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Abstract. The surface mass balance (SMB) of the Antarctic ice-sheet cannot be reliably deduced

from global climate models (GCMs), both because their spatial resolution is insufficient and

because their physics are not adapted for cold and snow-covered regions. By contrast, regional

climate models (RCMs) adapted for polar regions can physically and dynamically downscale SMB

components over the ice-sheet using large scale forcing at their boundaries. Polar-oriented RCMs5

require appropriate GCM fields for forcing because the response of the cryosphere to a warming

climate is dependent on its initial state and is not linear with respect to temperature increase. In this

context, we evaluate current climate in 41 climate models from the Coupled Model Intercomparison

Project Phase 5 (CMIP5) dataset over Antarctica by focusing on forcing fields which may have

the greatest impact on SMB components simulated by RCMs. Our inter-comparison includes 610

reanalyses, among which ERA-Interim reanalysis is chosen as a reference over 1979–2014. Model

efficiency is assessed taking into account the multi-decadal variability of the fields over the 1850–

1980 period. We show that less than 10 CMIP5 models show reasonable biases compared to ERA-

Interim, among which ACCESS1-3 is the most pertinent choice for forcing RCMs over Antarctica,

followed by ACCESS1-0, CESM1-BGC, CESM1-CAM5, NorESM1-M, CCSM4 and EC-EARTH.15

Finally, climate change over the Southern Ocean in CMIP5 is less sensitive to the global warming

signal than it is to the present-day simulated sea-ice extent and to the feedback between sea-ice

decrease and air temperature increase around Antarctica.

1 Introduction

The mass balance of the Antarctic ice-sheet is a major source of uncertainty in estimates of projected20

sea-level rise. Projections of Antarctic mass changes are based on the input-output method, in
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which ice-sheet surface mass balance (SMB, input) and ice-sheet dynamics (output), are modeled

separately. The mass budget of the Antarctic ice-sheet is 10 times lower in magnitude than the

individual input/output components. Consequently, when using the input-output method, uncertainty

in the total mass budget equals the sum of the uncertainties of input and output estimates, which are25

of the same order of magnitude as the mass budget itself. This drives efforts to better estimate and

reduce uncertainty on each of these two components.

The SMB of the Antarctic ice-sheet is driven by snowfall at the ice-sheet margins, although

sublimation, melt, refreezing, and drifting snow can be of importance locally. These components

cannot be reliably deduced from reanalyses or global climate models (GCMs) because their30

horizontal resolution (∼ 100 km) is insufficient and because their physics are not adapted for cold

and snow-covered regions. Polar-oriented regional climate models (RCMs) are able to fill this

gap because their physics have been specifically developed/calibrated for these areas. Forced with

reanalyses, their results can be evaluated directly against meteorological, remote-sensing and SMB

observations available in these high latitude regions. With regard to climate change, the response of35

the cryosphere will depend both on its initial state and on the climate change signal. Accordingly,

RCM results will rely on the ability of GCMs to adequately simulate the current climate as well as

on GCM estimates of future changes.

Unlike previously published evaluations of the CMIP5 models over Antarctica which focus on

specific fields such as westerly winds (Bracegirdle et al., 2014) or sea-ice (Turner et al., 2013;40

Mahlstein et al., 2013; Shu et al., 2015), in this paper we aim to evaluate the CMIP5 fields that will

be used as input for RCMs (atmospheric fields at lateral boundaries and surface oceanic conditions

into the integration domain) and those that may have the greatest impact on RCM-based SMB

components (air temperature, air humidity, surface pressure, sea-ice concentration and sea surface

temperature).45

After describing models, measures and variable selection in Section 2, we perform multi-variable

analysis and establish relationships between climate change in GCMs and their representation of

current climate in Section 3. We conclude by discussing potential sources of bias in our method and

by summarizing our main outcomes.

2 Data and methods50

2.1 CMIP5 climate models and reanalyses

Monthly means fields from 41 CMIP5 models and 6 reanalyses, listed in Table 1, are compared in

this work. All data were bi-linearly interpolated onto a common regular longitude-latitude horizontal

grid (1.5◦×1.5◦) with a spatial domain extending south of 40◦ S over the ocean. We did not include

land and ice-covered areas because (i) RCM lateral boundaries are set over the ocean when possible55

and (ii) RCMs are never forced by GCM outputs over the land surface, except for the initialization.
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Seasonal values are defined by 3-month means, with winter consisting of June–July–August for

atmospheric variables and July–August–September for oceanic variables. All other seasons are

defined with a similar one-month lag for oceanic variables.

CMIP5 data was retrieved from the Historical (1850–2005 period) and representative60

concentration pathway 8.5 “RCP85” (2006–2100 period) coupled ocean-atmosphere experiments.

