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Abstract. The El Niño/Southern Oscillation (ENSO) is a major driver of climate variability in the

tropical Andes, where recent Niño and Niña events left an observable footprint on glacier mass

balance. The nature and strength of the relationship between ENSO and glacier mass balance, how-

ever, varies between regions and time periods, leaving several unanswered questions about its exact

mechanisms. The starting point of this study is a four-year long time series of distributed surface en-5

ergy and mass balance (SEB/SMB) calculated using a process-based model driven by observations

at Shallap Glacier (Cordillera Blanca, Peru). These data are used to calibrate a regression-based

downscaling model that links the local SEB/SMB fluxes to atmospheric reanalysis variables on a

monthly basis, allowing an unprecedented quantification of the ENSO influence on the SEB/SMB at

climatological time scales (1980–2013, ERA-Interim period). We find a stronger and steadier anti-10

correlation between Pacific sea surface temperature (SST) and glacier mass balance than previously

reported. This relationship is most pronounced during the wet season (December–May) and at low

altitudes where Niño (Niña) events are accompanied with a snowfall deficit (excess) and a higher

(lower) radiation energy input. We detect a weaker but significant ENSO anti-correlation with total

precipitation (Niño dry signal) and positive correlation with the sensible heat flux, but find no ENSO15

influence on sublimation. Sensitivity analyses comparing several downscaling methods and reanal-

ysis datasets resulted in stable mass balance correlations with Pacific SST but also revealed large

uncertainties in computing the mass balance trend of the last decades. The newly introduced open-

source downscaling tool can be applied easily to other glaciers in the tropics, opening new research

possibilities on even longer time scales.20
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1 Introduction

The climate of the Cordillera Blanca in the Peruvian Andes is characterized by a wet season from

October to April followed by a dry season with little or no precipitation. These dry and wet periods

can be modified during El Niño and La Niña events, the El Niño Southern Oscillation (ENSO)

being an important driver of climate variability in the region (e.g. Garreaud et al., 2009). In this25

particular setting, the glaciers of the Cordillera Blanca are of great economical, environmental and

scientific importance. They are not only important suppliers of fresh-water during the dry periods

(e.g. Chevallier et al., 2011), but they also act as sensitive indicators of climate variability and climate

change, as evidenced by the glacier shrinkage observed since the Little Ice Age (Kaser et al., 1990;

Georges, 2004; Racoviteanu et al., 2008; Schauwecker et al., 2014).30

The response of tropical glaciers to climate variations differs from their mid-latitudinal counter-

parts (e.g. Kaser, 1999) and has been studied extensively, in Africa (e.g. Kaser et al., 2004; Nicholson

et al., 2013) and in South-America (e.g. Hastenrath, 1978; Kaser et al., 1990; Francou et al., 2000

and references herein; see Vuille et al., 2008a and Rabatel et al., 2013 for a review). At low latitudes

the annual cycle of temperature is small and humidity becomes an important driver of mass bal-35

ance seasonality by its control on precipitation, net radiation, and sublimation (Wagnon et al., 1999;

Kaser, 2001; Winkler et al., 2009; Sicart et al., 2011). By determining the phase of precipitation

and thus the surface albedo, changes in temperature can have a significant impact on mass balance

inter-annual variability (e.g. Favier et al., 2004; Gurgiser et al., 2013). The physical basis of tropi-

cal glaciers’ response to various atmospheric forcings is therefore best studied with process-based40

models that aim at the full decomposition of the Surface Energy and Mass Balance (SEB/SMB) (e.g.

Wagnon et al., 2003; Mölg et al., 2008). Since SEB/SMB models require high quality, high resolu-

tion glacio-meteorological observations for calibration and validation, the available time-series are

short and unsuitable for long-term studies of glacier-climate interactions.

The starting point of this study is a four-year long time series of distributed SEB/SMB fluxes at45

Shallap Glacier, Cordillera Blanca, obtained using a process-based model (Gurgiser et al., 2013).

Our first objective is to extend the length of these time series while still preserving the advantages of

the decomposition into individual SEB/SMB components. The SEB/SMB variability is tied to large

scale driven weather conditions, and we hypothesize that by using atmospheric reanalysis data we

can compute (downscale) the energy fluxes with sufficient accuracy to determine the atmospheric50

drivers of SEB/SMB variability on longer time-scales. This hypothesis is the foundation of any

empirical statistical retrieval of glacier climatic mass balance (MB), no matter of which complexity.

“Temperature index” or “positive degree day” models (e.g. Braithwaite, 1995; Hock, 2003) are

probably the simplest example of seeking statistical relationships between glacier MB and local

climate variables (in this case temperature and precipitation). Extensions of temperature-based mod-55

els include so-called “semi-empirical” models that incorporate further explanatory variables and/or

physical processes while still relying on observational data for calibration (e.g. Kaser, 2001; Juen
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et al., 2007; Pellicciotti et al., 2008). Another approach is to use observed relations between the

MB and atmospheric variables or global circulation indexes in order to build statistical models that

predict glacier MB (see Hoinkes, 1968, for a probably very first attempt in this direction). Several60

variations of this method have been applied to glaciers in Northern Europe (Mernild et al., 2014;

Trachsel and Nesje, 2015), northern America (Hodge et al., 1998; Shea and Marshall, 2007) and in

the Tropics (Manciati et al., 2014). All these studies use the MB as the predicted variable and do

not use the terminology of “downscaling”, that is extensively used in climate research. Statistical

downscaling studies that target glaciological applications often focus on one or more meteorological65

variables at the glacier surface (Hofer et al., 2010, 2012) for use in a subsequent MB model for

example (Jarosch et al., 2010; Weidemann et al., 2013).

Here we follow the general idea that, in principle, any target variable can be downscaled from

large-scale atmospheric fields – as long as there is a physical reason for the local- and large-scale

variables to be related (Benestad, 2004; Maraun et al., 2010). We present a new open-source tool70

(DownGlacier) developed especially to retrieve glacier SEB/SMB fluxes from large-scale atmo-

spheric data. Inspired from existing software packages (Wilby et al., 2002; Hessami et al., 2008), it

is a semi-automated, regression-based statistical downscaling tool (see Sect. 2.2).

The second and main objective of this study is to quantitatively assess the impact of ENSO on

the SEB/SMB of the Shallap Glacier. The influence of ENSO in the tropical and central Andes can75

be roughly summarized with prevailing warmer and drier conditions during El Niño phases, while

colder and wetter conditions prevail during La Niña phases. As a result, studies dealing with ENSO’s

influence on tropical Andean glaciers reported a significant anti-correlation between Pacific Sea

Surface Temperature Anomalies (SSTA) and MB (Arnaud et al., 2001; Francou et al., 2004; Vuille

et al., 2008b; Veettil et al., 2014). The extreme 1997/98 Niño year, for example, caused exceptional80

glacier melt in the outer tropics (Wagnon et al., 2001; Francou et al., 2003). Favier et al. (2004)

advanced that glaciers in the outer and inner tropics react similarly to El Niño events, mainly because

of a precipitation deficit in the outer tropics and a temperature increase in the inner tropics, both

leading to a rise in snowline altitude.

