadell, J. G., Kuhry, P., and Swanson, D. K.: The
542 Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil
543 coverage and soil carbon storage in the northern permafrost regions, *Earth Syst. Sci.
544 Data*, 5, 3–13, doi:10.5194/essd-5-3-2013, 2013.

545 Jafarov E E, Marchenko S S and Romanovsky V E.: Numerical modeling of permafrost
546 dynamics in Alaska using a high spatial resolution dataset, *Cryosphere*, 6, 613–24, 2012.

547 Jafarov E.E., Nicolsky D.J., Romanovsky V.E., Walsh J.E., Panda S.K., Serreze M.C. 2014. The
548 effect of snow: How to better model ground surface temperatures. *Cold Regions Science
549 and Technology*, Volume 102, Pages 63-77, ISSN 0165-232X, doi:
550 10.1016/j.coldregions.2014.02.007.

551 Jafarov, E. E., Romanovsky V. E., Genet, H., McGuire A., D., Marchenko, S. S.: The effects of
552 fire on the thermal stability of permafrost in lowland and upland black spruce forests of
553 interior Alaska in a changing climate, *Environmental Research Letters*, 8, 035030, 2013.

554 Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze.: A
555 global analysis of root distributions for terrestrial biomes, *Oecologia*, 108, 389–411,
556 doi:10.1007/BF00333714, 1996.

557 Johnstone J F, Chapin F S III, Hollingsworth T N, Mack M C, Romanovsky V and Turetsky M.:
558

558 Fire, climate change, and forest resilience in interior Alaska Can. J. For. Res.40 1302–12,
559 2010.

560 Koven, C., P. Friedlingstein, P. Ciais, D. Khvorostyanov, G. Krinner, and C. Tarnocai.: On the
561 formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by
562 organic matter in a land surface model, *Geophys. Res. Lett.*, 36, L21501,
563 doi:10.1029/2009GL040150, 2009.

564 Koven, CD, B Ringeval, P Friedlingstein, P Ciais, P Cadule, D Khvorostyanov, G Krinner, and
565 C Tarnocai.: Permafrost carbon-climate feedbacks accelerate global warming, *Proc. Natl.*
566 *Acad. Sci. USA*, 108(36), 14769–14774, doi/10.1073/pnas.1103910108, 2011.

567 Koven, C.D., W.J. Riley, and A. Stern.: Analysis of permafrost thermal dynamics and response
568 to climate change in the CMIP5 earth system models. *J. Climate*. 26:1877–1900.
569 doi:10.1175/JCLI-D-12-00228.1, 2013.

570 Lawrence, D. M., and A. G. Slater.: Incorporating organic soil into a global climate model.
571 *Climate Dynamics* 30(2-3): 145-160, doi:10.1007/s00382-007-0278-1, 2008.

572 MacDougall, AH, CA Avis and AJ Weaver.: Significant contribution to climate warming from
573 the permafrost carbon feedback, *Nature Geosci.*, 5, 719-721, DOI: 10.1038/NGEO1573,
574 2012.

575 Oberman, N.G.: Contemporary Permafrost Degradation of Northern European Russia. In:
576 *Proceedings Ninth International Conference on Permafrost*. Vol. 2, 1305-1310 pp, 2008.

577 Oleson, K.W.,Dai,Y., Bonan, G., Bosilovich,M., Dickinson, R., and coauthors.: Technical
578 description of the Community Land Model (CLM). NCAR Tech. Note, TN-461+STR,
579 174 pp, 2004.

580 Price, J. S., J. Cagampan, and E. Kellner.: Assessment of peat compressibility: is there an easy
581 way? *Hydro. Processes*, 19, 3469–3475, 2005.

582 Sellers, PJ, DA Randall, GJ Collatz, JA Berry, CB Field, DA Dazlich, C Zhang, GD Collelo, L
583 Bounoua.: A Revised Land Surface Parameterization of GCMs, Part I: Model
584 Formulation, *J. Clim.*, 9(4), 676-705, 1996.

585 Schaefer, K., Collatz, G. J., Tans, P., Denning, A. S., Baker, I. and co-authors. : The combined
586 Simple Biosphere/Carnegie-Ames-Stanford Approach (SiBCASA) Model. *J. Geophys.*
587 *Res.*, 113, doi:10.1029/2007JG000603, 2008.

588 Schaefer, K. and Jafarov, E.: A parameterization of respiration in frozen soils based on substrate
589 availability, *Biogeosciences Discuss.*, 12, 12027-12059, doi:10.5194/bgd-12-12027-2015,
590 2015.

591 Schaefer, K., T. Zhang, L. Bruhwiler, and A. P. Barrett.: Amount and timing of permafrost
592 carbon release in response to climate warming, *Tellus Series B: Chemical and Physical*
593 *Meteorology*, DOI: 10.1111/j.1600-0889.2011.00527.x, 2011.

594 Schaefer, K., Zhang, T., Slater, A. G., Lu, L., Etringer, A. and Baker, I.: Improving simulated
595 soil temperatures and soil freeze/thaw at high-latitude regions in the Simple
596 Biosphere/Carnegie-Ames-Stanford Approach model. *J. Geophys. Res.*, 114,
597 doi:10.1029/2008JF001125, 2009.

598 Schaefer, K, H Lantuit, VE Romanovsky, EAG Schuur, and R Witt .: The impact of the
599 permafrost carbon feedback on global climate, *Env. Res. Lett.*, 9, 085003 (9pp)
600 doi:10.1088/1748-9326/9/8/085003, 2014.