The RCP85 scenario is an upper range of plausible future emission for which greenhouse gas

radiative forcing continues to rise throughout the 21st century until the 1370ppm CO2 equivalent

(Moss et al., 2010). In this scenario, stratospheric ozone recovery is represented across the CMIP5

models, with recovery over Antarctica to near pre-ozone hole amounts by 2100. We merged65

Historical and RCP85 to form continuous time series from 1850 to 2100. We focused on the first

realization (r1i1p1), but also considered r2i1p1 and r3i1p1 realizations, when available, to check

the robustness of our results. Given the high number of models investigated, we highlighted models

which contained obvious similarities in code or were produced by the same institution (colors in

Figs. 2 and 3), following the work of Knutti et al. (2013, colors in their Fig. 1).70

Recent reanalysis inter-comparisons have shown the European Centre for Medium-Range Weather

Forecasts “Interim” re-analysis (ERA-Interim, 1979–present, Dee et al., 2011) to be the most

reliable contemporary global reanalysis over Antarctica (Bromwich et al., 2011; Bracegirdle and

Marshall, 2012), prompting our choice of ERA-Interim as a reference for representing the current

climate (1980–2010). However, comparisons with five other reanalyses were also performed in our75

study: the Japanese 55-year Reanalysis from the Japan Meteorological Agency (JRA-55, 1958–

present, Kobayashi et al., 2015), the National Aeronautics and Space Administration Modern

Era Retrospective-Analysis for Research and Applications (MERRA, 1979–present, Rienecker

et al., 2011); the National Centers for Environmental Prediction (NCEP)/National Center for

Atmospheric Research Global Reanalysis 1 (NCEP-NCAR-v1, 1948–present, Kalnay et al., 1996);80

the NCEP/Department of Energy Atmospheric Model Intercomparison Project 2 reanalysis (NCEP-

DOE-v2, 1979–present, Kanamitsu et al., 2002); and the National Oceanic and Atmospheric

Administration (NOAA) Twentieth Century Reanalysis v2 (NOAA-20CR-v2, 1870–2012, Compo

et al., 2011).

We will later define measures to compare CMIP5 GCMs outputs with ERA-Interim over the period85

1980–2010 (31 years). In order to reduce the sensitivity of our comparisons to the choice of this

reference period, we computed the multi-decadal intrinsic variability of those measures. Over the

Antarctic region considered, CMIP5 GCM metrics show no significant trends until the 1980’s, but

evolve significantly afterwards. Consequently, we estimated the multi-decadal climate variability of

each metric for every CMIP5 GCM by considering the variability of the 31 year running metric90

during the stable period 1850–1980. We present this estimate in details in Appendix A. The multi-

decadal variability estimate gives an error bar around the reference period value, which depends on

each metric and each model (Table 1).
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2.2 Measures

The climate prediction index (CPI) introduced by Murphy et al. (2004) is widely used in climatology95

studies for model evaluation and weighted projections (for example Connolley and Bracegirdle,

2007; Franco et al., 2011). It is based on statistical theory for normally-distributed variables, which

gives that the probability that a realisation r belongs to a population of mean µ and a standard

deviation σ is proportional to exp(−(|r−µ|/σ)2/2). It is defined as follows:

CPIs =
√〈

(µm
s −µo

s )
2
〉
xy
/〈σo

s 〉
2
xy = rmses/〈σo

s 〉xy , (1)100

where the index s denotes the season, s and o exponents are for model outputs and observations

respectively, µs is the time average of seasonal values for each grid point, σo
s is the temporal

standard deviation of seasonal observation values for each grid point, 〈.〉xy is the area-weighted

spatial average, and rmses is the spatial root mean square error for the season s.

When aggregating several seasons, we compute the CPI as the root mean square of the seasonal105

indexes:

CPI =
√∑

s

CPI2s (2)

2.3 Variable selection

Our variable selection is based on three criteria: (i) the variable should be a forcing field for

RCMs, (ii) the variable should have an impact on RCM-modeled SMB, and (iii) the variable should110

be constrained with sufficient observations so that reanalyses could confidently be considered an

“observation”. Consequently, we focus on the variables detailed below.

2.3.1 Sea level pressure

Sea level pressure (psl) is a proxy for the large-scale circulation patterns which significantly impact

the precipitation patterns simulated by RCMs. The psl spatial anomalies compared to ERA-Interim115

for the period 1980–2010 are shown in Fig. 1. We observe that the four seasonal psl CPIs are similar

(see Fig. S1), suggesting that the most relevant metric for psl is the combination of the four seasons’

CPI values, denoted by psl[ann].

2.3.2 Air temperature at 850hPa

The air temperature in the free atmosphere (here at 850 hPa; ta850) has an impact on phase changes120

in RCMs (refreeze/melt of snowpack, snow/rain fall). It also controls the maximal water vapor

content of the atmosphere. Because of its pronounced seasonal cycle, ta850 presents large temporal

variability in autumn and spring, such that seasonal means are not reliable for these seasons, though

it is more stable in summer and winter. As summer and winter CPIs are both relevant and similar (see
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Fig. S1), the combined CPI of these two seasons form a robust metric. However, special attention125

should be given to summer ta850, since it has the highest impact on the melt/refreezing amounts

and on the hydrometeors’ phase changes. In conclusion, the most relevant metrics for our study

are the summer/winter ta850 CPI, denoted by ta850[s/w], and the summer ta850 CPI, denoted by

ta850[sum].

2.3.3 Precipitable water130

Column-integrated atmospheric water vapor, or precipitable water (prw), is a proxy for the humidity

content of the atmosphere, which impacts the amount of precipitation in RCMs. It is affected by the

same strong seasonal cycle as temperature since the maximum water vapor content of an air parcel is

related to the temperature through the Clausius-Clapeyron relationship. Consequently, as with ta850,

seasonal prw is relevant when its value reaches its minima and maxima, i.e. in winter and summer.135

Consequently we chose to focus on the summer/winter prw CPI, which we denote by prw[s/w].