However, ENSO influences are neither spatially nor temporally coherent, especially in regions85

of complex terrain between the outer and inner tropics (Vuille and Keimig, 2004; Garreaud et al.,

2009). Several studies in the Zongo valley (Bolivia, ∼ 16◦ S; Ronchail and Gallaire, 2006) or in the

Cordillera Vilcanota (∼ 14◦ S; Perry et al., 2014; Salzmann et al., 2013) report less strong or even

opposite (“Niño/wet, Niña/dry”) local ENSO effects. The related studies of Kaser et al. (2003) and

Vuille et al. (2008b) are the only reports of ENSO influence in the Cordillera Blanca (∼ 9◦ S) to date.90

Based on a hydrological reconstruction of glacier MB for the period 1953–1993 (Kaser et al., 2003),

they found a significant anti-correlation between annual MB and October to April Pacific SSTA,

supporting the expected “Niño → negative MB, Niña → positive MB” pattern. This relationship
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however did not hold true during at least three individual years after the the mid-1970’s, leading the

authors to conclude that ENSO characteristics may have undergone changes in recent decades.95

Here we use DownGlacier to retrieve monthly SEB/SMB fluxes at Shallap Glacier from atmo-

spheric reanalysis data. This allows a first time assessment of the influence of ENSO on the individ-

ual components of the SEB/SMB during a longer climatological period (1980–2013). The seasonal

variations of the ENSO signal and its varying impact with altitude will be of particular interest.

The rest of the paper is organized as follows. In Sect. 2, we present the study region, describe the100

DownGlacier tool and the data used. In Sect. 3, we present the downscaling results for the ablation

area of the glacier where the glacio-meteorological measurements took place. In Sect. 4, we apply

the downscaling procedure to the entire glacier area and discuss the strengths and limitations of our

method. We assess the robustness of our results in Sect. 5 by using several sensitivity analyses. The

influence of ENSO will be analysed and discussed for each of these steps before concluding our105

study in Sect. 6.

2 Study region, data and methods

2.1 Study region and meteorological data

The Shallap Glacier (9◦20′ S, 77◦20′W, cf. Fig. 1) spans the altitude range 4700–5800ma.s.l.. It lies

in the Cordillera Blanca, which hosts nearly a quarter of all tropical glaciers by area (Kaser, 1999).110

Precipitation in the region is essentially of convective nature and is tied to the moisture originating

from the Amazonian Basin (Vuille and Keimig, 2004; Perry et al., 2014). The Andes mountain chain

(reaching > 6700ma.s.l. in the Cordillera Blanca) divides the wet Amazonian climate in the east

from the dry coastal areas in the west (e.g. Kaser and Osmaston, 2002). The map in Fig. 1 illustrates

the control of topography on triggering precipitation and the pronounced changes occurring within115

short distances.

The Shallap Glacier has been the subject of an intensive field program in recent years. Two auto-

matic weather stations were operated over two distinct and partly overlapping periods: at the glacier

surface (July 2010–September 2012, with several gaps) and on the southern moraine (2002–2009

and July 2011 to February 2012). Here, we used the southern moraine data from October 2005 to120

September 2009 (longest period with complete data coverage). The Unidad de Glaciología y Recur-

sos Hidricos (UGRH) of the Peruvian Autoridad Nacional de Agua (ANA) started surface height

change measurements in the ablation zone of the glacier in 2003. From August 2006 to August 2008

(end of data collection), additional measurement points are available (20 ablation stakes in total) with

a reading frequency of 14 to 64days. The average altitudes of the stake points as measured by the125

UGRH in August 2006 and August 2009 ranges between 4758 and 4824ma.s.l. For a geographic

overview of the stations and stakes see Gurgiser et al. (2013) (their Fig. 1).
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2.2 DownGlacier

DownGlacier is an open-source tool programmed in the Python language. It relies on the statistical

libraries Scikit-learn (Pedregosa et al., 2012) and Statsmodels (Seabold and Perktold, 2010) for the130

regression models, and adds specific SEB/SMB and uncertainty assessment tools. The project repos-

itory (https://bitbucket.org/fmaussion/downglacier) contains the source code, some usage examples

and all data and scripts used to generate the plots presented in this paper.

2.2.1 Surface energy and mass balance

The function of DownGlacier is to compute the glacier SEB equation as resolved by most process-135

based melt models (e.g. Mölg et al., 2012):

SWin +SWout +LWin +LWout +QS+QL+QC+QPS = F (1)

where SWin and SWout are the incoming and outgoing shortwave radiation, LWin and LWout the

incoming and outgoing longwave radiation, QS and QL the turbulent sensible and latent heat fluxes,

QC the conductive heat flux inside snow or ice, and QPS the penetrating shortwave radiation. An140

energy flux (W m−2) has a positive (negative) sign when it induces an energy gain (loss) at the

surface. The sum of these fluxes yields a resulting flux F , which represents the available energy for

melting QM if the glacier surface temperature is at the melting point (0 ◦C). This energy is then

converted to melt and added to the other mass fluxes (kg m−2) to compute the climatic mass balance

MB:145

MB = PRCPSolid−QM/lmelt︸ ︷︷ ︸
MMelt

−QL/lsubli︸ ︷︷ ︸
MSubli

+MSubs (2)

where PRCPSolid is solid precipitation, lmelt and lsubli the latent heats of melting and vaporisation/sublimation/deposition,

and MSubs the subsurface mass fluxes (subsurface melt largely due to QPS and refrozen melt water

in snow or at the ice surface).

SWin, SWout, LWin, LWout, QS, QL, QC, QPS, PRCPSolid, MSubs in Eqs. (1) and (2) are the150

fluxes that are downscaled based on calibration time series provided by the process-based model

(see Sect. 2.2.3). The other variables are called diagnostic variables and are computed from the

downscaled fluxes. Note that Eqs. (1) and (2) are valid at any instant, but not for averaged time pe-

riods. To compute the SEB/SMB from monthly averaged fluxes we assume that F is always equal

to QM and that lsubli is equal to the enthalpy of sublimation (and not vaporisation). The effect of155

these approximations is generally small and depends on temperature and therefore on altitude (see

Appendix A1 for details and Sect. 4 where we present a method to mitigate the errors related to these

assumptions).
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2.2.2 Downscaling strategy

The purpose of the downscaling procedure is to find a function f such as:160

Y = f(X)+ ε (3)

where Y is the variable to be predicted (predictand), X =X1,X2, . . .,Xp are the explanatory vari-

ables (predictors), and ε is a random error term1. In principle, the downscaling process is similar to

any statistical learning problem (Hastie et al., 2009). The term downscaling refers to the fact that, in

this case, the predictors X are extracted from large-scale atmospheric data (reanalysis data of atmo-165

spheric model output, representative of a large space) and the predicted variables Y are the glacier

SEB/SMB fluxes, representative of a local state (Benestad, 2004).

DownGlacier proposes several options to define f but for this study we use the so-called Lasso

(“least absolute shrinkage and selection operator”, Tibshirani, 1996) which performed best in our

cross-validation tests. The Lasso is a shrinkage method developed to overcome some of the problems170

of least-squares regression such as over-fitting and the high sensitivity to the predictor subset. By

penalizing the fitting of the regression coefficients by a factor λ, it shrinks some coefficients and sets

others to zero (Tibshirani, 1996; Hastie et al., 2009). The resulting model is still a linear combination

of multiple predictors (as for stepwise regression), but the chosen coefficients are not the same as

with standard least-squares. Lasso is widely used in statistical learning problems across disciplines175

but it is not (yet) used much in climate downscaling studies despite of encouraging results (e.g.

Hammami et al., 2012; Gao et al., 2014). Due to the novelty of this approach in a glaciological

context, we provide more elements about Lasso in Appendix A2.

2.2.3 Calibration SEB/SMB data

The SEB/SMB data used to calibrate and validate the downscaling model was generated using an180

updated version of the process-based model developed and described by Mölg et al. (2008, 2009,

2012) previously applied at Shallap glacier by Gurgiser et al. (2013). Air temperature, humidity,

wind speed, global radiation and total precipitation measured at the southern glacier moraine serve as

model input for the period October 2005 to September 2009. The model calculates the SEB/SMB as

formulated in Eqs. (1) and (2) at hourly time steps and for the entire glacier surface on a 50m×50m185

grid.