601 Shiklomanov, N.I.; Streletskiy, D.A.; Nelson, F.E.; Hollister, R.D.; Romanovsky, V.E.; Tweedie,

602 C.E.; Bockheim, J.G.; Brown, J. Decadal variations of active-layer thickness in moisture-
603 controlled landscapes, Barrow, Alaska. *J. Geophys. Res.* 115, G00I04, 2010.

604 E. A. G. Schuur, A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius,
605 C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky,
606 K. Schaefer, M. R. Turetsky, C. C. Treat and J. E. Vonk.: Climate change and the
607 permafrost carbon feedback. *Nature* 520, 171–179. doi:10.1038/nature14338, 2015.

608 Smith, S., and M.M. Burgess.: Ground Temperature Database for Northern Canada. Geological
609 Survey of Canada Open File Report No. 3954. 28 pages, 2000.

610 Tarnocai, C., Canadell, J. G., Schuur, E. A. G., Kuhry, P., Mazhitova, G. and Zimov, S.: Soil
611 organic carbon pools in the northern circumpolar permafrost region. *Global Biogeochem.*
612 *Cycles*, 23, doi:10.1029/2008GB003327, 2009.

613 Tryon, P., Chapin, F. III.: Temperature controls over root growth and root biomass in taiga
614 forest trees. *Can. J. For. Res.* 13:827-33, 1983.

615 Van Cleve, K.L., Oliver, L., Schlentner, R., Viereck, L. and Dyrness, C.T.: Productivity and
616 nutrient cycling in taiga forest ecosystems. *Can. J. For. Res.*, 13: 747-766, 1983.

617 Vidale, PL, R Stockli.: Prognostic canopy air space solutions for land surface exchanges, *Theor.*
618 *Appl. Climatol.*, 80, 245-257, 2005.

619 Yi S, Manies K, Harden J and McGuire A D.: Characteristics of organic soil in black spruce
620 forests: implications for the application of land surface and ecosystem models in cold
621 regions *Geophys. Res. Lett.* 36 L05501, 2009.

622 Yi, S., A. D. McGuire, E. Kasischke, J. Harden, K. L. Manies, M. Mack, and M. R. Turetsky
623 (2010), A Dynamic organic soil biogeochemical model for simulating the effects of

624 wildfire on soil environmental conditions and carbon dynamics of black spruce forests, J.
625 Geophys. Res., 115, G04015, doi:10.1029/2010JG001302.

626 Yuan, F., S. Yi, A. D. McGuire, K. H. Johnsen, J. Liang, J. Harden, E. Kasischke, and W. Kurz
627 (2012), Assessment of historical boreal forest C dynamics in Yukon River Basin:
628 Relative roles of warming and fire regime change, Ecol. Appl., 22, 2091-2109.

629

630 Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm, C. R.,
631 Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B., Mao, J., and
632 Shi, X.: The North American Carbon Program Multi-scale Synthesis and Terrestrial
633 Model Intercomparison Project: Part 2 - Environmental Driver Data. Geoscientific Model
634 Development, 7, 2875-2893, doi:10.5194/gmd-7-2875-2014, 2014.

635 Wipf, S., and Rixen, C.: A review of snow manipulation experiments in Arctic and alpine tundra
636 ecosystems. Polar Res 29(1):95–109. doi:10.1111/j.1751-8369.2010.00153.x, 2010.

637 Zhang, T.: Influence of the seasonal snow cover on the ground thermal regime: An overview,
638 Rev. Geophys., 43, RG4002, doi:10.1029/2004RG000157, 2005.

639

640
641 **Figure 1.** Maximum thaw depth averaged over last five years after spinup from A) Schaefer et al., (2011)
642 and B) this study, in meters.
643

644
645 **Figure 2.** Comparison of the mean active layer thickness (ALT) from 76 Circumpolar Active Layer
646 Monitoring stations with the averaged ALT from last five years after spinup from A) Schaefer et al., (2011)
647 and B) this study. r is a Pearson's correlation coefficient and p is a significance value, $p < 0.05$ stands for
648 the 95% of confidence.
649

650

651 **Figure 3:** A) and B) root growth without and with the frozen soil constraint on growth.

Figure 4. The difference between GPP without and with freezing constraint averaged over ten years.

652

653 **Figure 5.** An averaged soil carbon distribution from 200 grid cells A) for the tundra region in continuous
 654 permafrost zone, B) for the boreal forest on the boundary between continuous and discontinuous zones,
 655 and C) for the low carbon soil at the south border of the discontinuous permafrost zone. The solid blue
 656 curve indicates the mean the white blue shading indicate the spread in the soil carbon density.
 657

658

659 **Figure 6.** The frozen carbon maps obtained assuming uniform frozen carbon distribution at the initial time
 660 step, and averaged over five years at the end of the steady state run: A) from Schaefer et al., (2011), and
 661 B) from the current run, correspondingly.
 662

663

Figure 7. The soil carbon maps averaged over top 3 meters: A) from SiBCASA at the end of the steady state run, with constant permafrost density, B) from SiBCASA at the end of the steady state run, with non-constant permafrost density, and C) from the NCSCDv2, correspondingly.

665

666 **Figure 8.** A) The near air temperature for averaged over first two month of the fall season. B) The down-
 667 welling long-wave radiation, averaged yearly over 10 years. C) The maximum snow depth obtained over
 668 10 years for the steady state run, and D) the soil wetness fraction (dimensionless fraction of 1),
 669 representing overall near-surface soil wetness, averaged yearly over 10 years.

670
671 **Figure 9.** The correlation between ALT and: A) near air temperature for averaged over first two month of
672 the fall season, and B) the down-welling long-wave radiation, averaged yearly over 10 years. C) the
673 maximum snow depth over 10 years for the steady state run, and D) the soil wetness fraction, averaged
674 yearly over 10 years.

675

676