2.3.4 Surface oceanic conditions

Since most RCMs are not coupled with an oceanic model, sea surface temperature (tos) and sea-

ice concentration from the forcing GCM are used to simulate oceanic conditions in the RCM’s

integration domain. Instead of sea-ice concentration, we considered the meridional sea-ice extent140

(msie), defined as sea-ice concentration times cell area summed for each longitude (see Appendix

B regarding normality issues). Sea-ice and open water extents are complementary and show very

strong seasonal cycles. Consequently, seasonal analyses for these oceanic variables should refer to

winter msie CPI (msie[win]) and summer tos CPI (tos[sum]).

3 Results145

3.1 multi-variable analysis

The CPI values range from 0 to ∼7 for msie[win] and tos[sum] and from 0 to ∼3 for the other

variables (Table 1). In order to obtain a global metric which gives an equal weight to each of the

variables, we first ranked the models by CPI values for each variable and then we computed the

average of ranks. More oriented comparisons can be carried out by assigning different weights to the150

variables of greatest interest. A variable-by-variable comparison remains the most objective when

an only skill score is used to evaluate a model. In Fig. 2(a) we show for each model the ranks of its

variables, with models ordered according to the average of ranks. We evaluate the effect of multi-

decadal variability of the variables on the ranking by computing for each model and each variable

the modified rank when using CPIs plus/minus multi-decadal variabilities while not changing CPIs155

for other models. Ranks and their associated ranges are detailed in Table 1 and the impact on the

average of ranks is displayed in Fig. 2(b) (green lines). In addition, the average of ranks for the
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first realization (r1i1p1) is similar to that of the 2nd and 3rd realizations when available (Fig. 2(b),

markers), which is a good indicator of the robustness of the method.

As expected, the five reanalyses march to the head of the podium, although the ACCESS models160

perform surprisingly, with ACCESS1-3 overtaking NCEP-DOE-v2 as well as NOAA-20CR-v2

and with ACCESS1-0 overtaking NOAA-20CR-v2. These results are explained by the significant

positive bias in precipitable water shared by NCEP-NCAR-v1, NCEP-DOE-v2 and NOAA-20CR-

v2 compared to the other reanalyses. In addition, NOAA-20CR-v2 presents a misspecification of

sea-ice, with ice concentrations never exceeding 55% far from the coast (Compo et al., 2011), which165

explains its low CPI for winter meridional sea-ice extent. With regards to the other variables, the five

reanalyses do not differ significantly from ERA-Interim over 1980–2010.

Each of the CMIP5 models shows at least one variable ranked under the median value except

ACCESS1-3. The 5 models with the highest average ranks are ACCESS1-3 and ACCESS1-0,

although they show a significant warm bias for summer sea surface temperature, CESM1-BGC,170

although it shows incorrect circulation pattern, CESM1-CAM5 and NorESM1-M, although they

show a moderate cold bias for summer air temperature and a wet bias for precipitable water. Two

other models have only one strong bias compared to ERA-Interim: CCSM4, showing a significant

overestimation of winter meridional sea-ice extent, and EC-EARTH, showing a strong warm bias

for summer sea surface temperature (precipitable water was unavailable). Detailed maps of spatial175

anomalies relative to ERA-Interim similar to Fig. 1 can be found in Fig. S2 to S7.

3.2 Climate change

Knutti et al. (2010) showed that model skills in simulating present-day climate conditions relates

only weakly to the magnitude of predicted change for surface temperature, except for sea-ice

covered regions in winter. We looked for emergent constraints for our region by correlating projected180

changes (2079–2100 mean minus 1980–2010 mean) in winter sea-ice extent, summer sea surface

temperature, precipitable water and 850hPa air temperature to biases for the 1980–2010 period.

We found that variable evolutions are significantly correlated to the bias in winter sea-ice extent

(p< 0.01, Fig. 3, 1st column), but are poorly correlated to biases of other variables.

Changes in precipitable water and in summer sea surface temperature are very strongly correlated185

with changes in 850hPa air temperature (R2 > 0.8). Changes in winter sea-ice are also strongly

correlated with changes in 850hPa air temperature (R2 = 0.68), but are just as well correlated with

the winter sea-ice bias (R2 = 0.62), such that these two variables together explain more than 80%

of the variance of the changes in winter sea-ice. This suggests that studying the changes in air

temperature and in sea-ice is sufficient for understanding the changes in the four variables studied.190

We introduce mid-latitude (40◦ S to 40◦ N) annual surface air temperature change as a proxy for

the global warming signal. We see that 31% of the variance of 850hPa air temperature is explained

by the winter sea-ice bias and almost the same amount of variance (36%) is explained by global
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warming (Fig. 3, 1st row), despite winter sea-ice bias and global warming signals being uncorrelated

with each other. Additionally, changes in sea-ice extent are not significantly correlated with the195

global warming signal (Fig. 3, 4th row). This means that (i) the decrease in sea-ice extent is mainly

driven by its simulated state under present-day climate and that (ii) both decreasing sea-ice extent and

increasing air temperature are influenced heavily by the local feedback between these two variables.

This section highlights the importance of simulating current climate conditions correctly, as future

projected anomalies in climate over Antarctica will be significantly dependent of the conditions of200

winter sea ice cover over the present-day period.

4 Discussion and conclusions

The main goal of this work was to provide a fair overview of the strengths and weaknesses of model

outputs from the last multi-model ensemble CMIP5 as a first and essential step toward regional

modeling of the Antarctic ice-sheet surface mass balance. This study does not give an absolute205

ranking of CMIP5 climate models over Antarctica as it is deliberately driven by the choice of

forcing fields for regional models. The three main factors impacting on the ranking are the choice of

reference fields, the variables selection and the measure computation.