The distributed SEB/SMB time series are aggregated to monthly values and averaged spatially

over altitude slices of 50m height (the altitude slice at 4750ma.s.l. for example being the average

of the grid points in the 4750–4800m range). The uncertainty associated with this reference data has

to be assessed independently using the measurements at the ablation stakes: the annual RMSE of190

the reference MB was estimated to 0.76mw.e. (water equivalent) for the year 2007 and 0.88mw.e.
1ε comprises an irreducible error (the part of variability in Y which cannot be explained by X) and a reducible error

(originating from the error made when approximating f ).
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for the year 2008. We kept the more conservative estimate of 0.88mw.e. and scaled it by a factor of

1/
√
12 (following the normality assumption) to obtain a monthly RMSE of 0.25mw.e.month−1.

This value will be taken into account and added to the downscaling error when analysing our results

at 4750ma.s.l. (where most ablation stakes are located). For other altitudes and for the intermediate195

SEB variables no uncertainty assessment can be realized: this is discussed in more detail in Sect. 4.

2.2.4 Atmospheric predictors

The selection of the predictor set is crucial for the accuracy and stability of the downscaled time

series (e.g. Maraun et al., 2010; Fowler et al., 2007; Sauter and Venema, 2011). For this study, we

chose to select the predictors out of the nearest grid point of the atmospheric reanalysis dataset,200

which is a common approach in downscaling studies (e.g. Gutiérrez et al., 2013; Hofer et al., 2012,

2015). It prevents dubious correlations with remote indices and ensures that the local glacier features

are indeed related to the local atmospheric state (from the coarse dataset perspective). Another more

practical advantage of this procedure is its systematic and objective aspect.

In a first step, we chose to use ERA-Interim reanalysis data (Dee et al., 2011) provided by the205

European Centre for Medium-range Weather Forecasts (ECMWF), which proved to be most accurate

for downscaling purposes in the region (Hofer et al., 2012). We chose to follow a similar approach as

in Hofer et al. (2012) and previously smoothed the ERA-interim fields using a spatial gaussian filter

with σ = 1 (approximately a 3×3 box average), reducing the noise related to arbitrary choice of the

nearest grid-point. The starting predictor set consists of 27 predictors at the surface and at selected210

pressure levels in the atmosphere (Table 1). The sensitivity of our results on the chosen predictor set

and the reanalysis dataset is assessed in Sects. 5.2 and 5.3.

2.2.5 Uncertainty analysis

The uncertainty associated with our method has two major sources: the calibration of the SEB/SMB

time series (see Sect. 2.2.3) and the downscaling procedure itself. To a certain extent, the later can215

be assessed using cross-validation (e.g. Michaelsen, 1987). Here we use a variant of the leave-one-

out cross-validation in which a five-elements window is removed iteratively from the calibration set.

The model selection and calibration procedure is repeated 48 times (one for each month), providing

new “penalized” time series obtained by 48 different models, each of them unaware of the 5months

period surrounding each data point. The period of ±2 months was chosen based on the predictands220

properties: the lag-3 autocorrelation values of the predictands at 4750ma.s.l. were all close to 0,

the highest being MSubs with an r2 of 0.08. Refer to Appendix A3 for more details about the cross-

validation procedure.

For the evaluation of the model skill we used standard metrics computed from the cross-validation:

coefficient of determination r2, root mean square error RMSE, and the Brier Skill Score BSS, defined225

7



as:

BSS = 1− MSEds

MSEref
(4)

with MSEds and MSEref being the mean square error of the downscaling and of the reference model,

respectively. The reference model is the leave-one-out monthly average of the calibration time series

(i.e. the value for June 2007 is the average of the June values in 2006, 2008 and 2009). A positive230

BSS evaluates the capacity of the downscaling model to make better predictions than taking the

“climatology” (a perfect model having a BSS of 1).

2.3 ENSO classification

For the ENSO events classification we use the sea surface temperature anomalies (SSTA, relative

to the base period 1981–2010) in the Niño 3.4 region obtained from the National Oceanic and At-235

mospheric Administration (NOAA) Climate Prediction Center (CPC). We follow the classification

recommended by Trenberth (1997): El Niño (La Niña) occurs if the 5month running average of

Niño 3.4 SSTA exceeds 0.4K (falls below -0.4K) for 6 months or more (Fig. 2). This results in

192 neutral (47%), 95 Niño (23%) and 121 Niña months (30%). The same index was also chosen

by Vuille et al. (2008b) and Francou et al. (2004) for similar purposes. In addition, we shifted the240

SSTA time series by three months (as suggested by Francou et al. (2004) and confirmed by our own

correlation analyses) to account for the lagged response of the MB anomalies at Shallap glacier. We

assess the sensitivity of our results to the choice of other ENSO indexes and lag values in Sect. 5.4.

3 Results

We first present the results of the downscaling at the 4750–4800ma.s.l. altitude slice which is245

located in the ablation area of the glacier. Here we have the highest confidence in the calibration

time series and in their uncertainty estimates. From now on we use the term “year” as replacement

for “hydrological years” (1998 for example referring to the period October 1997 to September 1998).

For simplicity, we refer to the 4750–4800 m a.s.l. altitude slice with the shorter “4750 m a.s.l.” and

add a 4750 subscript to the MB variable name wherever judged necessary to avoid ambiguities.250

3.1 Downscaling results

3.1.1 Validation

A summary of the cross-validation results is presented in Table 2. All downscaled variables have

a positive BSS, the highest (0.81) for Temp and the lowest (0.21) for PRCPTotal. The most deter-

minant variables for MB4750 are the short-wave variables SWin and SWout as well as PRCPSolid.255

Their scores are generally lower than those of other variables but they are satisfying considering the
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complex nature of the precipitation and surface albedo processes. We discuss the conditions for the

successful downscaling of SWout in Sect. 4.

The example of PRCPTotal illustrates the importance of considering all scores when assessing

the model results. RMSEσ of PRCPTotal is lower than that of PRCPSolid, meaning that the model260

is working satisfyingly. However, the inter-annual variability of PRCPTotal is smaller and results in

an efficient reference model that penalises the BSS. PRCPSolid, in turn, has a higher inter-annual

variability (tied to the temperature variations, see Fig. 3) better caught by the downscaling model

than by the reference climatology.

Figure 3 shows a comparison between the reference and modelled time series of Temp, SWnet,265

PRCPSolid and MB4750. As expected, the full-model time series are closer to the reference than the

cross-validation time series. However, the differences between the two are small, which indicates

that the chosen predictors and their coefficients are stable regardless of the calibration period. The

inter-annual variability is well caught by the model: the MB4750 of the two last years is less negative

due to lower air temperatures, higher snowfall and lower short-wave radiation input, for both the270

reference and the downscaled model. This raises a question: are the downscaled variables consistent

with the glacier surface processes and can we interpret them in the same way as we would do it with

a physical model?