We chose ERA-Interim as the reference field because it has been shown to be the most reliable

contemporary global reanalysis over Antarctica (Bromwich et al., 2011; Bracegirdle and Marshall,210

2012) and included five other reanalyses into our study to assess our knowledge of the current

state of the Antarctic climate. Our results show that these reanalyses are not significantly different

from ERA-Interim for 850 hPa air temperature, sea surface temperature, sea level pressure and

sea-ice concentration, except for NOAA-20CR-v2, for which sea-ice was misspecified (Compo

et al., 2011). For precipitable water, however, we found that NCEP-NCAR-v1, NCEP-DOE-v2 and215

NOAA-20CR-v2 reanalyses from NOAA share a significant positive bias when compared to ERA-

Interim. This bias was already noted by Nicolas and Bromwich (2011) for NCEP-DOE-v2. The

same paper shows that ERA-Interim has a constant bias of −0.6 kgm−2 compared to the SSM/I

satellite data for the 60–50◦ S area. We compared ERA-Interim with the most recent version of

Satellite Microwave Radiometer brightness temperatures converted to precipitable water using the220

RSS Version-7 algorithm over the 1988–2014 period (RemoteSensingSystems, 2013). We see a bias

of only −0.25 kgm−2 for the 60–50◦ S area and of −0.21 kgm−2 for the 60–40◦ S area, for all

seasons. This bias is much lower than those encountered between ERA-Interim and models (see

Figs. S5 and S6), leading us to believe that ERA-Interim can be confidently used as a reference for

precipitable water in this region.225

The variable selection is primarily based on our experience of forcing evaluation for regional

climate modelling of the Greenland ice-sheet SMB (Fettweis et al., 2013), with adaptations specific

to the Antarctic ice-sheet, for which precipitation is the major component of SMB and where melt

7



amounts are expected to increase significantly during the century. We sought to focus on a limited

number of variables and to avoid redundancy. We considered psl rather than 500hPa geopotential230

height because the latter can be strongly impacted by air temperature biases at low atmospheric

levels, while the centered patterns of the two variables are strongly correlated (see Fig. S8). Another

variable that could be of importance for modeling surface mass balance is the meridional moisture

flux (mmf), calculated by integrating specific humidity times meridional wind from the surface to the

top of the atmosphere. This depends on available precipitable water as well as large-scale circulation,235

driving moisture advection into the Antarctic domain. However mmf is dominated by time-varying

synoptic-scale motions, also called transient eddies (Tsukernik and Lynch, 2013), which are captured

at the sub-daily time step. This means that a study of meridional moisture flux requires 6H outputs

for all models, which we were not able to obtain. It would be of interest to put the vertical integral

of northward and eastward water vapour flux as a standard output in the next CMIP.240

With regard to measure computation, we focused on the widely used climate prediction index, a

measure based on statistical theory for normally-distributed variables which we verified as applicable

to our dataset. In order to give the same weight to the six selected variables, we chose to first rank

CMIP5 models by variable according to their CPI and then use the average of ranks. The use of the

first 3 realizations showed the robustness of the ranking, after which we also evaluated the impact of245

multi-decadal variability on the ranks.

In the context of these choices, ACCESS1-3 is the CMIP5 model showing the best performance

for modeling surface mass balance with a RCM. It has a significant warm bias for summer sea surface

temperature, but shows no significant biases for the 5 other metrics. As shown by Noël et al. (2014)

over Greenland, biases in sea surface temperatures only marginally impact the SMB simulated by250

RCMs. In addition, ACCESS1-3 variable evolutions are close to the multi-model ensemble mean

evolutions (Fig. 3). Two other models with high skill scores could also be of particular interest

because they cover the range of plausible variable evolutions: CESM1-CAM5 and NorESM1-M,

which projects future high (low) 850 hPa air temperature increase and winter sea-ice decrease,

respectively. However both models are too cold in summer, which may impact the melt increase255

projected by RCMs.

With regard to climate change estimates from CMIP5, we see no significant change in sea-level

pressure patterns for RCP85 during the 21st century (see Fig. S9), whereas the other variables evolve

significantly from the 1980’s to 2100. We observe that 850 hPa air temperature change combined

with the 1980–2010 winter sea-ice bias explain more than 80% of the variance of the change in260

precipitable water, summer sea surface temperature and winter sea-ice extent, while these last two

variables have null correlation with the global warming signal. This demonstrates the importance of

a robust evaluation over the current climate, as the future projected climate anomalies over Antarctica

could be significantly dependent on a model’s ability to properly simulate present-day sea-ice extent.

In addition, we believe that a better understanding of climate change over the Antarctic region would265
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be achieved with a better quantification of the feedback between free atmosphere warming and winter

sea-ice decrease.

Finally, Krinner et al. (2014) suggested that uncertainties of climate projections over Antarctica

could be better quantified by using AMIP-kind projections, for which sea surface conditions are

computed as anomalies of the observed state. We believe that if sea surface conditions do not improve270

in the next CMIP experiment, this method would be valuable, since AMIP experiments show reduce

biases compared to historical experiments (see Fig. S10), but a correction should be applied on

anomalies to take into account the present-day sea-ice bias of the forcing simulation.

Appendix A: Mean climate and multi-decadal variability

We computed the six selected metrics prw[s/w], psl[ann], ta850[s/w], ta850[sum], tos[sum], and275

msie[win] for the 41 CMIP5 GCMs on 31 years moving average between 1850 and 2100 in respect

to ERA-Interim over the period 1980–2010. We observed that all metrics showed no significant

trends from 1850 to 1980 whereas they evolved significantly afterwards (see Fig. S9). We estimated

the multi-decadal climate variability of each CMIP5 GCM and each metric by computing the range

of this metric (maximum minus minimum) during this stable 1850–1980 period. Subsequently,280

we focused on the period 1980–2010 covered by ERA-Interim and we considered the 1980–2010

metrics values plus/minus the multi-decadal variability estimate computed over 1850–1980. With

regards to the reanalyses, NOAA-20CR-v2 presents spurious trends during the 1971–1980 period

and the others do not cover a substantial portion of the stable period. Consequently we approximate

their multi-decadal variability by the 90th percentile of CMIP5 multi-decadal variabilities.285

Appendix B: Normality issues

Indexes defined in Sect. 2.2 should be applied on normally-distributed variables to be valid. We

checked that seasonal atmospheric variables follow normal distributions against time for all grid

points. However, sea-ice concentration have bounded distributions, hence we apply the scores on

msie instead.290

Furthermore, msie has a lower bound of 0 and tos has a lower bound of the freezing point of

sea water (∼−1.7 ◦C), which may induce grid points with strongly skewed distributions. However

our work focuses on seasons of maximal extent of sea-ice (winter) and free ocean (summer), so the

impact of grid points with a skewed distribution is negligible.

The Supplement related to this article is available online at295

doi:10.5194/tc-0-1-2015-supplement.
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Figure 1. Mean differences of sea-level pressure between models and ERA-Interim over the period 1980–2010

(in hPa). CMIP5 model names are in black and reanalysis names are in blue. Hashes are for areas where the

difference is higher that two time ERA-Interim annual sea-level pressure standard deviation over the same

period. External circle is 40◦ S and intermediate black circle is 60◦ S. Green rectangle is a typical domain

boundary for regional climate models over Antarctica (e.g. Ligtenberg et al., 2013). ERA-Interim sea-level

pressure over the period 1980–2010 is displayed in the low-right panel (in hPa).
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Table 1. Reanalyses (first 6 rows) and CMIP5 models details. Climate prediction indexes (CPI) are given

plus/minus estimate of the multi-decadal variability. Ranks are given with in parenthesis the modified rank

when using CPI plus/minus multi-decadal variability for the considered model while not changing CPI of other

models. On the ERA-Interim line, we give the ERA-Interim standard deviation of spatially-averaged annual

values, which are the scaling factors for the indexes, and when combining several seasons we give the mean

standard deviation plus/minus (maximum−minimum) / 2.

Name Modelling Lat. CPI and ranks

groups grid msie[win] prw[s/w] psl[ann] ta850[s/w] ta850[sum] tos[sum]

spacing CPI Rank CPI Rank CPI Rank CPI Rank CPI Rank CPI Rank

ERA-Interim ECMWF 0.7◦ – 0.75± 0.1 kg m−2 3.2± 0.5 hPa 0.95± 0.06 K 0.89 K 0.56 K

JRA-55 JMA 1.25◦ 0.5 ± 1.0 4 (2-5) 0.6 ± 0.5 3 (2-10) 0.2 ± 0.4 4 (2-9) 0.7 ± 0.4 3 (3-10) 0.8 ± 0.4 5 (3-11) 0.9 ± 0.9 6 (2-7)

MERRA-v1 NASA 0.5◦ 0.1 ± 1.0 2 (2-5) 0.5 ± 0.5 2 (2-5) 0.1 ± 0.4 2 (2-6) 0.3 ± 0.4 2 (2-2) 0.3 ± 0.4 2 (2-2) 0.2 ± 0.9 2 (2-6)

NCEP-DOE-v2 NCEP-DOE 2.5◦ 0.4 ± 1.0 3 (2-5) 2.5 ± 0.5 40 (37-42) 0.3 ± 0.4 5 (2-10) 1.0 ± 0.4 7 (3-23) 0.9 ± 0.4 7 (3-14) 0.4 ± 0.9 4 (2-6)

NCEP-NCAR-v1 NCEP-NCAR 2.5◦ 0.5 ± 1.0 5 (2-6) 2.0 ± 0.5 36 (28-39) 0.2 ± 0.4 3 (2-7) 0.8 ± 0.4 4 (3-14) 0.7 ± 0.4 3 (3-11) 0.3 ± 0.9 3 (2-6)

NOAA-20CR-v2 NOAA 2.0◦ 3.6 ± 1.0 29 (23-38) 1.9 ± 0.5 31 (21-37) 0.3 ± 0.4 6 (2-14) 1.0 ± 0.4 6 (3-23) 0.9 ± 0.4 6 (3-13) 0.6 ± 0.9 5 (2-6)

ACCESS1-0 CSIRO-BOM 1.25◦ 1.9 ± 0.4 11 (6-17) 1.0 ± 0.3 7 (4-16) 0.6 ± 0.2 9 (7-21) 1.1 ± 0.1 9 (6-11) 1.3 ± 0.1 15 (12-15) 3.7 ± 0.4 28 (25-32)