3.1.2 Physical consistency of the downscaled variables

Albedo (ratio SWout/SWin) for example is strongly related to solid precipitation (Fig. 4e). The down-275

scaled fields reproduce the expected relationship and the spread (related to other factors such as

snowfall frequency) but some issues arise: in rare cases (6%) the downscaled precipitation is slightly

negative and for two cases the albedo is close to the high value of 1. This is due to the linear nature

of the downscaling algorithm and is a known issue of statistical models, which are not aware of the

physical properties of the downscaled variables. In DownGlacier the precipitation values are clipped280

to zero but we decided to leave the short-wave variables unchanged, since the occurrence of extreme

low/high albedo are rare and correspond to a realistic atmospheric forcing (low/high solid precipita-

tion). For other expected relationships such as the relation between the turbulent fluxes QS and QL

with wind-speed and vapour pressure (Fig. 4a and c), the downscaling produces realistic fields as

well. Since monthly air temperature is always close to 0◦ and therefore close to the surface temper-285

ature, the sensible heat flux is more dependent on wind speed than on air temperature (Fig. 4d). The

latent heat flux is also well correlated with wind speed (Fig. 4e), but this is also due to the peculiar

conditions at Shallap glacier, where wind speed and vapor pressure are well correlated (not shown).

The physical consistency of the MB with the downscaled fluxes is ensured by the computation

of the SEB/SMB budget (Eqs. 1 and 2) and is an advantage of DownGlacier over other approaches290

downscaling the MB only. Interestingly, the direct downscaling of MB4750 is slightly less accurate

than the diagnostic method (BSS of 0.65 instead of 0.69) but we obtain a downscaled MBDown
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extremely close to the diagnostic MBDiag (Fig. 4f). Two reasons can explain this encouraging result.

First, while the SEB/SMB equations are additive in nature, the non-linear processes are resolved

beforehand by the process-based model and then mimicked by the downscaling procedure. Second,295

this result can be seen as an implicit confirmation that the downscaling procedure has “caught” all

the SEB/SMB variability that can be explained by the large scale atmospheric fields. The remaining

uncertainty is related either to missing information and errors in the large-scale atmospheric data or

to the simplifying nature of the downscaling functions. In Appendix A4, we describe these functions

and discuss their interpretation.300

3.2 Influence of ENSO on the SEB/SMB fluxes

The downscaled monthly MB4750 is mostly negative for the period 1980–2013 and displays a pro-

nounced intra- and inter-annual variability (Fig. 5). A few months have a positive MB4750, all of

them occurring during Niña periods. Inversely, the most negative events occur during Niño periods.

We will now investigate if we can detect a systematic pattern by building composites of the Niño305

and Niña periods.

3.2.1 Niño/Niña composites

The annual cycles of MB4750, temperature, snowfall and total precipitation for each of the seven

Niña and eight Niño periods are shown in Fig. 6. Despite of a large spread between individual

years we distinguish a clear signal with below (above) average MB4750 during Niño (Niña) periods,310

confirming the findings of previous studies (e.g. Francou et al., 2004; Favier et al., 2004; Vuille et al.,

2008b). The largest differences between Niño and Niña occur between December and May, although

the ENSO signal remains visible towards the end of the year for both MB4750 and temperature.

Temperature displays a larger spread for Niño than for Niña years, with temperature anomalies up to

+2K for extreme months. We also distinguish a Niño→ dry/Niña→wet signal in total precipitation315

during the wet season but it is less pronounced, with at least two wetter than average Niño years.

Snowfall displays a clearer tendency, all Niña years being above the average from December to May

and several Niño years having almost no snowfall at 4750 m a.s.l. during the same period. Due to

this large spread it would be difficult to define a “typical” Niño or Niña period. In fact, our attempts

to go beyond the visual interpretation by testing the statistical significance of these differences were320

unfruitful because of the large standard deviation between years, the small number of composites,

and the variables’ RMSEs.

As for most glaciers, the energy budget at the ablation area of Shallap is dominated by the radiation

fluxes (Fig. 7). The annual cycle of the energy budget is rather flat with an average annual energy

gain of∼ 60Wm−2. The minimum of SWNet in February/March is combined with a smaller energy325

loss by LWNet, while during the dry season LWNet and QL inversely compensate the high SWNet. The

turbulent fluxes are more important during the dry season, the sensible (latent) flux being constantly

10



positive (negative) throughout the year. The resulting SMB cycle follows a bimodal pattern: the first

peak (less negative MB4750) in February is due to a combined effect of a smaller energy gain and

a maximum of accumulation, while the second peak in July is related to the stronger energy sink by330

QL.

The composites presented on the right panel of Fig. 7 (note the different y axis ranges) provide

useful information about the factors that possibly control the differences between Niño and Niña

periods. The differences in SEB are overwhelmingly dominated by the short-wave balance, the other

fluxes playing a smaller role (higher energy loss by LWNet in January/February of Niño years, smaller335

energy loss from April to June by QL). The increase in SWNet is directly related to a snowfall deficit,

mostly between December and May. At least in the ablation zone of the glacier, the picture seems

unequivocally following the pattern described for other tropical Andes glaciers (e.g. Favier et al.,

2004).

3.2.2 Inter-annual variability340

The individual Niña and especially Niño years are highly variable regarding their signal on MB4750

since the events differ in strength, but how well is the Pacific SST related to MB4750? Figure 8

displays the annual averages of MB4750 and of Niño 3.4 SSTA. The relationship is striking through-

out most of the period with a coefficient of determination of r2 = 0.8 (p� 10−5) which reduces to

r2 = 0.67±0.06 (p� 10−5) when taking the RMSE into account2. The latter figure is more realistic345

because the downscaled MB4750 represents the deterministic part of the “real” MB4750: local and

random processes which are not caught by the downscaling procedure are more likely to weaken

the relationship than enhance it. We distinguish two periods with a slightly weakened relationship:

1991–1995 and 2002–2005, which are the exact same periods described by Rabatel et al. (2013)

(their Fig. 9) or by Kaser et al. (2003) (their Fig. 9, for 1991–1995).350

4 Distributed SEB/SMB: exploring the potential and limitations of the procedure

In the previous section we limited our analyses to 4750ma.s.l. where the accuracy of the refer-

ence SEB/SMB model could be assessed thoroughly using external data (ablation stakes), leading

to a robust error assessment of the entire modelling chain. Using DownGlacier for the entire glacier

is straightforward, at least in practice: the distributed SEB/SMB data is averaged over altitude slices355

of a fixed range (here 50m, see Sect. 2.2.3) and each variable/slice is downscaled independently.

The cross-validation scores are computed in the same way (Fig. 9). The scores of PRCPSolid and

LWNet are stable for all altitudes (PRCPSolid is getting closer to PRCPTotal as temperature lowers).

The score of SWNet, however, is highly variable and determines the accuracy of MB at lower alti-

tudes where it is the largest energy input. In the 4800–4900 altitude range the capacity to downscale360

2Mean and standard deviation of r2 computed from 10 000 random realisations of MB4750 ±RMSE.
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SWNet worsens with a maximum RMSEσ = 0.83 (the reasons for this low accuracy are discussed

below). After 5000ma.s.l., SWNet becomes less relevant for the energy budget and has less impact

on the model skill. The BSS scores are low at high altitudes due to uncertainties in the estimation

of the energy available for melting (QM). To address this issue, we can introduce a correction fac-

tor c which guarantees that the average downscaled QM is equal to the average calibration QM.365

The usage of this factor can also be cross-validated (MBCor in Fig. 9): it has a positive impact from

4950 m a.s.l upwards, and is particularly efficient at high altitudes. However, it has a negative impact

at low altitudes where it constrains the variability of the model. Altogether, this correction factor has

only a very small impact on our conclusions and we decided to use the non-corrected time series for

further analyses.370

Figure 10 shows that the negative BSS at 5450ma.s.l. is related to exceptional errors during

the dry season where unrealistic negative MB is predicted for a few isolated months, an issue that

is strongly reduced when using MBCor (not shown). At 5700ma.s.l. the problem is weaker and

the predictions are satisfying. At ∼ 4850ma.s.l. however we reach the limits of the downscaling

procedure: abrupt MB variations from one month to another are not reproduced and the model’s375

attempts to catch those result in bad predictions for the second half of the period. These jumps

from positive to highly negative values are directly related to the surface conditions of the glacier:

snow cover is a function of previous snowfall and melt, information which is not available in the

reanalysis data. Our efforts to account for this monthly persistence by including lagged predictors

were unsuccessful: increasing the number of predictors also increased the noise, and it is probable380

that the linear nature of the Lasso method is not able to cope for these complex effects.

The conditions for the successful downscaling of SWNet are found for example at 4750ma.s.l.

where snowfall and melt occur within days, or at higher altitudes when there is a permanent snow

cover. It is therefore probable that the current version of DownGlacier will perform poorly on e.g.

mid-latitudes glaciers, where persistent effects can be determinant for the annual MB (e.g. Mölg385

et al., 2013, who showed that spring snowfall conditions on a Tibetan glacier regulate the entire

annual mass-balance due to the albedo feedback). In these cases the purely statistical approach used

here should be complemented by physical albedo models.

The altitudes between 4850 and 4950 m a.s.l. with the highest RMSE represent approx. 20% of

the glacier area and are responsible for most uncertainties of the MB variability3. Despite of these390

errors occurring around the location of the equilibrium line, the MB averaged over the entire glacier

(specific MB) is well predicted by the model (RMSEσ of 0.5 and BSS of 0.64, time series in Fig. 10).

The reasons for these good scores are the reliable downscaling in the lower parts of the glacier (which

account for the majority of the mass loss) and of the accumulation processes in the upper parts.

3These errors however have no systematic impact on the average specific MB, thanks to the property of statistical models

to preserve the mean.
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These encouraging results call for an analysis of the model’s glacier-wide predictions for 1980–395

2013, presented in Fig. 11. We arbitrarily multiplied the cross-validation RMSE by a factor 2 to

account for unknown errors in the upper parts. We see that the SSTA → MB relationship is less

strong for the glacier average, with a deterministic correlation of r2 = 0.51 (p < 10−5) diminishing

to r2 = 0.38± 0.08 (p < 10−3) when taking the RMSE into account. These values are lower than

at the 4750ma.s.l. altitude, and are closer to the correlation values found by Vuille et al. (2008b).400

As for most tropical glaciers (Kaser and Osmaston, 2002), Shallap glacier has large accumulation

areas where precipitation falls as snow most of the time. Total precipitation is less sensitive to ENSO

events than temperature: at 4750ma.s.l. the deterministic correlation of snowfall with Pacific SSTA

is r2 = 0.75 (p < 10−5) while it is 0.39 (p < 10−3) for total precipitation.

5 Sensitivity analyses405

We test the robustness of our conclusions by presenting the results of a series of sensitivity experi-

ments grouped in three categories: downscaling method, predictor set and reanalysis data (Table 3

and Fig. 12). In a fourth experiment we analyse the sensitivity of our results to the choice of the

ENSO index and lag value.

5.1 Sensitivity to the downscaling method410

In this study we have used the Lasso, but other traditional regression methods include stepwise

regression or principle component regression (e.g. Wilby et al., 2002; Hessami et al., 2008). We test

several variants:

– SPcor: after an iterative selection, all predictors have a partial correlation significant at the

p= 0.01 value.415

– SRMSE: predictors are added and removed until the inner cross-validation RMSE reaches

a minimum.

– SPC: same as SPcor but run with the 11 most important principle components (explaining 98%

of the total variance).

– L8fold: same as the standard run (Lasso) but with the λ parameter selection based on 8-fold420

cross-validation (instead of 4-fold).

All methods have a lower skill than the reference run (Table 3), with an increase of the RMSE

by about 20% for SRMSE or SPcor and up to 33% for SPC. As shown by the correlation values and

the time series in Fig. 12, the sensitivity of the results to the chosen method is marginal with respect

to the MB4750 variability (with the exception of the principle components regression which shows425

a different trend and smaller variability). The Lasso is only weakly sensitive to the method chosen
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to select the penalization parameter. Stepwise regression methods show a stronger sensitivity to the

choice of the stopping rule, such as the significance of the partial correlation (not shown).

5.2 Sensitivity to the predictor choice

We run five experiments with another predictor set. Predictors were either removed (temperature,430

relative humidity or surface variables), changed (pressure levels) or added (with a lag of one month).

Here again, all experiments result in lower downscaling skill but lead to similar conclusions. Sur-

prisingly, omitting temperature has the smallest effect on the model skill and has only a relative

impact on the correlation with SST. This means that large parts of the temperature signal can be

found in the other predictors. This is not the case with relative humidity: omitting this predictor has435

the strongest negative impact on the prediction skill. Further predictor denial experiments lead to

inefficient models and are not shown here.

The Lag1 experiment is particularly instructive with respect to the skill of the downscaling proce-

dure: doubling the number of predictors by adding the lagged ones results in a lower out of sample

cross-validation skill by increasing the noise and the chance for Lasso to select false-positive predic-440

tors. This is more likely to occur with short calibration periods and might also be one of the reasons

for the increase of RMSE of 15% when changing the predictor pressure levels (hPa experiment). In-

deed, it is possible that the MB4750 variability is more related to the levels chosen for the reference

run (350, 450, 550 and 650hPa) than the new ones, but it is more likely that the hPa experiment

increased the noise and made the job for the Lasso more difficult.445

5.3 Sensitivity to the reanalysis choice

Several studies (e.g. Brands et al., 2012; Hofer et al., 2012, 2015) have discussed the sensitivity

of the downscaling results to the choice of the reanalysis products used for calibration. Here we

test three additional datasets chosen for their historical significance (NCEP/NCAR R1) or for their

relative novelty and sophistication (ERA-Interim, MERRA and CFSR)4:450

– NCEP: NCEP/NCAR R1 reanalysis (Kalnay et al., 1996) belongs to the most widely used

reanalysis datasets. It is of coarser resolution (2.5◦) and is one of the oldest systems still

operating to date.

– MERRA: Modern Era Retrospective- Analysis for Research and Applications reanalysis from

the NASA (Rienecker et al., 2011) is of higher resolution (0.5◦) and belongs to the so-called455

“third generation” of reanalysis products (including ERA-Interim and CFSR).

– CFSR: NCEP Climate Forecast System Reanalysis (Saha et al., 2010), also of higher resolu-

tion (0.5◦).
4Refer to the acknowledgements for data access and acronym description.
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The sensitivity of the downscaling to the various reanalysis datasets is larger than to the other

experiments (Table 3). The three most recent reanalyses have comparably higher skills than NCEP,460

and CFSR shows the highest skill overall (higher than the reference run). Unlike for the other ex-

periments, the differences in skill are accompanied with differences in trends and correlations with

Pacific SST. As shown in Fig. 12, the time series still display a strong covariability but disagree for

certain years (e.g. 1985, 2010). The low correlation of NCEP with SST is attributed to a smaller

variability and a lower accuracy, while the lower correlation of CFSR is quite unexpected. Overall,465

the most striking differences concern the trends of the time series, from negative for MERRA and

CFSR to statistically insignificant for ERA and NCEP. Looking for the reasons of these disagree-

ments is beyond the scope of this study, but we can learn from this analysis that if the ENSO →
MB4750 relationship is quite stable regardless of the method and data used, it is less the case for

trends or for the predicted absolute MB4750. In Appendix A5, we use NCEP/NCAR R1 to analyse470

the relationship for the longer period 1950–2013.