ACCESS1-3 CSIRO-BOM 1.25◦ 2.1 ± 0.2 15 (12-18) 1.1 ± 0.2 8 (5-15) 0.7 ± 0.2 10 (7-22) 0.9 ± 0.2 5 (3-8) 0.8 ± 0.2 4 (3-7) 2.7 ± 0.3 14 (11-22)

BCC-CSM1-1 BCC 2.8◦ 3.1 ± 0.5 28 (23-29) 1.9 ± 0.3 33 (28-37) 1.3 ± 0.2 35 (35-37) 1.2 ± 0.3 12 (6-27) 1.1 ± 0.3 11 (6-15) 2.1 ± 0.4 8 (7-13)

BCC-CSM1-1-m BCC 1.0◦ 4.0 ± 1.5 31 (20-42) 1.9 ± 0.4 34 (26-37) 1.4 ± 0.1 37 (35-37) 1.1 ± 0.3 8 (4-22) 1.0 ± 0.3 9 (3-15) 2.2 ± 0.5 10 (7-15)

BNU-ESM GCESS 2.8◦ 6.7 ± 0.9 46 (45-47) 2.0 ± 0.4 35 (28-39) 1.8 ± 0.3 41 (38-47) 2.3 ± 0.4 44 (38-45) 1.5 ± 0.3 19 (12-31) 3.3 ± 0.4 26 (18-28)

CanESM2 CCCma 2.8◦ 2.1 ± 0.5 14 (8-22) 1.3 ± 0.4 18 (6-30) 0.7 ± 0.2 15 (8-26) 1.9 ± 0.4 37 (28-44) 1.8 ± 0.4 31 (16-38) 2.2 ± 0.3 9 (8-10)

CCSM4 NSF-DOE-NCAR 1.25◦ 2.7 ± 0.5 23 (16-28) 1.3 ± 0.1 17 (12-20) 1.0 ± 0.2 28 (14-34) 1.2 ± 0.4 13 (5-29) 1.1 ± 0.4 10 (3-19) 2.9 ± 0.2 19 (16-22)

CESM1-BGC NSF-DOE-NCAR 1.25◦ 2.4 ± 0.7 19 (11-27) 1.4 ± 0.2 19 (12-27) 0.9 ± 0.2 26 (14-34) 1.1 ± 0.5 10 (3-27) 1.0 ± 0.5 8 (3-16) 2.7 ± 0.1 15 (14-17)

CESM1-CAM5 NSF-DOE-NCAR 1.25◦ 1.6 ± 0.3 7 (6-11) 1.4 ± 0.3 20 (9-29) 0.6 ± 0.2 8 (7-15) 1.3 ± 0.4 19 (6-30) 1.6 ± 0.4 26 (12-33) 3.0 ± 0.5 22 (12-26)

CESM1-1-FV2 NSF-DOE-NCAR 1.25◦ 1.7 ± 0.1 10 (7-10) 2.1 ± 0.2 37 (32-37) 0.6 ± 0.1 7 (7-10) 1.3 ± 0.2 20 (11-27) 1.6 ± 0.2 27 (16-32) 3.9 ± 0.3 31 (28-32)

CMCC-CESM CMCC 3.75◦ 2.3 ± 0.7 17 (7-26) 2.4 ± 0.3 39 (38-41) 1.7 ± 0.5 39 (35-47) 1.8 ± 0.2 31 (29-37) 2.2 ± 0.2 38 (35-41) 3.3 ± 0.3 25 (23-27)

CMCC-CM CMCC 0.75◦ 2.3 ± 0.6 18 (10-25) 1.5 ± 0.3 23 (13-30) 1.0 ± 0.4 29 (8-35) 1.3 ± 0.2 21 (11-27) 1.6 ± 0.1 25 (18-28) 2.8 ± 0.2 17 (14-22)

CMCC-CMS CMCC 1.8◦ 2.0 ± 0.6 13 (6-22) 2.4 ± 0.3 38 (38-41) 1.1 ± 0.4 34 (12-37) 1.2 ± 0.2 14 (8-27) 1.5 ± 0.2 17 (14-29) 3.0 ± 0.3 21 (14-24)

CNRM-CM5 CNRM-CERFACS 1.4◦ 3.8 ± 1.5 30 (19-41) 1.7 ± 0.4 28 (14-36) 0.9 ± 0.3 25 (8-34) 1.6 ± 0.4 30 (17-40) 1.7 ± 0.4 29 (16-35) 4.7 ± 0.9 38 (29-41)

CSIRO-Mk3-6-0 CSIRO-QCCCE 1.9◦ 1.6 ± 0.2 9 (6-10) 0.8 ± 0.2 4 (3-7) 1.0 ± 0.3 32 (20-35) 1.8 ± 0.3 32 (27-42) 2.1 ± 0.4 37 (32-43) 2.5 ± 0.1 13 (11-13)

EC-EARTH EC-EARTH 1.125◦ 2.0 ± 0.4 12 (7-18) – – 0.8 ± 0.3 19 (7-33) 1.2 ± 0.3 11 (6-27) 1.5 ± 0.1 20 (16-28) 4.9 ± 0.4 39 (37-40)

FGOALS-g2 LASG-IAP 2.8◦ 2.9 ± 0.4 25 (23-28) 1.2 ± 0.3 13 (5-27) 1.8 ± 0.4 42 (36-47) 1.8 ± 0.3 34 (28-42) 2.0 ± 0.3 34 (30-40) 3.0 ± 0.2 20 (17-23)

FIO-ESM FIO 2.875◦ 3.1 ± 0.3 27 (24-28) 1.3 ± 0.2 16 (11-25) 1.9 ± 0.2 46 (40-47) 1.9 ± 0.3 35 (28-42) 2.1 ± 0.3 36 (32-42) 2.5 ± 0.3 12 (11-16)

GFDL-CM3 NOAA GFDL 1.8◦ 5.2 ± 1.0 41 (35-45) 1.2 ± 0.2 14 (8-20) 1.0 ± 0.2 27 (18-34) 1.3 ± 0.2 22 (11-27) 1.6 ± 0.1 22 (16-29) 4.4 ± 0.6 36 (31-39)

14



Table 1. Continued.