5.4 Sensitivity to the ENSO index

In this study we used the Niño 3.4 index which is widely acknowledged as a good indicator for

ENSO variations (e.g. Trenberth, 1997) and was also used by Vuille et al. (2008b) for their study in

the Cordillera Blanca. However, other studies found that the Niño 1+2 index had a higher predictive475

skill for Chacaltaya Glacier’s MB in the outer tropics (Francou et al., 2003; Rabatel et al., 2013,

with a lag of 2 and 4 months, respectively). Recently, the Multivariate ENSO Index (MEI, Wolter

and Timlin, 2011) was presented as alternative to the purely SST based indices such as Niño 3.4.

In Table 4, we test if our results at 4750 m a.s.l. are sensitive to a change to the Niño 1+2 and MEI

indices. It appears that Niño 3.4 and MEI both have very high correlations with MB4750, with a480

maximum at lag 2 and 3, respectively (which was to expect since both indexes are highly covariable

during the study period). The Niño 1+2 however has a lower predictive skill, which maximises

at lag 2. Most of these differences, however, are not significant in comparison to the uncertainty

estimates of our computed MB.

6 Summary and discussion485

Based on four years of distributed SEB/SMB at Shallap glacier, we calibrated a statistical model

linking each individual SEB/SMB flux to local atmospheric variables extracted from reanalysis data.

We presented a new open-source tool developed for this purpose and applied it first to the abla-

tion area and then to the entire glacier surface. The downscaled time series (1980–2013) revealed

a strong ENSO footprint on glacier MB, a result consolidated by subsequent sensitivity analyses. If490

individual Niño and Niña years can vary in intensity, the control of Pacific SSTA on MB appears to

be constant throughout the period as shown by the significant anti-correlation between annual MB
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and Niño 3.4 SSTA. The mechanisms of this control could be quantified thanks to the decomposi-

tion of the SEB/SMB into individual fluxes (a summary of the SSTA ↔ SEB/SMB correlations is

provided in Fig. 13). Niño (Niña) events imply an increase (decrease) of air temperature leading to495

a higher (lower) snowfall altitude and thus to an increase (decrease) of the net short wave radiation

supply. This effect is enhanced by a further precipitation deficit (excess) during Niño (Niña) years.

The influence of ENSO is therefore stronger at lower altitudes but it remains detectable at higher

elevations through changes in total precipitation. We find a small influence of ENSO on the sensible

heat flux but no significant influence on net long-wave radiation or sublimation.500

Our results are in accordance with our current understanding of the ENSO/glacier relationship in

the Central and Tropical Andes (e.g. Arnaud et al., 2001; Favier et al., 2004; Francou et al., 2004;

Vuille et al., 2008b; Veettil et al., 2014). However, we find a stronger SSTA→MB relationship than

described in Vuille et al. (2008b) and cannot confirm their exceptional years (1983 and 1994). This

discrepancy could be explained by the different methods used to retrieve the MB, but it is likely505

that the relationship is also modified by regional and altitudinal differences: Vuille et al. (2008b)

analysed the MB for the sum of several glacierized catchments of the western part of the Cordillera

Blanca, while our results are valid for Shallap glacier only. If ENSO’s influence on temperature is

regionally stable in the Andes, its influence on precipitation is less known and highly variable. A

recent study by Perry et al. (2014) found a Niño/wet signal in the Cordillera Vilcanota south of the510

Cordillera Blanca which, if confirmed, could counterbalance the albedo effect described here. A bit

further south, Ronchail and Gallaire (2006) reported opposite ENSO effects within short distances,

with a Niña/dry signal in the Zongo valley lowlands and a Niña/wet signal on the higher Altiplano.

While our study aimed at identifying the ENSO footprint on glacier MB, future studies should focus

on the atmospheric mechanisms of this relationship and assess its latitudinal and altitudinal stability.515

A major source of uncertainty in our method is the short period available for calibration, prevent-

ing us to develop more sophisticated models (for example including distant predictors or seasonally

dependant downscaling functions). Fortunately, the four years used here are dynamically variable

and contain neutral and Niña periods, as well as a few months with SSTA above the Niño threshold.

Our uncertainty estimates computed with cross-validation are robust, but they remain high and pre-520

vent more detailed analyses of individual events. In particular, the sensitivity analyses showed that

if the MB variability is persistent between the experiments, the absolute values and trends can vary

considerably. This is especially the case when changing the reanalysis products, an issue that should

be kept in mind when carrying out long-term glacier modelling studies.

Nevertheless, DownGlacier proved to be a versatile and efficient tool to extend existing SEB/SMB525

series in time, provided that there are no persistence effects or heavy auto-correlation in the cal-

ibration time series. These conditions are met for monthly values in the tropics, were we expect

DownGlacier to bring helpful insights on decadal to centennial glacier variability. For mid-latitude

glaciers covered with seasonal snowpack it will be necessary to include non-linear and persistent
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effects (for example by adding surface albedo parameterizations). The major obstacle to such en-530

hancements is the lack of long and reliable SEB/SMB time series for calibration: here, combined

statistical and dynamical approaches might help to complement the otherwise irreplaceable glacio-

meteorological observations.

Appendix A

A1 Solving the SEB/SMB equations on monthly averages535

On monthly averages, the ice surface is practically never at the melting point and the equality F =

QM does not hold true. DownGlacier implements a simple test to assess this error: in a “perfect

downscaling” experiment, the downscaled variables (bold in Eqs. 1 and 2) are set to their calibration

values and the skill of the diagnostic variables is assessed using the usual statistical scores that show

the error related to the averaging only. Figure A1 displays the RMSEσ of the prefect downscaling540

experiment for all altitude slices of the glacier along with monthly air temperature. For most parts

of the glacier the error is close to 1% but reaches 14% at the 5000ma.s.l. altitude slice where the

air temperature is closest to 0 ◦C. For conditions close to the melting point a substantial part of the

energy residual F will not be converted to melt but will heat the ice. At colder temperatures, F will

be close to 0 and less relevant. This error is small in comparison to the other uncertainties of the545

method (see Sect. 4) and is negligible at the altitude of 4750ma.s.l.

A2 The Lasso

Extensive treatment of the Lasso method can be found in Tibshirani (1996) and in statistical text-

books (e.g. Hastie et al., 2009). Here we provide some elements about basic principles of the method.

First, we recall that for a multiple linear regression problem with p predictors the objective is to find550

the parameters β0 . . .βp such as:

Y = β0 +β1X1 +β2X2 + · · ·+βpXp (A1)

Where Y is the variable to predict (vector of n observations y1 . . .yn) and X1 . . .Xp are the pre-

dictor vectors (also of length n). The free parameters β0 . . .βp are usually fitted by minimizing the

residual sum of squares RSS:555

RSS =

n∑
i=1

yi−β0− p∑
j=1

βkxij

2

(A2)

This method becomes unstable when the predictors are collinear (anti-correlated predictors will

lead to very high parameter estimates) and is subject to over-fitting when p becomes large. The

role of stepwise regression algorithms is to select meaningful predictors in order to keep p small

and prevent these problems. The Lasso, in turn, can fit a model containing all original p predictors560
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(thus generalizing the predictor selection problem) using a technique that constrains the coefficient

estimates by minimizing the quantity:

n∑
i=1

yi−β0− p∑
j=1

βkxij

2

+λ

p∑
j=1

|βj |= RSS+λ

p∑
j=1

|βj | (A3)

where λ≥ 0 is a penalization coefficient which has to be determined separately. This penalization

has the advantage to prevent over-fitting by shrinking the coefficients and to force some of the co-565

efficients to be equal to zero (predictor selection) when λ is large. λ is usually chosen among an

ensemble of predefined values which are tested one by one: the value leading to the smallest cross-

validation RMSE is selected 5.

The advantage of Lasso over stepwise regression is shown by our sensitivity analyses (Sect. 5)

and is also illustrated in Fig. A2 (see next Appendix for details). The improvements over the other570

methods is not overwhelming in this case but Lasso proved to be much more stable (and fast) in the

early exploration stages of this study, when we considered many different predictor combinations.

With very large p, stepwise regression showed high variance and high sensitivity to the predictor set

(low out-of-sample cross-validation scores) while Lasso remained robust.

A3 Cross-validation575

The principle of cross-validation it to hide information to the statistical model by calibrating it

with a smaller subset of the data and testing its predictions against the remaining (unseen) sub-

set. DownGlacier realizes two automatic steps to choose the downscaling function f : selection (s)

and calibration (c). In the case of Lasso, (s) consists of choosing the penalization parameter λ us-

ing in-sample cross-validation and (c) consists of fitting the penalized coefficients. In the case of580

stepwise regression, (s) consists of choosing a subset of the predictors and (c) consists of fitting the

least-square coefficients. As discussed early by e.g. Elsner and Schmertmann (1994), it is crucial to

evaluate both steps (s) and (c) in the cross-validation procedure.

The need for out-of-sample cross-validation is not always obvious (when model selection is based

on partial-correlation for example) even if all automated predictor selection methods should be cross-585

validated. The following way to select the predictors is more obvious: the predictors might be added

and removed iteratively for their capacity to reduce the cross-validation RMSE. We provide an exam-

ple of using this stepwise algorithm in Fig. A2, which displays the scores of three different validation

steps: full model (selection s and fit f based on all available data), cross-validation (selected only

once based on all available data but fitted 48 times using cross-validation) and out-of-sample cross-590

validation (selected and fitted 48 times using cross-validation). We see that the algorithm is able

to reach “better” cross-validation scores than the Lasso. However, several of the predictors chosen

5DownGlacier uses the coordinate-descent algorithm implemented by Scikit-learn, with a 4-fold cross-validation.
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by the algorithm are very likely to be added by chance rather than for their real predictive skill, as

shown by the out-of-sample cross-validation scores.

A4 Interpretation of the downscaling functions595

The number of predictors selected by the Lasso varies between 7 and 17 (Table 2), which is larger

than the number of predictors we would obtain with stepwise regression algorithms. Indeed, the

Lasso might choose a linear combination of correlated predictors instead of a single predictor with

less predictive skill, by shrinking less significant coefficients to values close to zero. Table A1

presents the six most important predictors and their coefficients (normalized in %) for each down-600

scaled variable. Some of the functions allow a direct and meaningful interpretation: LWin for exam-

ple is strongly related to relative humidity. It is also coherent that higher temperatures imply a more

negative LWout. Similarly, the first two predictors of QS are wind components, and QL is controlled

by relative humidity to a large extent. PRCPTotal is a function of relative humidity and total cloud

cover and is also inversely proportional to the zonal wind flow at 650 hPa, which is consistent605

with the assumption that most of the moisture in the Cordillera Blanca originates from the Amazon

Basin. We should however not over-interpret these functions, as shown by some unexpected results

(e.g. prcpsfc positively correlated to SWin). Covariability (positive and negative) between predictors

confuses the interpretation, and choosing another predictor set can produce very similar predictions

despite of distinct downscaling functions (see Sect. 5.2).610

A5 Relationship between SSTA and MB for 1951–2013

The NCEP/NCAR R1 products are available from 1948 onwards and the SSTA data from 1950 on-

wards, allowing us to analyse the SSTA→MB4750 relationship for the period 1951–2013 (Fig. A5).

In general, the downscaled MB4750 does not correlate as well with NCEP/NCAR R1 as it does

with other reanalysis products (Table3). The relation is clear throughout the 60 years but with lower615

correlations values for the 1951–1980 period (“deterministic” r2, i.e. without RMSE and without

detrending):

– 1951–2013: r2 = 0.45 (p < 10−5)

– 1981–2013: r2 = 0.56 (p < 10−5)

– 1951–1980: r2 = 0.42 (p < 10−3)620

The lower pre-1980 correlations are mostly due to several exceptionally low MB4750 values during

La Niña and Neutral events during that period. The reasons for these differences are speculative but

some discrepancies are likely to be explained by deficiencies in the reanalysis products before the

introduction of satellite data in 1979. This effect is particularly strong in the southern hemisphere,

where observational data are sparse (e.g. Tennant, 2004).625
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Table 1. Selected predictors from the monthly ERA-Interim fields.

Name Description Levels (Surface or hPa)

prcp Precipitation sfc

ssrd Short-wave downward radiation sfc

tcc Total cloud cover sfc

t Temperature 650, 550, 450, 350

rh Relative humidity 650, 550, 450, 350

gh Geopotential height 650, 550, 450, 350

u Zonal wind component 650, 550, 450, 350

v Meridional wind component 650, 550, 450, 350

ws Wind speed 650, 550, 450, 350
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Table 2. Variables statistics (monthly mean and standard deviation), number of selected predictors and out-of-

sample cross-validation scores r2, RMSE, RMSEσ (expressed in % of the standard deviation σ) and Brier Skill

Score BSS for the downscaled variables and the diagnostic variable MB at the 4750ma.s.l. altitude slice. The

variables Temp (air temperature), VP (vapor pressure), WS (wind speed) and PRCPTotal (total precipitation) are

downscaled and listed here for information, but they are not used to calculate MB.

Units Mean SD Npreds r2 RMSE RMSEσ BSS

Temp K 1.58 0.39 14 0.78 0.18 0.47 0.82

VP hPa 4.99 0.71 11 0.93 0.19 0.27 0.78

WS m s−1 2.48 0.63 11 0.83 0.26 0.42 0.59

SWin W m−2 208.21 20.31 12 0.54 13.93 0.69 0.50

SWout W m−2 −112.22 30.65 12 0.58 19.99 0.65 0.47

LWin W m−2 276.84 16.19 8 0.92 4.71 0.29 0.73

LWout W m−2 −309.55 2.39 11 0.74 1.23 0.51 0.63

QS W m−2 13.90 6.27 12 0.78 2.92 0.47 0.46

QL W m−2 −10.65 10.55 8 0.87 3.86 0.37 0.62

QC W m−2 8.90 4.94 7 0.92 1.39 0.28 0.73

QPS W m−2 −24.14 13.12 12 0.74 6.65 0.51 0.67

MSubs kg m−2 month−1 −109.90 81.51 12 0.62 50.74 0.62 0.64

PRCPSolid kg m−2 month−1 96.13 68.34 16 0.73 35.77 0.52 0.42

PRCPTotal kg m−2 month−1 143.37 97.95 17 0.80 43.73 0.45 0.21

MB4750 kg m−2 month−1 −427.51 294.72 – 0.69 162.97 0.55 0.69
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Table 3. Results of the sensitivity experiments for MB4750: skill scores RMSE (mm w.emonth−1) and BSS,

linear trend (m w.e yr−1) and correlation with Pacific SST Anomalies (detrended, without taking RMSE into

account). Trends and correlation values adjoined with a ∗ indicate significance at p < 0.01.