Name Modelling Lat. CPI and ranks

groups grid msie[win] prw[s/w] psl[ann] ta850[s/w] ta850[sum] tos[sum]

spacing CPI Rank CPI Rank CPI Rank CPI Rank CPI Rank CPI Rank

GFDL-ESM2G NOAA GFDL 2.0◦ 4.0 ± 0.9 32 (28-40) 1.2 ± 0.1 15 (12-18) 0.9 ± 0.2 22 (9-34) 1.6 ± 0.2 29 (26-33) 2.0 ± 0.2 35 (33-38) 5.6 ± 0.5 41 (40-41)

GFDL-ESM2M NOAA GFDL 2.0◦ 5.4 ± 1.4 42 (32-46) 1.5 ± 0.4 27 (12-33) 0.8 ± 0.4 17 (7-34) 1.9 ± 0.3 36 (28-42) 2.4 ± 0.4 43 (35-45) 7.1 ± 0.9 46 (42-46)

GISS-E2-H NOAA GFDL 2.5◦ 6.0 ± 1.3 45 (39-46) 1.9 ± 0.4 32 (21-37) 1.4 ± 0.3 36 (35-39) 3.2 ± 0.7 47 (46-47) 3.6 ± 0.7 46 (46-47) 9.2 ± 1.2 47 (47-47)

GISS-E2-H-CC NOAA GFDL 2.5◦ 4.1 ± 0.7 34 (29-39) 1.1 ± 0.4 9 (4-20) 1.0 ± 0.3 33 (13-35) 2.0 ± 0.4 40 (31-44) 2.3 ± 0.5 39 (32-45) 6.5 ± 0.9 42 (41-46)

GISS-E2-R NOAA GFDL 2.5◦ 4.2 ± 0.3 36 (31-37) 1.5 ± 0.3 22 (12-30) 1.0 ± 0.3 30 (15-34) 1.2 ± 0.2 15 (8-27) 1.3 ± 0.1 12 (10-15) 3.8 ± 0.5 29 (25-33)

GISS-E2-R-CC NOAA GFDL 2.5◦ 4.2 ± 0.1 35 (34-36) 1.4 ± 0.3 21 (12-29) 1.0 ± 0.3 31 (16-35) 1.3 ± 0.2 18 (11-27) 1.3 ± 0.2 14 (11-15) 4.1 ± 0.4 32 (28-36)

HadGEM2-AO MOHC 1.25◦ 4.6 ± 0.8 38 (30-42) – – 0.7 ± 0.2 11 (7-26) 1.6 ± 0.3 28 (18-35) 1.5 ± 0.2 16 (14-28) 4.4 ± 0.6 34 (29-39)

HadGEM2-CC MOHC 1.25◦ 4.7 ± 0.3 39 (37-40) 1.1 ± 0.1 11 (6-13) 0.8 ± 0.2 18 (8-29) 1.4 ± 0.1 27 (19-27) 1.5 ± 0.1 21 (16-28) 4.4 ± 0.3 35 (33-38)

HadGEM2-ES MOHC 1.25◦ 4.1 ± 0.7 33 (29-39) 1.1 ± 0.2 10 (5-15) 0.7 ± 0.3 12 (7-30) 1.2 ± 0.2 16 (8-27) 1.3 ± 0.2 13 (10-15) 3.8 ± 0.5 30 (27-33)

INM-CM4 INM 1.5◦ 5.8 ± 0.6 44 (42-45) 2.8 ± 0.4 42 (40-43) 0.8 ± 0.2 16 (8-29) 2.4 ± 0.2 45 (43-45) 2.0 ± 0.1 33 (33-37) 4.6 ± 0.4 37 (33-39)

IPSL-CM5A-LR IPSL 1.9◦ 1.6 ± 0.6 8 (6-15) 1.5 ± 0.4 24 (9-34) 2.0 ± 0.4 47 (39-47) 2.8 ± 0.4 46 (46-47) 3.6 ± 0.4 47 (46-47) 4.3 ± 0.2 33 (32-36)

IPSL-CM5A-MR IPSL 1.3◦ 2.5 ± 0.6 22 (12-26) 1.2 ± 0.4 12 (5-27) 1.6 ± 0.4 38 (35-46) 2.0 ± 0.3 41 (31-44) 2.5 ± 0.4 45 (38-45) 3.5 ± 0.4 27 (24-30)

IPSL-CM5B-LR IPSL 1.3◦ 5.8 ± 0.7 43 (41-45) 3.8 ± 1.0 45 (42-45) 1.8 ± 0.3 45 (38-47) 2.2 ± 0.4 43 (36-45) 2.3 ± 0.2 41 (37-45) 6.8 ± 1.0 44 (42-46)