Notes RMSE BSS Trend SST r2

Reference Ref Reference run 162.97 0.69 0.06 0.81∗

Algorithm SPcor Stepwise, partial correlation 195.51 0.55 0.10 0.78∗

SRMSE Stepwise, RMSE 195.18 0.55 0.08 0.83∗

SPC Stepwise, principle components 234.80 0.35 0.00 0.80∗

L8fold Lasso: 8-fold crossval 167.78 0.67 0.06 0.81∗

Predictors Lag1 +Lag 1 predictors 188.34 0.58 0.07 0.81∗

hPa Levels: 300, 400, 500, 600, 700 186.18 0.59 0.02 0.80∗

NoTemp No temperature 179.97 0.62 0.05 0.78∗

NoSfc No surface variables 186.37 0.59 0.04 0.79∗

NoRH No relative humidity 203.92 0.51 0.02 0.80∗

Reanalyses ERA Levels: 300, 400, 500, 600, 700 186.18 0.59 0.02 0.79∗

CFSR Levels: 300, 400, 500, 600, 700 146.86 0.74 −0.18∗ 0.59∗

MERRA Levels: 300, 400, 500, 600, 700 183.42 0.60 −0.12∗ 0.77∗

NCEP Levels: 300, 400, 500, 600, 700 212.76 0.46 −0.02 0.56∗
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Table 4. Coefficient of determination (r2) between the computed annual MB4750 and various ENSO indices,

for lags between 0 and 5 months.

Lag 0 1 2 3 4 5

Niño 1+2 0.44 0.47 0.49 0.47 0.43 0.36

Niño 3.4 0.68 0.76 0.79 0.80 0.79 0.77

MEI 0.71 0.77 0.80 0.79 0.77 0.72
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Table A1. The six most important predictors and their coefficients (normalized in %) for each downscaled

variable at 4750 m a.s.l.

1 2 3 4 5 6

Temp +20 t650 −13 rh450 +12 rh650 +12 t450 −8 rh350 +7gh450

VP +67 rh550 +9 t550 +6gh350 −6ws550 +5v550 +4v350

WS −25u550 −19v450 −13 rh450 −12u650 +9gh650 +8v650

SWin −29 rh450 +20prcpsfc +20ssrdsfc −7v350 −7u650 −6ws650

SWout −25 rh450 +21 t450 −11v650 +10ws650 −9 rh650 +9gh350

LWin +60 rh550 +12v450 +7 rh450 +7 t450 +7 t650 −4u350

LWout −33 rh550 −18 t450 −14 t650 +10v650 −9v450 −5gh450

QS −22u550 −18v450 −13 rh550 −8ssrdsfc −8 rh450 +8v650

QL +42 rh550 +21u550 +15v450 −11ws650 +4ssrdsfc +3 t550

QC −72 rh550 −16v550 −4 rh450 −2v450 +2ws550 −2 t550

QPS +35 rh450 −19prcpsfc +10 rh650 −8ssrdsfc +6v350 −6gh350

MSubs +31 rh450 −18prcpsfc −12 t450 −10ssrdsfc −7 t650 +6v350

PRCPSolid +14 rh350 +13 tccsfc −13u650 −11 t450 +9 rh450 −6ws650

PRCPTotal +14 rh350 −14u650 +11 tccsfc −8ws650 −7 t450 +7u450
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Figure 1. Map of the Cordillera Blanca with glacier outlines from the Randolph Glacier Inventory (Arendt et al.,

2014). The Shallap Glacier is coloured in red. Colour contours: 1998–2009 annual rainfall climatologies (mm)

at ∼ 5 km resolution provided by Bookhagen and Strecker (2008) (http://www.geog.ucsb.edu/~bodo/TRMM/).
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Figure 2. Five-month running average of Niño 3.4 sea surface temperature anomalies (SSTA, base period:

1981–2010) and Niño/Niña classification after Trenberth (1997). The threshold values (−0.4 and 0.4K) are

indicated by black broken lines. The length of each period (in months) is indicated at the bottom. Note that here

and throughout the paper the SSTA time series have been shifted forward by 3 months to account for the lagged

response of the atmospheric conditions at Shallap Glacier.
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Figure 3. Time series of the reference dataset (black), full downscaling model (dotted blue) and out-of-sample

cross–validation (red) during the calibration period. Shown are the variables air temperature, solid precipitation,

net shortwave radiation, and MB at 4750ma.s.l.
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Figure 4. Checking the physical consistency of the downscaled variables. Scatter plots of reference (2005–

2009, red) and downscaled (1980–2014, blue) time series at 4750ma.s.l. (a) and (b): sensible heat flux vs.

wind-speed and air temperature. (c) and (d): latent heat flux vs. vapor pressure and wind-speed. (e): albedo vs.

solid precipitation. (f) represents the scatter plot of the diagnostic mass balance (computed from the several

downscaled variables) vs. the downscaled mass balance (1980–2014).
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Figure 5. Time series of the computed monthly mass balance at 4750ma.s.l. The grey shading represents

±RMSE (including the RMSE of both the downscaled and the reference data). The calibration period is outlined

by the green vertical bars.
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Niño (red) and Niña (blue) periods (note that some annual cycles are incomplete). The average of all neutral

months is drawn in black (error range omitted for clarity).
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Figure 7. Annual cycles of the surface energy (top) and mass (bottom) fluxes at 4750ma.s.l. Left: 1980–2014

average. Right: average difference between the Niño and Niña composites. The numbers of values for the Niño

(red) and Niña (blue) composites are indicated at the bottom of the plots. Note the different y axis ranges

and that none of these differences is significant in the statistical sense because of the large standard deviation

between years combined with the small number of composites and the variables’ RMSE.
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Figure 8. Annual average of the computed MB4750 and of Niño 3.4 SSTA shifted forward by 3 months (note

the inverted right y axis). The shading represents ±RMSE (including the error of both the downscaling and the

reference datasets).
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Figure 9. Out-of-sample cross-validation scores for selected variables and for each 50m altitude slice at Shallap

Glacier. Left: RMSE expressed in % of the standard deviation σ. Right: Brier Skill Score BSS.
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Figure 10. Time series of the reference dataset (black), full downscaling model (dotted, blue) and out-of-sample

cross–validation (red) during the calibration period. Shown are the Mass-Balance time series at the 4850, 5450

and 5700ma.s.l. altitude slices and averaged over the whole glacier.
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Figure 11. Same as Fig. 8 but for the glacier averaged MB. The shading represents ±2RMSE. Note that this

mass balance does not account for changing glacier geometry.

42



16

14

12

10

8

6

4

2

10
3
 k

g 
m
−

2
 y

r−
1

Algorithm

SPcor

SRMSE

SPC

L8fold

Ref

14

12

10

8

6

4

2

10
3
 k

g 
m
−

2
 y

r−
1

Predictors

Lag1

hPa

NoTemp

NoSfc

NoRH

Ref

1980 1985 1990 1995 2000 2005 2010
12

10

8

6

4

2

0

2

10
3
 k

g 
m
−

2
 y

r−
1

Reanalyses
ERA

CFSR

MERRA

NCEP

Figure 12. Computed annual MB4750 for each category of the sensitivity experiments (see Table 3 for the

description of the experiments). The period 2005–2009 is the calibration period and thus with the smallest

spread.
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Figure 13. Glacier averaged contribution (x axis) and correlation (y axis) between annual Niño 3.4 SSTA

and each SEB (left panel) and SMB (right panel) flux for 1980–2013. Note that the error bars are related to

the uncertainty of the downscaling only (not of the calibration data) and that these results do not account for

changing glacier geometry.
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Figure A1. Results of the “perfect downscaling” experiment (see Appendix A1): RMSEσ and Temp for each

50m altitude slice at Shallap Glacier.
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Figure A2. Box plots of the Brier Skill Score BSS of each validation step for the Lasso and the Stepwise

downscaling algorithms. Each box represents a population of 14 scores (one for each downscaled variable

listed in Table 2).
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Figure A3. Same as Fig. 8 but using NCEP/NCAR R1 reanalysis and for the period 1951–2013.
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