MIROC-ESM MIROC 2.8◦ 2.5 ± 0.5 21 (13-25) 1.0 ± 0.4 6 (4-20) 1.8 ± 0.2 44 (39-47) 1.4 ± 0.4 26 (8-34) 1.8 ± 0.4 32 (16-38) 2.9 ± 0.3 18 (14-24)

MIROC-ESM-CHEM MIROC 2.8◦ 2.3 ± 0.8 16 (6-26) 0.9 ± 0.4 5 (2-19) 1.8 ± 0.3 43 (38-47) 1.4 ± 0.5 23 (5-34) 1.8 ± 0.4 30 (16-37) 2.8 ± 0.4 16 (11-23)

MIROC5 MIROC 1.4◦ 7.3 ± 0.4 47 (47-47) 2.6 ± 0.3 41 (38-42) 1.7 ± 0.3 40 (38-47) 2.0 ± 0.2 39 (35-42) 1.6 ± 0.1 23 (16-29) 5.2 ± 0.4 40 (39-40)

MPI-ESM-LR MPI-M 1.9◦ 4.8 ± 0.6 40 (37-41) 1.5 ± 0.3 25 (16-30) 0.7 ± 0.3 13 (7-29) 1.4 ± 0.2 25 (15-27) 1.6 ± 0.2 24 (16-31) 3.2 ± 0.2 24 (23-26)

MPI-ESM-MR MPI-M 1.8◦ 4.5 ± 0.3 37 (35-40) 1.7 ± 0.3 29 (20-34) 0.8 ± 0.4 20 (7-34) 1.3 ± 0.3 17 (8-27) 1.5 ± 0.3 18 (12-31) 3.1 ± 0.1 23 (22-24)

MRI-CGCM3 MRI 1.1◦ 3.0 ± 0.3 26 (23-28) 3.2 ± 0.2 43 (43-43) 0.9 ± 0.3 24 (9-34) 1.8 ± 0.1 33 (31-37) 2.3 ± 0.2 40 (38-43) 6.7 ± 0.2 43 (42-44)

MRI-ESM1 MRI 1.1◦ 2.8 ± 0.4 24 (19-28) 3.5 ± 0.4 44 (43-45) 0.9 ± 0.2 23 (10-34) 2.0 ± 0.2 38 (31-42) 2.5 ± 0.2 44 (40-45) 7.1 ± 0.3 45 (44-46)

NorESM1-M NCC 1.9◦ 1.5 ± 0.4 6 (6-11) 1.7 ± 0.2 30 (26-34) 0.7 ± 0.3 14 (7-30) 1.4 ± 0.3 24 (11-30) 1.6 ± 0.4 28 (12-33) 1.9 ± 0.1 7 (7-7)

NorESM1-ME NCC 1.9◦ 2.4 ± 0.5 20 (12-25) 1.5 ± 0.2 26 (17-30) 0.8 ± 0.2 21 (10-29) 2.0 ± 0.2 42 (34-43) 2.4 ± 0.3 42 (37-45) 2.5 ± 0.1 11 (11-13)
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(a) (b)

Figure 2. Model ranking according to CPI values: external circle is for rank 1 (ERA-Interim) while internal

circle is for rank 47 (largest CPI). Models with obvious similarities in code or produced by the same

institution are marked with the same color (clusters), following Knutti et al. (2013). (a) Model rank for

winter meridional sea-ice extent (msie[win], blue diamonds), summer sea surface temperature (tos[sum], red

pentagons), annual sea-level pressure (psl[ann], black squares), summer/winter precipitable water (prw[s/w],

black circles), summer/winter 850 hPa air temperature (ta850[s/w], black stars), and summer 850 hPa air

temperature (ta850[sum], red stars). Models are ordered by the average of ranks. (b) Average of ranks for

r1i1p1 (green dots), r2i1p1 (blue diamonds), and r3i1p1 (red squares) model realizations. When a field was not

available for the 2nd or the 3rd realizations we used the CPI value of the 1st realization for computing ranks.

Green lines show variations of the average of ranks when using CPIs plus/minus multi-decadal variabilities for

the considered model while not changing CPIs for other models.
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Figure 3. Y axes: evolution in time (2070–2100 minus 1980–2010) of summer/winter 850 hPa air temperature

(∆ta850[s/w]), summer/winter precipitable water (δprw[s/w]), summer sea surface temperature (∆tos[sum])

and winter meridional sea-ice extent scaled by ERA-Interim standard deviation of annual values (∆msie[win]).

The ∆ symbol is for absolute differences and the δ symbol for absolute differences divided by 1980–2010

mean value. X axes: winter msie bias (msie[win]b), ∆ta850[s/w] and evolution in time of annual surface

air temperature between 40◦ S and 40◦ N (∆tas40S40N[ann]). Horizontal coloured lines in the first column

are two time the multi-decadal variability of msie[win]b, and the grey band width is two times the 90th

percentile of msie[win]b multi-decadal variabilities. Solid black lines are regression lines computed without

considering the outlier BNU-ESM (red dot with black face color). Blue lines are vertical shift of the regression

line by 1.96 standard deviation of residuals. Three of the five highest-scores models are highlighted with black

contours: ACCESS1-3 (star), CESM1-CAM5 (thin diamond), and NorESM1-M (triangle). Models with obvious

similarities in code or produced by the same institution are marked with the same color, following Knutti et al.

(2013).
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